Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Alterations in rhythmic and non-rhythmic resting-state EEG activity and their link to cognition in older age

MPG-Autoren
/persons/resource/persons203573

Cesnaite,  Elena       
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons247768

Steinfath,  Tim Paul       
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons213898

Jamshidi Idaji,  Mina       
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Machine Learning, TU Berlin, Germany;

/persons/resource/persons213896

Stephani,  Tilman       
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons225365

Kumral,  Deniz       
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Psychology, Albert Ludwigs University Freiburg, Germany;
Department of Clinical Psychology and Psychotherapy, Albert Ludwigs University Freiburg, Germany;

/persons/resource/persons19981

Schroeter,  Matthias L.
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

/persons/resource/persons128137

Witte,  A. Veronica       
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

/persons/resource/persons20065

Villringer,  Arno       
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

/persons/resource/persons201758

Nikulin,  Vadim V.       
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Cesnaite_2023.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cesnaite, E., Steinfath, T. P., Jamshidi Idaji, M., Stephani, T., Kumral, D., Haufe, S., et al. (2023). Alterations in rhythmic and non-rhythmic resting-state EEG activity and their link to cognition in older age. NeuroImage, 268: 119810. doi:10.1016/j.neuroimage.2022.119810.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-05B0-7
Zusammenfassung
While many structural and biochemical changes in the brain have been previously associated with aging, the findings concerning electrophysiological signatures, reflecting functional properties of neuronal networks, remain rather controversial. To try resolve this issue, we took advantage of a large population study (N=1703) and comprehensively investigated the association of multiple EEG biomarkers (power of alpha and theta oscillations, individual alpha peak frequency (IAF), the slope of 1/f power spectral decay), aging, and aging and cognitive performance. Cognitive performance was captured with three factors representing processing speed, episodic memory, and interference resolution. Our results show that not only did IAF decline with age but it was also associated with interference resolution over multiple cortical areas. To a weaker extent, 1/f slope of the PSD showed age-related reductions, mostly in frontal brain regions. Finally, alpha power was negatively associated with the speed of processing in the right frontal lobe, despite the absence of age-related alterations. Our results thus demonstrate that multiple electrophysiological features, as well as their interplay, should be considered when investigating the association between age, neuronal activity, and cognitive performance.