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AlphaPeptDeep: a modular deep learning
framework to predict peptide properties
for proteomics

Wen-Feng Zeng 1, Xie-Xuan Zhou1, Sander Willems1, Constantin Ammar1,
Maria Wahle1, Isabell Bludau 1, Eugenia Voytik1, Maximillian T. Strauss 2 &
Matthias Mann 1,2

Machine learning and in particular deep learning (DL) are increasingly
important in mass spectrometry (MS)-based proteomics. Recent DL models
can predict the retention time, ion mobility and fragment intensities of a
peptide just from the amino acid sequencewith good accuracy. However, DL is
a very rapidly developing field with new neural network architectures fre-
quently appearing, which are challenging to incorporate for proteomics
researchers. Here we introduce AlphaPeptDeep, a modular Python framework
built on the PyTorch DL library that learns and predicts the properties of
peptides (https://github.com/MannLabs/alphapeptdeep). It features a model
shop that enables non-specialists to create models in just a few lines of code.
AlphaPeptDeep represents post-translational modifications in a generic man-
ner, even if only the chemical composition is known. Extensive use of transfer
learning obviates the need for large data sets to refine models for particular
experimental conditions. The AlphaPeptDeepmodels for predicting retention
time, collisional cross sections and fragment intensities are at least on par with
existing tools. Additional sequence-based properties can also be predicted
by AlphaPeptDeep, as demonstrated with a HLA peptide prediction model
to improve HLA peptide identification for data-independent acquisition
(https://github.com/MannLabs/PeptDeep-HLA).

The aim of MS-based proteomics is to obtain an unbiased view of the
identity and quantity of all the proteins in a given system1,2. This
challenging analytical task requires advanced liquid chromatography-
mass spectrometry (LC/MS) systems as well as equally sophisticated
bioinformatic analysis pipelines3. Over the last decade, machine
learning (ML) and in particular deep neural network (NN)-based deep
learning (DL) approaches have become very powerful and are
increasingly beneficial in MS-based proteomics4,5.

Identification in proteomics entails the matching of fragmenta-
tion spectra (MS2) and other properties to a set of peptides. Bioin-
formatics can now predict peptide properties for any given amino acid

sequences so that they can be compared to actual measured data.
This can markedly increase the statistical confidence in peptide
identifications.

To do this, a suitable ML/DL model needs to be chosen which is
then trained on the experimental data. There are a number of peptide
properties that can be predicted from the sequence and for each of
them different models may be most appropriate. For the peptide
retention times in LC, relatively straightforward approaches such as
iRT-calculator, RTPredict, and ELUDE have shown good results6–8.
However, large volumes of training data are readily available in public
repositories today andDLmodels currently tend toperformbest9. This
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is also the case for predicting the fragment intensities in the
MS2 spectra, where DL models such as DeepMass:Prism10, Prosit11, our
previous model pDeep12,13, and many subsequent ones now represent
the state-of-the-art. Theymostly use long-short termmemory (LSTM14)
or gated recurrent unit (GRU15) models. Recently, transformers have
been adopted in proteomics and show better performance16,17. This
illustrates the rapid pace of advance in DL and the need for updating
proteomics analysis pipelines with them. However, the focus of exist-
ing efforts has not been on extensibility or modularity, making it dif-
ficult or in some cases impossible to change or extend their NN
architectures.

Here we set out to address this limitation by creating a compre-
hensive and easy to use framework, termed AlphaPeptDeep. As part of
the AlphaPept ecosystem18, we keep its principles of open source,
community orientation as well as robustness and high performance.
Apart fromPython and its scientific stack,we decided to use PyTorch,19

one of the most popular DL libraries.
AlphaPeptDeep contains pre-trained models for predicting MS2

intensities, retention time (RT), and collisional cross sections (CCS) of
arbitrary peptide sequences or entire proteomes. It also handles
peptides containing post-translational modifications (PTMs), includ-
ing unknown ones with user-specified chemical compositions. Alpha-
PeptDeep makes extensive use of transfer learning, drastically
reducing the amount of training data required.

In this paper, we describe the design and use of AlphaPeptDeep
and we benchmark its performance for predicting MS2 intensities, RT,
and CCS on peptides with or without PTMs. On challenging samples
like HLA peptides, AlphaPeptDeep coupled with its built-in
Percolator20 implementation dramatically boosts performance of
peptide identification for data-dependent acquisition. We also
describe how AlphaPeptDeep can easily be applied to build and train
models for different peptide properties such as a model for human
leukocyte antigen (HLA) peptide prediction, which narrows the data-
base search space for data-independent acquisition, and hence
improves the identification of HLA peptides with the AlphaPeptDeep-
predicted spectral library.

Results
AlphaPeptDeep overview and model training
For any given set of peptide properties that depend on their sequen-
ces, the goal of the AlphaPeptDeep framework is to enable easy
building and training of deep learning (DL) models, that achieve high
performance given sufficient training data (Fig. 1a). Although modern
DL libraries are more straightforward to use than before, designing a
neural network (NN) or developing a deployable DL model for pro-
teomics studies is not as simple as it could be, even for biologists with
programming experience. This is because of the required domain
knowledge and the complexity of the different steps involved in
building a DL model. The framework of AlphaPeptDeep is designed to
address these issues (Fig. 1b).

The first challenge is the embedding, which maps amino acid
sequences and their associated PTMs into a numeric tensor space that
the NN needs as an input. For each amino acid, a ‘one-hot encoder’ is
customarily used to convert it into a 27-length fingerprint vector
consisting of 0 s and 1 s (Methods). In contrast, PTM embedding is not
as simple. Although recent studies also used one-hot encoding to
embed phosphorylation forMS2 prediction via three additional amino
acids16, this is not extendable to arbitrary PTMs. In pDeep2 (ref. 13), the
numbers of C, H, N, O, S, P atoms for a site-specific modification
are prepended to the embedding vector which is flexible and can be
applied to many different PTMs. AlphaPeptDeep inherits this feature
from pDeep2 but adds the ability to embed all the other chemical
elements. Tomake the input spacemanageable,weusea linearNN that
reduces the size of the input vector for each PTM (Methods, Supple-
mentary Fig. 1). This allows efficient embedding for most modification

types, except for very complex ones such as glycans. The PTM
embedding can be called directly from AlphaPeptDeep building
blocks.

To build a new model, AlphaPeptDeep provides modular appli-
cation programming interfaces (APIs) to use different NN archi-
tectures. Common ones like LSTM, convolutional NN (CNN) as well as
many others are readily available from the underlying PyTorch library.
Recently transformers – attention-based architectures to handle long
sequences – have achieved breakthrough results in language proces-
sing but were then also found to be applicable tomany other areas like
image analysis21, gene expression22 and protein folding23. Alpha-
PeptDeep includes a state-of-the-art HuggingFace transformer
library24. Our framework also easily allows combining different NN
architectures for different prediction tasks.

The training and transfer learning steps are mostly generic tasks,
even for different NNs. Therefore, we designed a universal training
interface allowing users to train the models using just a single line of
Python code – ‘model.train()’. In our training interface, we also provide
a “warmup” training strategy to schedule the learning rate for different
training epochs (Methods). This has proven very useful in different
tasks to reduce the bias at the early training stage25. Almost all DL tasks
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Fig. 1 | Overview of the AlphaPeptDeep framework. a Measured peptide prop-
erties are encoded with the respective amino acid sequences and used to train a
network in AlphaPeptDeep (left). Once a model is trained, it can be used on arbi-
trary sets of peptide sequences to predict the property of interest. This can then
improve the sensitivity and accuracy of peptide identification. b The Alpha-
PeptDeep framework reads and embeds the peptide sequences of interest. Its
components include the build functionality in which the model can build. Meta
embedding refers to the embedding of meta information such as precursor charge
states, collisional energies, instrument types, and other non-sequential inputs. It is
then trained, saved andused to predict the property of interest. The dial represents
the different standard properties that can be predicted (RT retention time, CCS
collision cross section, MS2 intensities of fragment spectra). Custom refers to any
otherpeptide property of interest. The lower part lists aspects of the functionalities
in more detail. NN neural network, LSTM long short-term memory, CNN convolu-
tional neural network, GRU gated recurrent unit, API application programming
interface, PTM post-translational modification.
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canbedone ongraphical processing units (GPUs) and training amodel
from scratch on a standard GPU usually take not more than hours in
AlphaPeptDeep and is performed only once. Transfer learning from a
pre-trained model is feasible within minutes, even without GPU.

After training, all learned NN parameters should be saved for
persistent applications. This can be readily done using DL library
functionalities, and is also implemented in AlphaPeptDeep – ‘mod-
el.save()’. In the latter case, AlphaPeptDeepwill save the source codeof
the NN architectures in addition to the training hyperparameters.
Thus, the NN code and the whole training snapshot can be recovered
even if the source code was accidentally changed in the Alpha-
PeptDeep or developers’ codebase. This is especially useful for
dynamic computational graph-based DL libraries such as PyTorch and
TensorFlow in ‘eager mode’ because they allow dynamically changing
the NN architectures.

Themost essential functionality of theAlphaPeptDeep framework
is the prediction of a property of a given peptide of interest. When
using only the CPU, one can choose multiprocessing (predicting with
multiple CPU cores), making the prediction speed acceptable on reg-
ular personal computers (PCs) and laptops (nearly 2 h for the entire
reviewed humanproteome). On our datasets and hardware, prediction
onGPUwas about an order ofmagnitude faster. As PyTorch caches the
GPU RAM in the first prediction batch, subsequent batches for the
samemodel will be even faster. However, GPU randomaccessmemory
(RAM) should be released after the prediction stage, thus making the
RAMavailable for otherDLmodels. These steps are automatically done
in AlphaPeptDeep within the ‘model.predict()’ functionality.

AlphaPeptDeep provides several model templates based on
transformers and LSTM architectures in the “model shop” module to
develop new DL models and also allows choosing hyperparameters
from scratch for classification or regression with very little code. All
these high-level functionalities in AlphaPeptDeep give the user a quick
on-ramp and they minimize the effort needed to build, train and use
the models. As an illustrative example, we built a classifier to predict if
a peptide elutes in the first or second half of the LC gradient using only
several lines of code. Training took only ~16min on nearly 350 K
peptide-spectrum matches (PSMs) on a standard HeLa dataset26 and
the model achieved 95% accuracy in the testing set (Supplemen-
tary Fig. 2).

The MS2, RT, and CCS prediction models (Fig. 2) are released on
our GitHub repository and will be automatically imported into
AlphaPeptDeep when using the package for the first time. The MS2
prediction model was inherited from pDeep2 but reimplemented on
transformers which have been shown very useful inMS2 prediction16,17.
The pre-trained MS2 model in AlphaPeptDeep is much smaller than
other models without sacrificing accuracy (4M parameters vs 64M in
the Prosit-Transformer17), making the prediction very fast (Supple-
mentary Fig. 3). Testing by the same 1.4M peptides on the same GPU
workstation showed that fragment intensity prediction of Alpha-
PeptDeep is 40 times faster than Prosit-Transformer (35 s vs 24min,
Supplementary Fig. 3). We also applied the same principle of light-
weightmodels to our RT andCCSmodels (less than 1Mparameters for
each, Methods), which we built on previous LSTM models26–28.

We trained and tested the MS2 models with ~40 million spectra
from a variety of instruments, collision energies and peptides, and
trained the RT and CCS models with about half a million RT and CCS
values of peptides (Supplementary Data 1). The results of this initial
training were then stored as pre-trained models for further use or as a
basis for refinement with transfer learning.

Using these pre-trained models and specifically designed data
structures (Methods), the prediction of a spectral library with MS2
intensities, RT, and ion mobilities (converted from CCS, Methods) for
the human proteome with 2.6M peptides and 7.9M precursors took
only 10min on a regular GPU and 100min on the CPU with multi-
processing (Supplementary Fig. 3). As this prediction only needs to be
done at most once per project, we conclude that the prediction of
libraries by DL is not a limitation in data analysis workflows.

Prediction performance of the AlphaPeptDeep model for
MS2 spectra
With the AlphaPeptDeep framework for prediction of MS2 intensities,
RT and CCS in hand, we first benchmarked the MS2 model against
datasets of tryptic peptides (phase 1 in Fig. 3a). The training and testing
data were collected from various instruments and collisional energies,
including ProteomeTools29, which were derived from synthetic pep-
tides with known ground truth. (Check Supplementary Data 1 for the
detailed information of datasets.) We split the data sets in two and
trained on a LSTMmodel similar to pDeep or on the new transformer
model. As expected, transformer performed better than the LSTM
model on the test datasets (Supplementary Fig. 4). Overall, on Pro-
teomeTools data measured with different collisional energies on the
Lumos mass spectrometer, 97% of all significantly matching PSMs had
Pearson correlation coefficients (PCC) of the predicted vs. the mea-
sured fragment intensities of at least 90% (Fig. 3a), which we term
‘PCC90’ in this manuscript. Note that the experimental replicates also
exhibit some variation, making the best possible prediction accuracy
somewhat less than 100%. For example, on the ProteomeTools repli-
cates generated from the Lumos, 99% had PCCs above 90% (Supple-
mentary Data 1), meaning that our predicted intensities mirrored the
measured ones almost within experimental uncertainties (99%
experimental vs. 97% predicted). Next, we tested the model on the
same ProteomeTools sample but measured on a trapped ion mobility
Time of Flight mass spectrometer (timsTOF) in dda-PASEF mode26,30,
and achieved a PCC90 of 87.9% (Supplementary Data 1), showing that
the prediction from the pre-trained model is already very good for
timsTOF even without adaption.

As expected, our pretrainedmodel performed equally well across
different organisms, as demonstrated by PXD019086-Drosophila and
-Ecoli in Fig. 3a. Interestingly, it did almost as well on chymotrypsin or
GluC-digested peptides although it had not been trained on them
(PXD004452-Chymo and -GluC in Fig. 3a).

HLA class 1 peptides are short pieces of cellular proteins (about 9
amino acids) that are presented to the immune system at the cell
surface,which is of great interest to biomedicine31. Becauseof their low
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Fig. 2 | The built-in and pre-trained MS2, RT, and CCS prediction models. The
MS2model is built on four transformer layers, and the RT/CCS models consist of a
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and ammonium losses from backbone fragments as well. RT retention time, CCS
collision cross section, MS2 intensities of fragment spectra, BiLSTM bidirectional
long short-termmemory, CNN convolutional neural network, AA amino acid, PTM
post-translational modification, NCE normalized collision energy.
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abundance and non-tryptic nature, they are very challenging to iden-
tify by standard computationalworkflow, a task in whichDL can help32.
In a second training phase, we appended a synthetic HLA dataset,
which was also from ProteomeTools33, into the training set of phase 1
and trained the model for additional 20 epochs (‘fine tuning the
model’). We first checked if the new model negatively impacted per-
formanceon the tryptic data sets, but this turnedout not to be the case
(phase 2 in Fig. 3a). On the HLA peptides, however, performance
substantially increased the PCC90 from 79% to 92%.

Finally, we extended our model to predict phosphorylated and
ubiquitylated peptides, which have spectra somewhat distinct from
unmodified peptides. In this case, in addition to backbone fragmen-
tation intensities, AlphaPeptDeep also needs to learn the intensities of
fragments with or without modifications. For phosphopeptide pre-
diction, performance of the pre-trained model was much worse, with
PCC90 values of only around 30%. However, after training on PTM
datasets at phase 3, the performance dramatically increased, almost to
the level of tryptic peptides (Fig. 3a). The ubiquitylation prediction
(rightmost in Fig. 3a) was already reasonable with the pre-trained
model but increased further after phase 3 training (PCC90 from 75% to

93%). The finalmodel was saved as the default pre-trainedmodel in the
AlphaPeptDeep package.

Prediction performance of the AlphaPeptDeep models for RT
and CCS
RT and CCSmodels are quite similar to each other as their inputs are
the peptide sequences and PTMs, and outputs are scalar values. For
both we used LSTM architectures. In the CCS prediction model,
precursor charge states are considered in the model as well. Taking
advantage of the PTM embedding in AlphaPeptDeep, the RT and CCS
models naturally consider PTM information, and hence can predict
peptide properties given arbitrary PTMs.We trained the RTmodel on
datasets with regular peptides from our HeLa measurements26.
All the training and testing dataset information are listed in Table 1.
‘Regular peptides’ refers to unmodified peptides or modified
peptides containing only Oxidation@M, Carbamidomethyl@C and
Acetyl@Protein N-term.

We first tested the trained RTmodel on regular peptides from the
PHL dataset. As shown in Fig. 3b, the pre-trainedmodel gave very good
predictions inmostof theRT range, but failed to accurately predict the
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last few minutes (iRT (ref. 7) values higher than 100) possibly due to
the different flushing settings of the LC in training and testing data.
These differences could be addressed by fine-tuning the model with
experiment-specific samples. Few-shot fine-tuning with only 500
training samples improved the accuracies of the RTprediction froman
R2 of 0.927 to 0.986.

We also tested the RTmodel on the Phos-U2OS dataset, although
the model had not been trained on such phosphorylation data. After
fine-tuning on 500 peptides, the R2 increased from 0.958 to 0.984
(Fig. 3b). As RT behavior of peptides varies with the LC conditions in
different experiments, we highly recommend fine-tuning whenever
possible. It turns out that few-shot fine-tuning worked well to fit short
LC conditions as well (Supplementary Figure 5). Finally, as expected,
the more training peptides we used, the better the fine-tuning, and
with many peptides our model reached R2 values up to 0.99 (Fig. 3b).

While theCCSmodelwas trainedon regular humanpeptides from
the same HeLa dataset as RT model training, we tested the trained
model on different types of data (Table 1). First, we tested on regular
peptides but from non-human species. Here we used E. coli and yeast
peptides from the same instrument in the same publication. For these
regular peptides the CCSmodel achieved an R2 > 0.98 of the predicted
and detected CCS values. Second, we tested on peptides with different
modifications. Formodified peptides fromHeLa-Open andDrosophila-
Open datasets (Table 1), the R2 was 0.965 and 0.953, respectively, a
prediction accuracy quite close to the one for regular peptides, even
for unexpected modifications. The predicted CCS values can be con-
verted to ion mobilities on the Bruker timsTOF using the Mason
Schamp equation34.

Prediction performance for 21 PTMs with transfer learning
To further demonstrate the powerful and flexible support for PTMs in
AlphaPeptDeep, we tested the pre-trained tryptic MS2 model (model
of phase 1 in Fig. 3a) and RT model using the 21 PTMs, which were
synthesized based on 200 template peptide sequences35.

Interestingly, there is a group of modifications for which the
prediction of MS2 spectra is as good as the values of unmodified
peptides (Fig. 4a). These include Hydroxypro@P, Methyl@R, and
Dimethyl@R for which the PCC90 was greater than 80%. This is pre-
sumably because these modifications do not change the overall frag-
mentation pattern much. In contrast, most of the other PTMs cannot
be well predicted by the pre-trained models, for example, the PCC90
values were less than 10% for Malonyl@K and Citrullin@R. We applied
transfer learning for each PTM type using 10 or 50 training peptides
with different charge states and collisional energies, reserving the
remaining ones with the same PTM for testing of our transfer learned

models. Furthermore, we also trained with 80% of the peptides and
testedon the remaining 20% (Fig. 4a). Remarkably, transfer learning on
as few as ten peptides greatly improved the prediction accuracies on
the testing data. The largest improvements of PCC90 were as high as
60% (Citrullin@RandMalonyl@K, Fig. 4a). Overall, comparedwith the
pre-trainedmodel, the ones tunedby 10peptides improved the PCC90
from a median of 48% to 87% (Fig. 4b). We speculate that this is
because the fragmentation properties of amino acids at different col-
lisional energies have been well learned by the pre-trainedmodel after
which transfer learning only needs to learn the properties of modified
ones. Including 50PTMbearingpeptides improved this number to93%
whereas using 80% of all the identified peptides (n ≤ 200) with these
PTMs only improved prediction by another 2%. This demonstrates that
our models can be adapted to novel situations with very little addi-
tional data, due to the power of transfer learning.

AlphaPeptDeep has been included in AlphaViz36, a tool suite for
RAW MS data visualization (https://github.com/MannLabs/alphaviz),
which among other features allows users to visualize a mirrored plot
between experimental and predicted spectra. As an example, the MS2
prediction of the peptide “AGPNASIISLKSDK-Biotin@K11” before and
after transfer learning is displayed in Fig. 4c. The y12 ++ ion was first
wrongly predicted by the pre-trained model, but this was corrected
after transfer learning with only 50 other biotinylated peptides. We
also generatedmirroredMS2 plots for ten randomly selected peptides
of each PTM type before and after transfer learning, see Supplemen-
taryData 3. AlphaPeptDeep also allows users to visualize the ‘attention’
weights– a key feature of transformer models – showing what data
attributes were important for the prediction. To depict the attention
changes between pre-trained and transfer learning transformer mod-
els, we used the BertViz package (https://github.com/jessevig/bertviz)
(Supplementary Fig. 6).

Next, we tested the performance of our pre-trained RT model
using the datasets of 21 PTMs. Although the model was never trained
on any of these PTMs, the accuracy of RT prediction on these peptides
exceeds that of DeepLC37, anRTpredictionmodel designed for unseen
PTMs (R2 of 0.95 of AlphaPeptDeep vs. 0.89 of DeepLC, Figs. 4d and
4e). In this case, transfer learning only slightly improves the results,
presumably because some of these synthetic modified peptides elute
in very broad peaks, which makes them hard to predict.

Boosting data-dependent acquisition (DDA) identification of
HLA peptides
As explained above, HLA peptides are among the most challenging
samples for MS-based proteomics. Given the excellent model perfor-
mance of the transformers in AlphaPeptDeep, we hypothesized that

Table 1 | Dataset information used to train and test RT/CCS models

Dataset Search Modifications Usage Description

RT model

HeLa MaxQuant regular training Trypsin and LysC HeLa peptides. ref. 26

PHL regular testing Pan human library. ref. 57

Phos-U2OS Spectronaut regular and phos testing Phosphopeptides of U2OS. ref. 58

CCS model

HeLa MaxQuant regular training Same as HeLa in RT section

E. coli MaxQuant regular testing E. coli peptides. ref. 26

Yeast MaxQuant regular testing Yeast peptides. ref. 26

HeLa-Open Open-pFind all possible PTMs testing Same as HeLa in RT section. Only peptides with nonregular
modifications were kept after open-search for testing

Drosophila-Open Open-pFind all possible PTMs testing Drosophila peptides. ref. 26. Only peptides with nonregular
modifications were kept after open-search for testing

‘regular’ in the ‘Modifications’ column refers to unmodified, Oxidation@M, Carbamidomethyl@C and Acetyl@Protein N-term. The ‘Search’ columnwith ‘Open-pFind’means that we re-analyzed the
MS data with Open-pFind (Methods), and only peptides with nonregular modifications were kept for testing. Otherwise, the search results were downloaded from the original publications of the
datasets. RT retention time, CCS collision cross section, PTM post-translational modification.
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prediction of their MS2 spectra could substantially improve their
identification.

The non-tryptic nature of these peptides results in an very large
number of peptides that need to be searched, leading to a decreased
statistical sensitivity at a given false discovery rate (FDR) level (usually
1%). The key idea of usingMS2, RT and CCS prediction to support HLA
peptide identification is that, for correct peptides of the searched
spectra, the predicted properties should be very close to the detected
ones, while the predicted properties of the irrelevant peptides tend to
be randomly distributed. Therefore, the similarities or differences
between the predicted and detected properties can be used as
machine learning features to distinguish correct from false identifica-
tions using semi-supervised learning. Such an approach has been

implemented in tools coupled with Percolator20 to re-score PSMs,
which increases the sensitivity at the same FDR level32,33. But due to the
lack of support for arbitrary PTMs with DL models this has not been
implemented for open-search.However, AlphaPeptDeepnow is able to
predict the properties of arbitrarily modified peptides, and even HLA
peptides with unexpected PTMs. This feature is intended to boost the
identification of HLA peptides in conjunction with modern open-
search engines like pFind38, which identify unexpected PTMs by using
the sequence tag technique39.

AlphaPeptDeep applies the semi-supervised Percolator
algorithm40 on the output of the search engines, rescoring PSMs to
better discriminate true identifications from false ones based on
deep learning predicted parameters (Methods) Rescoring for the
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Fig. 4 | Model performance with transfer learning on 21 PTMs from Proteome
Tools. a The accuracy of MS2 prediction with different numbers of peptides for
transfer learning for each PTM. Each PTM is tested separately. “80% seqs” refers to
using 80% of the identified modified sequences for transfer learning. b Overall
accuracy without unmodified peptides from (a). Boxplots for n = 21 PCC90 values
of 21 PTM types are drawn with the interquartile range within the boxes and the
median as a horizontal line. The whiskers extend to 1.5 times the size of the inter-
quartile range. c Transfer learning dramatically improves theMS2 prediction of the

example peptide “AGPNASIISLKSDK-Biotin@K11” (tuned by 50 other peptides).
d Comparisons of RT prediction for each PTM on pre-trained and transfer learning
(by 50% of all the identified peptides) models, as well as DeepLCmodels. e Overall
R2 distribution without unmodified peptides from (d). Boxplots for n = 21 R2 values
of 21 PTM types are drawn with the interquartile range within the boxes and the
median as a horizontal line. The whiskers extend to 1.5 times the size of the inter-
quartile range. RT retention time,MS2 intensities of fragment spectra, PCC Pearson
correlation coefficient, PTM post-translational modification.
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open-search is also supported. To accelerate the rescoring, we calcu-
late the fragment intensity similarities between predicted and detec-
ted spectra on a GPU, making the rescoring process very fast. On our
PC with a GeForce RTX 3080 GPU, it took ~1 h to rescore 16,812,335
PSMs from 424 MS runs, where ~60% of the time was used for loading
the RAW files. Running without the GPU on the same PC took ~3.5 h,
whereas non-specific open-search for this many spectra took more
than a week, meaning that the rescoring by AlphaPeptDeep is not a
bottleneck for HLA peptide search.

To investigate how much AlphaPeptDeep can boost the HLA
peptide search, we applied it on two datasets, MSV000084172 con-
taining 424 RAW files from samples in which particular mono-allelic
HLA-I types were enriched41, here referred to as the ‘mono-allelic
dataset’ and our published dataset from tumor samples (PXD00489442

with 138 RAW files) referred to as the ‘tumor dataset’. These two
datasets had been analyzed with a regular search engine (MaxQuant43)
by the Kuster group33 (Fig. 5a) and we here used pFind in the open-
search mode (Fig. 5b).

First, we wanted to compare the AlphaPeptDeep results with
MaxQuant aswell as Prosit, a recently publishedDL based tool that has
also been applied to HLA peptides33. The MaxQuant PSMs and Prosit-
rescored PSMswere downloaded from ref. 33 and theMaxQuant PSMs
were rescored by AlphaPeptDeep for comparison. Since Prosit only
supports fixed iodoacetamidemodification on alkylated peptides (IAA
in Fig. 5a), we only used the results of the same IAA RAW files in
rescoring. On themono-allelic and the tumor datasets, AlphaPeptDeep
covered 93% and 96% of the MaxQuant results while more than dou-
bling the overall numbers at the same FDR of 1% (Fig. 5a). Compared to
Prosit, AlphaPeptDeep captured 91% of their peptides and still
improved the overall number on the mono-allelic dataset by 7%.

Next, we searched both datasets with the open-search mode of
pFind (Fig. 6b), and rescored the results in AlphaPeptDeep. Here, both
alkylated and non-alkylated peptides were analyzed. Interestingly, the
open-search itself already identified similar numbers of peptides as
the DL-boosted regular search, but AlphaPeptDeep further improved
the total number of identifiedpeptides by 29% and42%,while retaining
99% and 98%of the pFind hits at the same FDR for themono-allelic and
tumor datasets, respectively (Fig. 5b). This demonstrates the benefits
of AlphaPeptDeep’s support of open-search for HLA peptide analysis.

AlphaPeptDeep with open-search identified PTMs such as phos-
phorylation, which are known to exist on HLA peptides but are very
difficult to identify by regular unspecific search44. For the mono-allelic
dataset we identified a total of 490 phosphopeptides. To gauge the
biological reasonability of these peptides, we searched for sequence
motifs of both the phosphorylated and non-phosphorylated peptides.
This revealed the expected HLA peptide motifs, dominated by the
anchor residues for their cognate major histocompatibility complex
proteins. Only the phospho-HLA peptides additionally had linear
phospho-motifs, like the prominent Ser-Pro motif common to proline
directed kinases (Fig. 5c and Supplementary Fig. 7). We also identified
359 phospho-HLA peptides from the tumor dataset, with similar
phospho-motifs (Supplementary Fig. 7). We further used Alpha-
PeptDeep to inspect retention time andMS2 spectrum similarities. The
results demonstrated an 80% PCC90 of phospho-HLA PSMs which is
close to unmodified ones, and RT differences from predicted to
measured peptides were also close to zero (Supplementary Fig. 8).
Furthermore, wemanually validated 300 randomly selectedHLAPSMs
for these HLA peptides including 44 phosphopeptides using an
extension to AlphaViz36. Their annotated and mirrored MS2 plots can
be found in Supplementary Data 4. This independently verified our
model and assignments. Note that the MS2 and RT models were only
fine-tuned by at most 100 phospho-PSMs from eight RAW files
(Methods), somost of the phosphopeptides from remaining RAW files
(i.e., 416 out of 424 and 130 out of 138 RAW files in themono-allelic and
tumor dataset, respectively) were not used in fine-tuning. Our method

was also able to identify other PTMs associated with HLA peptides,
such as cysteinylation45 (Supplementary Fig. 9). Overall, most of the
HLA peptides additionally identified by this method hadmodifications
related to sample preparation, such as deamidation, N-terminal pyro-
Glu, and N-terminal carbamidomethylation (Supplementary Fig. 9).

Building an HLA prediction model for HLA DIA search
In recent years, DIA has become amethod of choice to generate large-
scale proteome datasets. DIA data analysis traditionally requires DDA
experiments to generate a library to which the data is then matched46.
These libraries contain RT, ion mobility (if applicable) and the most
intense and specific fragments for each peptide. The generation of
experimental libraries is laborious and sample consuming. With the
development of DL in proteomics, libraries with predicted RT, CCS/ion
mobilities and fragment intensities from whole proteome sequences
are becoming more and more popular, although there is still a debate
about whether measured or predicted libraries are preferable. This is
because the large search space introduced by purely in silico libraries
can make FDR control difficult.

DIA for HLA peptide analysis is also gettingmore attention47,48. So
far, these efforts have been restricted to experimental DDA libraries
because analysis with a predicted HLA library from proteome
sequences is far more challenging than with an experimental one. This
is mainly because HLA peptides are not tryptic, meaning they do not
follow specific cleavage rules and do not necessarily have a favorable
fragmentationpattern. The number of theoretical peptideswith amino
acid lengths between 8 and 14 from a reviewed human proteome is
more than 70M, which is nearly two orders of magnitude more than
that of tryptic peptides in the same length range (~900K). Due to this
enormous search space, a predicted library is difficult or even impos-
sible to search by state-of-the-art DIA search tools such as DIA-NN49

and Spectronaut50.
Fortunately, HLA peptides follow certain sequencemotifs guided

by theHLA-types that arepresent.We reasoned that thesemotifs could
be learned by DL for more efficient peptide identification. To test this
hypothesis, we built an HLA prediction model using the model shop
functionalities in our AlphaPeptDeep framework (Methods). In this
model a binary LSTM classifier predicts if a given sequence is likely to
be anHLApeptide presented to the immune system and extracts these
peptides from the human proteome sequence. There are two main
goals of the model: (1) keep as many actually presented HLA peptides
as possible (i.e., high sensitivity); and (2) reduce the number of pre-
dicted peptides to a reasonable number (i.e., high specificity). Note
that sensitivity is more important here as we hope that all measured
HLA peptides are still in the predicted set.

Based on these goals, we developed a pipeline which enables
predicted library search for DIA data. In brief, we divided our pipeline
into five steps, as shown in Fig. 6a. In step 1, we trained a pan-HLA
prediction model with peptides from known HLA allele types (‘pan-
HLA model’ in Fig. 6a). Normally, up to 6 different allele types are
present in the samples from any given individual. Therefore, in step 2,
we used transfer learning to create a person-specific model with
sample-specific peptides identified from individuals (‘sample-specific
model’ in Fig. 6a). This model should then be able to predict whether
an HLApeptide is potentially present in the sample or not, thus further
reducing the number of peptides to be searched and increasing pre-
diction accuracy. For this strategy, we need to identify a number of
sample specific HLA peptides. This can be done directly from the
already acquiredDIAdata by a ‘direct-DIA search’ 51 obviating the need
for a separate DDA experiment. This involves grouping eluting frag-
ment detected peaks belonging to the same peptide signal into a
pseudo-spectrum for DIA data, and then searching the pseudo-
spectrum with conventional DDA search algorithms. In step 3, we
used the sample-specific model to predict all possible personalized
HLA peptides directly from the protein sequence database (i.e. the
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fasta file). These predicted HLA peptides were used to generate a
predicted spectral library by using AlphaPeptDeep (step 4) and were
then identified by DIA data with DIA search engines.

To test this pipeline, we used the HLA-I dataset of the RA957 cell
line in PXD02295047. We started with our pan-HLA prediction model
trained by 80% of the peptides and tested on the remaining 20% from
the 94 known HLA allele types (Fig. 5). This reduced the number of
sequences from 70M to 7M with 82% sensitivity on the testing set.

However, 7M peptides are still too many to search and the model
would have lost 18% of true HLA peptides. Furthermore, the pre-
trained model is not able to identify unknown HLA allele types as it is
only trained on already known ones.

To enable transfer learning, we searched RA957 data with DIA-
Umpire51. It identified 12,998 unique sequences with length from 8 to
14. We used transfer learning on 80% of this data to train the sample
specific HLA model while keeping 20% for testing. This dramatically

Fig. 5 | AlphaPeptDeep drastically improves results for DDA identification of
HLA peptides. a Improvement upon regular search (MaxQuant). IAA refers
iodoacetamide alkylated peptides. b Improvement upon open-search (pFind).
Regular peptides here refer to peptides without modifications or those with only

Met-oxidation and Cys-alkylation. c Logo plots of unmodified and phosphorylated
peptides with nine amino acids identified by open-search for four different HLA
allele types. Logo plots were generated by LogoMaker.59 HLA human leukocyte
antigen, DDA data-dependent acquisition.
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increased the specificity to 96% with 92% sensitivity (note that this is
judged on the identifications by direct-DIA; thus our sensitivitymay be
even higher). The number of HLA peptides predicted by this model is
3M, which is more comparable to the tryptic humanproteome library.

Having predicted our sample-specific HLA peptides, including
theirMS2 fragment spectra andRTs, we used this as input for a DIA-NN
search of the DIA data. Our workflow identified 36,947 unique
sequences. PEAKS-Online52 is a very recently published tool which
combines searching a public library, direct-DIA, and de novo sequen-
cing. It identified 30,733 unique sequences within the same length
range.Ourworkflowalmost tripled thenumber of unique sequences of
DIA-Umpire and obtained 20% more than PEAKS-Online. As a refer-
ence, theDDA searchon the data in the original publication47 but using
Open-pFind rescored by AlphaPeptDeep identified 30,039 unique
sequences in the 8 to 14 aa range.

To judge the reliability of the identified HLA peptides, we used
MixMHCpred53 to deconvolute these identified peptides at the 5% rank
level based on the HLA type list in the original publication of the
datasets47 (Fig. 6b). Our pipeline identified more unique HLA sequen-
ces than the bestDDAworkflowandotherDIAworkflows. Additionally,
the overall peptide distribution identified by our pipeline for different
HLA allele types was very similar to that of the DDA data, indicating
that our additionally identified HLA peptides were reliable at the same

level. We also manually checked randomly selected 100 peptides by
plotting their elution profiles and mirrored MS2 annotations (Sup-
plementary Data 5). The superiority of ourworkflow is possibly owning
to our predicted HLA peptides that cover most of the present HLA
peptides but exclude unlikely ones, making the search space much
smaller and therefore avoiding false hits.

Interestingly, training directly on the direct-DIA peptides without
transfer learning resulted in only slightly fewer peptides than transfer
learning (“no pretrain” in Fig. 6b). As there are not many motifs for
each individual, we reasoned that it should be straightforward to learn
the sequential patterns from only thousands of HLA peptides. This
would be useful to identify unknown sample-specific HLA allele types
as we do not need any prior knowledge. Note that transfer learning is
still necessary if we only have small number of training peptides and
unknown allele types. To simulate this situation, we removed all pep-
tides of HLA-A*68:01 from the 94 allele types, and used the rest to train
a new pan-HLAmodel. This means that all HLA-A*68:01 peptides in the
RA957 sample were now unknown. Then we used only 100 HLA-
A*68:01 and all non-HLA-A*68:01 peptides identified by direct-DIA and
deconvoluted by MixMHCpred for transfer learning. The resulting
library then identified 29,331 peptides including 7,868 from HLA-
A*68:01 (Transfer learning with 1000 HLA-A*68:01 peptides retrieved
almost all of them) (Fig. 6b). This demonstrates that few-shot transfer

Fig. 6 | HLA prediction model built on AlphaPeptDeep functionalities. a The
pipeline with the HLA predictionmodel to extract potential HLA peptides from the
proteome databases. The HLA model is a binary classifier that predicts if a given
sequence is a potentially presented HLA sequence. b Our HLA prediction model
boosts the number of identified HLA-I peptides compared to other tools. Cell line
HLA data from RA957 with sequence lengths from 8 to 14 were used. The top bar
plots show the number of identified unique sequences of HLA allele types for each
search method. The bottom bar plots the relative frequency of these HLA allele
types. ‘Trash’ means the peptides cannot be assigned to any HLA allele types by
MixMHCpred at 5% rank level. ‘AlphaPeptDeep lib’ (red) refers to the library pre-
dicted by the sample-specific HLA model and our MS2 and RT models. The bars

represent DDA data analyzed by MaxQuant, and the DIA data analyzed by DIA-
Umpire, or PEAKS-Online including de novo sequencing. AlphaPeptDeep with
transfer learning for the sample-specific HLA library clearly outperforms these.
Training on the sample-specific peptideswithout transfer learning obtained similar
number of identifiedHLApeptides (“nopretrain” in (b)). The results of omitting the
dominant HLA-A*68:01 (A6801) HLA type in the pan-model and using transfer
learning with including 1000 or 100 of these peptides identified by direct-DIA from
the data are shown in the last two bars of the A6801 type (see arrows in the panel).
RT retention time, CCS collision cross section, MS2 intensities of fragment spectra,
HLA human leukocyte antigen, DDA data-dependent acquisition, DIA data-
independent acquisition.
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learning is able to rescue many of the peptides of an unknown HLA
type even if the peptide number is low after direct-DIA identification.

Discussion
We developed a deep learning framework called AlphaPeptDeep that
unifies high-level functionalities to train, transfer learn and usemodels
for peptide property prediction. Based on these functionalities, we
builtMS2, RTandCCSmodels,whichenabled theprediction for a large
variety of different PTM types. These models can boost DDA identifi-
cation of for example, HLApeptides, notonly in regular searchbut also
in open-search. We also provided a module called ‘model shop’ which
contains generic models so that users can develop new ones from
scratch with just a few lines of code. Based on themodel shop, we also
built an HLA prediction model to predict whether a peptide sequence
is a presented HLA peptide. With the HLA model and the MS2, RT and
CCSmodels inAlphaPeptDeep, we predicted theHLA spectral libraries
directly from the whole human proteome, and searched them using
HLA DIA data. Using our predicted libraries outperformed existing
DDA and DIA workflows. However, this does not prove that DIA is
always better than DDA in HLA peptidome analysis, as the DDA pro-
teome database is 20 times larger than our predicted library for DIA
analysis. Future DDA search engines may be able to identify more
peptides if they supported predicted library search.

Although AlphaPeptDeep is both powerful and easy to use, we
note that traditional machine learning issues, such as overfitting in the
framework, still need to be kept in mind. For instance, users still need
to split the data, train and test the models on different sets. Trying
different hyperparameters such as the number of training epochs is
still necessary aswell. Differentmini-batch sizes and learning ratesmay
also impact on the model training. However, the model shop at least
provides baseline models for any property prediction problem.

We hope AlphaPeptDeep will minimize the challenges for
researchers that are not AI experts to build their own models either
from scratch or on top of our pre-trainedmodels. As we pointed out in
our recent review4, peptide property prediction can be involved in
almost all steps to improve the computational proteomics workflow.
Apart from specific properties of interest in MS-based proteomics, it
can inprinciple beused to solve anyproblemwhereapeptideproperty
is a function of the amino acid sequence, as we demonstrated by
successfully predicting potential HLA peptides to narrow the database
search. Therefore, with sufficient and reliable training data, we believe
AlphaPeptDeep will be a valuable DL resource for proteomics.

Methods
Infrastructure development
To develop AlphaPeptDeep, we built an infrastructure package named
AlphaBase (https://github.com/MannLabs/alphabase) which contains
many necessary functionalities for proteins, peptides, PTMs, and
spectral libraries. In AlphaBase, we use the pandas DataFrame as the
base data structure, which allows transparent data processing in a
tabular format and is compatible with many other Python packages.
AlphaPeptDeep uses the AlphaBase DataFrames as the input to build
models and predicts properties of peptides. Amino acid and PTM
embedding is performed directly from ‘sequence’ (amino acid
sequence), ‘mods’ (modification names), and ‘mod_sites’ (modification
sites) columns in the peptide DataFrame.

AlphaBase uses UniMod modification names to represent mod-
ifications, and designates the modified amino acids by “@”, e.g Oxi-
dation@M, Acetyl@Protein N-term, etc. It provides result readers to
import DDA and DIA search engines (e.g., AlphaPept18, MaxQuant43,
DIA-NN49, Spectronaut), and translates common modification names
(e.g., oxidation, acetylation, carbamidomethylation, phosphorylation,
di-gly) into AlphaBase format. Users can also provide modification
dictionaries to tell AlphaBase how to translate other modifications for
search engines. As pFind already uses UniMod names, AlphaBase

supports all of pFindmodifications, thus parsing open-search results is
straightforward.

Amino acid embedding
Each amino acid of a sequence is converted to a unique integer, for
example, 1 for ‘A’, 2 for ‘B’,…, and 26 for ‘Z’. Zero is used as a padding
value forN- andC-terminals, andother “padding”positions. As a result,
there are 27 unique integers to represent an amino acid sequence. A
‘one-hot encoder’ is used to map each integer into a 27-D vector with
zeros and ones. These vectors are mapped to an N-dimensional
embedded vector using a linear layer (Supplementary Figure 1). For
this, we additionally make use of the ‘torch.Embedding’method, which
is more efficient and flexible and can support more letters such as all
the 128 ASCII codes.

PTM embedding
For each PTM,we use a 6-D embedding vector to represent the C, H, N,
O, S, and P atoms. All other atoms of a PTM are embedded into a 2-D
vector with a fully connected (FC) layer. The 6-D and 2-D vectors are
concatenated into an 8-D vector to represent the PTM (Supplemen-
tary Fig. 1).

MS2 model
The MS2 model consists of an embedding layer, positional encoder
layer, and four transformer layers followed by two FC layers. The
embedding layer embeds not only amino acid sequences and mod-
ifications but also metadata (if necessary) including charge states,
normalized collisional energies, and instrument type. All these
embedded tensors are concatenated for the following layer.

We added an additional transformer layer to predict the ‘mod-
loss’, which refers to neutral loss intensities of PTMs, for example, the
–98Da of the phospho-group. This modloss layer can be turned off by
setting ‘mask_modloss’ as ‘True’. The output layer dimension is ðn�
1Þ×8 for each peptide, where n is the length of the peptide sequence,
and 8 refers to eight fragment types, i.e., b + , b + +, y + , y + +,
b_modloss + , b_modloss + +, y_modloss + , and y_modloss + +. With
‘mask_modloss=True’, the modloss layer is disabled and the predicted
modloss intensities are always zero. The hidden layer size of trans-
formers is 256. The total number of themodel parameters is 3,988,974.

All matched b/y fragment intensities in the training and testing
datasets were normalized bydividing by the highestmatched intensity
for each spectrum. The MS2 models were trained based on these
normalized intensities. For prediction, negative values will be clipped
to zero, hence the predicted values will be between zero and one.

In training phase 1, we only used tryptic peptides in the training
datasets. The training parameters were: epoch=100, warmup
epoch=20, learning rate (lr)=1e–5, dropout=0.1. In training phase 2,
HLA peptides were added to the training set and the parameters were:
epoch=20, warmup epoch=5, lr=1e–5, dropout=0.1, mini-batch
size=256. In phase 3, phosphorylation and ubiquitylation datasets
were added for training, and only phosphorylation sites with >0.75
localized probabilities were considered. The training parameterswere:
epoch=20, warmup epoch=5, lr=1e–5, dropout=0.1, mini-batch
size=256. For transfer learning of the 21 PTMs, the parameters were:
epoch=10, warmup epoch=5, lr=1e–5, dropout=0.1, mini-batch size
depends on the peptide length. L1 loss was used for all training phases.
We used the “cosine schedule with warmup” method implemented in
HuggingFace for warmup training of these models including all the
following models.

For Thermo Orbitrap instruments, the fragment intensities of
each identified PSM are directly extracted from the raw data. For this,
we imported the centroided MS2 spectra with Thermo’s Raw-
FileReader API that is integrated in AlphaPept, hence the extracted
intensities are reproducible across different search engines. For dda-
PASEF data, the b/y ion intensities are extracted directly from the
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msms.txt file of MaxQuant results. Note that different search engines
may have different centroiding algorithms for dda-PASEF, resulting in
quite different fragment intensities, so fine-tuning is highly recom-
mended for dda-PASEF data analyzed by different software.

A fragment DataFrame is designed to store the predicted inten-
sities. Its columns are fragment ion types (e.g., ‘b_z1’ for b+ and ‘y_z2’
for y ++ ions), and the rows refer to the different fragmented positions
of peptides from which the fragments originate. The start and end
pointers of the rows (‘frag_start_idx’ and ‘frag_end_idx’) belonging to
peptides are stored in the peptide DataFrame to connect between
peptides and their fragments. The fragment DataFrame is pre-
allocated only once for all peptides before prediction. While predict-
ing, the predicted values of a peptide are assigned to the region of the
peptide located by ‘frag_start_idx’ and ‘frag_end_idx’. The fragment
DataFrame allows fast creation and storage of the predicted inten-
sities. The tabular format further increases human readability and
enables straightforward access by programming.

RT model
The RT model consists of an embedding layer for sequences and
modifications, and a CNN layer followed by two LSTM layers with a
hidden layer size of 128. The outputs of the last LSTM layer are sum-
med over the peptide length dimension and processed by two FC
layers with output sizes of 64 and 1. The total number of the model
parameters is 708,224.

All RT values of PSMs in the training datasets were normalized by
dividing by the time length of each LC gradient, resulting in normal-
ized RT values ranging from 0 to 1. As a result, the predicted RTs are
also normalized. The training parameters were: epoch=300, warmup
epoch=30, lr=1e–4, dropout=0.1, mini-batch size=256. The fine-tuning
parameters are: epoch=30, warmup epoch=10, lr=1e–4, dropout=0.1,
mini-batch size=256. L1 loss was used for training.

To compare predicted RT values with experimental ones, each
value ismultipliedwith the time length of each LC gradient. For testing
on peptides with iRT values, we used 11 peptides with known iRT
values7 to build a linear model between their iRT and predicted RT
values. Then all the predicted RTs in the testing sets are converted to
iRT values using the linear model.

CCS model
The CCS model consists of an embedding layer for sequence, mod-
ifications and charge states, and a CNN layer followed by two LSTM
layerswith a hidden layer sizeof 128. Theoutputs of the last LSTM layer
are summed over the peptide length dimension and processed by two
FC layers with output sizes 64 and 1. The total number of the model
parameters is 713,452.

The training parameters are: epoch=300, warmup epoch=30,
lr=1e–4, dropout=0.1, mini-batch size=256. L1 loss was used for train-
ing. The predicted CCS values are converted to mobilities of Bruker
timsTOF using the Mason Schamp equation34.

Rescoring
Rescoring includes three steps:
1. Model fine-tuning. To reduce overfitting, only 5,000 PSMs are

randomly sampled fromatmost eight RAW files at 1% original FDR
reportedby the search engine to fine-tune theMS2, RT andCCS (if
applicable) models to obtain project-specific models. The top-10
frequent modifications are also selected for fine-tuning from the
eight RAW files. At most 100 PSMs are sampled for each
modification. Therefore, the fine-tuning covers not only unmodi-
fied peptides, but also modified ones.

2. Deep learning feature extraction. The tuned MS2, RT and CCS
models are used to predict MS2, RT and CCS values for all the
reported PSMs including decoys. All PSMs are matched against
the MS2 spectra in the RAW files to obtain detected fragment

intensities. Then the predicted and detected values are used to
calculate 61 score features, which include correlations of frag-
ments, RT differences, mobility differences, and so on (Supple-
mentary Data 2).

3. Percolator for rescoring. We use the cross-validation schema54 to
perform the semi-supervised Percolator algorithm to reduce the
chance of overfitting. All the peptides are divided into K folds
(K= 2 in the analyses of this work) and rescored by 5 iterations in
Percolator. In each iteration, a Logistic regression model from
scikit-learn40 is trained with the 61 features on the K–1 folds, and
themodel is used to re-score on the remainder. All the K folds will
be re-scored after repeating this for K times on each of the folds.

Multiprocessing is used in step 2 for faster rescoring. BecauseGPU
RAM is often limited, it can become a bottleneck meaning that only
oneprocess is allowed to access theGPU space at a time for prediction.
We developed a producer-consumer schema to schedule the tasks
with different processes (Supplementary Fig. 10). The PSMs are mat-
ched against MS2 spectra in parallel with multiprocessing grouped by
RAW files. Then, they are sent back to the main process for prediction
in GPU. At last, the 61 Percolator features are extracted in parallel
again. All correlation values between matched and predicted MS2
intensities are also calculated in GPU for acceleration; as this is not
memory intensive, the GPU RAM can be shared and used in parallel
from different processes. For multiprocessing without GPU, all pre-
dictions are done with separate processes and results are merged into
the main process to run Percolator.

HLA prediction model
The HLA prediction model consists of an embedding layer for
sequences, a CNN layer followed by two LSTM layers with a hidden
layer size of 256. The outputs of the last LSTM layer are summed over
the sequence length dimension and processed by two linear layers
with output sizes of 64 and 1. The sigmoid activation function is
applied for last linear layer to obtain probabilities. The total number of
the model parameters is 1,669,697.

For training and transfer learning, identified HLA peptides with
sequence lengths from 8 to 14 are regarded as positive samples.
Negative samples were randomly picked from the human protein
sequences with the same length distribution as the HLA peptides.
These sampleswere then split 80% for training and20% for testing. The
parameters for training the pre-trained model were: epoch=100,
warmup epoch=20, lr=1e–4, dropout=0.1. For transfer learning, the
DIA data were searched by DIA-Umpire and MSFragger55 in HLA mode
at 1% FDR with reviewed human protein sequence. The parameters for
transfer learning were: epoch=50, warmup epoch=20, lr=1e–5, drop-
out=0.1, mini-batch size=256. Binary cross-entropy loss was used for
training.

To predict HLA peptides from fasta files, we first concatenate
protein sequences into a long string separated by the “$” symbol. Next,
we use the longest common prefix (LCP) algorithm56 to accelerate the
unspecific digestion for the concatenated sequence. Only the start and
end indices of the peptides in concatenated sequence are saved, thus
minimizing the usage of RAM. These indices are used to generate
peptide sequences on the fly for prediction. The LCP functionalities
have been implemented in AlphaBase. All sequences with a predicted
probability larger than 0.7 were regarded as potential HLA peptides.

Open-search for Orbitrap and dda-PASEF data
We performed an open search on the Thermo RAW data with Open-
pFind. ForHLADDAdata, the reviewedhumanprotein sequences from
UniProt (https://www.uniprot.org/) were searched with the following
parameters: open-search mode=True, enzyme=Z at C-terminal (i.e.,
unspecific enzyme), specificity=unspecific. The search tolerance was
set to ±10 ppm for MS1 and ±20 ppm for MS2. All modifications
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marked as ‘isotopic label’ inUniMod (www.unimod.org) were removed
from the searched modification list. The FDR was set as 1% at the
peptide level.

To enable Open-pFind search for dda-PASEF data, the spectra
were loaded by AlphaPept APIs18 and exported as pFind compatible
MGF files using our in-house Python script. The reviewed drosophila
and human sequences were used to search the respective tryptic DDA
data with parameters: open-search mode=True, enzyme=KR at C-
terminal, enzyme specificity=specific. The search tolerance was set to
±30ppm for both MS1 and MS2.

Spectral libraries
Functionalities for spectral libraries are implemented in AlphaBase.
When providing DataFrames with sequence, modification and charge
columns, the fragment m/z values and intensities are calculated and
stored in fragment DataFrames. AlphaBase also integrates functional-
ities to load and save DataFrames in a single Hierarchical Data Format
(HDF) file for fast access. For subsequent use with DIA-NN or Spec-
tronaut, all the DataFrames are then converted into a tab-separated
values file (*.tsv) which is compatible with these tools.

ForHLADIA analysis, we used reviewed humanprotein sequences
to predict HLA peptides. We considered charge states from one to
three for each peptide. All RT, CCS, and MS2 were predicted using the
model from training phase 3. The 12 most abundant b/y ions with 1+
and 2+ charge states were written to the *.tsv file. Fragment m/z range
was set to be from 200 to 1800, precursor m/z range was from 300
to 1800.

In DIA-NN, themass tolerance forMS1 andMS2were set to 10 and
20 ppm respectively, with a scan window of 8. All other parameters
were the default values of DIA-NN. The results identified from the first
pass were used for post-search analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The reviewed protein sequence databases are downloaded from uni-
prot: https://www.uniprot.org/proteomes/UP000005640 for human,
https://www.uniprot.org/proteomes/UP000000625 for E. coli, https://
www.uniprot.org/proteomes/UP000001744 for fission yeast, and
https://www.uniprot.org/proteomes/UP000000803 for drosophila.

The training and testing data were from ProteomeXchange with
accession codes: PXD010595, PXD004732, PXD021013, PXD009449,
PXD000138, PXD019854, PXD019086, PXD004452, PXD014525,
PXD017476, PXD019347, PXD021318, PXD026805, PXD026824,
PXD029545, PXD000269, and PXD001250.

Themono-allelicHLADDAdatasetwasdownloaded fromMassIVE
with accession code MSV000084172.

The tumor HLA dataset was downloaded from ProteomeXchange
with accession code PXD004894.

HLA DIA data and the MaxQuant results of DDA data from the
RA957 cell line were downloaded from PRIDE with accession code
PXD022950. HLA DIA results of PEAKS-Online were taken from the
Supplementary Data files in52. Only results from RAW files
‘20200317_QE_HFX2_LC3_DIA_RA957_R01.raw’ and ‘20200317_QE_
HFX2_LC3_DIA_RA957_R02.raw’ from RA957 were used to compare
different methods.

Source data files and Python notebooks for data analysis in this
study are provided on https://doi.org/10.6084/m9.figshare.20260761.

Code availability
The source code of AlphaBase and AlphaPeptDeep are fully opened on
GitHub: https://github.com/MannLabs/alphabase and https://github.
com/MannLabs/alphapeptdeep. They are also available through PyPI

with “pip install alphabase” and “pip install peptdeep”. The versions of
AlphaBase and AlphaPeptDeep used in this study are 0.1.2 and 0.1.2
respectively. All thepre-trainedMS2, RT, andCCSmodels canbe found
in https://github.com/MannLabs/alphapeptdeep/releases/download/
pre-trained-models/pretrained_models.zip. These models will be
automatically downloadedwhenusing theAlphaPeptDeeppackage for
the first time.
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