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Behavioral and neuro-cognitive bases for
emergence of norms and socially shared realities
via dynamic interaction
Kiri Kuroda 1,2,3,9,11, Yukiko Ogura4,11, Akitoshi Ogawa 5,10, Tomoya Tamei6, Kazushi Ikeda 7 &

Tatsuya Kameda 5,8,9✉

In the digital era, new socially shared realities and norms emerge rapidly, whether they are

beneficial or harmful to our societies. Although these are emerging properties from dynamic

interaction, most research has centered on static situations where isolated individuals face

extant norms. We investigated how perceptual norms emerge endogenously as shared

realities through interaction, using behavioral and fMRI experiments coupled with compu-

tational modeling. Social interactions fostered convergence of perceptual responses among

people, not only overtly but also at the covert psychophysical level that generates overt

responses. Reciprocity played a critical role in increasing the stability (reliability) of the

psychophysical function within each individual, modulated by neural activity in the menta-

lizing network during interaction. These results imply that bilateral influence promotes mutual

cognitive anchoring of individual views, producing shared generative models at the collective

level that enable endogenous agreement on totally new targets–one of the key functions of

social norms.
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In modern societies where social media connect a huge number
of people in near-real time, shared realities1,2 and norms3–6

develop rapidly within and across groups. Examples include the
formation of collective prejudice against foreigners during the
COVID-19 pandemic7 and the broadening consensus for dec-
arbonized transport and energy8, not to mention the moral and
political divides between social sectors9. These socially shared
realities affect what people see or attend to in the focal situation,
how and to whom what they’ve seen is communicated, and when
and how people edit their own specific behaviors10–13. Accordingly,
these realities fundamentally affect both the processes and out-
comes of collective decision-making at various levels, ranging from
pairs to groups to organizations to societies14,15. Whether such
shared realities are beneficial or harmful, it is noteworthy that they
are not mere duplications of exogenous extant norms but emerge
endogenously from people’s interactions, and thus they may be
hard to change once established3,6,16–18. Most previous studies
have addressed how people conform to (or deviate from) fixed,
extant norms (see19–22 for review); our understanding of the
dynamic emergence of norms through interaction, therefore,
remains elusive. Using neuro-cognitive techniques, we aim to shed
light on the computational mechanisms underlying the formation
of norms as shared realities.

The term social norm refers to a standard or pattern of behavior
that is accepted in or expected of a group6,18,23, constituting a
shared reality about what is normal in a given situation. Cialdini
and colleagues24 provided a useful distinction about this concept:
Descriptive norms characterize the perception of what most people
do (norms about “is”), and injunctive norms characterize the
perception of what most people approve or disapprove of (norms
about “ought”). Although these notions are often conflated, here we
focus on a descriptive norm, which ordinarily sustains an injunc-
tive norm in the real world25.

To set the stage for our argument, we first outline two repre-
sentative experimental paradigms to study descriptive norms. The
formation of descriptive norms has often been studied following
Solomon Asch’s conformity paradigm26. Using an objectively
verifiable perceptual task, Asch examined how participants were
influenced by unresponsive majorities (confederates) that repeat-
edly endorsed incorrect answers. The participants conformed to the
majority view publicly, but once the group was dissolved, they
reverted to their private (correct) answers. Where this unilateral-
influence paradigm has been used in neuroscience research about
social decision making21,22, it has been assumed that social stan-
dards are exogenous and fixed27,28.

In another classic study, Muzafer Sherif investigated norm
formation through bilateral influence18. Participants collectively
viewed a spot of light in a dark room and reported how much the
spot moved. When they heard each other’s answers, their judg-
ments converged and remained so even when they performed the
task later individually. Sherif argued that the participants devel-
oped and internalized perceptual norms (i.e., common frames of
reference about what is seen and how it is described15,29). Sherif’s
bilateral-influence paradigm is insightful but silent about the
computational mechanisms underpinning the emergence of per-
ceptual norms30. Because it employed an optical illusion wherein
a static spot of light is perceived to be moving, it is impossible
to define a psychophysical function (a psychometric relationship
between objective features of a stimulus and the perceptions/
judgments about the stimulus31) that underpins each individual’s
responses.

Whereas the Asch and the Sherif paradigms can highlight the
difference between public compliance and private acceptance and/or
between normative and informational social influence (e.g., whether
the behavioral convergence persists even after interaction)25,32, here,
we aim to address a finer distinction—whether the interaction affects

only the convergence of people’s overt behaviors or also leads to
sharing of the covert psychophysical functions that generate their
behaviors. This distinction is critical, because only the latter shared
generative model enables endogenous agreement on new targets
beyond the initial learning set. We believe that such a generative
nature33 is a fundamental characteristic of social norms.

This prompts important questions: how do people develop such
shared realities through interaction, whereby norms function as
generative rules to regulate overt behaviors? What type of interaction
is needed to foster these generative norms, and how persistently and
reliably do they modulate individual behavior after interaction?

To address these questions, we investigated the behavioral and
neurocognitive mechanisms that underpin the formation of per-
ceptual norms through dyadic interaction, using a dot-estimation
task. First, in a laboratory behavioral experiment, we had pairs of
participants perform the task and tested these hypotheses: (H1)
Dyadic interaction causes convergence of not only participants’
overt behaviors but also their covert psychophysical functions,
within a pair; (H2) Dyadic interaction stabilizes the psychophy-
sical function within each individual after interaction.

H1 addresses the critical distinction between the overt and
covert levels of convergence in formation of perceptual norms as
shared realities. H2 addresses the stabilization of the covert psy-
chophysical function through interaction. We believe that an
increase in stability (reliability) of the generative function within
each individual can have important consequences for accuracy of
choices, though this point has rarely been studied. To illustrate,
take the example of a weight scale with low validity but high
reliability of measurement, which always yields a value 10% less
than the actual weight. This scale is inaccurate numerically but
still useful for properly ordering new as well as old items in terms
of weight. If the stability of a psychophysical function increases
through interaction, this could serve the individual by increasing
the accuracy of ordering in perceptual judgments and conse-
quently would improve decisions that depend on order by an
individual as well as by groups of individuals15,34.

We conjectured that reciprocity would be a key to facilitating
covert-level convergence. Using a perceptual task, Mahmoodi
et al. (2018)35 showed that people were more susceptible to the
judgment of a partner who was susceptible to (i.e., responded to)
their own judgment during interaction. Reciprocity also operates
in various social situations (e.g., self-disclosure36, interpersonal
attraction37, negotiation38, cooperation39) and is regarded as a
core feature of human sociality40. Yet, beyond matching of overt
behaviors, it remains unknown whether and if so how reciprocity
contributes to the emergence of shared realities at the level of
covert psychophysical function.

Thus, whereas the pairs estimated freely in the first (laboratory)
experiment, we intervened in the interaction mechanics in func-
tional magnetic resonance imaging (fMRI) and online behavioral
experiments. We had participants interact with two partners
(computer agents), whose behavioral patterns were programmed
to follow either Asch-type (unresponsive/one-sided) or Sherif-type
(responsive/reciprocal) interactions and tested the behavioral
hypothesis using a time-series model: (H3) Reciprocal concession
during interaction (as implemented with the Sherif-type but not
with the Asch-type interactions) stabilizes the covert psychophy-
sical function within each individual after interaction.

In the fMRI experiment, we addressed how reciprocity affects
the neural activity that modulates formation of shared realities.
Past fMRI studies have shown that cognitive perspective taking
plays a key role in shaping interaction. For instance, when
interacting with others in a strategic game41,42 or in group
decision making where coordination or trust was needed43,44,
participants developed internal models about how others decide
using the mentalizing network45, which involves the right
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temporoparietal junction (RTPJ) and the dorsomedial pre-
frontal cortex (DMPFC). These regions are associated with
the ability to infer others’ agency and mental states42,46–56, and
also to make decisions on behalf of others42,57–59. Here, we
conjecture that participants adjust their estimations during
interaction by anchoring their views on the partner’s views via
perspective taking. We reason that a reciprocating (Sherif-type)
partner would be more likely to be referred to mentally, that is,
to be the target of the participant’s perspective taking during
interaction, which may help stabilize each participant’s covert
psychophysical function. We thus derive our fourth hypothesis:
(H4) Activity of the mentalizing network during bilateral
influence modulates stabilization of the covert psychophysical
function within each individual after interaction.

The results of the laboratory behavioral, fMRI, and follow-up
online behavioral experiments support all four hypotheses.

Results
Laboratory behavioral experiment. Participants observed ran-
dom dots for 0.8 s and estimated the number of dots (Fig. 1a). No
feedback was given to participants about their accuracy.

In Phases 1 and 3 (hereafter solo phases), participants performed
the task individually. In Phase 2, participants were randomly assigned
to an individual or pair condition. Participants in the individual
condition performed the task individually again. In the pair condition,
two participants observed the same dots and answered independently,
and they then shared their estimates. Pairs were instructed that they
did not need to give similar estimates and that rewards would depend
on individual estimation accuracy. Participants remained anonymous
to each other and were allowed no verbal communication.

Modeling a psychophysical function. We approximated parti-
cipant i’s perceptual response (estimated number of dots that
reflect perceptual experience per se and response bias) at trial t,
Esti (t), using a linear model:

Esti tð Þ ¼ wi ´DotNum tð Þ þ ε; ð1Þ
where wi denotes the participant’s estimation weight, DotNum
denotes the number of dots, and ε denotes Gaussian noise
(Supplementary Fig. 1; see Supplementary Table 1 for perfor-
mance of this model compared to a log-linear model defined in
Eq. 3). The estimation weight is less (greater) than 1 if the par-
ticipant underestimates (overestimates) the number of dots in his/
her perceptual response. We calculated the estimation weights of
the paired participants in the two solo phases using the maximum
likelihood method. Figure 1b shows that participants exhibited an
underestimation bias60 in Phase 1, [M= 0.915: one-sample t test:
t(41)= 2.75, P= 0.009, Cohen’s d= 0.42] and retained this bias
uncorrected in Phase 3 after the interaction [M= 0.912: one-
sample t(41)= 3.08, P= 0.004, Cohen’s d= 0.48].

The covert psychophysical functions converge within pairs
through interaction (H1). For each pair, we calculated the
absolute difference in their estimation weights for the two solo
phases. The mean difference decreased significantly after the
interaction in Phase 2 [Fig. 1c left; paired t(20)= 2.81, P= 0.011,
Cohen’s d= 0.61].

However, mere task repetition with another participant rather
than actual interaction could have yielded this convergence. We
created shuffled pairs who were not partnered with one another
and compared each shuffled pair’s difference in estimation
weights between Phases 1 and 3. Although a significant difference
was found between the phases owing to the large sample size
[Fig. 1c right; paired t test: t(839)= 3.03, P= 0.003, Cohen’s
d= 0.10], the decrease was larger in the real pairs than in the

shuffled pairs [Welch’s t test: t(21.2)= 2.27, P= 0.034, Cohen’s
d= 0.49]. We also conducted the same analysis by creating pairs
from participants in the individual condition and confirmed that
the results remained unchanged (Supplementary Fig. 2). These
results support H1’s claim that interaction causes convergence of
the covert psychophysical functions within pairs.

The covert psychophysical function stabilizes within each
individual through interaction (H2). The above results indicate
that interaction yielded convergence at the pair level (Fig. 1c) but
did not correct underestimation bias at the individual level
(Fig. 1b). However, even if estimations remain biased numeri-
cally, interaction may stabilize the psychophysical function within
each individual. As in the scale metaphor, such stabilization could
improve accuracy in ordering targets.

To index the stabilization of participants’ estimation weights, we
analyzed temporal changes in estimation weights using state-space
modeling61. This model assesses how estimation weights change
over time, while considering autocorrelation between trials and
observational random noise (see Fig. 1d for illustration). We
assumed that the estimation weight at trial t, w(t), was sampled
with observational noise from a latent state, μ(t). The latent state
μ(t) was assumed to be sampled with system noise (σ) from μ(t-1)
in the preceding trial (seeMethods section and Eqs. 4–7 for details).
A smaller σ indicates that the participant’s estimation weight is
more similar to that in the previous trial. We thus used σ as an
index of stabilization of estimation weights within each participant;
the smaller the value of σ, the more stable the psychophysical
function in the phase.

Figure 1e shows that σ decreased significantly from Phase 1 to
Phase 3 in the pair condition [paired t test: t(41)= 34.86,
P < 0.001, Cohen’s d= 5.38], but increased in the individual
condition [paired t test: t(20)=−31.37, P < 0.001, Cohen’s
d= 6.85]. The decrease in σ was greater in the pair condition
than in the individual condition [Welch’s t test: t(42.4)= 46.02,
P < 0.001, Cohen’s d= 12.18]. These results support H2’s claim
that pair interaction stabilizes the covert psychophysical function
within each individual. Furthermore, participants whose estima-
tion stabilized more from Phase 1 to Phase 3 (greater decrease in
σ) also showed greater improvement in accuracy in ordering the
stimuli (Supplementary Fig. 3a; robust r=−0.39, P= 0.011).
That is, participants’ improvements in post-interaction stability
correlated with improvements in rank ordering of the stimuli.

To identify what features of interaction facilitated the covert-
level convergence and the stabilization of individual psychophy-
sical functions afterward, we conducted an fMRI experiment and
manipulated the paired interaction patterns. To reduce the risk of
reverse inference62, we defined the regions of interest (ROIs) in
the mentalizing network a priori for each participant using a
functional localizer for perspective taking59,63,64, separately from
the main task (see Methods section for details).

fMRI Experiment. The experiment consisted of one pre-interaction
phase, two interaction phases, and two post-interaction phases
(Fig. 2a). In the pre-interaction phase, participants performed the
dot-estimation task individually (Supplementary Fig. 4a).

In the interaction phases, participants were paired with a Sherif-
or Asch-type computer partner (described as another participant).
Participants and the partner estimated the number of dots
independently and then shared their estimates (Supplementary
Fig. 4b). Although both computer partners had a stronger
underestimation bias initially (w= 0.61) than the average partici-
pant in the behavioral experiment (mean w= 0.91; Fig. 1b), they
were programmed to differ in their reciprocity to participants’
estimates during interaction (see Methods section for details).
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The Asch-type partner retained its underestimation bias through-
out the trials irrespective of the participant’s estimates26 (Eq. 8). In
contrast, the Sherif-type partner adjusted its weight over the trials
toward the participant’s estimates18. The Sherif-type partner was
designed to approximate the pattern of an average participant’s
estimation-adjustment during interaction in the behavioral experi-
ment (Eqs. 9 and 10).

In the post-interaction phases, participants performed the task
individually again. Hereafter, each post-interaction phase is
referred to as post-Sherif or post-Asch.

Reciprocal concession stabilizes the covert psychophysical
function within each individual after interaction (H3). For both
partners, participants’ estimation weights decreased after interaction

[Fig. 2b; post-Sherif: paired t test: t(27)= 2.35, Holm–Bonferroni-
corrected P= 0.053, Cohen’s d= 0.44; post-Asch: paired t test:
t(27)= 3.87, Holm–Bonferroni-corrected P= 0.002, Cohen’s
d= 0.73]. No significant difference was observed between the
partners [paired t test: t(27)= 1.55, Holm–Bonferroni-corrected
P= 0.132, Cohen’s d= 0.29]. These results indicate that partici-
pants were influenced by both partners and increased their under-
estimation biases through interaction.

However, as expected, the Sherif- and Asch-type partners had
different impacts on the stability of the covert psychophysical
function for each individual (indexed by the σ of estimation weights,
as in Fig. 1d). Individual estimation weights were more stable
after interaction with both partners [Fig. 2c; reciprocating Sherif-
type partner: paired t test: t(27)= 33.78, Holm–Bonferroni-
corrected P < 0.001, Cohen’s d= 6.38; non-reciprocating Asch-type

Fig. 1 Task and results from the behavioral experiment. a Timelines of the dot-estimation task. In Phases 1 and 3 (solo phases), all participants estimated
the number of dots individually. In Phase 2, participants in the individual condition (n= 21) performed the task individually again as a control. Those in the
pair condition (n= 42) observed the same dots and estimated the number of dots independently, and then their estimates were shared with each other.
b Participants’ estimation weights (wi) in Phases 1 and 3 in the pair condition. Each point indicates one participant’s estimation weight. c Absolute
differences in estimation weights between two participants of the real and shuffled pairs in Phases 1 and 3. The box plots indicate the medians, the first and
third quartiles, and the values no further than 1.5 inter-quartile range from the quartiles. *P < 0.05, **P < 0.01. d An illustration of the state-space model that
was used to measure the stability of estimation weights within each individual. We assumed that the estimation weight at trial t, w(t), was sampled with
observational noise from a latent state, μ(t). The latent state μ(t) was in turn assumed to be sampled with system noise (σ) from the state in the preceding
trial, μ(t-1). We used σ as an index of stabilization of estimation weights within each participant. In the bottom row, y indicates the participant’s estimate.
e Sigmas of estimation weights in the pair and individual conditions. The bar plots indicate the means across participants. ***P < 0.001.
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partner: paired t test: t(27)= 4.56, Holm–Bonferroni-corrected
P < 0.001, Cohen’s d= 0.86]. Nevertheless, the impacts between
the partners are distinct [Fig. 2c; paired t test: t(27)= 39.56,
Holm–Bonferroni-corrected P < 0.001, Cohen’s d= 7.48]. These
results support H3. Reciprocal concession, as implemented with
the Sherif-type partner, was more effective for improving the stability
of covert psychophysical functions that generate overt behaviors
(see Supplementary Fig. 3b for individual-level correlations between
improvements in estimation stability and in relative ordering of
the stimuli).

Time-series analysis of updating the estimation weight during
interaction. To examine the cognitive dynamics underlying the
different impacts of the Sherif- and Asch-type partners (Fig. 2c) at a
finer time resolution, we analyzed how participants updated their
estimation weights during interaction using a time-series model
(see Methods section and Eqs. 11–13 for details; see Supplementary
Figs. 5 and 6 for model validation). The model decomposed a
participant’s estimation weight (wi in Eq. 1) in trial t into three
parameters:

wi tð Þ ¼ Baselineþ Coef Atyp tð Þ ´Atyp t � 1ð Þ þ Coef Sim tð Þ ´ Sim t � 1ð Þ;
ð2Þ

where Baseline (i.e., intercept) indicates the participant’s estimate
without social influence, and Atyp (atypicality) is a nuisance
parameter that controls for the built-in underestimation bias of the
computer partner (Eq. 12).

Sim (similarity) is a pair-level parameter, representing closeness
between the participant’s estimate and the partner’s estimate in the
preceding trial (Eq. 13). As we are concerned with reciprocal
concession over time (H3), Sim is the parameter of primary interest.
The coefficient for Sim (CoefSim) indicates how the participant
updates his/her estimation weight in the current trial in response to

the similarity in the preceding trial. Since Sim is positive and the
computer partner initially had a stronger underestimation bias
(w= 0.61) than the average participant (w= 0.91), a negative
coefficient means that the participant approaches the partner (i.e.,
decreases his/her estimation weight) in the current trial from his/her
baseline, whereas a positive coefficient means the opposite shift.
(Note that Eq. 2 focuses on the participant’s weight adjustment from
his/her baseline during interaction. We examined whether greater
estimation similarity in the preceding trial would generally increase
the participant’s underestimation bias in the current trial to
approach the computer partner, which was endowed with a strong
underestimation bias.)

Figure 2d shows that the mean coefficient for similarity was
negative when participants interacted with the Sherif-type partner
[M=− 0.06, one-sample t test: t(27)= 3.46, P= 0.002, Cohen’s
d= 0.65], and positive when interacting with the Asch-type partner
[M= 0.09, one-sample t test: t(27)= 3.19, P= 0.004, Cohen’s
d= 0.60]. The mean coefficients were significantly different
between the partners [paired t test: t(27)= 5.46, P < 0.001, Cohen’s
d= 1.03].

These patterns are in line with H3. When interacting with the
Sherif-type partner, larger similarity in the preceding trial fostered
more similarity in the current trial. Participants reciprocated
concession when interacting with the reciprocating Sherif-type
partner. In contrast, when interacting with the Asch-type parnter,
participants moved away from the partner in response to the
preceding similarity.

Activity of the mentalizing network during bilateral influence
modulates stabilization of an individual’s covert psychophysical
function after interaction (H4). To test whether perspective taking
underpins the differing impacts between the Sherif- and Asch-type
partners (Fig. 2c, d), we focused on the mentalizing network, which

Fig. 2 Task flow and behavioral results from the functional magnetic resonance imaging experiment. a The flow of the fMRI experiment. In the pre- and
post-interaction phases, participants performed the dot-estimation task individually. In each interaction phase, the participant was paired with the Sherif- or
Asch-type partner that had a much stronger underestimation bias initially (w= 0.61) than the average participant of the behavioral experiment. The order
of the two partners was counterbalanced across participants. The participant and the partner observed the same dots and estimated the number of dots
independently, and then their estimates were shared. b Participants’ estimation weights (wi) in each phase. Each point indicates one participant’s
estimation weight. c Sigmas of estimation weights, indexing stability of the participant’s covert psychophysical function. ***P < 0.001. d Coefficients for
similarity (Sim) for the two computer partners in the time-series analysis of participants’ estimates during interaction. **P < 0.01, ***P < 0.001. The bar
plots indicate the means across participants.
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includes the RTPJ and the DMPFC. Using the individual ROIs
associated with cognitive perspective taking65 (Fig. 3a, Supplementary
Fig. 7, and Supplementary Table 2), we compared activities of the
RTPJ and DMPFC for interactions with the two computer partners.

At the group level (Fig. 3b), RTPJ activity tracked similarity
with the partner in estimation in the preceding trial (Eqs. 11 and
13) when participants interacted with the Sherif-type partner
[one-sample t test: t(27)= 2.63, P= 0.014, Cohen’s d= 0.50] but
not with the Asch-type partner [one-sample t test: t(27)= 0.69,
P= 0.495, Cohen’s d= 0.13]. The difference between the two
types was significant [paired t test: t(27)= 2.25, P= 0.033,
Cohen’s d= 0.42]. These differential RTPJ activities are in
line with participants’ trial-by-trial updating of estimation
weights in response to similarity (Fig. 2d). This may suggest
that participants engaged in perspective taking with the Sherif-
type partner according to the degree of reciprocal concession
during interaction, but not as much with the Asch-type partner.
Figure 3c shows that the DMPFC tracked participant behavioral
output in the current trial [Esti(t) in Eq. 11] for both partners
[Sherif-type: one-sample t test: t(27)= 2.05, P= 0.050, Cohen’s
d= 0.39; Asch-type: one-sample t test: t(27)= 2.29, P= 0.030,
Cohen’s d= 0.43], with larger activation for larger estimates.
Participants’ estimation outputs were similarly represented by
the DMPFC activity across the two types [paired t test:
t(27)= 0.68, P= 0.502, Cohen’s d= 0.13].

At the individual level (Fig. 3d), RTPJ activity in response to Sim
during interaction (i.e., RTPJ beta in Fig. 3b) correlated with
stability of estimation (σ) in the post-Sherif phase [robust
r=−0.48, P= 0.010], but not in the post-Asch phase [robust
r=−0.07, P= 0.691]. We also examined the contribution of
RTPJ–DMPFC functional connectivity to the stability of estimation
using a psychophysiological interaction analysis (see Methods
section). Figure 3e shows that RTPJ–DMPFC functional connec-
tivity during interaction correlated with stability in the post-Sherif

phase [robust r=−0.74, P < 0.001] but not in the post-Asch phase
[robust r= 0.26, P= 0.145].

These results support H4. At the group level, the RTPJ was
activated according to similarity (i.e., closeness to estimates in the
preceding trial: Eq. 13) when participants interacted with the
reciprocating Sherif-type partner, but not with the non-reciprocating
Asch-type partner (Fig. 3b). At the individual level, such cognitive
perspective-taking toward the reciprocating partner was correlated
with the stability (reliability) of the participant’s own covert
psychophysical function after the interaction. These results imply
that participants took the Sherif-type partner’s perspective according
to the degree of reciprocity when making their own estimates during
interaction and stabilized the covert psychophysical function that
generated their responses (Fig. 3d, e; see Supplementary Note 1 and
Supplementary Fig. 8 for the results of an exploratory whole-brain
analysis; see also Supplementary Notes 2 and 3 and Supplementary
Figs. 9–11 for other behavioral results).

Online behavioral experiment. We conducted a pre-registered
experiment to replicate the behavioral results from the fMRI
experiment as well as examine whether similar behavior could be
observed when the computer partner is an overestimator. In the
pre- and post-interaction phases, participants performed the task
individually. In the interaction phase, participants and the com-
puter partner performed the task as in the fMRI experiment
(Supplementary Fig. 4b). For the computer partner, we had a
2 × 2 between-participants design, with factors partner type
(Sherif vs. Asch) and built-in estimation bias (underestimation vs.
overestimation; see Methods section for details).

Interaction with the Sherif-type partner stabilizes the covert
psychophysical function in both estimation-bias conditions.
Participants decreased their estimation weights after interacting

Fig. 3 Imaging results from the functional magnetic resonance imaging experiment. a Individual right temporoparietal junction (RTPJ) and dorsomedial
prefrontal cortex (DMPFC) regions of interest (ROIs) identified a priori by the functional localizer for cognitive perspective taking based on a theory-of-
mind task, conducted separately from the main estimation task. The color bars show the number of overlapped individual ROIs in each voxel. b Parametric
modulation for Sim (similarity) with the partner in estimation (Eq. 13) in RTPJ activity during interaction. *P < 0.05. c Parametric modulation for Est
(estimation: Eq. 11) in DMPFC activity during interaction, with larger activation for larger estimates. †P < 0.10, *P < 0.05. d Correlations between RTPJ betas
(in response to Sim during interaction: Fig. 3b) and the stability (σ) of the participants’ estimation weights in the post-interaction phase. e Correlations
between RTPJ–DMPFC functional connectivity during interaction and the stability (σ) of the participants’ estimation weights in the post-interaction phase.
The bar plots indicate the means across participants, and the lines in the scatter plots are the linear regression lines.
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with the underestimators [Supplementary Fig. 12; Asch-type
partner: paired t test: t(59)= 8.65, Holm–Bonferroni-corrected
P < 0.001, Cohen’s d= 1.12; Sherif-type partner: paired t test:
t(48)= 2.49, Holm–Bonferroni-corrected P= 0.033, Cohen’s d=
0.36]. This pattern replicated the results of the fMRI experiment
(Fig. 2b). When interacting with the overestimators, participants
increased their estimation weights for the Asch-type partner
[paired t test: t(50)= 5.82, Holm–Bonferroni corrected P < 0.001,
Cohen’s d= 0.82] but not for the Sherif-type partner [paired t test:
t(55)= 1.95, Holm–Bonferroni corrected P= 0.056, Cohen’s
d= 0.26]. A 2 × 2 (partner type × estimation bias) analysis of var-
iance (ANOVA) yielded a significant interaction [F(1, 212)= 33.09,
P < 0.001, ηp2= 0.14] and a main effect of the estimation bias
[F(1, 212)= 53.61, P < 0.001, ηp2= 0.20]. These patterns indicate
that participants changed their estimation weights toward the
computer partners, except for the overestimating Sherif-type that
approached participants’ estimates rapidly during early phases of
the interaction, as programmed (see Methods section and Eq. 10).

We next examined whether the results on increased estimation
stability (Fig. 2c) are replicable. Figure 4 displays σs of participants’
estimation weights. A 2 × 2 (partner type × estimation bias)
ANOVA on the pre–post differences yielded significant main
effects for both factors [partner type: F(1, 212)= 388.03, P < 0.001,
ηp2= 0.65; estimation bias: F(1, 212)= 1373.32, P < 0.001, ηp2=
0.87]. This indicates that σ decreased more after interaction with
the Sherif-type partner than with the Asch-type partner (H3) and
decreased more after interaction with the underestimator than
with the overestimator. The interaction effect was also significant
[F(1,212)= 410.39, P < 0.001, ηp2= 0.66], suggesting that the
increased stability when interacting with the reciprocating Sherif-
type partner (compared to the Asch-type) was more pronounced in
the overestimator condition. These results replicate and extend the
behavioral results of the fMRI experiment. Reciprocal concession
stabilized participants’ covert psychophysical functions in both
estimation-bias conditions (H3). The individual-level correlations
between improvement in estimation stability and improvement in
relative ordering of the stimuli from the pre- to post-interaction
phase were also replicated (Supplementary Fig. 3c).

Discussion
We have addressed the neuro-cognitive underpinnings of per-
ceptual norms as an emergent property via dynamic interaction,
using a dot-estimation task. We hypothesized that people’s

perceptual responses are fined-tuned as shared realities through
bilateral (more than unilateral) influence and perspective taking
and tested this claim using behavioral (laboratory and online) and
fMRI experiments.

The results support our hypotheses. In the laboratory beha-
vioral experiment using real pairs, dyadic interaction yielded
pairwise convergence of not only participants’ overt behaviors but
also their covert psychophysical functions (H1: Fig. 1c). The
paired interaction also stabilized the psychophysical function
within each individual as an aftereffect (H2: Fig. 1e).

In the fMRI experiment, we created two computer partners: a
reciprocating Sherif-type (similar to most participants in the beha-
vioral experiment) and a non-reciprocating Asch-type, both
endowed with a much stronger underestimation bias than the
average participant. At the behavioral level, both computer partners
increased participants’ mean underestimation bias as an aftereffect.
Notice that, similar to the original Sherif task18, our task contained
greater perceptual ambiguity than the original Asch task (comparing
the length of lines), which may have contributed to the impact of
both the Asch- and Sherif-type partners on participants’ estimations
after interaction in our study (Fig. 2b and Supplementary Fig. 12).
On the other hand, as hypothesized (H3), within-individual stability
of the covert psychophysical function improved more after inter-
acting with the Sherif-type compared to the Asch-type partner
(Fig. 2c). Furthermore, the time-series analysis confirmed that
participants adjusted their estimation weights reciprocally during
interaction (i.e., approaching the partner’s estimate more closely in
the current trial in response to the similarity in the preceding trial)
only with the Sherif-type partner (Fig. 2d).

At the neural level, the mentalizing network (defined a priori
using a functional localizer based on a theory of mind
task59,63,64) contributed to the dynamic formation and stabili-
zation of perceptual norms. First, consistent with the behavioral
results (Fig. 2d), RTPJ activity tracked temporal changes in
estimation similarity during interaction, when paired with the
reciprocating Sherif-type but not with the one-sided Asch-type
partner (Fig. 3b). Such RTPJ activity, which parametrically
modulated the estimation similarity with the Sherif-type partner
on a trial-by-trial basis, also contributed to the subsequent sta-
bilization of participants’ own covert psychophysical functions
(H4: Fig. 3d). Second, we observed that DMPFC activity tracked
how participants expressed their estimations as outputs during
interaction (Fig. 3c). The involvement of the DMPFC in
expressing estimations was observed commonly for participants’

Fig. 4 Stabilization of estimation weights after interaction in the online behavioral experiment. Regardless of the estimation biases, participants’
estimation weights became more stable (i.e., smaller σ of estimation weights) after interacting with the Sherif-type partner than with the Asch-type
partner. The effect of the Sherif-type partner was more pronounced in the overestimation condition than in the underestimation condition. The bar plots
indicate the means across participants.
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interactions with both Asch- and Sherif-type partners (with
larger activation when giving larger estimates). It might be the
case that expressing a larger estimation in the presence of a
partner with a strong underestimation bias was a socially
nuanced behavior, which seems to concur with the previous
finding that the DMPFC modulates self-related evaluation66

embedded in social contexts67–69. Although the RTPJ and the
DMPFC are the core areas of the mentalizing network, the
functional dissociation of these areas has been proposed70:
Whereas the RTPJ is thought to facilitate perspective taking, the
DMPFC is thought to integrate social information into subjective
evaluation71–73. Our results appear to be in line with this view.
Last, the functional connectivity between the RTPJ and the
DMPFC modulated the stabilization of participants’ covert
psychophysical functions after interacting with the reciprocating
Sherif-type but not with the unresponsive Asch-type partner
(H4: Fig. 3e). These regions are known to be recruited even when
participants are not explicitly instructed to infer another’s
mental state58,74–76. Our participants were also instructed that
they did not need to give similar estimates and that their reward
would depend entirely on their own estimation accuracy. Thus,
the fMRI results indicate that participants spontaneously had the
reciprocating partner in mind when they made their own esti-
mations during as well as after interaction.

Furthermore, in the pre-registered online behavioral experi-
ment, we replicated and extended the behavioral results of the
fMRI experiment. In addition to showing the impact of the Asch-
and Sherif-type partners on participants’ estimations after inter-
action (Supplementary Fig. 12), the follow-up experiment
revealed that reciprocal concession (as implemented in the Sherif-
type partner) particularly stabilized participants’ covert psycho-
physical functions, not only in the underestimation condition but
also in the overestimation condition (Fig. 4). These patterns
provide further support for H3.

Taken together, the results suggest that reciprocal behavioral
concession may lead people to take the perspective of their
interaction partners59,63,65. Such spontaneous switching between
one’s own and another’s view about shared targets may stabilize
people’s covert psychophysical functions, as triangulation mea-
surement is useful for reliably determining the location of a point.

We believe that these results are important in two respects.
First, in the digital era, new shared realities can emerge rapidly
and robustly and often fundamentally contradict democratic
values (e.g., conspiracy theories, deliberate misinformation).
Research on formation of new norms (as opposed to acquisition
of extant norms) is thus of keen importance. Echterhoff et al.
(2011)77 and Higgins et al. (2021)78 argued that shared reality is
not a mere duplication or catching of another person’s response
but requires that one’s inner state about some target referent
converges with the other’s inner state regarding the same target.
Our finding that bilateral influence causes convergence of not
only overt responses about the same perceptual stimuli but also
covert psychophysical functions via perspective taking fits this
view. It may also be noteworthy that participants subjectively
reported having felt their inner (generative) model converged
more with that of the Sherif-type partner than with the Asch-type
partner (Supplementary Fig. 11), but they were actually influ-
enced to the same extent by both types (Fig. 2b). Along with the
increased stability of the psychophysical function after interaction
(Figs. 2c and 4), these results indicate that reciprocal social
influence35 played a key role in fostering the shared reality in our
experiment (see Echterhoff et al.77 and Higgins et al.78 for further
discussion on shared realities). It is also noteworthy that a shared
stable psychophysical function allows people to agree on a totally
new target (not in the original learning set) immediately. These
generalized endogenous agreements may further foster a shared

sense of feeling and thinking the same way. We believe that such
a shared generative model33 is one of the most fundamental
characteristics of social norms79,80.

Second, our results appear to shed light on overlooked aspects
of collective decision-making and its accuracy (the wisdom of
crowds or WoC15,81). Previous research on the WoC has yielded
mixed views regarding the effect of interaction, with some
arguing negative impacts35,82 and others reporting positive
impacts60. Moreover, although most WoC research has focused
on improved accuracy in aggregated numeric estimates35,83,84,
aggregating ordered choices has also been shown to yield a WoC
effect34,85. The present study has shown that, although interac-
tion did not necessarily correct people’s underestimation bias
(Figs. 1b, 2b, and Supplementary Fig. 12), bilateral influence
stabilized their covert psychophysical functions more than uni-
lateral influence (Figs. 2c and 4). Recall that, as illustrated with
the weighing metaphor, an increase in stability (reliability) of the
psychophysical function can improve the accuracy of ordering of
estimation targets (Supplementary Fig. 3). In other words, even
though people remain biased numerically, bilateral influence
may improve individual ordering of the targets over time and
enhance accuracy of group choice accordingly (e.g., aggregated
ordering by majority/plurality voting34,85). Investigating collec-
tive decision-making accuracy from this perspective appears to
be a promising approach15.

People rely on constant interaction with others to develop and
sustain shared realities1,2. Exploring the applicability of the
computational approach (used here to study perceptual norms18)
to more social norms (about shared values and morals86), while
focusing on the formation of shared generative models33, could
be a promising way to better understand emerging problems in
our digitally connected but often morally divided world.

Methods
This study was approved by the Ethics Committee of the Department of Social
Psychology at the University of Tokyo, and all participants gave written informed
consent.

Participants. Sixty-three students at the University of Tokyo (pair condition:
27 men and 15 women; age 21.2 ± 1.0 years; individual condition: 14 men and
7 women; age 22.0 ± 1.7 years) participated in the laboratory behavioral
experiment. The sample size was determined by a power analysis on findings
from a previous study employing a similar experimental paradigm87. For the
functional magnetic resonance imaging (fMRI) experiment, we scanned 30
right-handed students at the University of Tokyo (who did not overlap with
participants in the behavioral experiment) with no history of neurological or
psychiatric illness. Before analyzing the data, we excluded two participants who
did not follow the experiment instructions, which left us a total of 28 partici-
pants (13 men and 15 women; age 22.2 ± 2.3 years) for analysis. For the online
behavioral experiment, we recruited 216 students at the University of Tokyo
who had not participated in the previous experiments (132 men and 84 women;
age 23.0 ± 2.1 years). All participants had normal or corrected-to-normal visual
acuity and no color vision deficiency.

Laboratory behavioral experiment. In the laboratory behavioral experiment
(Fig. 1a), participants were presented with 25–55 randomly sized and colored dots
for 0.8 s (the luminance of each screen was held constant), and then asked to
estimate the number of dots in each trial using a keypad, with no time limit. The
number of dots ranged from 25 to 55 in increments of two, and its presentation
order was randomized across participants. The intertrial interval was 2 s with a
fixation cross. No feedback was given to participants about their estimation
accuracy throughout the experiment. We used a laptop computer (HP ZBook 15
Mobile Workstation, HP) and a set of Psychtoolbox-3 scripts88–90 to control the
experiment. Stimuli were presented on a 15.6-inch LCD monitor (1920 × 1080
resolution; MB168B+ , AsusTek Computer), 60 cm in front of the participant.
Screen luminance was kept constant across trials.

The experiment consisted of three phases, and there were 16 trials each in
Phases 1 and 3 for analysis. Phase 2 had 144 trials in order to generate sufficient
data to implement average participant behavior as a computer agent later for the
fMRI experiment. In Phases 1 and 3, all participants estimated the number of dots
individually. In Phase 2, 21 participants performed the task individually again as a
control, and the remaining 42 participants performed the task in pairs. Separated
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by a partition that blocked any visual contact, each pair observed the same dots and
estimated the number of dots individually, and then each individual viewed both
their own and their partner’s estimates on their own respective monitors for 5 s
(Fig. 1a right). Participants remained completely anonymous to each other and
were allowed no verbal communication throughout the experiment. After the
experiment, participants were paid according to their respective individual
performances. The amount of each participant’s additional reward was determined
by the average absolute error from the actual number of dots. If the average error
was < 5, < 10, < 15, < 20, < 25, or > 25, the additional reward was 1000, 800, 600,
400, 200, or 0 Japanese yen, respectively (this method was used in the fMRI and
online experiment as well). Each participant’s estimation weight (wi in Eq. 1) was
calculated for Phases 1 and 3 (solo phases) separately using the maximum
likelihood method.

Linear versus log-linear models of dot estimation. We first constructed two
simple psychophysical models of participant i’s estimated number of dots at trial t.
One was a linear model (Eq. 1), and the other was a log-linear model:

Esti tð Þ ¼ wi ´ log DotNum tð Þð Þ þ ε: ð3Þ
The notation is the same as in Eq. 1. As the linear model outperformed the log-

linear model in terms of Akaike information criterion (see Supplementary Table 1),
we used the linear model in the analysis.

Estimating the stability of estimation weights. To examine whether the inter-
action stabilized participants’ estimation weights, we adopted a hierarchical local-
level model, which is a basic form of the state-space modeling approach61. This
type of model consists of the state equation (capturing the latent dynamics of the
system) and the observation equation (transforming the state into the observation).
The state-space modeling approach enabled us to assess how estimation weights
changed over time, while considering autocorrelation between trials as well as
observational random noise in each trial (see Fig. 1d for illustration). We assumed
that the estimation weight for individual i (wi) at trial t was sampled with obser-
vational noise (σobs,i) from a latent state (μi). The latent state was in turn assumed
to be sampled with system noise (σμ,i) from the state in the preceding trial. We used
σμ,i as an index of stabilization of estimation weights within each participant. In the
main text, we refer to σμ,i as σ. We assumed that σobs,i and σμ,i are generated from a
normal distribution with group-level mean gμobs, variance gσobs, and mean gμμ,
variance gσμ, respectively.

wi tð Þ � N μi tð Þ; σobs;i
� �

ð4Þ

μi tð Þ � N μi t � 1ð Þ; σμ;i
� �

ð5Þ

σobs;i � N gμobs; gσobs
� � ð6Þ

σμ;i � N gμμ; gσμ
� �

ð7Þ
These parameters were estimated using a Markov chain Monte Carlo (MCMC)

method implemented in R (ver. 3.6.1) and rstan (ver. 2.21.2). We used
uninformative priors (uniform distributions on the parameters; lower limit=−∞
and upper limit=∞ for μi, gμobs , and gμμ ; lower limit = 0 and upper limit=∞ for
σobs;i , σμ;i, gσobs , and gσμ . We generated the posterior distributions of the
parameters by MCMC sampling from four chains of iterations while thinning the
samples to avoid autocorrelation and obtain 1000 posterior samples each. The first
500 iterations in each chain were discarded as burn-in periods.

fMRI experiment. We scanned 28 participants (13 men and 15 women) in the
fMRI experiment. Prior to the experiment, we conducted a power analysis
assuming a two-tailed paired t test with α= 0.05, β= 0.8, and Cohen’s d= 0.6,
using G*power91. We found that 24 or more participants were needed. Participants
performed the same dot-estimation task as in the laboratory behavior experiment.
The number of dots was varied between 25 and 58 in increments of three, and its
presentation order was randomized across participants. Participants were
instructed to estimate the number of dots within 5 s. The intertrial interval was 2, 3,
or 4 s with a fixation cross. No feedback was given to participants about their
estimation accuracy, as in the behavioral experiment. Participants used a response
pad (HHSC-1×2-BY, Current Designs) to give their estimate of the number of dots.
A workstation (Precision Tower, Dell) controlled the experiment, and stimuli were
presented on an MRI-compatible 32-inch LCD monitor (1920 × 1080 resolution;
NNL-LCD, NordicNeuroLab) behind the MR bore. An eye tracker (EyeLink 1000,
SR Research) recorded participants’ eye movements at 250 Hz.

The experiment consisted of one pre-interaction phase, two interaction phases,
and two post-interaction phases (24, 48, and 24 trials, respectively: Fig. 2a and
Supplementary Fig. 4). In the pre- and post-interaction phases, each participant
performed the dot-estimation task individually. In each interaction phase, the
participant was paired with the Sherif- or Asch-type computer partner, which was
described as another participant. The participant and the computer partner
estimated the number of dots independently, and then both estimates were shown

after every trial. The Sherif-type partner adjusted its estimation weights in response
to the participant during interaction, whereas the Asch-type partner remained
unaffected by the participant’s estimates throughout the phase. Both computer
partners had a strong built-in underestimation bias initially, compared to the
average participant of the laboratory behavioral experiment.

To identify individual ROIs in the RTPJ and the DMPFC a priori, we conducted
a localizer task for cognitive perspective taking based on theory of mind
(ToM)59,63,64, separately from the main task. The localizer task consisted of seven
ToM items and seven non-ToM items. Using the individual ROIs identified by the
localizer (Fig. 3a and Supplementary Fig. 7; Supplementary Table 2), we examined
whether the RTPJ tracked similarity (Sim) and whether the DMPFC tracked
estimation (Est) during interaction. We also examined functional RTPJ–DMPFC
connectivity to see whether the RTPJ activity tracking Sim modulated the DMPFC
activity for Est.

After scanning, participants answered a post-session questionnaire about the
experiment. No participant noted any suspicion about the experimental setting. At
the end of the experiment, participants were debriefed and paid according to their
performances.

Data exclusion in the fMRI experiment. To reduce the effect of outliers, we
excluded 11 trials from analysis because the participant’s estimate was incomplete
or <10. All statistical conclusions were unchanged when we included these trials in
the analysis.

Computer partners. We devised two computer partners–the Sherif- and Asch-
type partners–for the two interaction phases. The partner order was counter-
balanced across participants (Fig. 2a). Both partners followed a common estimation
model (Eq. 1: Est was rounded to the nearest integer) and had a strong under-
estimation bias initially (w= 0.61, which was 1.5 SD below the mean w of parti-
cipants in Phase 1 of the laboratory behavioral experiment). The partners differed
in behavioral reciprocity to participants’ estimates during interaction.

The Asch-type partner was programmed to be unresponsive to the participant’s
estimate and retained the same estimation weight throughout the interaction. The
Asch-type partner estimated the number of dots at trial t as follows:

Estp tð Þ ¼ 0:61 ´DotNum tð Þ þ η; ð8Þ
where η denotes the error term, which was sampled uniformly from {−2, −1, 0, 1,
2} in every trial. Due to the error term η, the Asch-type partner appeared to move
toward or away from the participant from one trial to the next, which allowed us to
do the time-series analysis reported in Eqs. 11–13.

In contrast, the Sherif-type partner was programmed to reciprocate the
participant’s estimates by updating its estimation weight wp (t) at trial t as follows:

Estp tð Þ ¼ wp tð Þ ´DotNum tð Þ þ η; ð9Þ

wpðtÞ ¼ 0:61þ ∑
5

j¼1
ajwpðt � jÞ þ ∑

5

j¼1
bjwiðt � jÞ; ð10Þ

where wp (t− j) represents the estimation weight of the Sherif-type partner, and wi

(t− j) represents that of the participant in each of the last five trials preceding the
current trial (j= 1… 5). Note that 0.61 in Eq. 10 is unrelated to the value of strong
underestimation bias, w= 0.61.

To simulate an average participant’s updating with this approximation model,
we first fitted Eq. 10 to the 21 pairs’ (i.e., 42 participants’) data from the laboratory
behavioral experiment. The mean values of estimated aj (a1…5) were 0.091, 0.044,
0.037, 0.032, and 0.025 and those of bj (b1…5) were 0.066, 0.014, 0.001, −0.015, and
−0.011, respectively. We used these values for the Sherif-type partner in Eq. 10.

Time-series analysis of participants’ estimation in the fMRI experiment. To
analyze trajectories of participants’ estimation during the course of interaction, we
used the following time-series model:

EstiðtÞ ¼ ðBaselineþ Coef AtypðtÞ ´Atypðt � 1Þ þ Coef SimðtÞ ´ Simðt � 1ÞÞ
´ DotNumðtÞ þ ε;

ð11Þ

where

Atyp t � 1ð Þ ¼ 1� Estp t � 1ð Þ
0:91 ´DotNum t � 1ð Þ ; ð12Þ

Sim t � 1ð Þ ¼ π

2
� tan�1

Esti t � 1ð Þ � Estp t � 1ð Þ
���

���
wi Preð Þ � wp Preð Þ

� �
´DotNum t � 1ð Þ

���
���
: ð13Þ

The linear structure and notation of Eq. 11 are equivalent to those of Eq. 1. In
Eq. 11, however, the participant’s estimation weight at trial t (wi in Eq. 1) was
further decomposed into three parameters: Baseline, Atyp (atypicality), and Sim
(similarity). Baseline (i.e., intercept) indicates how the participant estimates the
number of dots without social influence. Atyp indicates how atypical the partner’s
estimate was at trial t–1. Recall that the Asch-type partner was not only
unresponsive to the participant’s estimate but also kept its atypical position because
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of the initial bias (w= 0.61) throughout the interaction. Thus, atypicality is a
nuisance parameter of no interest that statistically controls for the effect of the
built-in underestimation bias of the computer partner. To quantify the atypicality
in Eq. 12, we used the mean estimation weight in the behavioral experiment (0.91)
as participants’ representative estimate.

Sim, which bears on H3 and is of interest here, represents the closeness of the
estimates given by the participant (Esti) and by the computer partner (Estp)
at trial t–1, as compared to their initial closeness prior to interaction. More
specifically, as depicted in Eq. 13, it is a pair-level (and thus unsigned)
parameter, capturing the degree of closeness between the two estimates at the
preceding trial over that before the interaction. The notation wi(Pre) stands for
participant i’s estimation weight in the pre-interaction phase, and wp(Pre) for
the computer partner’s initial weight (0.61).

To capture temporal changes in the parameters, we adopted a local linear trend
model and a state-space modeling approach61:

Baseline � N wi Preð Þ; σBaseline
� � ð14Þ

Coef Sim tð Þ � N Coef Sim t � 1ð Þ þ γSim t � 1ð Þ; σCoef Sim
� �

ð15Þ

γSim tð Þ � N γSim t � 1ð Þ; σγSim
� �

ð16Þ

Coef Atyp tð Þ � N Coef Atyp t � 1ð Þ þ γAtyp t � 1ð Þ; σCoef Atyp
� �

ð17Þ

γAtyp tð Þ � N γAtyp t � 1ð Þ; σγAtyp
� �

ð18Þ

ε � N 0; σε
� � ð19Þ

These parameters were estimated using a Markov chain Monte Carlo (MCMC)
method implemented in R (ver. 3.6.1) and rstan (ver. 2.17.3). We used
uninformative priors (uniform distributions on the parameters; lower limit= – ∞
and upper limit=∞ for Coef Sim;Coef Atyp; γSim; and γAtyp ; lower limit= 0 and
upper limit=∞ for σγSim and σγAtyp ). We generated the posterior distributions of the

parameters by MCMC sampling from four chains of 20,000 iterations each. The
first 10,000 iterations were discarded as burn-in periods, and the remainder were
thinned by a factor of 50 to avoid autocorrelation.

To confirm model validity, we compared the model with seven reduced models
using widely applicable information criteria (WAIC)92. The reduced models were
(i) Null, (ii) Baseline, (iii) Atypicality, (iv) Similarity, (v) Baseline + Atypicality, (vi)
Baseline + Similarity, and (vii) Atypicality + Similarity. We first calculated WAIC
for each participant and each interaction phase and then calculated the average
WAIC of the two phases for each participant. The full model outperformed the
others in terms of WAIC (see Supplementary Fig. 5).

We further performed posterior predictive checking of the model. We generated
predictive samples using the means of posterior distributions and compared the
actual and predicted estimates of the number of dots for each trial and each
participant. Supplementary Fig. 6 clearly shows that there were highly positive
correlations between the observed and predicted values in both Sherif and Asch
phases (Sherif: rs > 0.84; Asch: rs > 0.89). These results imply that our model is
fitted well to participants’ behavior during interaction.

fMRI data acquisition. A 3T MR scanner (Prisma, Siemens) was used to acquire
magnetic resonance images. A 64-channel head–neck coil was used for radio fre-
quency signal reception. Mild cushioning minimized participant head movement.
Heartbeat and respiration were also recorded by a pulse oximeter and pressure
sensor attached to the scanner.

Structural images were acquired using a T1-weighted sequence (1 × 1 × 1 mm3

resolution; 3D-MPRAGE). Functional images were also obtained using a multiband
echo-planar imaging sequence provided by the Center for Magnetic Resonance
Research, the University of Minnesota93 (Release R016). The scanning parameters
for the echo-planar imaging were as follows: repetition time: 1000 ms; echo time:
30 ms; field of view: 216 × 216 mm2; matrix: 72 × 72, resolution: 3 × 3 × 3 mm2;
45 slices with no gap; flip angle: 59˚; multiband factor94: 3. The functional images
were taken parallel to the AC–PC line. After discarding the first seven scans to
ensure magnetization equilibrium, we acquired 640, 728, 320, and 294 scans in the
pre-interaction, interaction, post-interaction, and theory-of-mind localizer task
phases, respectively.

Image analyses. We used SPM12 (ver. 7219; Wellcome Department of Cognitive
Neurology, University College London) working on Matlab R2017a (Mathworks)
to process the scanned images. We performed (i) slice-timing correction using the
first slice as a reference, (ii) spatial realignment, (iii) co-registration of structural
and functional images, (iv) spatial normalization to the Montreal Neurological
Institute space, and (v) spatial smoothing (full-width at half-maximum of Gaussian
kernel= 8 mm isotropic). Low-frequency noise was removed by a high-pass filter
of 128 s.

Three types of general linear models (GLMs) were adopted for each
participant in the interaction runs. GLM1 examined the brain regions that
tracked similarity in the time-series model (Eq. 13). GLM1 included two
condition regressors for cue and feedback as events (see Supplementary Fig. 4b).
For the Cue regressor, we included five parametric modulators [Baseline,
CoefSim(t), Sim(t− 1), CoefAtyp (t), and Atyp(t− 1)], which were derived from
the time-series model for each participant, in the design matrix. For the
Feedback regressor, two parametric modulators [Sim(t), Atyp(t)] were included.
Each parametric modulator was scaled by z-score normalization. GLM2
examined the functional connectivity related to similarity. GLM2 also included
two condition regressors for cue and feedback as events. For the Cue regressor,
the Similarity [Sim(t− 1)] regressor was included. GLM3 included two
condition regressors for cue and feedback as events. For the Cue regressor, the
estimated dot number for trial t was included.

To remove the effects of head movement and physiological noise, we
included nine nuisance regressors (translations along the x, y, and z axes,
rotations of pitch, roll, and yaw, heart rate, respiration, and DVARS) in each
GLM (see Power et al.95 for details of DVARS). To construct a heart rate
regressor, we identified the peaks in the 6-s window in the pulse wave signal and
obtained the inverse number of the average peak-to-peak duration. To construct
a respiratory regressor, we calculated the standard deviation of respiration signal
in the 6-s window for each TR.

We first defined the regions of interest (ROIs) for the right temporoparietal
junction (RTPJ) and dorsomedial prefrontal cortex (DMPFC) for each
participant using the functional localizer task (Fig. 3a and Supplementary
Fig. 7). The local peak nearest to the group peak (Supplementary Table 2) was
identified individually for all participants for the RTPJ ROI and for 26 of 28
participants for the DMPFC ROI (we substituted the group peak of the DMPFC
for the remaining two participants). Both ROIs for each participant were a
6-mm radius sphere centered on the respective individual peak defined using
MarsBaR toolbox96 (ver. 0.44). Using these ROIs, we examined whether RTPJ
activity tracked similarity (Eq. 13) while participants interacted with the two
computer partners (see Fig. 3b for the results) using GLM1. We also examined
whether activity in the DMPFC tracked estimation (the left side of Eq. 11)
during interaction phases using GLM3 (Fig. 3c).

Functional connectivity analyses. We conducted a generalized form of context-
dependent psychophysiological interaction (gPPI) analysis to examine whether the
RTPJ activity tracking Similarity modulated the DMPFC activity. Individual ROIs
in the RTPJ (Fig. 3a, left) and in the DMPFC (Fig. 3a, right) were defined as
described above, with the RTPJ as the seed region and the DMPFC as the target
region. The model to calculate gPPI consisted of five factors: seed time series; task
regressors {Cue, Feedback}; products of task regressors and seed time series; the
product of Cue and parametric modulator Similarity; and the product of Cue,
Similarity, and seed time series. Using the MarsBaR toolbox, we extracted the beta
coefficient of the product of Cue, Similarity, and seed time series and examined
whether the coefficients predicted the stability of the participants’ estimation in the
post-interaction phases.

Functional localizer task. To identify the brain regions associated with cognitive
perspective taking, we used a Japanese version of a mentalizing localizer task63,97,98.
Participants performed the localizer task after the first interaction phase.

The localizer task consisted of seven theory-of-mind (ToM) items and seven
non-ToM items. The ToM items required participants to infer characters’ false
beliefs, whereas the non-ToM items demanded no such inferences but the same
level of logical complexity. In each trial, a short scenario (e.g., “On the morning of
the high school reunion, Yuki placed her high-heeled shoes under her dress and
then went shopping. That afternoon, her sister borrowed the shoes and later put
them under Yuki’s bed.”) was presented for 10 s, followed by a sentence about the
scenario (e.g., “Yuki gets ready assuming her shoes are under the dress.”).
Participants were asked to choose whether the sentence was true or false within 4 s
using the response pad.

The GLM for the mentalizing localizer included ToM and non-ToM as
condition regressors, and the duration was set to 14 s. All trials were included in the
analysis irrespective of whether the response was correct. The contrast of ToM and
non-ToM showed the activation of the RTPJ (Supplementary Fig. 7) and other
regions associated with ToM (Supplementary Table 2). We used the peaks of RTPJ
activation to define the individual ROI.

Online behavioral experiment. In the pre-registered online behavioral experiment
(https://osf.io/d2f73/), 216 participants visited the website for the experiment on
their computers and were asked to complete the dot-estimation task using a key-
board (Supplementary Fig. 4). As in the laboratory behavioral experiment, the
sample size was determined by a power analysis on findings from a previous study
employing a similar experimental paradigm87. The number of dots was randomly
varied across trials in the same way as in the fMRI experiment. However, unlike in
the fMRI experiment, no time limit was set for the estimation of the number of
dots, to avoid missing data. No feedback was given to participants about their
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estimation accuracy, as in the other experiments. The experiment was performed
using jsPsych99.

The experiment consisted of one pre-interaction phase, one interaction phase,
and one post-interaction phase (24, 48, and 24 trials, respectively). In the pre- and
post-interaction phases, each participant performed the task individually. In the
interaction phase, the participant was paired with a computer partner, which was
described as another participant. The participant and the computer partner
estimated the number of dots independently, and then both estimates were shown
after every trial. For the computer partner, we had a 2 × 2 between-participant
design, with factors partner type (Sherif-type vs. Asch-type) and built-in estimation
bias (underestimation vs. overestimation). The response patterns of the Sherif- and
Asch-type partners were created using the same algorithms as in the fMRI
experiment (Eqs. 8–10). The partners’ underestimation and overestimation biases
were set to w= 0.61 and 1.21 respectively, which were 1.5 SD below or above the
mean w of participants in Phase 1 of the laboratory behavioral experiment
(Fig. 1b). Participants were randomly assigned to one of the four conditions
(Sherif × Underestimation: n= 49; Sherif × Overestimation: n= 56;
Asch × Underestimation: n= 60; Asch × Overestimation: n= 51). At the end of the
experiment, participants were debriefed and compensated with Amazon gift cards
according to their performances. Each participant’s estimation weight (wi in Eq. 1)
was calculated for the pre- and post-interaction phases separately using the
maximum likelihood method.

Statistics and reproducibility. Brain images were pre-processed and analyzed by
SPM12 (ver. 7219) working on Matlab R2017a. Statistical analysis was conducted
using two-tailed paired and Welch’s t-tests and two-way ANOVA using R and
rstatix package. Multiple comparison correction was conducted by adjusting p-
values according to Holm–Bonferroni method. Correlation between variables were
analyzed based on robust statistics with MM-estimator using robustbase package
on R. Significance was set at P ≤ 0.05. State-space modeling was conducted in a
Bayesian framework using rstan package on R. All models were assigned default
priors. For the parameters used for MCMC sampling, see Methods section and
deposited codes.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study have been deposited at Open Science
Framework (https://doi.org/10.17605/osf.io/tfy9s).

Code availability
The codes used for the analysis have been deposited at Open Science Framework (https://
doi.org/10.17605/osf.io/tfy9s).
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