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Quantitative magnetic resonance imaging (qMRI) allows extraction of reproducible and robust parameter maps. However, the connec-
tion to underlying biological substrates remains murky, especially in the complex, densely packed cortex. We investigated associations
in human neocortex between qMRI parameters and neocortical cell types by comparing the spatial distribution of the qMRI parameters
longitudinal relaxation rate (R1), effective transverse relaxation rate (R2

∗), and magnetization transfer saturation (MTsat) to gene
expression from the Allen Human Brain Atlas, then combining this with lists of genes enriched in specific cell types found in the
human brain. As qMRI parameters are magnetic field strength-dependent, the analysis was performed on MRI data at 3T and 7T.
All qMRI parameters significantly covaried with genes enriched in GABA- and glutamatergic neurons, i.e. they were associated with
cytoarchitecture. The qMRI parameters also significantly covaried with the distribution of genes enriched in astrocytes (R2

∗ at 3T, R1 at
7T), endothelial cells (R1 and MTsat at 3T), microglia (R1 and MTsat at 3T, R1 at 7T), and oligodendrocytes and oligodendrocyte precursor
cells (R1 at 7T). These results advance the potential use of qMRI parameters as biomarkers for specific cell types.
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Introduction
Multiparameter mapping (MPM) protocols allow rapid and
efficient acquisition of relaxometric quantitative magnetic
resonance imaging (qMRI) parameters in vivo (Tabelow et al. 2019)
robustly and reproducibly (Leutritz et al. 2020). These parameters
include the longitudinal relaxation rate (R1), magnetization
transfer saturation (MTsat), and effective transverse relaxation
rate (R2

∗). In vivo histology aims to take such quantitative
maps and extract information about the underlying microscopic
biological substructures beyond the resolution of MRI (Edwards
et al. 2018, Weiskopf et al. 2021).

On the whole-brain level, contrast in the above qMRI param-
eters is mainly driven by two main sources: macromolecules
(mostly myelin), and iron (these sources of contrast are reviewed
in Edwards et al. (2018), Möller et al. (2019), and Weiskopf et al.
(2021)). MTsat is interpreted as a marker for macromolecules
(Georgiadis et al. 2021), R2

∗ is interpreted as a marker for mainly
iron content with some sensitivity to macromolecules (Fukunaga
et al. 2010, Kirilina et al. 2020, Langkammer et al. 2010), and R1 is
interpreted as a marker for mainly macromolecular content with
some sensitivity to iron (Callaghan et al. 2015, Stüber et al. 2014).
The sensitivity of qMRI parameters to different sources is known

to vary with the static magnetic field strength (Peters et al. 2007,
Rooney et al. 2007, Wang et al. 2020).

These relatively simple interpretations of qMRI parameters do
not, however, allow us to infer information about the cellular
architecture of the brain from their values. On the cellular level,
the human neocortex is a complex, densely packed structure con-
taining billions of neurons and glia (Lent et al. 2012). The distribu-
tion of these neurons and glia varies over the brain, forming lami-
nae and cortical areas that can be distinguished under the micro-
scope (reviewed from an MRI perspective in Edwards et al. (2018)).
Herein we aim to investigate the relationship between neocortical
cellular architecture and qMRI parameters by comparing spatial
differences in expression of cell type-specific genes with the
spatial distribution of the qMRI parameters R1, MTsat, and R2

∗.
Gene expression differences reflect and determine different

cell types; differential gene expression throughout the neocortex
can thus be related to differential expression of cell types
(Arnatkevic̆iūtė et al. 2019, Fornito et al. 2019, Lein et al.
2017). The combination of knowledge of cell type-specific genes
(Hawrylycz et al. 2015, Hodge et al. 2019, Zeisel et al. 2015) with
the cortical gene expression results found in the Allen Human
Brain Atlas (AHBA) of gene expression (Hawrylycz et al. 2012) from
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the Allen Institute for Brain Science (AIBS) has shed light on the
biological substrates of several different MRI parameters in the
cortex, e.g. Liu et al. (2019), McColgan et al. (2021), Patel et al. (2019,
2020), Shin et al. (2018), Wen et al. (2018), Whitaker et al. (2016).

Of these prior works, those which are most relevant for this
study are Patel et al. (2020) and Wen et al. (2018), which both used
relationships between gene expression and cellular architecture
to shed light on cell-type substrates of quantitative MRI metrics.
We briefly summarise these works here in order to lay the ground-
work for the rest of the manuscript and allow us to differentiate
our approach from previous approaches.

Patel et al. (2020) examined the cell type-specific associations
with a number of different qMRI parameters at a static magnetic
field strength of 3T, including R1 and a measure of magnetization
transfer (the magnetization transfer ratio, MTR) in a large young
male cohort. Despite the common biophysical interpretation of
these two parameters as markers of macromolecular content,
and thus predominantly of myelin, no significant association
was found to the oligodendrocyte cells (ODCs) that build myelin
(Möller et al. 2019). Instead, R1 was associated with gene expres-
sion enriched in astrocytes and CA1-pyramidal neurons, and MTR
was associated with gene expression enriched in CA1-pyramidal
neurons and S1-pyramidal neurons (Patel et al. 2019). This accords
with our observations using an MPM protocol at 3T in a smaller
healthy adult cohort using a similar method of gene expression
analysis (Edwards et al. 2019). Interestingly, Patel et al. (2020)
found that maps of transverse relaxation rate (R2) and the R2-
derived myelin water fraction did show sensitivity to the ODCs.
However, their analysis had several limitations, namely the use of
a relatively coarse cortical atlas, cell type-specific gene expression
lists based on mouse tissue rather than human tissue, and only
male participants.

Genetic correlates of R2
∗ at 3T were investigated in Wen et al.

(2018). The authors found that after removing some vascular-
related MRI signal contributions, the spatial distribution of R2

∗

values were associated with the distribution of genes with ontolo-
gies related to neurons, glia (including astrocytes, microglia, and
oligodendrocyte precursor cells [OPCs]), and endothelial cells. At
7T, R2

∗ has also been found to be associated with cytoarchitecture,
specifically with neuronal cell counts from post-mortem atlases
(McColgan et al. 2021).

In order to further investigate the biophysical inferences that
are possible from the quantitative parameters R1, MTsat, and R2

∗,
in the following we examine associations of the parameters using
a finer cortical atlas (Glasser et al. 2016) than Patel et al. (2020),
and cell type-specific gene expression lists from human tissue
(Habib et al. 2017, Hodge et al. 2019). The analysis is replicated
using two cell type-specific gene expression lists to reduce the
possibility that the results are dependent on a specific dataset.
Because qMRI parameter contrast changes with the static mag-
netic field strength of the MRI scanner (Peters et al. 2007, Rooney
et al. 2007, Wang et al. 2020), and this could potentially give rises
to changes in sensitivity and specificity (Mancini et al. 2020), we
investigate the associations at two different field strengths, 3T
and 7T. To mitigate partial volume effects when examining the
1.6–4.5 mm thin cortex (Edwards et al. 2018), we exclusively use
high, isotropic resolution data (800μm at 3T and 500μm at 7T).

Materials and methods
MRI acquisition and preprocessing
3T acquisition: We used MPM data (Carey et al. 2018, Weiskopf
et al. 2013) from 17 healthy volunteers (5 female, 12 male,
mean age ± standard deviation: 29.2 ± 6.8 years) from the

MEG UK database (https://meguk.ac.uk/database), acquired on
a 3T Prisma equipped with a 32-channel receive radiofrequency
(RF) head coil (Siemens Healthineers, Erlangen, Germany) and
a body RF transmit coil at the Wellcome Centre for Human
Neuroimaging, UCL, London, following the same high resolution
protocol as in Bonaiuto et al. (2018). The MPM protocol consisted
of three RF- and gradient-spoiled, multi-echo 3D FLASH scans
with PD-, T1-, and MT-weighting (PDw, T1w, and MTw) at 800μm
isotropic resolution, plus a map of the RF transmit field B1

acquired using a 3D-EPI spin echo/stimulated echo method
(SE/STE) corrected for geometric distortions due to spatial
inhomogeneities in the static magnetic field B0 (Lutti et al. 2010).
PDw: repetition time (TR) 25 ms; 8 equispaced echoes with echo
time (TE) [2.34, . . . , 18.44] ms; flip angle (FA) 6◦. T1w: TR 25 ms;
8 equispaced echoes with TE [2.34, . . . , 18.44] ms; FA 21◦. MTw:
TR 25 ms; 6 equispaced echoes with TE [2.34, . . . , 13.84] ms; FA
6◦; Gaussian RF magnetization transfer (MT) saturation pulse 2
kHz off resonance, 4 ms duration, nominal flip angle 220◦ prior
to each FLASH excitation. Additional parameters: matrix size
(read × phase × partition) 320 × 280 × 224, GRAPPA (Griswold et al.
2002) 2 × 2, non-selective sinc excitation, readout bandwidth 488
Hz/pixel.

7T acquisition: MPM data from 10 healthy volunteers (6 female,
4 male, 28 ± 3.6 years) were acquired on a 7T whole-body MRI
system (Magnetom 7T, Siemens Healthineers, Erlangen, Germany)
equipped with a 1-channel transmit/32-channel receive RF head
coil (Nova Medical, Wilmington, MA, USA) at the Max Planck
Institute for Human Cognitive and Brain Sciences, Leipzig; these
data were previously used in McColgan et al. (2021). The MPM
protocol consisted of two RF- and gradient-spoiled, multi-echo
3D FLASH scans (PDw, T1w) adapted for whole-brain coverage at
500μm isotropic resolution (Trampel et al. 2019), plus a map of
B1 using a 3D-EPI SE/STE method adapted for 7T corrected for
geometric distortions due to inhomogeneities in B0 (Lutti et al.
2012). PDw: TR 25 ms, 6 equispaced echoes with TE [2.8, . . . , 16]
ms, FA 5◦. T1w: TR 25 ms, 6 equispaced echoes with TE [2.8, . . . , 16]
ms, FA 24◦. Additional parameters: matrix size (read × phase ×
fast/inner phase encode direction) 496 × 434 × 352, GRAPPA
(Griswold et al. 2002) 2 × 2, non-selective sinc excitation, readout
bandwidth 420 Hz/pixel. To mitigate the large B1 inhomogeneity at
7T, two dielectric pads (Webb, 2011) were placed around the head
of each subject (one each side) at approximately the level of the
temporal lobe. The transmit voltage was calibrated to be optimal
over the occipital lobe using an initial low-resolution transmit
field map. For the purposes of prospective motion correction
(Zaitsev et al. 2015), each subject was scanned while wearing a
tooth clip assembly (molded to their front teeth) with an attached
passive Moiré pattern marker (Vaculčiaková et al. 2022). An optical
tracking system (Kineticor, Honolulu, HI, USA) tracked the motion
of this marker (and thus motion of the head), allowing prospective
rigid-body correction of the field of view.

The studies were approved by the local ethics committees and
all subjects gave written informed consent before being scanned.

MRI data at each field strength were converted to qMRI maps of
R1, R2

∗, proton density (PD), and (at 3T only) MTsat using the hMRI
toolbox (Tabelow et al. 2019, http://hmri.info). MTsat maps were
not computed at 7T because specific absorption rate (SAR) limits
at this field strength (Collins et al. 2004) hindered the acquisition
of high-quality MTw images.

Cortical surfaces were reconstructed using the recon-all

pipeline from FreeSurfer (Fischl et al. 2004, https://surfer.nmr.
mgh.harvard.edu). Because the contrast in the 3T and 7T qMRI
maps deviates significantly from the T1w MPRAGE image contrast
expected by the recon-all pipeline (Carey et al. 2018), the
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following steps were taken to extract an image with MPRAGE-like
contrast from the 3T and 7T qMRI parameters (McColgan et al.
2021). First, a small number of negative and very high values
produced by estimation errors were set to 0 in the R1 and PD
maps, such that T1(= 1/R1) was bounded between [0, 8, 000] ms
and PD between [0, 200]%. Then, the PD and T1 maps were used
as input to the FreeSurfer mri_synthesize routine to create a
synthetic FLASH volume with optimal white matter (WM)/grey
matter (GM) contrast (TR 20 ms, FA 30◦, TE 2.5 ms). This synthetic
image was used as the input to SPM segment (https://www.fil.ion.
ucl.ac.uk/spm) to create a combined GM/WM/cerebrospinal fluid
(CSF) brain mask (threshold: tissue probability > 0), which was
used for skull stripping.

For the 3T MPMs, the skull-stripped synthetic image was then
used as input for the remaining steps of the recon-all pipeline
to reconstruct cortical surfaces.

At 7T, using the skull-stripped synthetic T1w image as input to
FreeSurfer frequently led to errors in the recon-all pipeline
(McColgan et al. 2021). Figs. S3 and S4 in the Supplementary
Material imply that this is likely because localised artefacts in the
7T R1 map propagate to the synthetic T1w image. Thus, at 7T the
PD map (corrected for spatial bias and normalised such that the
average WM intensity is 69% as part of the standard hMRI toolbox
pipeline (Tabelow et al. 2019)) was subtracted from 100% (i.e. the
contrast was inverted) to yield a (1 − PD) map (Mezer et al. 2013),
which had MPRAGE-like contrast. This (1 − PD) map was then
denoised (Maggioni et al. 2013, http://www.cs.tut.fi/~foi/GCF-BM3
D) to mitigate the increased noise levels in the higher resolution
7T data compared to 3T, and the brain mask from the synthetic
image was applied. The resulting denoised and masked (1 − PD)

map was then used in the recon-all pipeline to reconstruct
cortical surfaces.

Examples of the input quantitative maps and synthesized
images can be found in the Supplementary Material.

For both field strengths, cortical qMRI parameter values were
mapped onto the surfaces from the recon-all pipeline using
values sampled at 50% of the estimated vertex-wise cortical depth
(i.e. we sampled at approximately the central cortical surface)
and 2D-smoothed on the surface with a 6 mm full-width half-
maximum (FWHM) kernel. This surface-based smoothing helps
to mitigate any small errors in cortical layer segmentation and
differences in the location of cortical areas between participants
(Hagler et al. 2006). Finally, FreeSurfer was used to perform surface
based registration of the HCP-MMP1.0 cortical atlas (Glasser et al.
2016) from fsaverage template space (Mills, 2016) to subject
space (Neurolab, 2018).

Cell type-specific gene expression analysis
The cell type-specific gene expression analysis proceeded in two
steps, described in detail below. In the first step, we constructed
target gene lists from the genes with the strongest spatial asso-
ciations between the AHBA gene expression data and each of the
qMRI parameters using partial least squares (PLS) regression. The
second step examined whether these target genes were expressed
more than expected by chance within particular cell types using
the Expression Weighted Cell type Enrichment (EWCE) toolbox
(Skene & Grant, 2016). A flow chart showing this procedure can
be found in the Supplementary Material (Fig. S5).

The AHBA of gene expression (Hawrylycz et al. 2012) was
mapped into the 180 parcellation units of the left hemisphere
of the HCP-MMP1.0 atlas (Glasser et al. 2016) by following
steps 1–6 in Arnatkevic̆iūtė et al. (2019) using code available at
https://github.com/BMHLab/AHBAprocessing to give a (gene ×

region of interest (RoI)) matrix. The code was run using the
options recommended by Arnatkevic̆iūtė et al. (2019). Only left
hemisphere data are presented as right hemisphere data are
not available for all AHBA donors. Three areas in the HCP-
MMP1.0 atlas – retroinsular cortex, middle temporal area, and
area anterior 10p (Glasser et al. 2016) – did not robustly contain
samples in the AHBA and were thus omitted from further
analyses. This resulted in a (gene×RoI) matrix of size 10, 027×177.

Each qMRI parameter at each field strength was averaged
within each parcellation unit of the left hemisphere of the HCP-
MMP1.0 atlas defined in fsaverage space (Mills, 2016), and also
over subjects, resulting in an (RoI × qMRI parameter) vector of
size 177 × 1 (for R1 at 7T 175 × 1; see below). Each vector was
standardized by subtracting the mean and dividing by the stan-
dard deviation over the elements in the vector before further
analysis. Dimensional reduction was performed separately for
each qMRI parameter using PLS regression (Abdi, 2010, Krishnan
et al. 2011, Rosipal et al. 2006) into the two PLS components which
explained the most covariance between the spatial distribution
of the genes and the spatial distribution of the qMRI parameter.
The predictor variable in each case comprised the (gene × RoI)
matrix, and the response variable the (RoI × qMRI parameter)
vector. Each step of PLS was performed using the plsregress

function in Matlab (Mathworks, Natick, US-MA). Weights repre-
senting the contribution of each gene to each PLS component
were estimated using the bootstrapping procedure described in
Vértes et al. (2016) with 10,000 bootstrapped samples. Target
lists representing the top 5%, 10%, and 20% of genes most pos-
itively associated (upweighted) and most negatively associated
(downweighted) with each qMRI parameter were then created
from these weights. We examined upweighted and downweighted
associations separately to avoid potentially masking cell-type
associations.

We report the estimate of the percentage variance explained in
each of the original (i.e. non-bootstrapped) matrices and vectors
by the PLS components as output by plsregress. This gives an
estimate of the spatial variance explained in the spatial qMRI
parameter and gene expression distributions by each PLS compo-
nent. We only investigated components explaining > 10% of the
variance in each (RoI × qMRI parameter) vector further.

To check whether our results were dependent on the cell
type-specific gene sets used, we performed the further analysis
steps using human-derived cell type-specific gene sets from two
independent sources. Both of these datasets used RNA sequencing
(RNA-seq) methods, giving sufficient dynamic range for EWCE
analysis (Skene & Grant, 2016).

The first is the SMART-seq dataset (Hawrylycz et al. 2015,
Hodge et al. 2019), which was downloaded from the AIBS Brain
Map website (https://portal.brain-map.org/atlases-and-data/
rnaseq; Multiple Cortical Areas - SMART-seq (2019)). These
gene sets comprise gene expression sampled in cells belonging
to the major cell types: astrocytes, endothelial cells, GABAer-
gic (inhibitory) neurons, glutamatergic (excitatory) neurons,
microglia, pericyte cells, vascular and leptomeningeal cells
(VLMCs), oligodendrocytes (ODCs), and oligodendrocyte precursor
cells (OPCs) (Hodge et al. 2019).

The second is the DroNc-seq dataset from the Regev laboratory
(Habib et al. 2017). This has slightly different cell categories as
it was derived from different regions (in parentheses are the
abbreviations used in the dataset): astrocytes (ASC), endothelial
cells (END), GABAergic neurons, glutamatergic neurons from the
prefrontal cortex (exPFC), granule neurons from the hippocampal
dentate gyrus region (exDG), ODCs, OPCs, microglia (MG),
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pyramidal neurons from the hippocampal CA region (exCA), and
neuronal stem cells (NSC).

It was shown in Hodge et al. (2019, Extended Data Fig. 5)
that correspondence can be made between the labels in the
two datasets, namely between the respective labels for astro-
cytes, microglia, endothelial cells, ODCs, OPCs, and GABAergic
neurons, and between the SMART-seq glutamatergic neuron and
the DroNc-seq exPFC neuron labels. As the exCA, exDG, and NSC
categories from the DroNc-seq dataset and the pericyte and VLMC
categories from the SMART-seq dataset do not have analogs in the
other respective dataset, we do not explore the results involving
these cell types in the main text. Those results can be found in
the Supplementary Material (Figs. S6–S17).

The EWCE toolbox (https://github.com/NathanSkene/EWCE;
version 1.2.0) was used to determine whether genes within the
target lists from the PLS components of each qMRI parameter
have higher expression within a particular cell type than expected
by chance (Skene and Grant, 2016, Zarkali et al. 2020a,b). For a
given cell type-specific dataset (here, either the SMART-seq or the
DroNc-seq dataset), for each cell type, c, EWCE first computes the
average expression of each gene in the cell type. A sum is then
made over the average expression values within the gene list
associated within a target list, X, to obtain a single EWCE value
for each cell type, γ (X, c). To test the statistical significance of this
value, it is compared with values obtained for bootstrap target
lists, X′, using the genes indexed in the cell type-specific dataset.
Each comparison was run with 100,000 bootstrap lists (controlling
for transcript length and GC (guanine–cytosine) content (Skene &
Grant, 2016)), and statistical significance for each comparison was
set at a Benjamini–Hochberg false-discovery-rate (FDR) corrected
P < 0.05. To check robustness, the comparisons were repeated for
target lists comprising the top 5%, 10%, and 20% of genes associ-
ated with each parameter. Results are visualized as the number
of standard deviations by which γ (X, c) deviates from the mean
over the bootstrapped samples, γ (X′, c) (Skene & Grant, 2016).

For brevity, when genes within a target list from a quantitative
parameter have higher expression within a particular cell type
than expected by chance (i.e. this higher expression is significant),
we say that that cell type is “associated” with that quantitative
parameter. We refer to associations as replicating at the “N%
replication level” when there is significant overlap with genes
enriched in a cell type at the top 5%-of-genes level in one dataset
that replicates at an equal or lower N%-of-genes level in the other
dataset, where N% is the lowest %-of-genes level at which the
overlap replicates. We take an association with a cell type to
be “robust” if it replicates at the 5% replication level. Note that
differences in the effect size are to be expected between the two
cell type-specific datasets as they are taken from different brain
areas and used different sequencing methods.

Because the signs of the PLS weights are difficult to interpret
for MRI metrics (Romero-Garcia et al. 2019), we treat associations
with upweighted genes and with downweighted genes identically
and do not try to interpret them in terms of positive or negative
correlations.

R1 at 7T is affected by B1 and B0 inhomogeneities in the inferior
temporal and frontal lobes (McColgan et al. 2021), as can be
seen in Figs. S3 and S4 in the Supplementary Material. These
inhomogeneities become more important at 7T because their
causes (B1 field-focusing in brain-sized objects (Hoult, 2000) and
(dynamic) susceptibility-induced contributions to the local B0

field (Stockmann & Wald, 2018, Van de Moortele et al. 2002))
both increase from 3T to 7T. We thus excluded data from two
potentially strongly affected regions in the 7T R1 analysis (the

Table 1. Variance explained by the PLS components for each
qMRI parameter.

PLS Spatial variance explained in

component gene distribution qMRI parameter

R∗
2 3T 1 22% 75%

2 7% 6%
R∗

2 7T 1 22% 71%
2 9% 6%

MTsat 3T 1 21% 33%
2 9% 21%

R1 3T 1 22% 60%
2 7% 11%

R1 7T 1 17% 18%
2 9% 20%

orbitofrontal complex and area TE2 anterior (Glasser et al. 2016),
the two areas which had R1 values which were more than three
standard deviations away from the mean) to mitigate the poten-
tial influence of these artefacts on the results; in this case, we thus
used a (gene×RoI) matrix of size 10, 027×175 and an (RoI×7T R1)

vector of size 175×1. The location of the omitted areas is shown in
Fig. S18 in the Supplementary Material. Results where these two
areas were included can be found in Table S1 and Figs. S19–21 in
the Supplementary Material.

Results
The spatial distributions of the quantitative parameters averaged
over subjects at each magnetic field strength are shown in Fig. 1.
Primary cortical areas are clearly delineated, and subtle differ-
ences can be seen between the parameters, especially towards
the posterior of the brain, around the superior temporal lobe, and
(for R1 at 7T) around the central sulcus. Some of the differences
between 3T and 7T R1 around the inferior frontal and temporal
lobes could be due to the influence of the artefacts in the 7T
R1 maps (see the Data quality assessment in the Supplemen-
tary Material), justifying our decision to remove the most likely
affected areas when analysing this parameter.

The spatial distribution of the PLS components in Fig. 1 shows
a lot of similarity to the qMRI parameters, implying that we are
reasonably capturing the spatial variance. The first component
is very similar between all qMRI parameters, but with specific
differences seen around the central sulcus in R1 at 7T, in line with
the different spatial distribution of the parameter in this region.
The second component (plotted when the variance explained in
the qMRI parameter was > 10%) captures more of the differences
between the spatial distributions of the qMRI parameters.

Table 1 shows that the first PLS component explained more
than 50% of the spatial variance of R1 at 3T and of R2

∗ at both
3T and 7T, but less than 50% of the spatial variance of R1 at 7T or
of MTsat at 3T. For R1 at 3T and 7T and MTsat at 3T the second
PLS component explained more than 10% of the spatial variance
and was therefore included in the further analysis.

The EWCE analysis results are summarised in Fig. 2 and
detailed for each qMRI parameter separately in Figs. 3–5. The
robust cell type-associations are shown in black in Fig. 2. In the
following we go through the results for each qMRI parameter
in turn.

At 3T R2
∗ showed robust associations with astrocytes, GABAer-

gic neurons, and glutamatergic neurons (Figs. 2 and 3). There was

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac453/6908758 by guest on 19 D

ecem
ber 2022

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://github.com/NathanSkene/EWCE
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac453#supplementary-data


Luke J. Edwards et al. | 5

Fig. 1. The left hemisphere spatial distribution of the qMRI parameters at each magnetic field strength (top row) and of the respective first and second
PLS components (bottom two rows) projected on the inflated FreeSurfer fsaverage brain. The qMRI parameter plots show the mean over vertices and
subjects in each area of the HCP-MMP1.0 atlas (units: MTsat/p.u.; R1/s−1; R2

∗/s−1). The PLS component plots show the score-vectors (Rosipal et al. 2006)
of the (gene×RoI) matrix for each qMRI parameter, giving a visual representation of the latent PLS variables (in arbitrary units). PLS components are only
plotted when they explain > 10% of the spatial variance of a qMRI parameter (Table 1). In each case, top: lateral view, bottom: medial view. A: anterior,
P: posterior, I: inferior, S: superior. The regions marked in grey represent areas with no data, i.e. non-cortical tissue (mostly corpus callosum), regions
without robust cortical samples in the AHBA, and the potentially artefact affected areas in the 7T R1 case. Lower and upper limits of the colour maps in
each plot are the 5th and 95th percentiles of the data, respectively. Colours from http://colorbrewer.org by Cynthia A. Brewer, Geography, Pennsylvania
State University via https://github.com/DrosteEffect/BrewerMap.

Fig. 2. Summary of the significant, replicated associations found between
cell type-specific gene expression in the genes associated with each qMRI
parameter. Replications at the level of the top 5% of genes associated
with each qMRI parameter (robust associations) are shown in black, with
replications at lower levels in shades of grey. Non-significant (n.s.) and
non-replicating (n.r.) associations are in white.

also a significant association at the top 5% level with microglia in
the DroNc-seq dataset and with OPCs in the SMART-seq dataset,
but these each only replicated at the top 10% level in the other
dataset (Fig. 2, Fig. S7, and S10).

At 7T the R2
∗ results were similar to those at 3T (Figs. 2 and 3).

Robust associations were seen with GABAergic and glutamatergic

neurons. Significant associations with astrocytes and OPCs were
seen at the top 5% level in the SMART-seq dataset, but these only
replicated at the top 10% level in the DroNc-seq dataset (Figs. 2,
3, and S10).

MTsat showed robust associations with endothelial cells,
GABAergic neurons, glutamatergic neurons, and microglia (Figs. 2
and 4). A significant association was seen with OPCs at the top
5% level in the SMART-seq dataset for the first PLS component
and in the DroNc-seq dataset for the second PLS component, but
these results only replicated at the top 20% level in the respective
other dataset (Figs. S11, and S14).

At 3T R1 showed robust associations with endothelial cells,
GABAergic neurons, glutamatergic neurons, and microglia (Figs. 2
and 5), showing some similarity to the MTsat results (Fig. 4). Sig-
nificant associations were also seen with astrocytes and OPCs
at the top 5% level in the SMART-seq dataset for the first PLS
component, but these only replicated at the top 10% (Fig. S10) and
top 20% (Fig. S11) levels in the DroNc-seq dataset, respectively.
Similarly, associations with astrocytes and OPCs were also seen
at the top 5% level in the DroNc-seq dataset for the second PLS
component, but these only replicated at the top 20% (Fig. S14) and
top 10% (Fig. S13) levels, respectively, in the SMART-seq dataset.

The 7T R1 associations differed from the 3T results. Robust
associations were seen with astrocytes, GABAergic neurons, glu-
tamatergic neurons, microglia, ODCs, and OPCs (Figs. 2 and 5).
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Fig. 3. EWCE results showing the cell type associations of the top 5% of
genes associated with R2

∗ at 3T and 7T (first PLS component only). Plotted
are the number of standard deviations (stds) by which the EWCE value
deviated from the mean value over bootstrapped target lists. Results
from the two cell type-specific datasets are plotted in different colors:
SMART-seq in black, DroNc-seq in grey. Top: 3T. Bottom: 7T. Bars are only
plotted when FDR-corrected P < 0.5. ∗: FDR-corrected P < 0.05. Significant
cell-type associations which replicated between both cell type-specific
datasets (robust results) are underlined and in bold.

The results when including regions in the 7T R1 analysis that
were potentially strongly affected by B1 and B0 artefacts (the
orbitofrontal complex and area TE2 anterior (Glasser et al. 2016))
can be found in the Supplementary Material. Including these
regions resulted in a slight increase in the variance explained
in R1 by the first PLS component, but a larger decrease in the
variance explained by the second PLS component (Table S1), such
that overall the variance explained in R1 by the two components
decreased. There were some changes in the cell-type associations
(Fig. S19): a robust association with genes enriched in GABAergic
neurons was only observed in the second PLS component, rather
than in both PLS components, and the robust association with
genes enriched in OPCs was not present (cf. Figs. 2 and 5). A
further association with endothelial cells was also seen at the top
5% level in the DroNc-seq dataset, which only replicated at the
top 20% level in the SMART-seq dataset (see the full set of results
in Figs. S20 and S21).

Discussion
The EWCE results showed robust associations of excitatory and
inhibitory neurons with all qMRI parameters under consideration
at both 3T and 7T, implying that neurons are (i.e. cytoarchi-
tecture is) the main predictor of these cortical qMRI contrasts.
This observation is in line with previous observations of gen-
eral cortical gradients between sensorimotor and higher areas
in many different modalities (Huntenburg et al. 2018), which
are also visible in Fig. 1. In addition, R2

∗ at 3T showed robust
associations with astrocytes; MTsat at 3T showed robust asso-
ciations with endothelial cells and microglia; R1 at 3T showed
robust associations with microglia and endothelial cells; and R1

at 7T showed robust associations with microglia, ODCs, OPCs, and
astrocytes.

Fig. 2 gives a visual impression of the associations. It shows
that while the qMRI parameters are highly correlated – as would
be expected due to their dependence on the same underlying
biological substrate – they are not identical in their associations.
The differential associations of the spatial distribution of the qMRI
parameters with different cell types implies that by combining
them, we could become sensitive to specific cell types. As an
example, combination of R2

∗ at 3T and at 7T could potentially
allow inference of the spatial distribution of astrocytes, as despite
otherwise similar associations, R2

∗ at 3T is robustly associated
with astrocytes, but R2

∗ at 7T is not. This presents an interesting
direction for future research. Fig. 2 is intended to allow other such
parameter combinations to be easily read off.

R2
∗ associations

The regional distribution of R2
∗ in the cortex was robustly asso-

ciated with excitatory (glutamatergic) and inhibitory (GABAergic)
neurons, and this association was very consistent between field
strengths. This association is in line with the observations by
McColgan et al. (2021) at 7T (who linked cytoarchitecture from
post-mortem histology to the same 7T data as used here) and by
Wen et al. (2018) at 3T, providing further evidence that cortical R2

∗

is sensitive to neuron density (Zhao et al. 2016). The relationship to
cytoarchitecture suggests an indirect link to myelin, as local neu-
rons are both the source of local myelinated axons (Braitenberg,
1962, Dinse et al. 2015, Hellwig, 1993, Micheva et al. 2018), and
their dendrites are the target of remote axons entering the cortex.
However the existence of general cortical gradients (Huntenburg
et al. 2018) make the direction of the effect difficult to determine.

We did not see robust associations of R2
∗ with endothelial cells

or some of the glia types (microglia and OPCs) observed by Wen
et al. (2018), though we did see an association with astrocytes at
3T, which could reflect the sensitivity of R2

∗ to iron (Edwards et al.
2018, Möller et al. 2019). We note, however, that associations with
microglia (3T) and OPCs (3T and 7T) were each significant in one
of the two cell type-specific datasets (Fig. 2).

MTsat associations
MTsat is commonly interpreted as representing macromolecular
content, as it cleanly differentiates between GM, WM, and
cerebrospinal fluid (Callaghan et al. 2015, Helms et al. 2008)
and correlates with post mortem tissue metrics of myelin
(Georgiadis et al. 2021), one of the largest sources of macro-
molecules in the brain. Interestingly, MTsat did not show
robust associations with ODCs or OPCs (which would repre-
sent a direct relation to myelin), but was robustly associated
with genes enriched in excitatory and inhibitory neurons, i.e.
cytoarchitecture, like R2

∗, suggesting a potential indirect link to
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Fig. 4. EWCE results showing the cell-type associations of the top 5% of genes associated with MTsat at 3T. Plotted are the number of standard deviations
(stds) by which the EWCE value deviated from the mean value over bootstrapped target lists. Results from the two cell type-specific datasets are plotted
in different shades: SMART-seq in black, DroNc-seq in grey. Left: First component of the PLS. Right: Second component of the PLS. Bars are only plotted
when FDR-corrected P < 0.5. ∗: FDR-corrected P< 0.05. Significant cell-type associations that replicated between both cell type-specific datasets (robust
results) are underlined and in bold.

myelin. It should also be noted that there is significant cortical
macromolecular content that is not associated with myelin
(Mezer et al. 2013), which would not be captured by ODC and
OPC associations.

The robust association of MTsat with genes enriched in
endothelial cells suggests an association with cortical vascula-
ture, as these cells line the walls of blood vessels (Duvernoy et al.
1981). A relationship between MTsat and vasculature is surprising
when one considers the interpretation of MTsat as a myelin
marker. One possible explanation is that the macromolecules
in the endothelial cells could give rise to an observable MT effect.
Another explanation could be a mechanism of magnetization
transfer studied in the context of functional MRI (Kim et al.
2008, Pike et al. 1992, Schulz et al. 2020). In short, off-resonance
MT-saturation pulses can efficiently saturate the water spins
in cortical tissue, but not those in blood. Perfusion of this non-
saturated blood into the saturated tissue via capillaries will give
a local increase in signal, with the amount of perfused blood and
thus the signal increasing proportionally to the amount of local
vascularisation. As the amount of local vascularisation is spatially
varying (e.g. primary cortical areas have a highly vascularised
layer IV (Schmid et al. 2019)), this could give rise to spatial
variance in MTsat, explaining the observed relationship between
MTsat and endothelial cells. Relatedly, the robust association of
MTsat with microglia could be due to “off-resonance saturation”
(Bossoni et al. 2022, Delangre et al. 2015, Zurkiya & Hu, 2006) in
the neighborhood of iron-rich microglia. Off-resonance saturation
has been shown to be additive to the MT effect (Delangre et al.
2015, Zurkiya & Hu, 2006).

R1 associations
Like for R2

∗, the regional distribution of R1 at both 3T and
7T was robustly associated with genes enriched in excitatory
(glutamatergic) and inhibitory (GABAergic) neurons. The

similarity of the R1 associations to those of R2
∗ was particularly

strong at 3T (compare Figs. 3 and 5).
In addition to the neuronal associations, R1 at 3T was robustly

associated with gene expression associated with endothelial cells
and microglia, showing similarity to the MTsat results. A simi-
larity between R1 and MTsat results is expected because of MT
contributions to R1 modulated by the excitation pulse (Olsson
et al. 2020, Teixeira et al. 2019). However, the associations could
alternatively be due to iron-induced contributions (Rooney et al.
2007, Stüber et al. 2014) to the R1 (Möller et al. 2019).

R1 at 7T showed, in addition to the neuronal associations,
robust associations with genes enriched in astrocytes and
microglia, which could, like similar associations at 3T, reflect
iron-induced contributions to the relaxation (Möller et al. 2019);
the lack of the astrocyte association at 3T and the endothelial
cell association at 7T could suggest a magnetic field strength
dependence of the relaxation contributions from these cell types.
It should be noted, however, that the magnetic field strength
dependence of iron contributions to R1 is expected to be small
(Rooney et al. 2007, Wang et al. 2020).

The regional distribution of R1 at 7T was also robustly associ-
ated with genes enriched in ODCs and OPCs. This is consistent
with the use of 7T R1 as a cortical myelin marker (as reviewed in
Edwards et al. (2018)), though it should be noted that ODCs are
also iron rich (Möller et al. 2019), and myelin and iron concentra-
tion are correlated (Fukunaga et al. 2010, Kirilina et al. 2020).

Our observation of a robust association of R1 at 7T with ODCs
and OPCs suggests that R1 at 7T could be more sensitive to myelin
than at 3T. This appears to contradict the results of Rooney et al.
(2007) and Wang et al. (2020), who found that the contribution of
myelin to R1 decreases going from 3T to 7T. However the analysis
of Wang et al. (2020) did show that going from 3T to 7T increases
the MT with the macromolecular pool; this MT increase could
explain the increased apparent myelin sensitivity, as our R1 esti-
mates are affected by MT (Olsson et al. 2020, Teixeira et al. 2019).
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Fig. 5. EWCE results showing the cell-type associations of the top 5% of genes associated with R1 at 3T and 7T. Plotted are the number of standard
deviations (stds) by which the EWCE value deviated from the mean value over bootstrapped target lists. Results from the two cell type-specific datasets
are plotted in different shades: SMART-seq in black, DroNc-seq in grey. Top: 3T. Bottom: 7T. Left: First component of the PLS. Right: Second component of
the PLS. Bars are only plotted when FDR-corrected P < 0.5. ∗: FDR-corrected p < 0.05. Significant cell-type associations which replicated between both
cell type-specific datasets (robust results) are underlined and in bold.

It should be noted that this assessment is somewhat contradicted
by the MTsat results (Fig. 4) being more similar to the 3T than the
7T R1 results (Fig. 5).

The observation of a robust association of R1 with endothelial
cells at 3T but not at 7T could be due to relative changes in the
R1 of grey matter and venous blood with magnetic field strength,
which, based on literature values of the respective R1 values
(Deistung et al. 2008), would lead to a relative decrease in the
contribution of blood going from 3T to 7T. However, we cannot
rule out that it could also be due to differences in the contribution
of flow artefacts. These are likely to be more prevalent in the 7T
data because while at 3T the scanner’s RF body coil was used
for excitation, giving spatially non-selective spin excitation over a
large region, at 7T a head-only RF transmit coil was used, meaning

spin excitation was more localised. The localised transmission
means that spins in the blood flowing into the brain are not
excited: the effects of in-flow from these non-excited spins could
blur the image contrast by giving rise to a spatially differentiated
increase in physiological noise correlated with spatial variations
in cortical vascularisation.

It is of interest to note that the spatial distribution of the score
vectors of the (gene × RoI) matrix of the first and second PLS
components of R1 and MTsat at 3T show similar spatial patterns
(Fig. 1), following the general gradient observed in neuroimaging
(Goulas et al. 2021, Huntenburg et al. 2018). This stands in contrast
to the score vector of the second PLS component of the R1 at
7T, which is visibly different with an apparent superior–inferior
gradient. The difference in the spatial distributions of the second
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PLS component could give clues to the source of the differences,
but could also be a result of this component reflecting stronger B1

and B0 artefacts at 7T compared to 3T (Hoult, 2000, Stockmann &
Wald, 2018, Van de Moortele et al. 2002).

To mitigate the possibility that artefacts at 7T affect our results,
we performed the 7T R1 analysis after removing regions expected
to be potentially affected. It can be seen in Table S1 in the
Supplementary Material that if these areas are included in the
7T R1 analysis, then the variance explained by the first two
PLS components decreases, suggesting that including these areas
introduces a source of variance that cannot be explained using the
gene expression distribution, i.e. that these areas were affected
by artefacts. However, the only difference in robust associations
if these areas are included is that the 7T R1 would no longer
be robustly associated with genes enriched in OPCs. As R1 at
7T is still associated with ODCs even with these areas included,
including them would not have changed our assessment that R1

at 7T is more closely associated with cell types strongly related
to myelination than the other quantitative parameters that we
investigated.

The 3T results for MTsat and R1 deviated from the results
for MTR and R1 in Patel et al. (2020). As the 3T dataset used
here gave results comparable to Patel et al. (2020) when using a
similar pipeline to the one they used (Edwards et al. 2019), we can
attribute the discrepancy to the different analysis pipeline used
here. The two major differences (although other differences such
as gene normalisation could also play a role (Markello et al. 2021))
were that we used (1) a finer cortical atlas (180 cortical areas vs.
34) and (2) human-derived gene lists (Habib et al. 2017, Hodge et al.
2019) rather than mouse-derived lists (Zeisel et al. 2015).

(1) The sampling density of gene expression over the cortical
surfaces in the AHBA is relatively sparse, and so averaging expres-
sion levels over regions of interest (RoIs) helps to increase the
robustness of the results (Arnatkevic̆iūtė et al. 2019). If the RoIs are
too large, however, then spatial specificity is lost, as functionally
and anatomically distinct cortical areas get merged together. The
HCP-MMP1.0 atlas is derived based on boundaries found from in
vivo anatomical and functional MRI data (Glasser et al. 2016),
allowing reasonable specificity, while the RoIs are sufficiently
large that a reasonable mapping to the gene expression samples
in the AHBA atlas is possible (Arnatkevic̆iūtė et al. 2019).

(2) Mouse-derived cell type-specific gene expression has been
found to be less able to discriminate cell types in human because
of species-specific features, especially for non-neuronal cell types
(Hodge et al. 2019). Human-derived lists should thus be preferred
where possible.

Limitations
The lack of robust associations of R2

∗ with endothelial cells,
microglia and OPCs is potentially because our choice of echo times
and, relatedly, our choice of algorithm to estimate R2

∗ differed
significantly from that in Wen et al. (2018). Wen et al. (2018)
used the extensive range of echo times in their MRI protocol
(10 equispaced echoes from 4 to 40 ms) to separate the signal
decay into fast relaxing (interpreted as vascular) and slow relaxing
(interpreted as tissue) components (Ulrich & Yablonskiy, 2016).
Our echo times were more limited (8 equispaced echoes from 2.34
to 14.1 ms at 3T and 6 equispaced echoes from 2.8 to 16 ms at
7T), and further our data were recorded at higher resolution, and
thus had a lower signal-to-noise ratio (SNR). To mitigate both of
these factors, we assumed a common monoexponential R2

∗ decay
between PDw, T1w, and MTw images (Weiskopf et al. 2014) to allow

robust estimation of R2
∗. Our assumption of single exponential

decay will mix decay rates of the slow and fast relaxing compo-
nents, with a relative weighting towards the faster component
because of our lower maximal echo times. On top of this, the
assumption of a common R2

∗ decay between PDw, T1w, and MTw
images can break down in complex multi-compartment systems
like brain tissue (Chan & Marques, 2020). Unfortunately, neither
our 3T nor our 7T protocol allows us to apply the algorithm used
by Wen et al. (2018) to explore this further.

We did not include any effects of orientation with respect
to the scanner’s static magnetic field in our analysis. R2

∗ and
MTR (a parameter related to MTsat) have been shown previ-
ously to exhibit a dependence on the orientation of the cor-
tex with respect to the magnetic field (Cohen-Adad et al. 2012,
Mangeat et al. 2015). R1 could also be orientation dependent in
line with observations of anisotropy in white matter (Knight et al.
2018, Schyboll et al. 2020). The orientation dependence of these
parameters is fundamentally due to the regular structure of the
microscopic myelin distribution in cortex, with most myelinated
axons running either tangentially or radially with respect to the
cortical surface (Nieuwenhuys et al. 2015, Vogt and Vogt, 1919).
For R2

∗, the anisotropy of the myelin distribution propagates to
the quantitative parameter through the anisotropic susceptibility
distribution of myelin (Bender & Klose, 2010, Cohen-Adad et al.
2012). As this mechanism depends on susceptibility, we would
expect the orientation dependence to scale with field strength.
However, the similarity of our R2

∗ results at 3T and 7T would
suggest that orientation dependence does not play a major role,
likely because the averaging over cortical areas also averages over
cortex oriented at a range of angles to the magnetic field.

The first PLS component explained the majority of the variance
in the spatial distribution of R2

∗ at 3T and 7T and R1 at 3T, while
a second PLS component was additionally needed to explain the
majority of the variance in MTsat. In the case of R1 at 7T, however,
the explained variance was still not over 50%, implying that there
could be major sources of variance (e.g. additional cell types or
imaging artefacts) that are important for the spatial contrast
distribution in this case which are not included in our model.
We mitigated one potential source of variance that would not be
explicable in terms of cell types by removing potentially strongly
artefact-affected areas from the 7T R1 analysis. Including these
areas would have decreased the variance explained even further
(compare Tables 1 and S1).

We only examined associations with MRI parameters sampled
on the central cortical surface. This choice was made to exclude as
far as possible the contribution of partial volume effects with the
white matter and CSF when comparing between the 3T and 7T
data, and thus mitigate any confounding effects from the lower
resolution of the 3T data. Our previous work using the 7T data
presented here has shown that across the depth of the cortex
R2

∗ (but not R1) has strong associations with genes specific to
cytoarchitectonic cortical layers II, III, IV, and V (McColgan et al.
2021).

Our test of the association of MPMs with cell types is indi-
rect, relying on the cell type-specificity of genes. Future analyses
could refine the analysis by including maps of neurotransmit-
ter receptors (Dukart et al. 2021, Goulas et al. 2021), as these
could give greater specificity when testing the associations with
neurons.

Our in vivo data comes from young adults. In contrast, the
post mortem gene expression atlases and cell type-specific gene
expression datasets come from donors with a broader range of
ages, most of which are older than our subjects (Habib et al. 2017,
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Hawrylycz et al. 2015, Hodge et al. 2019). During the mapping
of gene expression from the AHBA donor datasets to the HCP-
MMP1.0 atlas (Arnatkevic̆iūtė et al. 2019), the genes were filtered
based on differential stability to mitigate subject-specific effects
(Hawrylycz et al. 2015). However, as the cortical cell distribution
(e.g. of glia) is dynamic (Arnatkevic̆iūtė et al. 2019, Edwards et al.
2018, Marsh et al. 2022), the regional gene expression atlas may
not be entirely representative of our cohort. This could potentially
affect the sensitivity of the method to individual cell types. It
should be noted, though, that regional variation in cortical gene
expression has previously been found to be relatively conserved
between individuals (Hawrylycz et al. 2015).

Our results suggest that interareal-variations in MPMs largely
reflect differences in gene expression associated with neurons,
i.e. with cytoarchitecture. These results are however not neces-
sarily applicable to longitudinal or inter-subject/-group compar-
isons, which can give rise to different associations. An example
is provided by Patel et al. (2019): their gene expression analysis
results showed that while the spatial distribution of MTR was not
significantly associated with ODCs at either age 14 or 5 years later
at age 19, the change in MTR between the two time points was
significantly associated with ODCs. The results presented here
imply that it would be interesting to examine such cases using
the broad range of qMRI parameters and static magnetic field
strengths examined here.

Conclusions
The spatial distribution of all of the quantitative MRI parameters
at both 3T and 7T robustly covaried with the distribution of genes
enriched in neurons. This reflects the importance of cytoarchitec-
ture in determining MRI contrast.

In addition to the general association with neurons, the spatial
distribution of the parameters was found to robustly covary with
the distribution of genes enriched in astrocytes (R2

∗ at 3T, R1 at 7T),
endothelial cells (R1 and MTsat at 3T), microglia (R1 and MTsat at
3T, R1 at 7T), and ODCs and OPCs (R1 at 7T). As the differences
in spatial distributions of the parameters were associated with
different cell types, these results imply it may be possible to
extract information about individual cell types by combining the
quantitative parameters.

The results complement the traditional interpretation of qMRI
parameters in terms of iron and myelin, and advance the possible
use of qMRI parameters as biomarkers for specific cell types,
bringing us closer to the goal of in vivo histology using MRI.
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