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Abstract 

Our understanding of the genetic architecture of the human cerebral cortex is limited both in 
terms of the diversity of brain structural phenotypes and the anatomical granularity of their 
associations with genetic variants. Here, we conducted genome-wide association meta-
analysis of 13 structural and diffusion magnetic resonance imaging derived cortical 
phenotypes, measured globally and at 180 bilaterally averaged regions in 36,843 individuals 
from the UK Biobank and the ABCD cohorts. These phenotypes include cortical thickness, 
surface area, grey matter volume, and measures of folding, neurite density, and water 
diffusion. We identified 4,349 experiment-wide significant loci associated with global and 
regional phenotypes. Multiple lines of analyses identified four genetic latent structures and 
causal relationships between surface area and some measures of cortical folding. These latent 
structures partly relate to different underlying gene expression trajectories during 
development and are enriched for different cell types. We also identified differential 
enrichment for neurodevelopmental and constrained genes and demonstrate that common 
genetic variants associated with surface area and volume specifically are associated with 
cephalic disorders. Finally, we identified complex inter-phenotype and inter-regional genetic 
relationships among the 13 phenotypes which reflect developmental differences among 
them. These analyses help refine the role of common genetic variants in human cortical 
development and organisation.   

Main 
The human cerebral cortex is morphologically complex, with extensive inter-individual and 
inter-regional variation associated with cognition, behaviour, health, development and ageing 
(1–4). This variation is partly genetic (5–8), with several loci identified primarily (although not 
exclusively) with cortical thickness, surface area, and volume (6, 9–12). Less is known about 
the common variant genetics (including single nucleotide polymorphisms or SNPs) associated 
with more complex cortical morphometric phenotypes, such as gyrification or curvature or 
with microstructural MRI measures of cortical myelination and cyto-architecture. 
Consequently, the extent of shared genetics across surface area, cortical thickness, volume 
and the aforementioned MRI phenotypes is unknown. These relatively under-investigated 
cortical phenotypes may be as important as thickness, volume or other more traditional 
cortical phenotypes in determining individual differences in cognition, behaviour, and health 
(13–15). Second, we still do not fully understand how complex cellular and molecular 
mechanisms of neurodevelopment give rise to these distinct cortical brain phenotypes. 
Mapping this may help us better pinpoint genetic mechanisms underlying structural cortical 
abnormalities. Third, linked to this, the degree to which genes that are constrained (i.e., genes 
which are intolerant to damaging variants) or genes linked to neurodevelopmental conditions 
are enriched for common genetic variants for cortical morphology is unknown. Fourth, it is 
also unclear if common genetic variants contribute to cephalic disorders, although the impact 
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of de novo damaging variants has been well documented (16). Finally, the role of common 
genetic variants in regional cortical phenotypes and organisation is also unclear. This is 
important as regional organisation may partly emerge from heterochronous regional 
differences in gene expression (17).  
 
To address these questions, we conducted 2,347 genome-wide association studies (GWAS) 
(for 13 global and 2,334 regional phenotypes that met quality control [see Methods]) of 
cortical brain morphology in 36,843 individuals from the UK Biobank (UKB) (19) and the 
Adolescent Brain Cognitive Development (ABCD) (21) cohorts. These included eight cortical 
macrostructural phenotypes extracted from high resolution anatomical MRI sequences, and 
five cortical microstructural phenotypes extracted from diffusion MRI sequences, which were 
estimated both globally and across 180 bilaterally averaged regions based on the Human 
Connectome Project parcellation scheme (18). The 13 phenotypes included: cortical thickness 
(CT), cortical surface area (SA), grey matter volume (volume), folding index (FI), intrinsic 
curvature index (ICI), local gyrification index (LGI), mean curvature (MC),  gaussian curvature 
(GC), fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF, 
also called neurite density index or NDI), isotropic volume fraction (ISOVF), and orientation 
dispersion index (ODI) (Figure 1, Methods). We share this GWAS summary statistics openly.  

Genome-wide associations of  global cortical phenotypes 
We first focused on the common variant genetics of 13 global structural MRI cortical 
phenotypes, calculated from the total or average of all 180 cortical areas (henceforth “global 
phenotypes”, Figure 1, Methods). We conducted GWAS for the 13 global phenotypes in the 
UKB after rigorous quality control and restricting the sample to participants of predominantly 
European genetic ancestries1 (Nmax = 31,977).  We identified 314 approximately independent 
(r2 < 0.1, 1000 kb) genome-wide significant (p < 5 x 10-8) loci for the global phenotypes. 81 of 
these were significant at the more stringent experiment-wide significance threshold 
(Supplementary Table (ST) 1, Methods). We additionally conducted GWAS for the same 13 
global phenotypes in individuals of predominantly European genetic ancestries in ABCD (Nmax 
= 4,866). For 237 GWAS loci in UKB for which data were available in ABCD, 204 SNPs (86%) 
had concordant sign of genetic association (p < 0.001, two-tailed binomial sign test) with 
modest positive correlation of effect size (r=0.54, 95% confidence interval [CI] 0.45-0.63; 
Supplementary Figure (SF) 1). 75 (31%) of these SNPs had p-values (p)<0.05 in ABCD with 
concordant effect direction. Additionally, Linkage disequilibrium score (LDSC) based (22) 
genetic correlations between UKB and ABCD were positive and high (genetic correlations 
ranged from 0.2 to 1, SF 1, ST 2) for all 13 phenotypes except MD, albeit with wide confidence 
intervals due to the relatively small size of the ABCD dataset. The high genetic correlation 

 
1 We use the term “predominantly European genetic ancestries” to reflect ongoing conversations about terms used 
to refer to genetically homogenous groups. We recognise that the genetically homogenous group that clusters with 
European samples need not be entirely European or that their genetic ancestries are fully captured.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.08.507084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507084
http://creativecommons.org/licenses/by-nc-nd/4.0/


Warrier et al., Genetics of cortical organisation and development 

5 

given the age difference between UKB (45-81 yrs at scanning) and ABCD (9-10 yrs at scanning) 
is notable as brain structure and its genetic influences change over time (23, 24).  

Figure 1: Schematic overview of 13 brain MRI phenotypes and the genetic analyses.  (A) We considered eight 
cortical macrostructural phenotypes: cortical thickness (CT), cortical surface area (SA), grey matter volume 
(volume), folding index (FI), intrinsic curvature index (ICI), local gyrification index (LGI), mean curvature (MC), and 
Gaussian curvature (GC). (B) We also considered five cortical microstructural phenotypes: fractional anisotropy 
(FA), mean diffusivity (MD), intracellular volume fraction (ICVF, also called Neurite Density Index [NDI]),  isotropic 
volume fraction (ISOVF), and orientation dispersion index (ODI). (C) Each phenotype was measured globally (total 
or mean for the whole cortex) and regionally at each of 180 bilaterally averaged cortical regions defined by the 
Human Connectome Project parcellation scheme. We conducted genome-wide association studies of all 
phenotypes after removing outliers, and investigated latent structure of all phenotypes, developmental 
trajectories, and cell type specificity and genetic organisation. 

Given the observed shared genetics between UKB and ABCD, we conducted inverse-variance 
weighted meta-analyses (25) to combine the GWAS results across both UKB and ABCD. These 
meta-analyses identified 367 genome-wide significant loci, of which 89 were significant at an 
experiment-wide threshold (ST 3). This ranged from 50 genome-wide significant loci (18 
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experiment-wide significant) for SA to 6 GWAS loci (with 0 experiment-wide significant) for 
FA (Figure 2), with some SNPs being associated with two or more phenotypes. In total there 
were 75 independent experiment-wide significant SNPs across all phenotypes. For all GWAS, 
the attenuation ratio (Methods) was not statistically different from 0 (ST 4), indicating no 
inflation in test statistics due to uncontrolled population stratification. All phenotypes had 
significant SNP heritabilities (LDSC (26): 0.06 for FA to 0.37 for SA), with higher SNP 
heritabilities for cortical macrostructural metrics (ST 4) compared to cortical microstructural 
phenotypes.   

For SA and CT, we identified high genetic correlations with a larger GWAS based on a partly 
overlapping sample from the ENIGMA consortium (SA: rg = 0.91 ±0.03; CT: rg = 0.83 ±0.04) (6). 
Notably, despite the smaller sample size of the current GWAS meta-analyses, we identified a 
higher number of genome-wide significant loci for both SA (50 vs 19) and CT (31 vs 3), and 
had higher statistical power measured using mean χ2 (SA: 1.30 for current GWAS vs 1.23 for 
ENIGMA; CT: 1.23 for current GWAS vs 1.18 for ENIGMA). The gain in power is likely due to 
reduced heterogeneity in imaging and genotyping in the current study compared to ENIGMA. 
All three significant loci for CT and 15 out of the 19 significant loci for SA from ENIGMA were 
significant in our GWAS with concordant effect directions.  

With the exception of CT, SA and volume, GWAS have not been conducted for the other 
cortical phenotypes. We investigated if any of the 75 independent experiment-wide 
significant SNPs identified in our GWAS were associated (i.e, p < 5x10-8) with any other 
neuroimaging phenotype using four databases (Methods). We found that 17 of these 75 SNPs 
were not associated with any other neuroimaging phenotype suggesting that these are novel 
associations (ST 5).   
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Figure 2: Manhattan plots of GWAS meta-analysis of 13 global MRI phenotypes. Green dotted line indicates 
the threshold for genome-wide significance (p = 5x10-8), and the red dotted line indicates the threshold for 
experiment-wide significance (p = 4.58x10-11).  Each dot on the x axis indicates a SNP, and the y axis indicates the 
negative log10 p-value. 

Four clusters explain shared genetics among most of the cortical phenotypes 
Previous research has identified both distinct (e.g., between SA and CT) and shared genetics  
between some (e.g., SA and volume) cortical phenotypes (6, 27). It seems likely that some 
genetic effects are pleiotropic for multiple cortical phenotypes, but it is unclear how these 
phenotypes cluster based on shared genetics. To address this question, we estimated 
bivariate genetic correlations and bivariate phenotypic correlations across all 13 global 
phenotypes (ST 6; Figure 3A). The overall pattern of correlations between measures was 
highly similar between the genotypic and phenotypic correlation matrices (Mantel’s test, 
r=0.89, P=1x10-4), in line with Cheverud’s conjecture that phenotypic correlations are 
representative of genetic correlations (28). We specifically identified high positive (genetic 
and phenotypic) correlations between five macrostructural phenotypes - SA, volume, LGI, ICI, 
and FI. Clustering of the genetic correlation matrix using multiple different methods 
consistently found that 12 of the 13 phenotypes (excluding only CT) formed four clusters 
relating to cortical expansion, curvature, water diffusion, and neurite density and orientation 
(SF 2). For the phenotypic correlation matrix, 11 of the 13 phenotypes formed  four clusters, 
with CT and ICVF clustering separately (SF 2). Overall we identified high similarity between 
phenotypic and genetic cluster dendrograms (rcophenetic = 0.76 (Ward D linkage) to 0.86 
(Complete linkage)). 
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To formalise this exploratory analysis of pleiotropic effects on distinct subsets of global brain 
phenotypes, we used genomic structural equation modelling (SEM) (29) to identify latent 
structures among the 13 global phenotypes. After excluding CT due to singleton-clustering 
and moderate genetic correlations (rg between -0.3 and -0.7 with eight of the 12 cortical 
phenotypes (Figure 3A; SF 2)), exploratory followed by confirmatory factor analyses identified 
a correlated four-factor model with acceptable fit (CFI = 0.89 , SRMR = 0.13; ST7, Figure 3B). 
The four factors were similar to the four clusters and relate to cortical expansion (factor 1), 
curvature (factor 2), neurite density and orientation (factor 3), and water diffusion (factor 4). 
Phenotypic factor analyses produced four similar factors, albeit only after the removal of CT 
which did not cluster with any phenotypes and ICI which exhibited high cross-loading onto 
two factors (Supplementary Note 1 [SN], SF 3).   

Co-localisation analysis of the experiment-wide significant associations supported the 
clustering and genomic-SEM analyses. Co-localisation analysis, which tests if genetic variants 
at a genetic locus are shared between two or more phenotypes, identified 56 co-localised 
genetic clusters among the global phenotypes  (posterior probability of co-localisation> 0.6). 
The highest number of co-localised loci was for cortical expansion phenotypes, followed by 
water diffusion, neurite density and orientation phenotypes, and then curvature (ST 8, Figure 
3C).  

Cluster analysis, genomic-SEM, and co-localisation analysis thus convergently indicate four 
latent factors, each phenotypically represented by two or more MRI phenotypes. However, 
there is considerable shared genetics between the latent factors.  Furthermore, CT was not 
included in the latent trait analyses. Given this, we conduct all downstream analysis at the 
level of individual phenotypes, but for consistency, additionally interpret results through the 
lens of four latent phenotypes and using the terms macrostructural and microstructural 
phenotypes (Figure 3D). 

Causal relationships between cortical expansion phenotypes 
The genetic correlations between the phenotypes can be due to pleiotropy or causality. 
Consequently, we employed Mendelian randomisation (MR) (30) to investigate whether the 
genetic relationships between phenotypes represent causal mechanisms, especially among 
the five cortical expansion phenotypes. We tested three theories of causation, and corrected 
for multiple testing. First, consistent with the Radial Unit Hypothesis (31) which suggests that 
surface area emerges from the number of cortical columns but thickness emerges from the 
number of cells within a cortical column, we would not expect causal effects between SA and 
CT. Indeed, we observed no significant evidence for causal association between SA and CT. 
Second, since volume is geometrically related to SA and estimated by the product of SA and 
CT, we expected to find a bidirectional causal relationship between SA and volume, and 
indeed, we found evidence for this. Third, previous research (32–35) suggests that sulco-gyral 
folding emerges from differential tangential expansion of the cortex, partly due to the 
heterogeneous cortical distribution of progenitor cells (36, 37), suggesting a causal 
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relationship of SA on folding (FI, LGI and ICI). Consistent with this, we found robust evidence 
that genetically predicted SA is associated with an increase in certain measures of folding (FI, 
LGI, and ICI); but no evidence for reciprocally robust causal effects of folding metrics on SA 
(ST 9 - 11, SN 2, SF 4-5). Together, these analyses suggest causal relationships between SA 
and some measures of folding.  

Fig 3. Pleiotropy among the 13 global phenotypes demonstrated by genetic/phenotypic correlations, 

structural equation modelling and co-localisation analysis. A: Phenotypic and genetic correlation matrices. The 
upper matrix triangle shows bivariate genetic correlations for each pair of phenotypes estimated using LDSC, the 
lower triangle shows the pairwise phenotypic correlations (Spearman’s coefficient). The diagonal indicates the 
SNP heritability of each phenotype based on LDSC. Phenotypes are ordered based on hierarchical clustering of 
the genetic bivariate correlation (hierarchical clustering on the phenotypic correlation matrix resulted in a near 
identical ordering). B: Genomic SEM path diagram demonstrating the underlying latent structure of 12 of the 13 
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global phenotypes and the interfactor genetic correlations. Covariance relationships = dotted arrows connecting 
two variables, variance estimates = double-headed arrows connecting variable to itself, regression relationships 
= one-headed arrows pointing from independent variable to dependent variable. Circles indicate latent variables, 
squares indicate measured phenotypes. The model was identified using unit variance identification such that the 
variance of the latent factors was set to one, and the dotted arrows across the factors can be interpreted as 
genetic correlation estimates. C:  UpSet plot  of the results of co-localisation analysis demonstrating the numbers 
of genomic loci that co-localise between the 13 phenotypes. The dots correspond to the co-localised clusters, with 
the number of clusters in the vertical bars. The number of times a phenotype co-localises is provided in the 
horizontal bars. D: Summary of clusters identified through GSEM and colocalisation analyses and their 
relationship with other terms used in this study. Abbreviations: cortical thickness (CT), cortical surface area (SA), 
grey matter volume (Vol), folding index (FI), intrinsic curvature index (ICI), local gyrification index (LGI), mean 
curvature (MC), and Gaussian curvature (GC), fractional anisotropy (FA), mean diffusivity (MD), intracellular 
volume fraction (ICVF),  isotropic volume fraction (ISOVF), and orientation dispersion index (ODI). 

Global cortical phenotypes show differential developmental and cellular associations 
The complex genetic architecture among the 13 global phenotypes likely represents shared 
and distinct developmental and cellular processes. To better understand this, we first 
aggregated SNP-based p-values to gene-based p-values using two methods (MAGMA (38) and 
H-MAGMA (39)), and then investigated if these genes exhibited specific developmental 
trajectories of gene expression using post-mortem brain tissue data from PsychEncode (40). 
We excluded FA due to the small number of genes identified. Genes associated with six of the 
seven macrostructural phenotypes had high relative expression prenatally, a peak in the late 
mid-gestation period (~19-22 post-conception weeks), and a decline in gene expression 
postnatally (Figure 4A). In contrast, the four microstructural phenotypes were associated with 
genes that had peak expression at birth, followed by a less steep decline, or increased 
expression postnatally. Inspection of the phenotypes based on the four previous clusters did 
not identify any additional obvious trends in gene-expression trajectories. Linear mixed 
effects models confirmed significantly higher prenatal gene expression for most cortical 
macrostructural phenotypes, and higher postnatal gene expression for most microstructural 
phenotypes (ST 12).  
 
The differences in developmental trajectories likely reflect different underlying cellular 
compositions for these phenotypes. We used data from both single-cell RNA seq (scRNA-seq, 
enrichment using HMAGMA and MAGMA genes) and epigenetic data (LDSC-based (26) 
enrichment) to identify candidate cell types. Focusing on the developing brain, using sc-
RNAseq data from psychENCODE (17), we identified enrichment for intermediate progenitor 
cells for SA, volume, and FI. (ST 13). To provide further temporal resolution into the 
developing brain, we investigated enrichment using scRNA-seq data from the first trimester 
(6-10 post conception weeks [pcw]) (41) and scRNA-seq (42) and scATAC-seq (43) data from 
mid-gestation (marked by neural progenitor expansion) (44–46).  We did not identify any 
enrichment with cell types in the first trimester (ST 14) but FI, volume, and SA (cortical 
expansion phenotypes) were enriched for progenitor cells during mid-gestation (ST 15 - 16, 
Figure 4B), specifically for progenitor cells in the S-phase and G2-M phases of mitosis. 
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Additionally, CT and MC were enriched for multiple neuronal and glial cell types in both 
datasets, suggesting that these phenotypes are a composite of multiple cell types.  

Considering the postnatal brain, there was no significant enrichment of genes in scRNA-seq 
data from psychENCODE (ST 17). However, analyses using epigenetic signatures of four broad 
cell types (47) (neurons, astrocytes, oligodendrocytes, microglia: ST 18) identified enrichment 
across multiple phenotypes (Figure 4C). For instance, cortical microstructural phenotypes 
were primarily enriched for epigenetic marks in oligodendrocytes and astrocytes, but not 
neurons, consistent with the idea that these phenotypes primarily reflect myelination and 
related processes. Taken together, these results demonstrate that genes underlying the 13 
global phenotypes have different developmental trajectories reflecting specific cellular 
developmental dynamics.  
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Fig 4. Enrichment of GWAS signals in different cell-types during development A:  Developmental trajectories of 
average gene expression in cortical postmortem-bulk RNA data (PsychEncode) for all significant genes (FDR < 
0.05) identified using HMAGMA (left panel) or MAGMA (right panel) for 12 of the 13 global phenotypes. Data for 
FA not shown as too few genes were identified as significant. B: Results of enrichment analyses for cell-specific 
gene expression from mid gestation. FDR corrected log10 p-values for gene enrichment using genes identified 
from MAGMA are plotted. Additionally, significant enrichments identified using HMAGMA genes are indicated 
with an asterisk  C: Results of enrichment analyses from cell-specific epigenetic marks from postnatal cortex 
identified using LDSC-based enrichment.  Cell types for panel B: vRG = ventral radial glia, oRG = outer radial glia, 
PgS and PgG2M  = cycling progenitors, S phase and G2-M phase respectively, IP = intermediate progenitors, ExN 
= Migrating excitatory neurons, ExM = Maturing Excitatory neurons, ExMU = Maturing excitatory neuron, upper 
enriched, ExDp1 = Excitatory deep layer neurons 1, ExDp2 = Excitatory deep layer neurons 2, InMGE = MGE 
Interneuron, InCGE = CGE interneuron, OPC = oligodendrocyte precursor cells, End = endothelial cells, Per = 
pericytes.  
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Cortical expansion phenotypes are associated with neurodevelopmental conditions 
Given the enrichment of several of the global phenotypes with prenatal cellular and 
developmental processes, we hypothesised that these phenotypes are under negative 
selection pressure wherein damaging alleles are removed from the population by natural 
selection. So, we modelled the relationship between the minor allele frequency of the SNP 
and variance in effect size to quantify genome-wide signatures of selection using SBayesS (48). 
This suggested that the majority of the cortical macrostructural phenotypes are under 
significant negative selection (Figure 5A). The selection pressure for cortical microstructural 
phenotypes was weaker, and with the exception of ISOVF, not statistically significant (ST 19).  
 
We further reasoned that GWAS signals for some of these phenotypes would be enriched for 
constrained genes (i.e., genes from which damaging variants are removed by natural 
selection) (49), genes associated with severe neurodevelopmental conditions (50), or genes 
related to microcephaly. Indeed, cortical macrostructural phenotypes were significantly 
enriched for highly constrained genes (pLOUEF < 0.37) and, SA was enriched for genes 
associated with neurodevelopmental conditions (ST 20, Figure 5B) using both MAGMA and 
HMAGMA based enrichment. However, we identified no enrichment for genes linked to 
microcephaly, possibly because (1) several genes associated with microcephaly and other 
relevant cephalic disorders (e.g., lissencephaly and holoprosencephaly) are yet to be 
discovered or properly documented, or (2) clinical microcephaly (and macrocephaly) might 
be genetically distinct from normative variation in brain size.  
 
To investigate the second hypothesis, we tested the effect of polygenic scores for SA, volume 
and CT on risk of cephalic conditions in a sample of 6,916 individuals with severe 
neurodevelopmental disorders from the DDD study (51, 52). Polygenic scores for SA and 
volume, but not CT were associated with both macrocephaly and microcephaly in the 
expected directions (Figure 5C, ST 21). We obtained consistent results in another cohort 
(SPARK) (53) consisting of autistic individuals and their siblings, some of whom have 
macrocephaly or microcephaly (N=25,621). Furthermore, in the DDD cohort, polygenic scores 
for both volume and SA were significantly associated with occipital-frontal circumference 
standardised for age and sex, in both individuals with and without a genetic diagnosis (Figure 
5D). These results demonstrate that SNPs associated with cortical expansion phenotypes are 
enriched in constrained genes and genes linked to neurodevelopmental conditions, and 
contribute to cephalic disorders and quantitative variation in occipital-frontal circumference 
even among individuals with severe neurodevelopmental disorders.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.08.507084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 
Figure 5: Signatures of constraint and links to neurodevelopment for the global phenotypes. A: Estimates of selection for the 13 cortical phenotypes. Selection coefficients 
(S) provided on the y axis (points). Bars indicate standard deviations for the selection coefficients. Negative values indicate lower-MAF alleles tend to have larger effect sizes  
B: Results of the enrichment analyses for constrained genes and genes associated with neurodevelopmental disorders using genes identified from MAGMA.FDR corrected 
log10 p-values for gene enrichment using genes identified from MAGMA are plotted. Additionally, significant enrichments identified using HMAGMA genes are indicated with 
an asterisk C: Odds ratio (OR) and 95% confidence intervals for macrocephaly and microcephaly compared to individuals with neither for 1 standard deviation increase in 
polygenic scores for volume, surface area, and cortical thickness in the DDD and SPARK cohorts. D: Line plots demonstrating the linear association between genetic principal 
component corrected polygenic scores (surface area (SA) and volume) and standardised (compared to general population) occipital-frontal circumference (OFC SD) for 
individuals with or without a genetic diagnosis in the DDD cohort. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.08.507084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507084
http://creativecommons.org/licenses/by-nc-nd/4.0/


Warrier et al., Genetics of cortical organisation and development 

15 

Prioritising candidate genes supports progenitor proliferation in cortical expansion 
Given the previous enrichment and polygenic association with neurodevelopmental and 
cephalic disorders, we were interested in identifying potential causal genes from the GWAS 
and investigate if these genes are associated with cephalic or neurodevelopmental 
conditions. Whilst HMAGMA and MAGMA are useful methods to aggregate SNP based 
information to provide gene-based p-values, they do not necessarily identify either the causal 
variant or the candidate gene. We thus conducted functionally informed fine-mapping of all 
experiment-wide significant loci using Polyfun (54) to identify causal variants. For 29 of these 
loci we were able to finemap to fewer than five credible variants, and for eight, a single 
credible variant (ST 22). We used nine overlapping methods to identify candidate genes 
(Methods) and identified 181 candidate genes associated with one of the 13 global 
phenotypes (ST 23) by at least one method. From this list, we defined prioritised candidate 
genes if they were supported by at least two experimental methods, leading to 40 different 
prioritised candidate genes, including 19 in the 17q21.31 region (ST 24). Of these, 29 were 
identified for cortical expansion phenotypes, four for curvature phenotypes,  13 for neurite 
density and orientation phenotypes, 14 for water diffusion phenotypes, and 12 for CT, with 
considerable overlap between the phenotypic domains. 

Several genes identified for cortical expansion phenotypes are involved in mitosis, neural 
progenitor proliferation, and cephalic and neurodevelopmental conditions including ATR (55), 
CENPW (56), KANSL1 (57) and HMGA2 (58–60). Mutations in ATR cause Seckel syndrome, 
characterised by dwarfism, severe microcephaly, and intellectual disability (55). KANSL1 is 
associated with Koolen-de Vries syndrome, characterised by global developmental delays, 
and with over 50% of published individuals having microcephaly (57). Mutations in HMGA2 
lead to macrocephaly and Silver-Russell syndrome (60). The overlap between fine-mapped 
genes from common variants and genes implicated through rare variants suggest 
convergence between rare and common variants.  The genes identified for the cortical 
expansion phenotypes were enriched for the wnt signalling pathway (GO:1904953, q = 0.04) 
which regulates progenitor proliferation and cortical size (61).  

Some genes implicated in CT and neurite density and orientation phenotypes involved in 
axogenesis and neuronal migration including VCAN (62) and MACF1, mutations in which cause 
lissencephaly and defects in neuronal migration and axon guidance (63). Finally, genes 
associated with water diffusion phenotypes included MOBP, which encodes a structural 
component of the myelin sheath, the neuronal proline and glycine transporter gene SLC6A20, 
and the lipid gated potassium channel gene KCNK2.  

Genetic loci associated with regional cortical phenotypes 
To identify genetic influences on regional measures of the 13 neuroimaging modalities, we 
conducted 2,338 GWAS using regional phenotypes measured for 180 bilaterally averaged 
regions of the cortex using the Human Connectome Parcellation scheme (18). We excluded 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.08.507084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507084
http://creativecommons.org/licenses/by-nc-nd/4.0/


Warrier et al., Genetics of cortical organisation and development 

16 

ICI and FI in three regions because of a lack of variance. We did not adjust for global 
phenotypes as we were interested in identifying genetic loci in the global phenotypes that co-
localised with regional phenotypes and because controlling for heritable, highly correlated 
covariates (|r| > ~0.5) biases the GWAS and increases the number of false positives (64) (SN 
3 and SF 13-14). This additionally limits the utility of the GWAS summary statistics for 
downstream analyses, for example due to collider bias in MR (64, 65). In total we identified 
4,260 experiment-wide significant loci. The highest number were associated with regional SA 
(1,033) (ST 25). These loci were more likely to contain constrained regions of the genome (66) 
(p = 3.97x10-3, one-sided Wilcoxon rank-sum test). This enrichment was driven by loci that 
were significant for  regional cortical expansion phenotypes (p = 4.38x10-4, one-sided 
Wilcoxon rank-sum test). The 4,263 loci clustered into 456 semi-independent regions when 
accounting for LD (r2 > 0.1, 1000 kb) agnostic of the neuroimaging phenotype, indicating 
widespread pleiotropy across the regional measures.  
 
To understand the extent to which these signals reflect genetic influences on the global 
phenotypes, we used the “GWAS-by-subtraction” method to regress out a latent factor 
representing genetic variance (67) on global phenotypes for 3,216 of the experiment-wide 
significant loci (Methods, ST 26). 1,633 (50%) of these loci remained experiment-wide 
significant, and 3,049 (95%) remained genome-wide significant suggesting that the vast 
majority of these loci had statistically significant regional effects. In contrast the global genetic 
latent trait reached experiment-wide significance for 966 of these loci (30%), and 1,499 (46%) 
reached genome-wide significance, suggesting that as many as half of these loci are also 
associated with the global genetic latent trait. But this could be partly by construct, as the 
global phenotypes in this study are simply the sum of the regional phenotypes. Genome-wide 
modelling of genetic influences on global and regional factors (68) is beyond the scope of the 
current study, but can be pursued using summary data made available here.  
 
To further identify shared genetic loci across regional and global phenotypes,  we conducted 
co-localisation analyses across all experiment-wide significant loci (regional and global) for 
each of the 13 phenotypes separately (ST 27). We identified between 409 (for SA)  and 17 (for 
FA) co-localised clusters, where we use the term “cluster” to refer to a group of phenotypes 
within one of the 13 neuroimaging modalities that share causal variants in an LD-defined 
genomic region. The largest cluster was at chr12: 65559695 - 67181144 (12q14.3) comprising 
the global SA and 156 other regional SA GWAS. This region includes the aforementioned 
HMGA2, associated with Silver-Russell Syndrome. For all phenotypes except FA and MD, 
larger clusters were more likely to include hits in the global GWAS (p < 0.05, one-sided 
Wilcoxon rank sum test). However, there were some large clusters that comprised only 
regional GWAS, suggesting more localised regional effects. Visual inspection of all clusters 
with cluster size of 30+ GWAS revealed that topologically closer regions were more likely to 
have higher genetic co-localisation (SF 6 - 7). Furthermore, median geodesic distance between 
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regions within a cluster was smaller than the median geodesic distance between regions 
within and outside a cluster (p < 2x10-16, wilcoxon rank sum test). 
 
Clusters that included the global GWAS also exhibited broader regional patterns of co-
localisation. For example, a locus at chr6:125424383-127540461 which includes CENPW is 
associated with FI and ICI both globally and in over 30 regions in the superior (dorsal) cortex 
(SF 8). CENPW exhibits regional differences in gene expression in the developing cortex (69). 
These analyses demonstrate that SNPs associated with global phenotypes may be associated 
with only some regional phenotypes.  
 
As with the global features, regional cortical macrostructural phenotypes showed an on 
average higher heritability compared to regional cortical microstructural phenotypes (SF 9, 
ST 28) (t = -19.4, p < 2x10-16, F(12,2327) = 420.7).  There was however widespread regional 
variability in SNP heritability of cortical morphology (SF 9). Given this variability, we evaluated 
if SNP heritability systematically varied across previously established functional (Yeo and 
Krienen communities) (70) and morphological (Mesulam classes) parcellations (71) of the 
cortex. Permutation analyses that account for spatial correlation between regions (spin-
permutation) (72) revealed that only CT had relatively higher heritability in idiotypic sensory 
areas (Mesulam), and a similar profile was observed for the sensory-motor network (Yeo and 
Krienen) (70) (ST 29, SF 10). This may reflect better histological and functional demarcation 
of the sensory-motor regions relative to other regions. Overall, these results suggest limited 
evidence of SNP heritability for cortical morphology being preferentially larger or smaller in 
known functional and morphological organisational classes.  

Differential regional and cross-morphological genetic organisation of the cortex 
The high-resolution parcellation scheme used in this study also allows us to evaluate the 
protomap hypothesis, which suggests that regional differentiation of the cortex is intrinsically 
(genetically) determined early in cortical development  (31, 73). If this is true, then we would 
expect regions that are spatially closer to each other to be genetically more similar. Partly 
supporting this, genetic correlations were moderately correlated with geodesic distances 
among the 180 regions for each of the 13 phenotypes (r = 0.57 for LGI to 0.13 for ICVF, p = 
0.001 for all tests, Mantel test, ST 30).  
 
We further investigated if regional genetic correlations were higher within either functionally 
similar networks (Yeo and Krienen communities (70)) and morphologically similar classes of 
laminar differentiation (Mesulam classes (71)). Across multiple phenotypes we identified 
higher genetic correlations among Mesulam’s heteromodal association cortical regions but 
not in any of the Yeo-Krienen communities (70) (ST 31, SF 11).  
 
To better understand if the 13 phenotypes are similar in their pattern of regional genetic 
correlations, we calculated cophenetic correlation coefficients amongst all 13 neuroimaging 
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modalities using the regional genetic correlation matrices. Grouping based on cophenetic 
correlations identified four clusters with similar regional genetic correlation patterns (Cluster 
1: SA, volume, and LGI; Cluster 2: all folding measures and CT; Cluster 3: FA and OD; and 
Cluster 4: MD and ISOVF, Figure 6A). Similar clusters were also observed when using regional 
phenotypic correlation matrices. These clusters differed from the clusters identified from the 
global phenotypes in that FI and ICI clustered together with CT and other measures of 
curvature. This suggests that clusters based on shared genetics of global phenotype 
moderately overlap with clusters based on regional genetic organisation. 
 
These four clusters were also distinguishable based on their correlation between regional 
geodesic distances and genetic correlation (Figure 6B). Cluster 1 phenotypes, which relate to 
progenitor proliferation, had the highest correlation between genetic correlation and 
geodesic distance between regions. This was followed by Cluster 4 (MD and ISOVF: the water 
diffusion phenotypes), which both increase with age in adults (74, 75). We speculate that this 
patterning might reflect the heterochronous cellular and developmental trajectories of these 
phenotypes: regional differences in gene expression in the cortex exhibit a cup-shaped 
pattern with high regional differences in midgestation that re-emerge during adolescence and 
increase in adulthood (17, 76).  

 
Fig 6. Topographic similarity and principal component structure of cortical phenotypes. A: Cophenetic similarity 
matrix depicting the similarity between the region*region similarity matrices. The upper triangle shows the 
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cophenetic genetic similarity, the lower triangle shows the cophenetic phenotypic similarity and diagonals show 
the phenotype-genotype cophenetic similarity across features. B: Correlation between network topology and 
geodesic distance organised by hierarchical clustering of the cophenetic similarity. C: Spatial correlation between 
the first principal component of each regional similarity matrix. The upper triangle shows the genetic similarity, 
the lower triangle shows the phenotypic similarity and diagonals show the phenotype-genotype correlation 
across. D: Topology of the first genetic principal components, with colour depicting the relative PCA eigenvalues. 
The colour scale thus indicates to what extent regions show more homogenous similarity (i.e., regions with more 
similar colour have more similar covariance), but the actual sign and magnitude are relative within each 
phenotype.  
 
To explore further how the 13 phenotypes differed in their regional organisation, we 
extracted the first principal component from their respective genetic correlation matrices. 
The first principal component explained between 25% (LGI) to 62% (MD) of the variance. The 
clustering of the neuroimaging modalities based on the similarity of the first principal 
component of the region-to-region similarity was similar to the clustering based on the 
cophentic correlations of the same region-to-region similarity (Figure 6C), suggesting that the 
first principal component largely captures regional genetic organisation. Visual inspection of 
the first principal component identified four different axes of variation: anterior-posterior 
(SA, volume, and LGI: Cluster 1 phenotypes), inferior-superior (ISOVF, MD: Cluster 4 
phenotypes), and a mix of primary-association and inferior superior (CT, GC, MC, FI, ICI: 
Cluster 2 phenotypes, and ICVF) (Figure 6D). For OD and FA (Cluster 3 phenotypes), we were 
unable to identify a clear topological axis of variation. These are in line with patterns of gene 
expression in the human cortex: anterior-posterior gradients during development, and 
primary-association gradients postnatally up until adolescence and early adulthood (77), and 
in the inferior-superior direction for water diffusion phenotypes, which are late-emerging (78, 
79). Using the first principal component derived from regional phenotypic correlation, we 
identified clear axes of variation for SA, Volume (anterior-posterior) and LGI, CT (inferior 
superior), but not for the other phenotypes (SF 12). This likely reflects the additional influence 
of directionless non-genetic factors in the development of cortical microstructure and 
curvature.   

Discussion 
Our results provide granular insights into the organisation and development of the human 
cortex and links to cephalic and neurodevelopmental conditions. We find that cortical 
macrostructural and microstructural phenotypes are genetically distinct, and are enriched for 
different cellular and developmental processes. These results suggest that SA, volume, and 
related measures of gyrification emerge from the earliest cellular processes in cortical 
development, related to progenitor proliferation. Cortical thickness and some measures of 
curvature are influenced by multiple, subsequent and sequential cellular processes, as 
indicated by widespread enrichment for different cell types. These early developmental 
processes are under purifying selection, and consequently, enriched for highly constrained 
genes and genes associated with neurodevelopmental conditions. Furthermore, even among 
individuals with severe developmental disorders (51, 52), common genetic variants 
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contribute to cephalic disorders, expanding our understanding of the role of common and 
rare genetic variants in developmental disorders. For the first time, we investigate causal 
relationships between cortical macrostructural phenotypes using Mendelian randomisation, 
and provide support for the differential tangential expansion hypothesis (32, 35, 36).  
 
These differences between the phenotypes are also reflected in their regional organisation. 
Phenotypes that derive from early developmental processes and phenotypes that continue 
to develop during late adulthood show greatest shared genetics between topologically nearer 
regions, in line with findings from cortical gene expression (77). However, whilst this is in the 
anterior-posterior direction for the early emerging phenotypes, it is in the inferior-superior 
direction for the late emerging phenotypes. Notably, the anterior-posterior gradient is also 
observed using cell lineage-tracing in the brain (80). This suggests that cortical organisation is 
informed by distinct waves of molecular processes, some of which are highly directional.  
 
Our analyses focused on individuals predominantly of European genetic ancestries, as we 
were limited by sample size, computational power, and methodology. With ongoing 
neuroimaging in the UK Biobank and other cohorts, these analyses should be expanded to 
include genetically diverse populations. Additionally, the current study investigates only the 
role of common genetic variants, and the extent to which rare genetic variants contribute to 
normative differences in cortical morphology is unclear. Finally, expanding the number of 
phenotypes such as fMRI, white-matter, and subcortical measures will provide a more precise 
atlas of the genetics of structure and function of the human brain, and the genetic 
relationships between them.  
 
In conclusion, by conducting and analysing GWAS of 13 different neuroimaging modalities 
both globally and across 180 cortical regions we provide unprecedented insights into the 
genetic organisation, and development of the human cortex. We make this resource freely 
available to researchers for further analyses.  
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Supplementary materials and methods 
Datasets  

UK BioBank 
The UK Biobank is a prospective cohort of 500,000 individuals from the UK. Of these 
individuals, 100,000 will undergo brain scanning (5, 19, 81), with approximately 40,000 scans 
having been completed when the current study commenced. Participants were excluded from 
the MRI study on the basis of standard MRI safety criteria such as metal implants, recent 
surgery, or conditions problematic for scanning such as hearing problems, breathing 
problems, or claustrophobia. Ethical procedures for the UK Biobank are controlled by the 
Ethics and Guidance council (http://www.ukbiobank.ac.uk/ethics), and the study was 
conducted in accordance with the UK Biobank an Ethics and Governance Framework 
document (http://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf), with 
institutional review board approval by the North West Multi-center Research Ethics 
Committee. 

ABCD 
The Adolescent Brain Cognitive Development (ABCD) study is an ongoing study of childhood 
and adolescence (82). Participants from the general population were recruited from all over 
the United States across 21 sites by providing select schools with information packets to all 
families with 8-10 year old students. Ethical approval was obtained from multiple institutional 
review boards.  

Image processing 
Structural minimally processed T1 and T2-FLAIR weighted data was obtained from UK BioBank 
(application 20904) and the ABCD study (via the NIH Data Archive Repository). These images 
were preprocessed with FreeSurfer (v6.0.1) (83) using the T2-FLAIR weighted image to 
improve pial surface reconstruction when available. Recon-all reconstruction included bias 
field correction, registration to stereotaxic space, intensity normalisation, skull-stripping, and 
white matter segmentation. A triangular surface tessellation fitted a deformable mesh model 
onto the white matter volume, providing grey-white and pial surfaces with >160,000 
corresponding vertices registered to fsaverage standard space. When no T2-FLAIR image was 
available FreeSurfer reconstruction was done using the T1 weighted image only. Given 
systematic variation related to the inclusion of T2-FLAIR (see supplements), this was included 
as a confound variable in downstream analyses. Following reconstruction, the Human 
Connectome Project (HCP) parcellation (18) was aligned to each individual FreeSurfer average 
image and parcellated were values extracted. Reconstruction quality was assessed using the 
Euler index (84) and included as a covariate in subsequent analyses.  
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Structural diffusion weighted imaging was obtained in processed form from UK BioBank and 
ABCD in similar fashion. Neurite Orientation Dispersion and Density Indices (NODDI) 
parameters were estimated using the Accelerated Microstructure Imaging via Convex 
Optimization (AMICO) (85) processing approach from the minimally processed diffusion 
images. The T1 aligned parcellation template was co-registered to the diffusion weighted 
image using fsl FLIRT and regional values for FA, MD and the three NODDI parameters were 
extracted using AFNI’s 3dROIstats function for all of the 360 cortical regions included in the 
Human Connectome Parcellation and averaged across hemisphere to reduce the number of 
regions to 180 bilateral regions. In total 13 different imaging derived phenotypes were 
extracted using this pipeline: 
 

1. Total Surface Area of the cortex (SA) 
2. Total volume of the cortex (volume) 
3. Average thickness of the cortex (CT) 

 
Measures of curvature: We calculated five measures of curvature. Assuming two principal 
curvatures (k1 and k2), we can define the five measures of curvature as follows. 
 

4. Total mean curvature (MC) = (k1 + k2)/2. MC is typically thought to measure extrinsic 
curvature. In other words, this is not curvature that is intrinsic to the surface, but 
rather extrinsic to the surface.  

5. Total gaussian curvature (GC) = k1*k2 
6. Total intrinsic curvature index (ICI) = max(K,0). In other words, if GC is positive, ICI is 

positive. If GC is negative, ICI is 0.  
7. Total Folding Index (FI) = ABS (K1) * (ABS (K1) – ABS (K2)). 
8. Total Local Gyrification Index (LGI) (86): Gyrification index quantifies the amount of 

the curvature that is buried within the sulcal folds, and is a measure of gyrification. 
This is computed by calculating the ratio of the area between an outer smoother 
surface and an inner surface tightly wrapping the pial surface. As it is a ratio, it is a 
unitless measure. 
 

The above properties measure primarily tissue macrostructure. To better understand cortical 
microstructure, we calculated five measures from the diffusion weighted images(87).Since 
conventional diffusion  parameters such as fractional anisotropy (FA) and mean diffusivity 
(MD) alone are not specific to the underlying microstructure of axons and dendrites (referred 
to, collectively, as neurites) we also extracted measures of Neurite Orientation Density and 
Dispersion Imaging (NODDI) (88, 89).  

 
9. Fractional anisotropy (FA) (87): FA is thought to be a measure of microstructural 

integrity. Higher FA values are thought to indicate fiber tracts (i.e., greater anisotropy). 
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FA would be higher in areas of greater neurite density due to less isotropic water 
diffusion.  

10. Mean diffusivity (MD) (87): MD measures the degree of displacement (or diffusivity) 
of water. It can be a measure of membrane density and degree of myelination. Lower 
membrane density and greater myelination is thought to decrease MD.  

 
We calculated the following three metrics using NODDI. NODDI assumes three 
microstructural environments for the diffusion of water - intracellular, extracellular, and CSF 
(90). The intracellular environment is anisotropic and water diffusion in this environment can 
be quantified using 
 

11. Intracellular volume fraction (ICVF): Also referred to as neurite density index or NDI, 
this is a measure of density of neurites (axons and dendrites). Higher ICVF values 
indicate that a greater fraction of the tissue consists of neurites.  

12. Orientation dispersion index (ODI): This measures the orientation and spatial variation 
of the neurite fibres. Zero indicates perfectly aligned straight fibres, and one for 
completely isotropic fibres. Thus, larger values of ODI represent highly dispersed 
neurites and smaller values represent highly aligned neurites. 

13. Isotropic volume fraction (ISOVF): This is a measure of water diffusion, typically 
representing cerebrospinal fluid and ventricles in the cortex.  

 
We note that all phenotypes were standardised. Mean CT was calculated as the average 
across the 180 bilaterally averaged cortical regions. Due to this standardisation, the 
standardised scores from the average and total values will be identical.  
 

Genome-wide association analyses 

Genetic quality control in the UK Biobank 
We included only individuals of self-reported white European ethnicity, and from this group 
of individuals, excluded individuals who were above +/- 5 SD from the means of the first two 
genetic principal components, had a genotyping rate < 95%, whose genetic sex did not match 
their reported sex, or had excessive genetic heterozygosity. We used all genotyped and 
imputed SNPs in the UK Biobank that had a minor allele frequency > 0.1%, did not deviate 
from Hardy-Weinberg equilibrium (P > 1x10-6), had a genotyping rate of 95%, and, for imputed 
SNPs, had an imputation R2 > 0.4. After quality control,  we retained a maximum of 31,977 
participants and 15,916,802 SNPs. We did not conduct GWAS for individuals in other ethnic 
groups as there were fewer than 400 individuals with imaging and genetic data after quality 
control in each of the other ethnic groups, which is insufficient sample size for linear mixed 
effect models for GWAS. 
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Genetic quality control in ABCD 
Prior to imputation, we filtered SNPs with missingness > 90%, and deviations from Hardy 
Weinberg Equilibrium (p < 1x10-6). We removed individuals with missingness > 5% and whose 
genetic sex did not match their reported sex. As HWE and heterozygosity are incorrectly 
calculated in populations with diverse genetic ancestries, these steps were conducted in 
relatively homogenous genetic ancestral groups identified using principal-component based 
clustering after combining the data with the 1000 Genomes phase 3 data (91).  Principal 
components were calculated using GENESIS (92) after accounting for relatedness between 
samples as calculated using KING (93). To identify genetically homogeneous groups, we used 
the first five principal components to identify clusters in the 1000 Genomes data using UMAP, 
identifying 7 broad populations  - Non-finnish Europeans, Finnish Europeans, Africans, 
Americans, East Asians, South Asian, and Bengali. Then, using the first five PCs from the ABCD 
dataset, we projected individuals onto the seven clusters, identifying broadly homogeneous 
populations. HWE based filtering (p < 1x10-6), and removing individuals with excess 
heterozygosity (+/- 3 SD) was then conducted. On this final cleaned data, relatedness was 
calculated using KING and PCs were calculated after accounting for relatedness, all at the level 
of individual population categories. The data was then merged, and phased (Eagle v 2.4) and 
imputed (Minimac4) using the TOPMED Imputation Server. From the imputed data, we 
removed SNPs with poor imputation (r2 < 0.4) and minor allele frequency < 0.1% (N = 
14,495,763 SNPs). We restricted our analyses to individuals of primarily European ancestries 
(N = 4,866). 
 
Genome-wide association analyses 
In both the UKB and ABCD we followed the same procedures outlined below. We conducted 
whole brain and regional GWAS analyses for the 13 phenotypes mentioned in the “Image 
Processing” section. For each region, we averaged the values bilaterally, resulting in a total of 
180 regional phenotypes per phenotype. For ICI and FI we excluded regions “52”, “PI”, “PHA2” 
because of no variance. In total, we conducted 2,347 GWAS using FastGWA (94). FastGWA 
can simultaneously account for both relatedness and subtle population stratification in the 
analyses.  

 
All phenotypes were scaled to a mean of 0 and a standard deviation of 1. We removed 
individuals who scored above or below 5 SDs from the mean for all phenotypes, as these are 
most likely technical outliers. Furthermore, these outliers skew the phenotypic scores and 
cannot be used in fastGWA which can produce false positives at stringent p-value or for SNPs 
with low minor allele frequencies (94). Additionally, we visually inspected histograms of all 
phenotypes and further removed outliers above or below 5 median absolute deviations for 
phenotypes with substantial skew, primarily for MD and FI.  Additionally, to ensure that the 
GWAS were not confounded by fine-scale population stratification, among the individuals of 
European ancestry identified in UKB or ABCD, we removed individuals who were above or 
below 5 SDs from the mean of the first two genetic principal components. For all GWAS, we 
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included age, age2, sex, agexsex, age2xsex, imaging centre, first 40 genetic principal 
components, mean framewise displacement, maximum framewise dispacement, and Euler 
Index (84) as covariates. In addition, for structural MRI metrics derived from T1, we included 
the availability of T2 scans as covariates as this influenced the calculation of these metrics. 

 
For the regional GWAS, we chose not to include the respective global phenotypes for three 
reasons. First, adjusting for heritable and highly correlated phenotypes biases the GWAS 
estimates (64, 65). All global phenotypes were substantially heritable and highly correlated 
with the regional phenotypes (detailed in SN 3). Second, including highly correlated and 
heritable covariates may result in collider bias for downstream analyses such as Mendelian 
Randomisation (95). Given that we wish to make the summary statistics available for 
researchers to conduct other analyses, including global phenotypes as a covariate can restrict 
the scope of downstream analyses. Finally, we were specifically interested in identifying SNPs 
with effects across the cortex, which may not have been possible if we had adjusted for global 
phenotypes. We note, methods such as genomic-SEM (29), mtCOJO (96), and multivariable 
MR (97) all allow adjustment for global GWAS in downstream analyses. Here, we used 
genomic-SEM to regress out the genetic effects of the global phenotype for the majority of 
experiment-wide significant SNPs  (definition of which is detailed below), to identify the 
fraction of SNPs that remained significant. We note that modelling of global vs. local genetic 
effects at a genome-wide level as conducted elsewhere (68) is beyond the scope of this study.  
 
We meta-analysed results from the UK Biobank and ABCD using inverse-variance weighted 
meta-analyses in Plink v1.9 (98), excluding SNPs that were absent from the UKB, given the 
difference in sample sizes (and consequently, statistical power) between the UKB and ABCD.  
 
Multiple testing correction 
Using matrix decomposition (20), we estimated that there were 1,092 independent 
phenotypes. Thus, we used an experiment-wide threshold of 4.58x10-11  (5x10-8/1,092) to 
correct for the multiple tests conducted. To identify significant loci, we clumped the GWAS 
using an r2 threshold of 0.1 over 1000kb. We used LD information available from a random 
sample of 5,000 unrelated individuals from the UK Biobank who were included in the GWAS.  

Genetic correlation and causal analyses 

Genetic correlation, SNP heritability estimation, clustering, and genomic structural 
equation modelling 

For the global phenotypes we used LDSC (22, 26) to compute genetic correlations and SNP 
heritability for the meta-analysed GWAS statistics, using LD weights from the North West 
European populations. Intercepts were not constrained. Heritability  and genetic correlation 
(among 180 regions per phenotype for all 13 phenotypes) of the regional GWAS were 
calculated using LDSC as incorporated within genomic-SEM (29). Additionally, for the global 
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phenotypes in the UK-biobank alone, we conducted GCTA-GREML (99) based SNP heritability 
using genetic relationship matrix calculated using all imputed SNPs included in the GWAS, for 
30,765 unrelated individuals with neuroimaging GWAS. We applied the same quality control 
and used the same covariates as for the GWAS. 

For the global phenotypes, clustering of the phenotypic and genetic correlation matrices were 
conducted on the Euclidean distance. As the final hierarchical clustering is dependent on the 
clustering method used, we used three different clustering methods (Average, Ward D, and 
Complete Linkage) and visualised the different clusters obtained. Cophenetic correlations (in 
R, stats (version 3.6.2)) were obtained by comparing the phenotypic and genetic dendrograms 
produced by the different clustering methods.  

Genomic structural equation modelling was conducted using genomic-SEM (29) using 
summary GWAS statistics of the global cortical phenotypes. We conducted exploratory factor 
analyses using the even chromosomes, identified factor models, and conducted confirmatory 
factor analyses using the odd chromosomes. The final model was selected after multiple 
iterations based on both fit indices and theoretical predictions. Fit indices and path diagrams 
are provided for models based on all chromosomes.  

For the regional phenotypes, we conducted 1000 spin permutations (72) tests to investigate 
if SNP heritability of regions or genetic correlation among regions were higher in regions 
falling within functionally (70) or morphologically similar classes (71). Spin permutation 
accounts for spatial correspondence between regions and generates null models using 
random rotations across the spherical cortical surface (72).  

We investigated if the genetic correlation among regions were correlated with topological 
geodesic distances among regions using Mantel test (within each phenotype separately). We 
investigated if clustering of regions based on genetic correlations were similar between 
phenotypes based on cophenetic correlation.  

Phenotypic correlation and principal component analysis 
Comparable to region specific genetic correlations, we also generated region to region 
phenotypic correlation matrices (“structural covariance”) for both UK Biobank and ABCD 
cohorts by taking the Pearson correlation across subjects on the scaled and filtered data. UK 
Biobank and ABCD were then combined into a single meta covariance matrix using the 
“psychmeta” package in R (100). 

We extracted the first principal component from the regional genetic correlation matrix and 
regional phenotypic correlation matrix for each of the thirteen phenotypes separately. This 
principal component analysis was done using a singular value decomposition of the centred 
and scaled similarity matrix using the “stats” package in R. 
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Co-localisation 
To identify co-localised genomic regions among the 13 global phenotypes, we used Hyprcoloc 
(101). Hyprcoloc is robust to participant overlap, and can conduct multi-trait co-localisation 
using hundreds of GWAS. We restricted our analyses to experiment-wide significant loci, and 
mapped these onto predefined approximately independent LD blocks in individuals of 
European ancestry (approximately 1.6 Mb on average) (102). We did not adjust for either 
participant or known correlation between phenotypes, as the method gives reasonable 
results comparable to adjusting for correlation between phenotypes. We used the branch and 
bound divisive clustering algorithm incorporated in Hyprcoloc to identify clusters of 
phenotypes that co-localise at any given locus. We used the default variant specific prior 
probabilities in Hyprcoloc (101): prior 1 (probability that a SNP is associated with a single trait) 
as 1x10-4, and prior c (prior probability that the SNP is associated with a second trait) as 0.02. 
We identified co-localised genomic regions if the genomic regional association probability was 
0.6 or higher. We used the same pipeline to investigate co-localisation for 180 regional GWAS 
and the global GWAS for each of the 13 phenotypes conducted separately.   
 

Mendelian Randomisation 
To investigate the causal effects of SA on other cortical macrostructural phenotypes, we 
conducted Mendelian Randomisation analyses (30) using global phenotypes. To avoid bias 
due to participant overlap, we randomly divided the UK Biobank into two groups of individuals 
(Group A: N = 15,884 of which males = 7,455; Group B, N = 15,899, of which males = 7,500) 
and conducted GWAS analyses in each of the groups separately for the eight cortical 
macrostructural phenotypes using the same pipeline as detailed above. We generated 
instruments which consisted of SNPs with p < 5x10-8 in the exposure, with minor allele 
frequency > 1%, and which were near-independent (clumping r2 = 0.001 using a 1000 kb 
window using data from 5,000 unrelated individuals from the UK Biobank). Where fewer than 
five SNPs met this criteria, we relaxed the p-value threshold to p < 1X10-6. Using SA GWAS 
generated in Group A as the exposure and the GWAS for the remaining 6 phenotypes in Group 
B as the outcome, we conducted inverse-variance weighted bi-directional Mendelian 
Randomisation analyses. To account for pleiotropy, we additionally conducted the following 
sensitivity analyses: (1) median weighted MR (majority-valid (103)); (2) MR-Egger (accounts 
for pleiotropy) (104) ; (3) MR PRESSO (detects and excludes outliers in the instrument (105)). 
Additionally, (4) for the significant MR results, to further account for correlated (vertical) 
pleiotropy, we conducted MR analyses using CAUSE (106) using two instruments: one with of 
SNPs with p <5x10-8, and another at a more relaxed threshold of p < 0.001. We investigated 
heterogeneity in the instrument using Cochran’s Q, and investigated if the Egger intercept 
was significant. We investigated if the orientation of the causal direction was correct using 
Steiger analyses (107), and conducted additional sensitivity analyses after removing SNPs that 
did not have the correct causal orientation. Finally, we inspected the scatter plot, forest plot, 
and plots generated from leave-one-out analyses to identify if the results were driven by a 
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subset of the SNPs. Analyses (1) and (2), and the sensitivity analyses were conducted using 
the R-package TwosampleMR (108).  
 
We repeated all MR analyses except for CAUSE using instruments generated in the UKB as the 
exposure and ABCD as the outcome. However, this was quasi-bidirectional, in that in both 
directions, the exposure was instruments generated in the UKB and the outcome was SNPs in 
the ABCD. We did not conduct CAUSE in this instance due to sample size imbalance which 
reduces statistical power.  
 
Given substantial pleiotropy between the phenotypes, we identified significant MR 
associations if: 1. The p-value was < 0.0035 (bonferroni corrected threshold) in both the 
within UKB and the UKB-ABCD analyses for IVW, MR-Presso, and weighted median; 2 MR-
Egger was in the consistent direction to the IVW (MR-Egger has lower statistical power so we 
did not require it to be statistically significant);  3. If Steiger analyses identified incorrect causal 
orientation, criteria 1 and 2 were met after Steiger filtering; and 4. Results were significant 
when MR was conducted using CAUSE which accounts for correlated pleiotropy. Analyses 
were conducted using the two-sample MR package (version 0.5.6)(108). Power-calculations 
(109) were conducted assuming a standard deviation in the exposure results in a 0.33 unit 
standard deviation change in the outcome, which is a medium effect size.   
 

Gene-based association and enrichment analyses 

Gene based association 
We used MAGMA (version 1. 10) (38) to conduct gene-based association testing based on 
physical location. MAGMA assigns SNPs to the nearest gene. In line with previous analyses, 
we expanded the window to 35kb upstream and 10kb downstream of the gene to capture 
regulatory regions (110).  In addition, we used HMAGMA (39) (using MAGMA v 1.08) to 
identify genes based on Hi-C mapping. In contrast to MAGMA, HMAGMA is able to map SNPs 
to genes based on long-range interactions and can account for tissue specific regulatory 
effects. To map developmental trajectories, we used Hi-C data from postnatal and prenatal 
human cortex (39, 111). Subsequently, for enrichment analyses, we used Hi-C data from the 
prenatal cortex given that the majority of the phenotypes were either enriched for gene 
expression in the prenatal cortex or did not differ in gene expression between prenatal and 
postnatal cortex, and because many processes investigated occurred prenatally.   

Developmental trajectories 
To identify patterns of gene expression across cortical prenatal and postnatal windows, we 
used data from PsychEncode (17). The data was divided into 9 developmental windows: 
Window 1. 8 - 9 post-conception weeks (PCW); Window 2. 12 - 13 PCW; Window 3. 16 - 17 
PCW; Window 4. 19 - 22 PCW; Window 5. 35 PCW - 4 months; Window 6. 6 months to 2.5 
years; Window 7. 3 - 11 years; Window 8. 13 - 19 years; Window 9. 21 - 40 years. Gene 
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expression values were log base 2 transformed after adding a pseudocount and normalised. 
For 12 of the 13 phenotypes the transformed expression values of all genes with q < 0.05 were 
averaged for each developmental window and smoothed LOESS curves were plotted. The 
excluded phenotype was FA as HMAGMA and MAGMA identified 1 and 0 genes with q < 0.05 
respectively.  

Enrichment analyses 
To investigate enrichment for cell types, signatures of genomic constraint, and gene sets 
associated with neurodevelopmental and cephalic disorders, we conducted the following 
analyses. Within each gene set, significant results were identified after correcting for all 13 
phenotypes using Benjamini-Hochberg FDR correction (q < 0.05).  
 
To identify cell types in the prenatal and postnatal cortex we conducted enrichment analyses 
using (1) single cell gene expression data from PsychENCODE (17) using prenatal (5pcw to 125 
days) and postnatal gene expression. To provide additional temporal resolution we also 
conducted analyses using (2) single cell gene expression data that spanned early cortical 
development  (6  - 10 pcw)  (41) ; (3) single cell gene expression data spanning mid gestation 
period of cortical development (17 - 18 pcw) (42); (4) Single-cell epigenomic data (scATAC-
seq) from the midgestation period of cortical development (43); and (5) Cell-type specific 
(fluorescent-activated nuclei sorting isolated) epigenomic (ATAC-seq and ChiP-seq) data from 
postnatal cortex (47). Analyses for datasets 1 - 3 were conducted using MAGMA gene-set 
enrichment using genes identified by MAGMA and HMAGMA.  Following previously described 
methods (110), we filtered out genes with non-unique names and genes not expressed in any 
cell types. Gene expression values were log base 2 transformed after adding a pseudocount 
and normalised. Mean cell-type specific gene values were calculated, and this was divided by 
the mean expression of the gene in all cells to get relative cell-type expression. We then 
selected the top 10% of genes with the highest relative expression in each cell type to conduct 
enrichment analyses using MAGMA gene-set enrichment analyses (38). Significant cell types 
were identified if q < 0.05 in analyses using  both HMAGMA and MAGMA identified genes. 
Analyses for datasets 4 and 5 were conducted using conditional partitioned heritability 
analyses in LDSC (i.e., enrichment for a cell type after conditioning on all other cell types and 
baseline annotations) (112, 113). 
 
We used the same gene-enrichment pipeline as above to investigate gene enrichment for 
genes that are constrained (pLOUEF < 0.37) (49), genes associated with neurodevelopmental 
disorders (50) (662 genes with FDR < 0.05), and genes associated with severe microcephaly 
obtained from the Genomics England Panel (244 genes, signed off on March 2, 2022: Severe 
microcephaly (Version 2.304) (genomicsengland.co.uk)). Signatures of selection were 
identified using SBayesS (48).  
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Polygenic score association analyses 

Genetic quality control and polygenic score generation 
Polygenic scores (PGS) for SA, CT, and volume were calculated using the meta-analysed GWAS 
in a dataset of individuals with severe developmental disorders (DDD study, N = 6,916) and 
autistic individuals and their families (SPARK dataset, N = 25,621) using PRScs (114). PRScs is 
a Bayesian algorithm that infers posterior effect sizes of SNPs using continuous shrinkage, and 
does not require defining p-value thresholds. Details of genetic quality control in the DDD 
cohort in individuals of predominantly European ancestries are provided elsewhere (52). The 
data were re-imputed using the TOPMed reference panel and variants with low imputation 
quality (minimac4 r2 < 0.8) were excluded. We kept common (minor allele frequency > 1%) 
SNPs that are also in HapMap3 to calculate the PGS using PRScs. Genetic-ancestry QC of the 
SPARK dataset was conducted similar to the ABCD dataset and as detailed elsewhere (115, 
116). We calculated PGS on individuals of predominantly European ancestries as identified by 
genetic principal components. All polygenic scores were standardised with a mean zero and 
a standard deviation of 1 for all analyses.  

Defining phenotypes in DDD and SPARK 
In the DDD study, we used HPO terms assigned by clinicians to define macrocephaly (N=396 
with HPO term "HP:0040194", "HP:0000256", "HP:0004482", "HP:0004481", "HP:0004488", 
or "HP:0005490") and microcephaly (N=1,198 with HPO term "HP:0040195", "HP:0000252", 
"HP:0005484", "HP:0004485", "HP:0000253", "HP:0011451", or "HP:0040196"). We also 
analysed occipital frontal circumference data (N=6,146), which were calculated as standard 
deviations from the mean given the proband’s gestational age at birth, age at time of 
measurement and sex. In the SPARK dataset, information about macro- and microcephaly 
were obtained from parental/caregiver reports of medical diagnoses.   

Statistical analyses 
Linear or logistic mixed-effect regressions (random intercepts for family, in SPARK) were 
conducted using either: (1) PGS for volume; (2) PGS for SA and CT in a multiple regression 
framework. Primary analyses were conducted using logistic regression, separately for 
macrocephaly and microcephaly (coded as 1) compared to controls (i.e. individuals in the 
cohort without microcephaly or macrocephaly) (coded as 0). In the DDD, we also conducted 
linear regression using standardised occipital frontal circumference. Additionally, we 
conducted linear regression with macrocephaly coded as 1, microcephaly as -1 and no 
diagnosis as 0.  In the DDD study, we included sex, genetic diagnosis, and the first 10 genetic 
principal components as covariates. Specifically, we considered probands to be “diagnosed” 
if they had at least one variant reported to DECIPHER that had been confirmed as pathogenic 
or likely pathogenic (C/LP) by a clinician, or that had been predicted as P/LP by a 
computational algorithm based on the American College of Medical Genetics criteria, as 
described in Wright et al. (117).  In SPARK, age, sex, autism diagnosis, and the first 10 genetic 
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principal components were included as covariates. Significant results were identified after 
Benjamini-Hochberg FDR correction (q < 0.05) across all models.  
 

Fine-mapping, Summary Mendelian Randomisation, and prioritising candidate 
genes 
For all exome-wide significant loci in the global GWAS (N = 90), we conducted functionally 
informed fine-mapping using Polyfun (54), using SuSiE (118) as the fine-mapping method and 
with up to 5 causal variants per locus, with each locus defined 500 kb upstream and 
downstream of the sentinel variant. In-sample LD was obtained from 5,000 unrelated 
individuals included in the GWAS from the UK Biobank.  We used precomputed prior causal 
probabilities from the UK Biobank as provided in Polyfun.  
 
To link the variants in the 95% credible sets to genes, we used Hi-C data from (1) the prenatal 
brain germinal zone (111), (2) the prenatal brain cortical plate (111), (3) neurons from 
postnatal cortex (119), and (4) glia from postnatal cortex (119). Additionally, we (5)  used 
Ensembl Variant Effect Predictor (120) to identify genes containing damaging missense 
(deleterious in SIFT and/or damaging/probably damaging/possibly damaging in PolyPhen) and 
protein truncating variants from the list of the 95% credible sets.  
 
To identify candidate genes using relevant eQTL and methylation data, we further conducted 
summary Mendelian randomisation (SMR) (121). SMR was conducted for all 13 phenotypes, 
using cis-eQTL data from postmortem (6) prenatal (122) and (7) postnatal brains (123), and 
additionally (8) methylation data from postnatal brains (124). Within each phenotype, we 
identified significant genes by using Bonferroni correction for the total number of genes 
tested. We excluded significant genes with evidence to indicate that the MR association 
results are due to pleiotropy using the HEIDI test (HEIDI p < 0.01) (121).  
 
Finally, (9) we identified the closest gene to each sentinel variant (i.e., the SNP with the lowest 
p-value in each locus). Where the variant was intergenic, we included both the closest 
upstream and downstream gene. From these nine methods, we identify a list of prioritised 
candidate genes if they are supported by at least two methods. We conducted GO enrichment 
analyses to identify biological pathways enriched for the prioritised candidates genes. 

Data availability 
All summary statistics for the GWAS meta-analyses will be made available upon publication 
without restriction on https://portal.ide-cam.org.uk/overview/483.  
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Code availability 

https://github.com/ucam-department-of-psychiatry/UKB 

https://github.com/ucam-department-of-psychiatry/ABCD 

  

Software used 
1. FastGWA: GCTA | Yang Lab (westlake.edu.cn) 
2. Plink 1.9 and Plink 1.2: PLINK 1.9 (cog-genomics.org) 
3. genomic-SEM: GitHub - GenomicSEM/GenomicSEM: R-package for structural 

equation modeling based on GWAS summary data 
4. LDSC v1.01: bulik/ldsc: LD Score Regression (LDSC) (github.com) 
5. Two sample MR 0.4.26: Two Sample MR functions and interface to MR Base 

database • TwoSampleMR (mrcieu.github.io) 
6. MR PResso: GitHub - rondolab/MR-PRESSO: Performs the Mendelian 

Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method. 
7. CAUSE: Introduction to CAUSE (jean997.github.io) 
8. MR power calculator: Online sample size and power calculator for Mendelian 

randomization with a binary outcome (shinyapps.io) 
9. MAGMA: https://ctg.cncr.nl/software/magma  
10. HMAGMA: GitHub - thewonlab/H-MAGMA 
11. GCTB: GCTB (cnsgenomics.com) 
12. Polyfun (installed November 2021): GitHub - omerwe/polyfun: PolyFun 

(POLYgenic FUNctionally-informed fine-mapping) 
13. SMR: SMR | Yang Lab (westlake.edu.cn) 
14. Hyprcoloc: GitHub - jrs95/hyprcoloc: Hypothesis prioritisation in multi-trait 

colocalization 
15. PRScs: GitHub - getian107/PRScs: Polygenic prediction via continuous 

shrinkage priors 
16. R statistics packages: nlme, stats, Psychmeta, lmer, effsize, lsa, ape, factoExtra, 

igraph, 
17. R plotting packages: ggseg, ggplot2, tidyverse, ggpubr, ggstatsplot, 

ComplexHeatmap, scico, karyoploteR, tidySEM, circlize 
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