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The truncation of the standard-model effective field theory (SMEFT), its validity and
the associated uncertainties have been discussed in a dedicated meeting on January 19,
2021. Answering a call issued beforehand, three proposals were presented: A, B, and C .
A preliminary version of the present note summarizing them was written by the editors,
submitted for feedback to the proponents, and presented at the May 3 general meeting.
Comments from the wider community were collected in an online document. Experimental
collaborations provided formal feedback during a second dedicated meeting on June 28.
The first version of this summary note was released on January 12, 2022. Proposal D
was circulated on May 18 and comments collected, ahead of the May 23 general meeting.
Extensive discussions took place with the whole community but no consensus emerged.
None of the proposals has been approved or validated. No recommendation is therefore
put forward at this time and this note only aims at summarizing the different points
raised at meetings. Further work is needed to establish a prescription. In particular, the
benchmarking of the different proposals on the working-group fitting exercise has been
proposed and discussed.

1 Common ground
There are various points of agreement between proponents of various schemes for dealing
with truncation uncertainties. Most participants agree that:

1. most near-future experimental analyses will not aim at probing simultaneously both
dimension-six and dimension-eight operator contributions. The SMEFT truncation
of interest is then at the level of dimension-six operators.

2. although they only constitute a partial set of 1/Λ4 corrections, the squares of ampli-
tudes featuring a single dimension-six operator insertion provide a convenient proxy
to estimate 1/Λ4 corrections, as they are well defined and unambiguous. They are
indeed gauge invariant and can be translated exactly from one dimension-six operator
basis to the other. See Appendix A for more detailed statements.

3. estimating the relative contributions of dimension-six and dimension-eight opera-
tors requires a power counting covering a given range of new-physics scenarios and
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depends on its parameters (e.g. mass scales and couplings). Being able to com-
pute the dimension-eight dependence of observables is insufficient, as a prescription
determining the relative magnitude of dimension-six and dimension-eight operator
contributions is still needed.

2 Proposals
Specific points made in each proposal are succinctly summarized under Arabic numbers.
Additional considerations highlighting pros and cons are listed under Latin lowercases.

Experimental results obtained by following one of the proposals would not be suffi-
cient to allow for the a-posteriori application of the other prescription.

2.1 Proposals A and B
Proposal A and B are similar thus discussed together. They advocate:

1. providing full multidimensional information on the constrained EFT parameter space,
to allow for the proper interpretations in (classes of) new-physics scenarios, and
therefore for the EFT validity assessment.
(a) Providing individual and marginalized constraints, on single coefficients and in

two dimensions, is a first but insufficient step. Full likelihoods, or covariance
matrices in Gaussian cases, should be published.

(b) Correlations between operator coefficients deriving from specific new-physics
assumptions may exclude parameter-space region where linear and quadratic
dimension-six truncations diverge significantly and therefore improve the EFT
validity.

2. including squared dimension-six dependences by default and comparing results with
those obtained in the linear SMEFT approximation.
(a) The conclusions drawn from this comparison are more qualitative than quanti-

tative.
In case the two sets of results match each other, one can conclude on the general
validity of the dimension-six truncation, as situations in which dimension-eight
contributions would dominate over linear dimension-six ones are likely patho-
logical. No additional assumption is required on new physics.
When the linear and quadratic results differ significantly, constraints can only
be applied in scenarios where dimension-eight contributions are generically sup-
pressed with respect to quadratic dimension-six ones.

(b) The linear-quadratic comparison does not reflect the convergence of the EFT
series when interference contributions suffer (accidental or understood) suppres-
sions.

(c) The assignment of a truncation uncertainty is not prescribed.
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(d) Purely linear fits can be technically more involved, as they formally allow event
rates to turn negative.

3. providing experimental results as functions of the maximal energy probed in the data
employed, introducing where necessary an upper cut (denoted e.g. Ecut orMcut). Data
and prediction are compared in the same phase-space region. This procedure, often
referred to as clipping, provides the necessary information to verify the EFT validity
for (classes of) models and enhances the range of scenarios for which a valid EFT
interpretation is possible.
(a) For different cut values, different analysis strategies may be required. While rate

measurements could provide the highest sensitivities at high energies, differen-
tial observables may be required to probe the relevant operators at moderate
energies. Upper energy cuts should therefore be considered from the onset in
the analysis design.

(b) The reconstruction of the relevant variable to cut on may complicate experimen-
tal analyses and result in additional systematic uncertainties (e.g. in final states
featuring missing energy). Many EFT analyses (e.g. STXS in the Higgs sector)
do however already measure suitable energy variables (e.g. bosons’ transverse
momenta, or jet invariant masses) as sensitivity arises from these. Example of
experimental analyses having adopted such a clipping procedure include diboson
measurements by CMS (in Wγ, WZ, ZZ final states).

(c) Combining different observables from different processes, each using an upper
cut on a different variable, may also raise questions. What variables and cut
values are compatible in different processes? The study of specific scenarios may
be informative in that regard. Conclusions are expected to be model dependent.

(d) Repeating global analyses for several upper cut values would be more costly
both computationally and in term of personpower.

(e) Applying a cut on the EFT signal simulation instead of the data was proposed
by experimental collaborations, as described later in section 2.3. As existing
run-2 analyses will not be re-designed, modifying only the signal simulation
could in particular be used to incorporate, into EFT fits, analyses in which no
good energy variable was measured. The proponents A and B however judge
that comparing data in a given phase-space region (without energy cut) with
predictions in a different one (with energy cut) is inconsistent. Further studies
could clarify whether the two approaches are practically equivalent in cases of
interest.

4. assessing, a posteriori (even after the combination of different measurements), the
range of models for which the extracted constraints apply, using this Ecut information.
The experimental results themselves would therefore not incorporate assumptions
about new-physics models. This approach allows theorists to interpret the results in
the context of specific (classes of) models.
(a) Quantifying missing dimension-eight contributions would require more effort.
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A posteriori, one could approximately reproduce the experimental analysis and
include estimates of dimension-eight contributions in the relevant phase-space
region to assess their impact.
A priori, one could consider treating linear and quadratic contributions as inde-
pendent in experimental analyses and, in interpretations, rescale the quadratic
contribution to estimate dimension-eight effects. The significant increase in the
number of parameters to be fitted may however not be practical.

2.2 Proposal C
Proposal C advocates:

1. using squared dimension-six contributions, which can readily be computed with ex-
isting tools, as proxies for missing dimension-eight terms at order 1/Λ4.
(a) As the dimension-eight contributions at that order arise from interferences with

SM amplitudes, the dimension-eight contributions could have different kine-
matic distributions or suffer some accidental suppressions.

(b) It is claimed (see online comments) that such contributions violate gauge in-
variance, in contradiction with item 2 and Appendix A.

2. employing a power-counting rule that would encompass many new-physics models,
to estimate dimension-eight contributions from squared dimension-six ones.
(a) The line drawn between classes of models that are, and are not, covered by the

chosen power-counting rule is somewhat arbitrary.
(b) For specific classes of scenarios, this will necessarily be overly conservative.

Employing different power-counting rules for different classes of scenarios would
permit to quote tighter constraints in the specific cases where they apply.

3. considering the known squared dimension-six terms together with the dimension-eight
estimates as theoretical uncertainty on the linear dimension-six signal.
(a) As the dimension-six squared contributions are known, they may not need to

be included in uncertainties.
(b) This uncertainty depends on the SMEFT parameter point and could therefore

be practically difficult to include in analyses.
(c) Purely linear fits can be technically more involved, as they formally allow event

rates to turn negative.
4. folding these uncertainties directly into experimental analyses.

(a) This renders experimental results model dependent, as they then rely on a
specific scaling between dimension-six and dimension-eight operator coefficients.
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5. multiplying the squared dimension-six terms by the following factor to obtain trun-
cation uncertainties:

1 +
√
N8

g2
SM

C6Λ2

√
1 + 1

C2
6Λ4 (1)

where N8 is an estimate of the number of contributing dimension-eight operators, gSM
is the relevant SM coupling, C6 is a dimensionful dimension-six operator coefficient,
and Λ is a scale (such that, if identified with the physical BSM mass scale in a
two-to-two process, one expects C6Λ2 ∼ g2

BSM).
(a) The classes of models which are covered by this choice is yet to be determined.

Without motivation from new-physics models, the various factors may seem ad
hoc.

6. in cases where dimension-eight contributions can be computed, the functional form
of dimension-six contributions squared would not need to be used as proxy for the
dimension-eight ones and a power counting could be used for dimension-eight (and
dimension-six) coefficients directly.

2.3 Proposal D
The experimental proposal D suggests to clip the EFT simulation, instead of clipping the
data as prescribed by theorists in item 3 of section 2.1. It stressed that:

1. redesigning existing analyses in cases where no energy variable suitable to perform
data clipping was measured is difficult (item 3b) and, where the final fitted vari-
able is not an energy one (e.g. if multivariate techniques are used to maximise EFT
sensitivity), re-running analyses for several energy cut values is costly (item 3d).
(a) Presently, many relevant (e.g. unfolded) analyses measure the distribution of

an energy variable from which bins could straightforwardly be removed when
performing global EFT fits (item 3b).

2. clipping the EFT simulation in the tail of an energy variable yields indications about
the impact of this kinematic region on extracted EFT parameters. Proper constraints
are derived using the full dataset and simulation, and a comparison with results ob-
tained with simulation clipping provides qualitative information about the sensitivity
to high energies.
(a) Data clipping, by confronting data and simulation in the same phase-space

region, additionally allows to derive proper constraints for models with charac-
teristic energy scales lower than the energies directly probed in the considered
measurement (item 3).

3. the EFT simulation can be clipped on any desired variable and at any value, at the
cost of a re-computation of the EFT prediction, while clipping the data is only pos-
sible on measured variables and at bin boundaries (without re-running the analysis).
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(a) There is however no universal best choice of clipping variable. Different models
can induce energy growths in different kinematic quantities (e.g. s and t channel
mediators in the Drell-Yan process, both leading to four-fermion operators).
Different operators contributing to the same process could also induce energy
growth in different variables.

(b) As for data clipping, the combination of different processes clipped on different
variables, at different values, is an open question (item 3c). Explicit simplified
models could be examined to inform such choices. One could explore the pos-
sibility of using quantile of the SM distribution in each energy variable. For
data clipping, a public fitting framework with high flexibility in the bins of data
included could allow the community to adopt the choices best suited for any
particular interpretation.

4. the clippings of data and EFT simulation are equivalent if performed on a variable
that is actually measured. For data clipping at the reconstructed level and simulation
clipping at the truth Monte Carlo level, the two procedures would only differ by finite
resolution effects. If the data does not match the SM expectation, a poor fit would
be obtained.
(a) On the other hand, clipping the EFT simulation on a variable that is not mea-

sured could lead to pathologies arising from the mismatch between the phase
spaces of the data and prediction (item 3e). Correlations between the clipped
and measured variables could then lead to an overestimation of the strength
of the constraints derived when the data agrees with the SM. In case the data
deviates from the SM, the extracted operator coefficients could also be biased
away from their true value, in a process- and observable-dependent fashion.

Appendix A Well-defined and unambiguous squares
In the 1/Λ2 expansion of dimension-six amplitudes (S-matrix elements), the zeroth and
first terms, ASM and A6/Λ2, are separately gauge invariant. The A6/Λ2 term contains all
and only 1/Λ2 contributions to the amplitude. The squares of those two terms —|ASM|2,
Re{A∗SMA6}/Λ2, |A6|2/Λ4— are thus separately gauge invariant too. More terms do appear
in the squared amplitude at order 1/Λ4: from dimension-eight operators, amplitudes with
two dimension-six operator insertions, or field redefinitions expanded to 1/Λ4 order. Each
of these other subclasses of 1/Λ4 contributions to the squared amplitude is in general not
separately gauge invariant: only the full Re{A∗SMA8}/Λ4 is, where A8/Λ4 collects all and
only 1/Λ4 contributions to the amplitude and is itself separately gauge invariant.

As a consequence of the equivalence theorem, dimension-six operators related by
classical equations of motion have identical amplitudes (S-matrix elements) to 1/Λ2 order.
Equivalent operator bases can be defined by exploiting this freedom, changing operator
normalizations, or taking linear combinations of them. The linear dimension-six amplitude
A6/Λ2, including all and only 1/Λ2 contributions, can thus be translated exactly from one
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dimension-six operator basis to the other by a linear transformation between the two sets of
operator coefficients {c6} and {c′6}. The same transformation can also be used to translate
exactly the square of this linear dimension-six amplitude |A6|2/Λ4 from one dimension-six
basis to the other.

For these two specific reasons, the square of the linear dimension-six amplitude
|A6|2/Λ4, where A6/Λ2 contains all and only 1/Λ2 contributions to the amplitude, can
be qualified as well-defined and unambiguous. It can thus for instance be employed as a
convenient proxy for estimating full 1/Λ4 contributions.
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LHC EFT WG and we would like to thank all the participants who contributed to the
corresponding discussions.
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