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R. Alfaroa, C. Alvarezb, J.D. Álvarezc, J.R. Angeles Camachoa,
J.C. Arteaga-Velázquezc, D. Avila Rojasa, H.A. Ayala Solaresd, R. Babue,
E. Belmont-Morenoa, C. Brisboisf, K.S. Caballero-Morab, T. Capistráng,∗,
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Valencia, Spain
adSanta Cruz Institute for Particle Physics, Department of Physics, University of

California at Santa Cruz, Santa Cruz, CA 95064, USA
aeDepartment of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong,

China
afLaboratory for Space Research, The University of Hong Kong, Hong Kong, China

agTsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
ahNASA Marshall Space Flight Center, Astrophysics Office, Huntsville, AL 35812, USA

2



aiDepartamento de F́ısica, Centro de Investigación y de Estudios Avanzados del IPN,
Ciudad de México, México

Abstract

The High Altitude Water Cherenkov (HAWC) gamma-ray observatory ob-
serves atmospheric showers produced by incident gamma rays and cosmic
rays with energy from 300 GeV to more than 100 TeV. A crucial phase in
analyzing gamma-ray sources using ground-based gamma-ray detectors like
HAWC is to identify the showers produced by gamma rays or hadrons. The
HAWC observatory records roughly 25,000 events per second, with hadrons
representing the vast majority (> 99.9%) of these events. The standard
gamma/hadron separation technique in HAWC uses a simple rectangular cut
involving only two parameters. This work describes the implementation of
more sophisticated gamma/hadron separation techniques, via machine learn-
ing methods (boosted decision trees and neural networks), and summarizes
the resulting improvements in gamma/hadron separation obtained in HAWC.

Keywords: High Energy, Crab Nebula, G/H separation, Machine Learning

1. Introduction

Technological advances have enabled the expansion of the study of the
cosmos to wavebands outside the small window in the optical region. The
most energetic astrophysical sources emit radiation primarily in the gamma-
ray band. One of the crucial issues in using ground-based detectors to study
gamma-ray sources at Very High Energy (50 GeV - 100 TeV) and Ultra-
High Energy (100 TeV - 100 PeV) is that the vast majority (> 99.9%) of air
showers detected come from cosmic rays, rather than gamma rays.

Ground-based gamma-ray observatories detect the passage of secondary
particles produced after a primary particle impinges on an atmospheric nu-
cleus, leading to the generation of an Extensive Air Shower (EAS). Using
ground level data, EAS properties can be characterized via a set of param-
eters, and then used to deduce the nature of the primary particle. While
gamma-ray induced showers contain mainly positrons, electrons, and gamma
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rays1, hadron-induced showers contain muons from the decay of secondary
charged pions and kaons. These muons, typically created with high trans-
verse momentum, result in hadronic showers being more spread out, with
a multi-core structure, compared to gamma-ray-induced showers, which are
more compact, with a single-core structure [1].

Machine Learning Techniques (MLT) are a set of statistical and computer
algorithms that can be used to build complex, non-linear, models from data,
to tackle a broad range of tasks, including some in gamma-ray astronomy. On
the specific task of gamma/hadron separation (hereafter simply G/H separa-
tion), ground-based gamma-ray observatories like HEGRA [2], MAGIC [3],
H.E.S.S. [4], VERITAS [5], ARGO-YBJ [6], and LHAASO-WCDA [7], among
others, have reported excellent results using such techniques.

1.1. The HAWC Observatory

The High-Altitude Water Cherenkov (HAWC) [8] gamma-ray observatory
is a second-generation ground-based instrument located on the northern slope
of the Sierra Negra volcano in the state of Puebla, Mexico, at an altitude of
4,100 meters above sea level. Like its predecessor, Milagro [9, 10], HAWC is
based on the water Cherenkov technique. It consists of an array of 300 water
Cherenkov detectors, each made of a cylindrical metal structure, 7.3 meters
in diameter and 5 meters high, containing 180,000 liters of purified water
and four photomultiplier tubes (PMTs) at the bottom. The PMTs detect
Cherenkov light generated by the secondary particles of the EAS as they
traverse the water. The HAWC software trigger requires 28 PMT hits within
a 150 ns time window, which results in roughly 25,000 events being recorded
every second [11]. The direction of the primary particle is reconstructed
using the PMT timing information, while the shower core is computed using
the charge on the PMTs. Thus, by measuring the detected charge and time
at the PMTs, HAWC can reconstruct the characteristics of the EAS [12].

Because HAWC detects >99.9% charged cosmic-ray (hadron) events, the
level of background must be significantly reduced in order to perform gamma-
ray observations with HAWC. The current method of G/H separation used by
the HAWC collaboration applies a simple rectangular cut to the data, involv-
ing only two parameters. Cuts on these two parameters define a rectangu-
lar region containing, preferentially, gamma-ray events. Generally speaking,

1Though they may contain some muons, their numbers are small.
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this is not an optimal classification strategy because the boundary between
gamma-like and hadron-like events is not defined by the actual distribution of
the two types of events. In addition, the performance of the two parameters
depends on the size of the observed shower (they are more sensitive for large
events), so determining their optimum combination is not straightforward. A
non-linear classification method should, in principle, provide a more effective
discriminator.

This paper describes the implementation of two new G/H separation
methods in HAWC, using MLT; one based on Boosted Decision Trees (BDT)
and another using Neural Networks (NN). The performance of the new tech-
niques is compared with previously used HAWC cuts [13, 14].

The outline of the paper is as follows: Section 2 gives an overview of
the key parameters generated from HAWC data, which are used as inputs
in our G/H separation models. Section 3 describes the HAWC data used in
our study, both Monte Carlo (MC) simulated data, as well as real data on
three astrophysical sources. Section 4 describes the G/H separation models
discussed in the paper, including the current (standard) methods used by
HAWC, as well as our two new proposed techniques. Section 5 describes how
we build the different models, including details on determining the optimal
cuts for each method. Section 6 reports the performance of the various
methods, comparing them via MC and real data. We conclude, in Section 7,
with a discussion of the overall performance of the models, along with possible
implications regarding the future improvements of our results.

2. HAWC G/H separation parameters

Among the many parameters generated by the HAWC experiment for
each event, we considered those that could help to characterize the nature of
the EAS, ultimately settling on seven, which we used as inputs in our G/H
separation algorithms. These parameters broadly fall into three classes: those
related to the energy of the event, those sensitive to the muon content of the
shower, and those connected to the shower’s lateral development, via the
lateral charge distribution function.

2.1. Energy parameters

Two official gamma-ray energy estimators are currently used in HAWC:
one based on charge density and the second using a neural network [14].
In both estimators, the HAWC data are grouped in a 2D binning scheme
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consisting of a fraction hit bin, B, and an energy bin, ebin. The B bin is
defined as fHit = nHit/nCh, where nHit is the number of PMTs activated
during the event within 20 ns of the shower front, and nCh is the total number
of PMTs in operation at the time. The energy bin (ebin) used in this work is
given by the neural network energy estimator eNN [14]. We use ten2 B bins
and twelve quarter-decade energy bins, starting from 316 GeV (see Table 1).

Tab. 1: Definition of the (10) fraction hit bins (B) and (12) ebin bins; the latter
represents the logarithm of the lower energy bound, log10(eNN /GeV ), for each
bin.

B Range (%) ebin
0 4.4 – 6.7 2.50
1 6.7 – 10.5 2.75
2 10.5 – 16.2 3.00
3 16.2 – 24.7 3.25
4 24.7 – 35.6 3.50
5 35.6 – 48.5 3.75
6 48.5 – 61.8 4.00
7 61.8 – 74.0 4.25
8 74.0 – 84.0 4.50
9 84.0 – 100.0 4.75

5.00
5.25

2.2. Muon content parameters
Typically, the muons present in a hadronic cascade are produced at a

considerable distance from both the shower axis and one another. In the
HAWC detector, these lead to strong signals in widely-separated PMTs. Two
HAWC parameters can be used to try to identify them:

• LIC is the log transformation of the inverse of the compactness pa-
rameter, an empirical parameter originally developed by the Milagro
Collaboration [10], as described in Abeysekara et al. 2017 [13]:

2Note that the B = 0 bin is currently not being used in standard HAWC analyses, as
it has low sensitivity with the standard G/H classifiers. We nevertheless report on it here,
to study the behavior of our machine learning algorithms over the full range.
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LIC= log10
1

compactness
= log10

CxPE40

nHit
,

where CxPE40 is the charge measured in the PMT with the largest
effective charge far (>40 m) from the shower core. When a muon
passes near a PMT, the resulting charge (and, thus, LIC) will be large
(see Figure 3 of Pretz et al. 2015 [15]), indicating that the shower is
more likely produced by a hadron. Since gamma ray showers contain
few, if any, muons, they are characterized by a small LIC value.

• disMax measures the physical distance, in meters, between the two
brightest PMTs. Hadronic showers are expected to have large values
of disMax, while gamma-ray showers are characterized by small values.

2.3. Lateral development parameters

In gamma-ray showers, most secondary particles are generated close to
the shower axis. Thus, HAWC registers their signals near this axis, with a
smooth decrease with distance from the core. Three HAWC parameters can
be used to describe the lateral development of the shower:

• PINC (Parameter for IdeNtifying Cosmic rays) is a parameter that
quantifies the smoothness of the lateral charge distribution function
(LDF) (see Figure 4 of Abeysekara et al. 2017 [13]). Gamma-ray
showers are characterized by having PMTs with a high charge near the
core, and a smoothly decreasing LDF. By contrast, hadronic showers
typically contain several clumps of charges caused by widely-separated
muons, thus leading to a “wrinkled” LDF. PINC, in essence, is the χ2

of the difference between the effective log charge of each PMT hit (qi)
and the expected mean value (〈q〉) computed by averaging all PMTs
within an annulus, 5 m in width, centered on the core of the air shower
containing the PMT hit.

PINC = 1
N

∑N
i=0

[log10(qi)−〈log10(qi)〉]
2

σ2

Here σ is the uncertainty in q, based on a study of gamma shower data
from the Crab [13], and N is the number of annuli.

• LDFChi2 is the reduced chi-square obtained from fitting the LDF, with
the expected shape given by the NKG function [16]:
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NKG = A ρs−3 (1 + ρ)s−4.5,

where ρ is the distance from the shower axis (raxis) at the observation
level, in units of the Molière radius3 (ρ = raxis/Rm), A is the ampli-
tude, and s the shower age. Because the charge distribution is more
homogeneous in a gamma-ray shower, than a hadronic one [17], the
model fits better in gamma-ray events than hadronic ones.

• LDFAmp is the logarithm of the amplitude obtained from the LDF
fit. Gamma-ray and hadronic events in a given fraction hit bin B are
expected to have different values of LDFAmp because of differences in
the lateral distributions of gamma vs. hadron events.

3. Data sets

3.1. Monte Carlo Data

The Monte Carlo (MC) simulations of HAWC data are generated using a
set of standard software packages (e.g., CORSIKA4, GEANT45), in combina-
tion with HAWC-specific simulations that model the PMT response. COR-
SIKA 7.4 [18] was used to simulate extensive air showers initiated by high
energy particles in the atmosphere, using the QGSJET-II-04 and FLUKA
hadronic interaction models. GEANT4 [19] was used to simulate the pas-
sage of the shower particles through the HAWC detector.

Nine species of primary particles were simulated: eight atomic nuclei6

(MC background), along with gamma rays (MC signal). Approximately
23 million signal and 13 million background events were generated, using
a power-law energy spectrum with a spectral index of -2.0 between 5 GeV
and 500 TeV, uniformly on the sky within a zenith angle below 60◦. The
choice of a relatively hard spectrum results in increased statistics at higher
energies at a considerable savings in computing time. For analyses which
simulate the transit of a specific astrophysical source (e.g., the Crab Nebula,
with a spectral index of -2.63), our simulated events must be weighted by
energy and location. The number of simulated events we used was found to

3Rm = 124 m at HAWC.
4https://www.iap.kit.edu/corsika/
5https://geant4.web.cern.ch
6H, He, C, O, Ne, Mg, Si, and Fe.
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be sufficient for previous studies carried out by the HAWC Collaboration,
such as the application of neural networks to estimate the primary particle
energy in HAWC [14].

3.2. Real HAWC data on astrophysical sources

In order to test our classification models on real data, we selected all
available HAWC data from June 2015 to December 2017 (∼ 837 live days).
We explored three different sources: the Crab Nebula, and the extra-galactic
sources Markarian 421 and Markarian 501.

Crab

The Crab is the remnant of the historical supernova explosion, recorded
by Chinese astronomers in 1054. One of the most famous astrophysical ob-
jects7, the Crab is detected across the electromagnetic spectrum [20] and
its brightness and relatively steady flux at TeV energies have made it the
definitive reference/calibration source for all TeV instruments.

Markarian 421 and 501

Markarian 421 and 501 (hereafter Mrk 421 and Mrk 501) are two rel-
atively nearby (< 150 Mpc) Active Galactic Nuclei (AGN) of the blazar
variety (i.e., with jets of accelerating particles pointed towards our line of
sight) [21]. They have been known to emit at very high energy (> 100 GeV)
for decades, and they routinely experience outbursts during which they be-
come even brighter than the Crab. HAWC detects them at high significance,
and indeed, monitors them daily for any unusual activity [22].

3.3. Real HAWC data as background data

A one-day random sample of real HAWC data (slightly larger than the
MC background sample) is also used as background in determining the
HAWC standard cuts (4.1), and as an option in training background for
MLT. In Section 6.1, we compare results using real vs. simulated background
data.

7Also known as M1, the first entry in the famous catalog of astronomical objects com-
piled by Charles Messier in the 18th century.
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4. G/H separation models

The goal of the G/H separation task is to keep a majority of gamma-ray
events while rejecting most hadron events. We define ξγ as the fraction of
gamma-ray events passing the G/H selection, in other words, the fraction of
gamma-ray events correctly classified. Conversely, we define ξh as the fraction
of hadron events passing the G/H selection cut, and thus being misclassified.
Thus, our aim is to achieve a gamma efficiency (ξγ) close to 1 while keeping
the hadron misidentification rate (ξh) near 0.

Figure 1 shows the Receiver Operating Characteristic (ROC) curves [23]
for three of the shower parameters described in Section 2. These curves, ob-
tained from our MC simulations, illustrate the effect that varying thresholds
in the different parameters have on the resulting values of ξγ and ξh.

In the high energy bin (upper curves), the PINC and LDFChi2 parameters
have a similar response, with a good (high) ξγ and an excellent (low) ξh.
Both perform significantly better than LIC at high energy. In the lower
energy bin, all three parameters have roughly the same G/H performance,
significantly worse than at high energy. Although PINC and LDFChi2 are
highly correlated (they are both based on the LDF of the gamma shower, see
Appendix B), they report different information, so we keep them both; at
low energy, their performance differs more than at high energy. Lower B bins
typically have worse G/H performance because the shower has fewer PMTs
participating in the event measurement.

In order to improve on the performance of any individual parameter,
one can combine them, for example, by applying cuts on several parameters
simultaneously [24]. Indeed, the current official G/H separation method in
HAWC uses a simple 2 parameter cut, as described in Section 4.1.

Other more sophisticated approaches include using a likelihood ratio
method to combine several parameters [17], or using MLT, as implemented
successfully in the HEGRA [2] and H.E.S.S. [4] observatories, among others.

In Section 4.2, we describe the implementation, in HAWC, of two new
G/H separation methods using MLT, which combine the various input pa-
rameters described in Section 2, to produce a single output value indicating
the likely nature of the primary particle.

4.1. The Standard Cut (SC) in HAWC

Building on the experience with Milagro, where a cut on a single param-
eter was used successfully for G/H separation [10], the HAWC collaboration
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Fig. 1: ROC curves of the PINC (red), LIC (green) and LDFChi2 (blue) param-
eters. These curves show the separation power of each parameter individually as
a function of a cut, in two different bins; higher ξγ at a given ξh is preferred.
The performance of the three parameters is better for the upper curves of the
(B = 7, ebin 4.5), bin containing 31.6–56.2 TeV events, than the lower curves for
the (B = 3, ebin 3.00) bin for 1.00–1.78 TeV. This reflects the fact that it is harder
to discriminate gamma rays from hadrons in the low energy bins (with fewer struck
PMTs) than in high energy ones.

first implemented a similar single parameter cut, based on the compactness
parameter [8] (as defined in Section 2). Subsequently, a cut on a second pa-
rameter was found to improve the performance. Rectangular cuts on these
two variables as a function of the one-dimensional bins defined by B, we refer
to as the 1D standard cut (SC1D). Similarly, the current official, or standard
cut (SC), in HAWC involves selecting only events in a rectangular region de-
fined by the same two parameters: PINC and LIC (see Section 2), as given
by the expression:

(LIC < CL) & (PINC < CP ),

where CL and CP are the LIC and PINC parameter thresholds, respectively.
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Events within this region are classified as gammas, while those outside
are labeled as hadrons. The major difference between SC1D and the two-
dimensional SC cut is that for SC, the thresholds (CL and CP ) depend on
both the fraction of PMTs activated during the event and the reconstructed
primary particle energy; thus, each (B, ebin) bin has a specific threshold for
each parameter.

4.2. Machine Learning Techniques

In recent years, the use of computer algorithms to automatically build
complex models based solely on data has been gaining ground in a range of
fields, including gamma-ray astronomy. These Machine Learning Techniques
(MLT) not only have the advantage of automating (and thus speeding up)
repetitive tasks, but also have the potential for yielding new insights that
may only be revealed as the computer processes (or “learns” from) large
quantities of data.

MLT fall under two broad categories: supervised and unsupervised. The
former use “labeled” data to train algorithms (e.g., classification), which can
then be used to predict the labels/categories of new (unlabeled) data; the
latter, by contrast, are applied to unlabeled data, allowing the algorithms
themselves to uncover hidden structures in the data (e.g., via clustering) .

In this work, we apply supervised learning methods to the classifica-
tion task of distinguishing between gamma rays (signal) and hadrons (back-
ground). Among the large number of machine learning algorithms, we focus
on two of the most successful ones: Boosted Decision Trees (BDT) [4, 17],
and Neural Networks (NN) [2, 25]. We briefly describe these two algorithms,
along with their inputs in the following paragraphs.

Boosted Decision Trees (BDT)

Traditional decision trees are a simple, non-parametric flowchart-like model,
that use a series of binary sequential decision nodes to split data into branches,
ultimately sorting them into leaf nodes [26]. They are extensively used to
tackle problems of classification (e.g., signal vs. background).

Despite their advantages, simple decision trees have a number of draw-
backs, including the high variance problem, where a slight change in the data
can result in a significant change in the final model; in addition, a simple
binary split often leads to a lack of smoothness in the model [26]. To over-
come these problems, an ensemble of trees can be combined, to ultimately
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produce a more powerful, boosted, model: as more trees are added, the model
“learns” from the errors of the existing trees, and thus improves.

In this work, we use a Gradient boosting algorithm for our BDT model [27],
as implemented in the xgboost python package8. We use 500 trees, a low
learning rate9 of 0.1, to avoid large jumps around the minimum error, and a
maximum tree depth of 5 nodes. For each tree, we use only a random 60%
selection for each individual tree10, to avoid over-fitting. The minimum value
of loss reduction (error) for splitting the leaf node in each tree is set to 1.
These parameters are advertised as likely to avoid overtraining. We verified
this by checking that the output distributions in testing is consistent with
the training output distributions.

Neural Networks (NN)

Neural Networks (NN) are non-linear algorithms that use a collection of
artificial neurons to attempt to mimic a human brain [28]. Artificial neu-
rons, like their biological counterparts, are composed of dendrites, which
collect input information, a nucleus, which combines and generates a sig-
nal, and finally, an axon, that sends the information to the output. The
mathematical model consists of three blocks: input parameters; a synapse
function, combining the input information (i.e., a sum); and an activation
function defining the output, sometimes restricting it to a specific range (e.g.,
sigmoid, tanh, linear). Thus, NN generally can be described as having three
types of layers: an input layer, a set of hidden layers, and an output layer.
The number of neurons in the input layer equals the number of input param-
eters. The number of hidden layers may vary, with each having any number
of neurons. Typically, the neurons of the input and output layers follow a
linear model (i.e., a sum as synapse function and a linear activation function,
y =

∑
wi xi).

Our NN models were trained using the Toolkit for MultiVariate data
Analysis (TMVA), a ROOT-integrated software package that provides a
user-friendly environment for processing and evaluating MLT in high-energy
physics [29]. We used a multilayer Perceptron with a 7:10:10:1 architecture11.

8https://xgboost.readthedocs.io/en/stable/
9This learning rate affects how model weights are updated, based on the estimated

error at each stage.
10That is, 30% of the total sample.
11Several architectures were tested, but this one provided the best performance at a
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The first layer has one neuron per input parameter. The two hidden layers
have ten neurons each and a sigmoid activation function. Finally, the output
layer has one neuron, giving the probability that an event is a gamma ray.

5. Building the models

Both the BDT and NN models have the potential advantage over the cuts
described in Section 4.1 of combining several number of input parameters, to
produce a more powerful classifier. Ultimately, however, the effectiveness of
the new classifier will depend on the discriminating power of each individual
parameter, as well as the correlations among them. Seven parameters were
selected as inputs for our BDT and NN algorithms, as described in Section 2.

In building a model based on MLT, one commonly requires three stages:
training, verification, and testing [30]. The first and second stages typically
work together to build the model, while the last stage is used to evaluate the
performance and stability of the model. Each stage has an independent event
sample; the purpose is to avoid memorizing the events instead of learning
generalizable features. We chose to split our simulation data into two equal
sets: 50% for training and verification and 50% for the testing stage. Thus,
the algorithms use only half of the data to build a mathematical model
that can recognize the differences between gamma-ray events and charged
cosmic rays, while the remaining 50% of the events are used to quantify the
performance of the models. The output value for our models was defined in
all cases as 1 for gamma-ray events, and 0 or -1 for hadrons, for the NN or
BDT model, respectively.

Unfortunately, there is no clear answer to the question “what is the best
model?”; each has its pros and cons. Both the NN and BDT show a good per-
formance in classification; however, their training is slow. The NN response
calculation is somewhat faster than the BDT (though neither significantly
affects event reconstruction time). The BDT is more robust at ignoring weak
variables but is more vulnerable to overtraining. Rather than training sep-
arate models in each {B and ebin} bin, the data were grouped into three
containers and NN and BDT models were trained on these larger groups:
B = 0− 2 (low), B = 3− 5 (medium) and B = 6− 9 (high). This grouping
allowed us to include more training samples per model; the use of two dif-
ferent (albeit correlated) energy-related input parameters (see Section 2.1),

reasonable computational cost.
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allowed our models to better interpolate over the relatively large range of B
bins covered by each of these containers, as suggested in [31].

Nevertheless, the cuts applied on the model output were chosen separately
for each (B, ebin) pair, as described in the next section.

Optimizing the cuts

Although our models are designed for the classification task, they still
allow us the freedom to choose the specific cuts that will determine the
separation between the signal and background classes. In this work, we set a
goal of removing as much background as possible while keeping at least 50%
of the signal. Section 3 describes the data set used to determine the cuts
for each model. In order to define the best cut, we quantify the expected
significance enhancement via the Q factor (described below). Sections 5.1
and 5.2 describe how we use this information to choose the specific cuts
for the SC and MLT models, respectively; in both cases the final cuts are
optimized for each individual bin.

Q factor

The quality factor, Q, of a given selection cut is a parameter commonly
used in ground-based gamma-ray astronomy (e.g., Milagro [10], VERITAS [17])
to measure the expected increase in the significance of an astrophysical
source, after making the cut. Thus, optimizing the Q factor predicts the
best way to classify the events. We use a Gaussian approximation to the
Poisson significance improvement, assuming each bin contains a sufficiently
large number of events. The Q factor is thus defined as

Q =
ξγ√
ξh
. (1)

5.1. Standard Cuts

The SC involves finding optimal cuts for two parameters, separately, for
each bin. First, ξγ is computed using many candidate cuts on PINC and
LIC, using the MC signal data. Next, ξh is computed for these cuts using
the real background set. Finally, the Q factor is calculated with Equation 1,
as a function of the candidate CP and CL cuts. Figure 2 shows the results
obtained for the (B=3, ebin 3.0) bin, with energy between 1.00 and 1.78
TeV. The optimal cut values are those giving the maximum Q factor, with the
proviso that at least 50% of the gamma-ray events are retained. This process
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is repeated for each (B, ebin) bin. Not all bin combinations contain enough
data to determine the cuts, since B and the particle energy are correlated;
therefore, the cuts are not computed if the sample has less than 500 events.

Fig. 2: Q factor as a function of a cut on PINC and LIC, for (B=3, ebin 3),
containing 1.00–1.78 TeV. The plot illustrates the performance of the classification
scheme, as a function of the chosen thresholds (CP and CL). A higher Q implies a
better G/H separation. The optimal cut is the point with the highest Q value. In
this specific bin, this is found at CL = −1.202 and CP = 2.195 (indicated by the
dashed lines), which retains 59.7% of gamma-ray events, while rejecting 93.8% of
hadron events, resulting in a Q factor of 2.4. The signal region is at the lower left,
enclosed by the dashed lines.

5.2. Machine Learning Techniques

After the training and verification stages, the BDT and NN model outputs
give the probability that an event is a gamma ray: if the output value is close
to 1, there is a high probability that the event is a gamma, while an output
close to 0 (or -1 for BDT), means the model predicts it is likely a background
event. Figure 3 shows the distribution of the NN output using the events of
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the B=3 bin, with energy between 1.00-1.78 TeV using signal and background
MC events, as well as the corresponding Q factor as a function of threshold
on the NN output. The optimal cut (0.98) for the model is the one with the
maximum Q factor. As in the case of the SC, the process is repeated for each
{B, ebin} bin to find the optimal cuts for the NN and BDT models.
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Fig. 3: The probability distribution of the NN output for signal and background
MC sample using the events of the B = 3 with energy between 1.00-1.78 TeV,
normalized by the number of events in each sample. The Q factor is plotted in
green as a function of the cutoff on the NN output. In this specific bin, the optimal
cutoff is 0.98 (dark dashed line), where it retains 63.9% of gamma-ray events and
rejects 96.1% of hadron events, giving a maximum Q factor of 3.25.

6. Testing stage

The testing stage is used to evaluate and compare the models. We first
test the models using samples of simulated events of known types, calculating
the predicted efficiencies and Q factors (Section 6.1). Next, we applied our
G/H separation models to real data, in order to obtain the actual significances

17



of known gamma-ray sources; specifically, we looked at three well-known
sources: the Crab, Markarian 421, and Markarian 501 (Section 6.2).

6.1. Testing on MC data

Our sample of signal events was taken from the MC simulation of gamma-
ray showers (see Section 3.1), and is used in the training of all models (SC
and MLT models).

For our background events, we chose two different samples; the first, from
the set of background events in our MC simulation of hadron showers (see
Section 3.1). In addition, however, we used a set of randomly selected real
data events (which are known to be mostly charged cosmic rays) from a single
day.

The SC model used MC signal and real data background samples for
training. The MLT models were trained on MC signal and MC background
events. The MC simulation agrees with real data (both signal and back-
ground) for all the discrimination variables [32]. We chose to train with
MC background because we obtained slightly worse MC testing results when
training with real data12.

Having used half of our MC sample of events for the training & verification
stages, we used the remaining half of our MC data sample for the testing
stage. In order to compare the performance of all methods, we compute the
Q factor for each {B, ebin} bin for each G/H separation model, using the
optimal cutoff in each case. We checked that the models were not overtrained
by verifying that the model outputs on MC testing were compatible with the
training outputs.

Once we have fixed the optimal cuts for each bin, we then evaluate the
predicted performance on the Crab by using the testing sample, weighted
appropriately to simulate transits of the Crab. Based on the MC results, the
NN and BDT have better performance than the SC on the first six B bins,
while the SC is better for the rest of the bins. Figure 4 shows the value of the
predicted Q factor of the three models for two B bins (3 and 6). The bottom
of the figures show the comparison of the MLT versus SC. For the B=3 bin,
the SC is the worst of the G/H separation models, with the NN and BDT
showing an average improvement over the SC of 12% and 30%, respectively.

12We also found that the NN produced significantly worse results on real Crab signals
in upper B bins when trained with real data. See further discussion in Appendix A.

18



On the other hand, for the B = 6 bin, the SC reports better results than the
MLT at energies above 56.2 TeV (ebin=4.75).
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Fig. 4: The top panel of (a) and (b) show the Q factor for each 2D G/H separation
model for the B = 3 and B=6 bins, respectively, using the MC test sample. In
most ebins of (a), the MLT models have better results, as reflected by the bigger
Q factor, but in the case of (b), the SC shows better results at higher energies.
The bottom panel of both figures shows the ratio of the Q factors for MLT models,
divided by the SC. For B = 3, the MLT increase Q by around 10% to 30%.

The SC1D (see Section 4.1) is the original G/H separation technique
used by HAWC13 [13]. The SC1D cuts, on PINC and compactness (and
thus LiC), were optimized for each B bin using a year of early Crab signal
and background data. In the initial publication, G/H separation was not
attempted for B = 0. Figure 5 shows ξγ and ξh as a function of B bin. The
SC1D cuts were (by definition) different for each B bin. For this comparison,
we applied the 2D cuts separately to each {B, ebin}) bin, then combined the
ebins belonging to each individual B bin. The MLT reports a higher ξγ at
large B bins. The fraction of mis-classified hadrons in the 2D models is lower
in the first four B bins than for SC1D, because these 2D models reject more
background events. Thus, Figure 5 implies that the 2D models generally

13Though now mostly superseded by the 2-D SC model, SC1D continues to be useful
for analyses of weak or low-energy sources because it uses a less restrictive data selection
than needed for applying improved energy estimators.
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have a greater predicted Q factor, according to the MC testing comparison.
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Fig. 5: The gamma-ray and hadron efficiencies (top) using the MC test sample
for the various classification methods: SC1D, SC, NN, and BDT. The lower panel
shows the Q factor for each fit bin.

6.2. Testing on real data

In order to carry out tests on real data, we first applied our models to
remove hadron events, and then proceeded to construct sky maps, using the
official HAWC software in the standard way, as described in [13], with a
power law spectrum of index -2.7, and a pivot energy of 7 TeV.

The G/H separation method was used to obtain the Crab significance
to show the actual performance of the various methods (rather than the
predicted one, based on the MC testing set), in order to compare them. In
this analysis, 67 2D bins with a significance at the source position of > 3σ
are used14. For the rest of the bins (53), the maps are not included because

14Of these, four bins belong to the B=0.
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they have too few counts or are dominated by background so that the signal
is overshadowed by the noise [14]. Figure 6 shows the results for the B=3 and
B=6 bins of the 2D G/H separation models. In the specific case of B=3, the
results follow the same behavior as the testing with simulation; the MLTs
show an improvement over the SC. However, in the case of B=6, the models
have similar results except for energies greater than 56.2 TeV (ebin 4.75),
where the SC is better.
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Fig. 6: The significance at the Crab position using the 2D models for B = 3 (a)
and B = 6 (b) are shown in the top panel. The curves show a similar behavior to
those in Figure 4, with the MLT showing a better performance than SC for B = 3
in the most ebins, while in the B = 6, the results of SC are similar or higher, as
can be seen from the ratio of the models, shown in the bottom panel of each figure.

In order to determine the significance as a function of the B bin, we
combine all ebins, thus summarizing the performance of each G/H separation
model per bin. Table 2 reports the significance at the Crab location for
each G/H separation method; the next three columns contain the fractional
significance improvement of the 2D G/H separation models over the older
SC1D; and the last two columns show the comparison between MLT and
SC cuts. The last two rows report the combined significance using all 67
bins (B = 0 − 9), and the official bins only (B = 1 − 9). For most bins,
the 2D models provide better results than SC1D. BDT improves the Crab
significance compared to SC1D by 19% for the official bins, while the SC and
NN improve, by 9% and 8%, respectively. The BDT improves over SC in
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every B bin, while the NN improves in over half. Adding B = 0 gives only
a slight improvement, even with MLT methods, suggesting that this low bin
requires a different approach if a useful signal is to be extracted from it.

Tab. 2: Crab significance using each G/H separation method. Three columns show
the difference, in %, of the significances between the 2D Models and the SC1D
cuts (2DModel−SC1D

SC1D ). The last two columns show the improvement of the MLT
models over the SC cuts. The last two rows show the results from merging maps
that belong to the B bins 1–9 and 0–9.

B

Significance Difference in % between
SC NN BDT NN BDT

SC1D SC NN BDT & & & & &
SC1D SC1D SC1D SC SC

0 - 15.2 14.7 16.0 - - - -3 5
1 26.9 27.6 27.5 28.22 3 2 5 0 2
2 37.8 44.1 44.6 46.4 17 18 23 1 5
3 59.2 62.4 66.1 72.0 5 12 22 6 15
4 70.6 69.7 76.3 76.2 -1 8 8 10 9
5 67.3 71.3 69.7 80.1 6 4 19 -2 12
6 52.3 61.5 48.3 66.0 18 -8 26 -21 7
7 39.1 47.7 49.2 50.3 22 26 28 3 5
8 27.6 32.8 35.1 34.8 19 27 26 7 6
9 28.2 28.7 31.3 31.3 2 11 11 9 9

1-9 144.0 155.7 156.9 170.7 8 9 19 1 10
0-9 - 156.3 157.5 171.3 - - - 1 10

We also summarize the Crab performance as a function of the energy
(ebin). The flux points were obtained for the Crab in quarter-decade energy
bins, using the method described in [14]. We repeated it for each G/H sepa-
ration model, using a log-parabola model to fit the spectrum (see Figure 7).
Table 3 reports our results, which are similar to the B bin projection. The 2D
models give the best G/H separation in most bins. MLT gives better results
than SC at low energies, but above 41.6 TeV (ebin=4.50), the SC generally
has better performance.

Table 4 and 5 report the significance for Mrk 421 and Mrk 501 for each
B bin and for the combination of all bins (0–9 and 1–9). The MLT results
for Mrk 421 are consistent with those seen in the Crab in bins where both
are significantly detected. MLT has similar improvement over SC for 421 as
for the Crab, but all 2D methods have smaller fractional improvement over
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Fig. 7: The Crab spectrum obtained with the SC1D (red), SC (black), NN (dark
blue), and BDT (light blue) using the same method described in Abeysekara et
al. [14]. The dashed lines show the spectral model fit with a log-parabola for each
G/H model.

SC1D than for the Crab. However, for Mrk 501 the NN results are worse than
for SC or SC1D. The performance of the SC is better than SC1D (though
again not as much as for the Crab), while the BDT improvement over SC on
this source is comparable to that seen for the Crab analysis. It is difficult
to assess trends by bin for Mrk 501, because the source is not as strongly
detected as Mrk 421 or the Crab.

7. Discussion and Conclusions

The current G/H separation method used by HAWC is based on a simple
rectangular cut involving only two parameters. However, the sensitivity of
high energy observatories depends strongly on their ability to reject hadrons,
because these overshadow the gamma-ray signal coming from astrophysical
sources by several orders of magnitude. To improve on the performance of
current methods, we must combine the information of additional parameters.
We investigated new methods using MLT to improve the G/H separation over
the official standard cuts (SC and SC1D). We focus on two techniques, Neural
Networks (NN) and Boosted Decision Trees (BDT), which have proven to be

23



Tab. 3: Crab significance using each G/H separation method for the energy bin
(ebin). The first column gives the lower bound for each bin (log( eNN /GeV )).

ebin
Significance

SC1D SC NN BDT
2.50 12.1 12.4 12.3 12.6
2.75 31.2 32.5 34.0 34.6
3.00 52.2 54.7 56.9 58.4
3.25 64.4 65.3 65.6 72.9
3.50 70.1 71.1 74.0 79.5
3.75 60.3 66.5 58.6 74.6
4.00 46.2 54.6 59.0 62.3
4.25 36.3 41.5 45.0 44.3
4.50 26.7 36.0 30.6 32.9
4.75 15.7 21.8 23.0 21.5
5.00 8.4 13.9 11.3 10.1
5.25 1.9 3.0 4.8 4.4

highly effective in a range of applications (including in VHE gamma-ray
astronomy [5, 4]).

The machine learning models were trained and tested on the standard
HAWC MC data, simulating an astrophysical source with energy spectrum
and declination similar to the Crab. These methods were compared, using
simulated data, with the HAWC official cuts (SC1D and SC, see Figure 5),
with the MLT models resulting in a hadron rejection similar to the SC for
low B bins, but a higher ξγ at high B bins.

We then tested the models using real data. From figure 4, MC predicts
that NN and BDT models have a greater Q factor than SC in the B = 3
bin, and this is borne out in practice, based on the observed significance for
the Crab (using real HAWC data) presented in Figure 6. Similarly, for the
B = 6 bin, SC has a better performance in the high-energy bin (ebin).

A summary of our Crab results is shown in Tables 2 and 3, where it
is clear that all the 2D models have better performance than SC1D (cuts
binned in B only). This is of interest because SC1D was tuned on Crab
data and real background, while SC and MLT use MC signal. The BDT is
the best overall G/H separation model, with an improvement of ∼ 10% over
the best-present-practice SC and ∼ 19% over SC1D. While BDT improves
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Tab. 4: Similar to Tab. 2 but for Mrk 421.

B

Significance Difference in % between
SC NN BDT NN BDT

SC1D SC NN BDT & & & & &
SC1D SC1D SC1D SC SC

0 - 8.46 8.28 8.40 - - - -2 -1
1 11.9 13.2 12.5 13.0 11 5 10 -5 -1
2 16.2 16.2 15.6 16.6 0 -4 2 -3 2
3 19.0 18.9 19.9 21.2 -1 4 11 5 12
4 21.6 19.5 21.9 20.7 -10 2 -4 12 6
5 16.5 15.0 15.5 17.6 -9 -6 7 4 18
6 9.7 9.3 8.4 11.0 -4 -13 13 -9 18
7 4.2 5.6 7.2 6.9 34 72 65 28 23
8 - - - - - - - - -
9 - - - - - - - - -

1-9 35.9 35.3 36.0 38.6 -2 0 8 2 10
0-9 - 36.0 36.6 39.3 - - - 2 9

Crab Improvements
1-9 8 9 19 1 10

over SC in all B bins, the improvements were not as prominent in the higher
ebins as in the lower bins, perhaps because of limited MC statistics at high
energy or residual simulation modeling issues. All of the 2D models would
have benefited from larger background samples for tuning the bin cuts, as
in some upper bins fewer than 100 background events passed the cuts. It is
worth noting that the MLT models had the SC variables as inputs but were
unable to improve on SC in most high-energy ebins.

The models were also applied to two additional astrophysical gamma-ray
sources: Mrk 421 and Mrk 501, two well-known extra-galactic objects with
different energy spectra and declination than the Crab, for which all cuts
had been tuned. The BDT gave an excellent performance in most B bins,
and the overall improvement in B (1-9) with respect SC1D is 8% and 16% on
Mrk 421 and 501, respectively. The NN had similar performance to SC1D on
the two Markarians, while the 2-dimensional standard cut (SC) only slightly
improved over SC1D (by less than one sigma) in Mrk 501 and was worse
for Mrk 421. This may be due to the differences in source declination or
energy spectrum, compared to the Crab, which extends to higher energy
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Tab. 5: Similar to Tab. 2 but for Mrk 501.

B

Significance Difference in % between
SC NN BDT NN BDT

SC1D SC NN BDT & & & & &
SC1D SC1D SC1D SC SC

0 - - - - - - - - -
1 3.4 3.8 4.2 4.6 12 25 36 11 21
2 4.5 2.9 3.1 3.7 -36 -32 -17 6 29
3 4.7 5.3 4.5 4.2 14 -5 -10 -16 -21
4 5.1 5.1 6.2 4.4 0 20 -14 20 -14
5 4.1 3.8 4.3 5.7 -9 4 38 15 51
6 3.8 5.0 2.0 5.7 31 -47 50 -59 14
7 1.6 2.2 2.5 2.9 43 60 85 12 30
8 2.6 2.7 2.3 2.9 3 -10 12 -13 8
9 - - - - - - - - -

1-9 10.3 10.6 10.2 11.9 4 0 16 -4 12
Crab Improvements

1-9 8 9 19 1 10

and transits nearly overhead at HAWC. But in the case of SC, it also could
reflect some differences between using real Crab photon signal for SC1D and
the MC photon signal used in tuning SC (and MLT).

The BDT consistently improved the observed significance over present
state of the art SC by 10%, 10%, and 12% for the Crab, Mrk 421, and
Mrk 501, respectively. The NN results reflect less of an improvement over
SC: 1%, 2%, and -4% respectively. The BDT does not seem to be strongly
dependent on the differences in the strength, declination, or spectra of the
sources. However, for most present HAWC analyses, the gains shown by the
BDT are not felt to be large enough to be worth adding the corresponding
additional systematic uncertainty.

General experience in the High Energy Physics (HEP) community has
been that BDT often outperforms neural nets. BDT is also typically more
robust to weak or correlated variables, because of the algorithm’s explicit
focus on incremental variable selection. A significant part of BDT’s advan-
tage may be simply having more free parameters. The neural network energy
estimator [14] has 479 parameters, while the 3 NN models together have 670
parameters. The SC works with 134 parameters and the BDT, with 1500
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trees, has up to 90K parameters. Because of lower weights on later trees
and the automated leaf pruning, the effective number of parameters might
be considerably lower, but the BDT has at least an order of magnitude more
parameters than the NN. Despite its larger size, the BDT generalized better
from the training sample than the NN, so it is unlikely that the MC sam-
ple size intrinsically limited the smaller NN model. But larger background
samples (particularly at high energy) might well have further improved the
bin-by-bin cut optimization and performance of MLT, and possibly of the
SC as well.

The MLT are powerful algorithms that help to improve the recognition
between gamma rays and hadrons. In this paper, we show an improvement
in three known sources. However, the performance of these models in other
sources with different characteristics (e.g. those reported in the third HAWC
catalog [33]) is yet to be determined. On the other hand, the field of MLT is
vast, and includes many more models than the ones explored here. For exam-
ple, Convolutional Neural Networks could be explored that can be trained
with weakly supervised learning [34], where the primary goal would be to
build a model with pure Crab data that avoids the discrepancy between
training and testing data [35].

Appendix A. MC vs. Data Background

A surprise in our study was that training MC signal against MC back-
ground produced better results than training against our real data back-
ground sample. This is despite the real data sample having more events,
including in the highest energy bins. One would expect to do better with
real background. In general we had slightly better results in MC testing
when using MC background, for both NN and BDT. But on real Crab data,
the NN performance was significantly worse in the top B bins using event
data background. However, the BDT Crab results were similar when trained
with either background. We looked into various possible explanations.

One might wonder whether this could be caused by problems in correctly
simulating the distributions of discriminating variables. We had studied these
variables before beginning training of the models, and published results [32]
showing that we saw no significant problems with the simulation matching
data compared to real data around the Crab nebula, at least until upper bins
where real data necessarily runs out of statistics. Our comparisons included
both a background region, and a background-subtracted signal region. Fur-
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ther, one would have expected both ML methods to be similarly affected by
any MC vs data discrepancy.

Adding the interpolation energy variables fHit and eNN improved MC
testing results by a few %. While we had been thinking of them as interpo-
lation variables, the MLT can treat them as discriminating variables. The
upper tail of the fHit distribution (the highest B bins), while similar between
MC signal and MC background, differed between MC background and data
background. This reflects differences in the number of available PMTs in sim-
ulation compared to data. The MC attempted to sample appropriately over
long-term detector evolution, while we used only a single data run to form
the MLT training data background sample. Again, one would have naively
expected this to affect BDT and NN similarly, but we believe it affected NN
more (see Appendix B).

In the original ML interpolation publication[31], the interpolation was on
a signal theory parameter, with the background (randomly) forced to have
exactly the same distribution. Using measured values, we could not force the
distributions to be identical and restrict the energy variables to interpolation,
leading to some sensitivity to the distributions of the interpolation variables.
However, the choice to train with MC background added some robustness,
since signal and background were generated with the same PMT availability.
Using data as background requires care to ensure a compatible detector setup
between the data selected, and that in the signal MC.

Appendix B. Correlation and Variable Importance Effects

It is considered good practice in MLT to reduce, if possible, the dimen-
sionality (number of input variables) in a model. One possibility is eliminat-
ing one of a pair of heavily correlated variables. In our simulations, PINC
and LDFChi2 are highly correlated in both signal and background (see Fig-
ure B.8). Figure B.9 shows some of the correlations among variables in MC
samples.

To test whether the largest correlation was inhibiting ML performance, we
trained a BDT after removing PINC; the BDT performance was a few percent
worse instead of better. This is consistent with experience in HEP that BDT
is often successful using collections of correlated variables. However, when
we trained a NN removing LDFChi2 or PINC, its performance is somewhat
worse in some bins and somewhat better in others, and NN generally seemed
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Fig. B.8: The linear correlation matrix for signal (a) and background (b) of each
input parameter of the MLT models using MC training set.
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Fig. B.9: The event distribution of two input parameters using simulation training
data set for signal and background.

more sensitive to removal of specific variables than BDT. We would tend
to attribute this to the correlations making backpropagation more difficult
in NN. BDT optimizes rather differently, by raising weights of mis-classified
events to purify leaves.

Table B.6 shows the relative importance of the input variables in training
on MC data. The NN ordering is based on summed weights applied to the
inputs (after linearly normalizing all variables into a range of [-1,1]). The
BDT orders variables by the number of times trees use them to define splits.
NN and the BDT both rank PINC and LDFChi2 as among the most impor-
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tant variables, but the algorithms appear to use the inputs rather differently,
perhaps because NN emphasizes functional dependence, while BDT empha-
sizes classification more directly. For the High B bin, the BDT ranks fHit a
bit higher than NN does, but it is a low-priority variable for both, at least
for MC background training.

Tab. B.6: Comparison of relative importance of input variables during training
using MC background, for NN and BDT. The variables which are clearly more
important are denoted in bold. The results are shown for each of the 3 trained
models, labeled by the B range covered.

NN BDT
B 0-2 B 3-5 B 6-9 B 0-2 B 3-5 B 6-9
PINC PINC PINC LDFChi2 PINC PINC

LDFChi2 LDFChi2 LDFChi2 LiC LiC LDFAmp
fHit LiC LDFAmp PINC LDFAmp LDFChi2
eNN disMax fHit fHit LDFChi2 LiC
LiC fHit disMax LDFAmp fHit fHit

disMax eNN LiC eNN disMax disMax
LDFAmp LDFAmp eNN disMax eNN eNN

Differences in correlation effects and variable importance is our best guess
as to why difference of the fHit distribution between real data background
and MC signal was interpreted differently by the two ML methods (BDT
seemed to ignore this difference, but NN lost performance). Using MC for
both background and signal had the virtue of consistent energy distributions
and fHit (PMT availability), and in fact demonstrated improvements over
the SC trained on MC signal and real data background. However, using
fHit and eNN as interpolation variables may have made ML methods more
vulnerable compared to SC.
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