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Abstract 

The relationship between brain areas based on neurotransmitter receptor and transporter 

molecule expression patterns may provide a link between brain structure and its function. Here, 

we studied the organization of the receptome, a measure of regional neurotransmitter 

receptor/transporter molecule (NTRM) similarity, derived from in vivo PET imaging studies 

of 19 different receptors and transporters. Nonlinear dimensionality reduction revealed three 

main spatial gradients of receptor similarity in the cortex. The first gradient differentiated the 

somato-motor network from the remaining cortex. The second gradient spanned between 

temporo-occipital and frontal anchors, differentiating visual and limbic networks from 

attention and control networks, and the third receptome gradient was anchored between the 

occipital and temporal cortices. In subcortical structures, the receptome delineated a striato-

thalamic axis, separating functional communities. Moreover, we observed similar 

organizational principles underlying receptome differentiation in cortex and subcortex, 

indicating a link between subcortical and cortical NTRM patterning. Overall, we found that the 

cortical receptome shared key organizational traits with brain structure and function. Node-

level correspondence of receptor similarity to functional, microstructural, and diffusion MRI-

based measures decreased along a primary-to-transmodal gradient. Compared to primary and 

paralimbic regions, we observed higher receptomic diversification in unimodal and 

heteromodal regions, possibly supporting functional flexibility. In sum, we show how receptor 

similarity may form an additional organizational layer of human brain architecture, bridging 

brain structure and function. 
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INTRODUCTION 

Uncovering how the anatomy of the brain supports its function is a long-standing goal of 

neuroscientific research1. Neuroanatomical mapping of cyto- and myeloarchitecture2–4, in 

combination with lesion studies5–7 have established that there is substantial variability in 

cellular composition of brain areas and a relationship between a brain area’s structure and its 

function. Neurotransmitter receptor distribution is an important additional layer of brain 

organization. Neurotransmitters and their respective receptors convey neurotransmission, an 

essential aspect of neural communication. As such the biologically versatile nature of 

neurotransmitter-receptor interactions is a pivotal component of a neuronal system8. To 

understand the role of neurotransmission in brain functionality, deciphering the 

neurotransmitter receptor distribution landscape is thus essential.  

Autoradiography studies have shown that neurotransmitter receptors are heterogeneously 

expressed throughout the cortex. Generally, receptor distributions vary in a horizontal laminar 

fashion similar to cyto- and myeloarchitectural cortical layers9,10, but are also closely related to 

vertical cyto- and myeloarchitectural cortical composition. Receptor distributions recapitulate 

histology-defined cortical areas, but can also group different cortical areas into neurochemical 

families as well as further subdivide cytoarchitecturally homogeneous regions10,11. Changes in 

localized brain function are reflected by changes in receptor distributions, demonstrated for 

example in the changes of multiple receptor densities at the border between primary (V1) and 

secondary (V2) visual cortex12,13. Furthermore, a similarity in receptor architecture can be 

observed between brain areas sharing similar functionality. This suggests receptor 

“fingerprints”, the density profiles of multiple neurotransmitter receptor types in a specific 

brain area, as key features of functional specialization10,13–15. Receptor fingerprints delineate 

sensory from association cortices16, and provide a common molecular basis of areas involved 

in language comprehension17. Studies of receptors via autoradiography have shown links 

between receptor fingerprints and brain functionality in localized brain areas. However, a 

coherent whole-brain perspective on receptor profile similarities and their relationship to brain 

function is missing. Importantly, a whole-brain perspective should include subcortical 

structures. Although the subcortical distributions of some receptors have been systematically 

investigated18–20, there are no systematic studies of receptor co-distributions or similarity in the 

subcortex. Characterizing subcortical receptor similarity profiles could be an important step 

towards the understanding of this so far understudied part of the human brain21. 
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A whole-brain perspective on receptor similarity could provide a promising avenue towards 

understanding brain functionality, as the interaction of different neurotransmitter systems is a 

major component of any functional process. This is reflected by the reorganization of functional 

brain networks after pharmacological perturbation of neurotransmitter systems22–24. This has 

led to the hypothesis that neuromodulation through neurotransmission might play a major role 

in enabling the static nature of brain structure to yield flexible functionality25,26. Functional co-

activations are only partially explained by the physical connectedness of brain areas1,27, hinting 

at considerable relevance of other aspects of brain organization to understand structure-

function relationships. Incorporating neurotransmitter co-distribution as an additional layer of 

brain architecture thus holds promise of further insights into the structural basis of brain 

function.  

Moreover, understanding how the organization of receptor distributions relates to brain 

functionality holds clinical relevance. An extensive body of research links alterations in 

neurotransmitter receptor and transporter expression patterns to psychiatric diseases28–31. Most 

psychotropic drugs manipulate the brain’s neurotransmission landscape and are, although their 

mechanisms of action are often incompletely understood, effective and reliable pillars in the 

treatment of psychiatric diseases32–35. However, there is no governing rule that ties 

neurotransmission to distinct aspects of cerebral dysfunction. Historical perspectives linking 

single neurotransmitters to mental illness36,37 have gradually shifted towards the understanding 

that clinical phenotypes can be associated with alterations in multiple neurotransmitter 

systems38–40. The study of receptor co-expression could thus provide novel avenues towards 

understanding the neurobiology of psychiatric diseases41–44. This leaves us with two main 

questions;  1) How is similarity in receptor fingerprints organized in the cortex and subcortical 

structures? and  2) How does similarity in receptor fingerprints relate to structural features of 

brain organization and different aspects of brain function?  

The whole-brain spatial distribution of neurotransmitter transporter and receptor molecule 

(NTRM) densities in humans can be measured using Positron-Emission Tomography (PET). 

Indeed, recent work used PET-derived NTRM density measurements to elucidate the role of 

different receptor profiles in mediating structure-function relationships and functional 

processing, providing novel insights into the role of neurochemical profiles in brain 

architecture45. However, the interrelationship of brain areas based on their neurochemical 

similarity profiles, and which organizational principles support neurotransmitters to convey 
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brain functionality, remain underexplored17. Here, we capture the interrelationship of brain 

areas based on their receptor fingerprints. We calculate the covariance network of 19 regional 

NTRM densities across 1200 subjects, which we term the ‘receptome’, from a dataset 

previously compiled by Hansen et al45. We first study how receptor similarity across the cortex 

and subcortical structures is spatially organized. For this, we employ an unsupervised 

dimensionality reduction technique to generate principal gradients, which are low-dimensional 

representations of the organizational axes in the cortical and subcortical receptome. Using these 

gradients, we identify NTRM distributions that drive regional receptor (dis)similarity. Several 

follow-up analyses shed light upon the relationship to organizational axes in structural 

connectivity (SC)46, Microstructural Profile Covariance (MPC)47 and resting-state functional 

connectivity (rsFC)48, as well as to term-based functional brain activation49 and radiological 

markers of disease50. Finally, we performed various analyses to evaluate robustness of our 

observations. 
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RESULTS 

Organization of the cortical receptome (Figure 1) 

To assess cortical receptor similarity, we leveraged a large publicly available dataset of PET-

derived NTRM densities, containing 19 different NTRM from a total of over 1200 subjects45. 

After parcellation51, we calculated a Spearman rank correlation matrix of parcel-level NTRM 

densities, the receptome (Fig. 1A). The receptome represents node-level interregional 

similarities in receptor fingerprints. We next employed principal gradient decomposition to 

delineate the main organizational axes of cortical receptor similarity (Fig. 1A, Methods). We 

identified three principal gradients, explaining 15%, 14% and 13% of variance, respectively 

(Fig. 1A). The first receptome gradient (RC G1) described an axis stretching between sensory-

motor regions and inferior temporal and occipital lobe. The second receptome gradient (RC 

G2) spanned between a temporo-occipital and a frontal anchor. Finally, the third receptome 

gradient (RC G3) was differentiated between the occipital cortex and the temporal lobe (Fig. 

1B).  

To determine which NTRM distributions drive the main axes of cortical receptor similarity, we 

performed Spearman rank correlations between a parcel’s associated gradient value and its 

receptor fingerprint, meaning the density of each receptor/transporter molecule in it (Fig. 1C). 

Note that the gradient value of a parcel is a measure of where on the gradient axis the parcel is 

located, from which similarity to parcels with similar values, and dissimilarity to parcels with 

dissimilar values, is inferred. Thus, a receptor that is most strongly expressed in parcels with 

negative values, while having weak expression in parcels with positive values, will be 

negatively correlated to the gradient. RC G1 was primarily driven by the anticorrelation 

between distributions of 5-HTT, 5-HT4, 5-HT2a and GABAa with the distributions of VAChT, 

H3, NAT and Α4Β2. RC G2 separated 5-HTT, DAT, NMDA, D1 and GABA distributions 

from α4β2, 5-HT1b, CB1, H3 and MU. RC G3 showed significant negative correlations to 

GABAa distributions and significant positive correlations to D1, 5-HT1a, CB1, MU, 5-HT4 

and VAChT. 
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Fig. 1. Organization of the cortical receptome. A) Analytic workflow of receptome principal gradient 

decomposition. Spearman rank correlation captures node-level similarity in chemoarchitectural composition, 

generating the receptome matrix. Next, to determine similarity between all rows of the receptome matrix, we used 

a normalized angle similarity kernel to generate an affinity matrix. Finally, we employ diffusion embedding, a 

nonlinear dimensionality reduction technique, to derive principal gradients of receptomic organization. B) 

Receptome gradients projected on the cortical surface. Top: First receptome gradient; Middle: Second receptome 

gradient; Bottom: Third receptome gradient. C) Spearman rank correlations of principal receptome gradients with 

individual NTRM densities. Top: First receptome gradient; Middle: Second receptome gradient; Bottom: Third 

receptome gradient. 

 

Organization of the subcortical receptome (Figure 2) 

After we delineated main axes of variation in cortical receptor similarity, we investigated how 

NTRM co-distribution is organized across subcortical structures. We selected the caudate 

nucleus, putamen, nucleus accumbens, pallidal globe, amygdala and thalamus as regions of 

interest, since they are well characterized as well as of reasonable size to be investigated by 

PET imaging. Due to different tracer uptake dynamics in the cortex and subcortical structures, 

we analyzed the subcortex separately from the cortico-cortical PET covariance. 
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Fig 2. Organization of the subcortical receptome. A) Hierarchical agglomerative clustering of NTRM densities 

in subcortical structures. aTHA: anterior thalamus; pTHA: posterior thalamus. B) Spearman rank correlations of 

the first subcortical principal receptome gradient with individual NTRM densities C) Principal receptome gradient 

decomposition of the subcortical receptome. Left: Percentage of variance explained by components following 

principal gradients decomposition. Middle: Distribution of values of the first principal gradient of the subcortical 

receptome across subcortical structures. CAU: caudate nucleus; PUT: putamen; NAc: accumbens nucleus; GP: 

pallidal globe; AMY: amygdala; THA: thalamus. Right: Subcortical projection of the first principal gradients of 

the subcortical receptome D) Principal gradients of the subcortico-cortical receptome projected to the cortical 

surface.  

First, we were interested in how receptor fingerprints differentiate subcortical structures, and 

which NTRM co-distributions drive this separation. We thus performed agglomerative 

hierarchical clustering on the z-scored mean NTRM density of all subcortical structures per 

hemisphere (Fig. 2A). We found that subcortical NTRM expression was largely symmetrical 

between hemispheres, as indicated by the immediate clustering of structures with their 

counterpart from the other hemisphere. The main hierarchical branch separated putamen, 

accumbens nucleus, caudate nucleus and pallidum from amygdala and thalamus. Putamen, 

accumbens nucleus and caudate nucleus make up the striatum, and the three structures 
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displayed high similarity in receptor fingerprints. We found thalamus and striatum to have 

considerable differences in NTRM co-expression patterns. α4β2, NAT, 5-HTT and NMDA 

showed strong co-expression in thalamus but not in striatum, while D1, D2, DAT, 5-HT4, 5-

HT6, M1 and VAChT were strongly co-expressed in striatum, but not in thalamus. 

After investigating individual receptor fingerprints, we analyzed receptor similarity in 

subcortical structures. We performed voxel-wise Spearman rank correlations of subcortical 

NTRM densities to construct a subcortical receptome. To discern how subcortical substructures 

can be reconstructed based on receptor similarity, we employed the Leiden community 

detection method52, a greedy optimization algorithm that opts to minimize variance within and 

maximize variance between communities. Subcortical receptome clustering exhibited high 

stability across the resolution parameter sample space (Fig. S1A). Receptomic clustering 

discerned three dominant communities, the first majorly capturing the striatal structures 

(putamen, caudate, NAc) and the pallidal globe, the second majorly capturing the thalamus, 

and the third majorly capturing the amygdala (Fig. S1A). We then used diffusion embedding 

to derive low-dimensional gradient embeddings of the subcortical receptome to discern its main 

organizational axes. The first subcortical receptome gradient (sRC G1) explained 23% of 

variance. It extended between the striatum (caudate nucleus, putamen) across the pallidal globe 

to the thalamus, with the amygdala being in the middle (Fig. 2C). Note that proximity of 

structures was not a major determinant of sRC G1 values, demonstrated by voxels of the 

caudate nucleus and thalamus that are located closely to each other but showed diverging sRC 

G1 values. The second gradient, explaining 17.5% of variance, and third gradient, explaining 

12% of variance, described a ventral-dorsal and medial-lateral trajectory, respectively (Fig. 

S1D, S1E). To determine the influence of different subcortical NTRM distributions on 

subcortical receptome gradients, we performed voxel-wise Spearman rank correlations 

between gradient values and receptor fingerprints. The first subcortical receptome gradient 

showed significant positive correlations to NAT, α4β2 and 5-HT2a densities, and significant 

negative correlations to 5-HT6, D1, M1, 5-HT4, D2, DAT, VAChT, H3 and mGluR5 

distributions (Fig. 2D).  

Last, we were interested in the relationship between the subcortical and cortical receptomes. 

We constructed a subcortico-cortical NTRM covariance matrix and subsequently applied 

diffusion embedding to delineate the principal gradients of subcortico-cortical receptor 

similarity (Fig. 2F). To quantify the overlap between cortical and subcortico-cortical main 
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organizational principles, we performed Spearman rank correlations between cortical and 

subcortico-cortical receptome gradients. The first and second cortical gradients correlated 

significantly with all subcortico-cortical receptome gradients, while the third cortical gradient 

only correlated significantly to the third subcortico-cortical gradient (Fig. S1C). 

 

Relationship of the cortical receptome to brain function and disease (Figure 3) 

After characterizing the cortical and subcortical receptomes, we next sought to investigate the 

relationship of receptor similarity to hallmarks of brain function and dysfunction. To dissect 

the relationship between cortical receptor similarity and brain function, we used term-based 

meta-analytical maps of functional brain activation. This approach associates a functional term 

with localized brain activity (e.g. ‘primary somatomotor’ is associated with activation in the 

precentral gyrus). Using the neurosynth database49, we calculated Spearman rank correlations 

between normalized activation maps and receptor similarity gradients (Fig. 3B). We selected 

activation maps based on a curated list of terms of interest to cover multiple dimensions of 

term-related functional activation. Briefly, we selected for a range of terms associated with 

unimodal (e.g. sensory-motor) to transmodal (e.g. information integration, emotion processing, 

social cognition) functionality, as well as for terms of neurological and psychiatric diseases 

(e.g. dementia). The full list can be found in Supplement L1. Negative correlations imply a 

relationship between a term-based functional activation mainly located in parcels with negative 

gradient values. RC G1 showed strong positive correlations with meta-analytical terms related 

to somato-motor function, followed by terms related to cognitive control and abstract terms 

(e.g. ‘illusion’, ‘insight’). Its strongest significant negative correlations were to terms related 

to visual function, memory and Theory of Mind. Functional decoding of RC G2 revealed a 

processing hierarchy from primary visual terms to terms of complex cognitive functions best 

subsumed under control, cognitive constructs, decision making, memory and (social) 

cognition, but also sensory-motor terms. Functional decoding of RC G3 revealed a 

differentiation of terms related to visual processing from terms related to auditory processing, 

social cognition and memory.  

To assess the role of the cortical receptome in dysfunctional brain states, we chose to compare 

receptome gradients to structural brain abnormalities in psychiatric and neurological disorders. 

We leveraged disease-related variations in cortical thickness, a radiological marker of 
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structural brain abnormalities, derived via a standardized multi-site effort50. Cortical thickness 

was quantified by Cohen’s d case-vs-control effect size and accessed through the ENIGMA 

toolbox53. We chose autism spectrum disorder (ASD)54, attention deficit hyperactivity disorder 

(ADHD)55, bipolar disorder (BPD)56, DiGeorge-syndrome (22q11.2 deletion syndrome) 

(DGS)57, epilepsy (EPS)58, major depressive disorder (MDD)59, obsessive compulsive disorder 

(OCD)60 and schizophrenia (SCZ)61 to cover a broad spectrum of diseases (Fig. 3C). 

Receptome gradients captured disease-specific cortical thickness alteration patterns. RC G1 

showed significant positive correlations to the cortical thickness profile of obsessive-

compulsive disorder, while RC G2 had significant negative correlations to cortical thickness 

alterations in bipolar disorder. Both OCD and BPD are primarily associated with cortical 

thinning, thus, cortical thickness in OCD is significantly reduced where RC G1 values are 

positive, and significant reductions in BPD are where RC G2 values are negative. RC G3 does 

not show significant associations with cortical disease profiles. (Fig. 3C).  
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Fig 3. Cortical receptome gradients in task-based functional activation and disorder. A) Cortical receptome 

gradients projected to the cortical surface. B) Functional decoding of cortical receptome gradients. Treemaps 

display positive and negative correlations of receptome gradients and term-based functional activation patterns. 

Rectangle sizes encode absolute correlation strength. Note that the coloring in all treemaps encodes the same 

correlation values, while rectangle sizes are better suited to compare the within-gradient relevance of terms. Left: 

RC G1; Middle: RC G2; Right: RC G3. C) Disease decoding of cortical receptome gradients. Surface plots: Effect 

size (Cohen’s d) of cortical thickness alterations in central nervous system disorders in patients vs controls. ASD: 
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Autism Spectrum Disorder; ADHD: Attention Deficit Hyperactivity Disorder; BPD: Bipolar Disorder; DGS: 

DiGeorge-Syndrome (22q11.2 deletion syndrome); EPS: Epilepsy; MDD: Major Depressive Disorder; OCD: 

Obsessive-Compulsive Disorder; SCZ: Schizophrenia. Bar plots: Spearman rank correlations of receptome 

gradients and cortical thickness alterations. Left: RC G1; Middle: RC G2; Right: RC G3.  

 

Interrelationship between the cortical receptome and structural, functional and 

cytoarchitectural organization (Figure 4) 

Finally, we investigated the relationship of cortical receptor similarity to other measures of 

whole-brain organization. As autoradiography studies connect receptor distributions to 

cytoarchitectural characteristics10, we studied the relationship of cortical receptomic 

organization to Microstructural Profile Covariance (MPC), an MRI-derived proxy measure of 

regional myelin content similarity that also reflects cytoarchitectural variations62, and a 

gradient of cytoarchitectural variation derived from the BigBrain project47,63 (BB G1). 

Additionally, to further investigate structural and functional relevance, we explored the 

relationships of cortical receptor similarity to diffusion MRI tractography-derived structural 

connectivity (SC), and functional MRI-derived resting-state functional connectivity (FC).  

We first chose to compare receptome gradients to gradients of SC, FC and MPC, reflecting 

principal organizational axes within these modalities. Due to the amount of variance the 

respective gradients explain, we focused on the first two principal gradients of SC and FC, and 

the first principal gradient of MPC (Fig. S2A). Additionally, we analyzed the relationship of 

receptome gradients to networks of functional connectivity (Fig. S2C)64. RC G1 showed 

strongest overlaps to SC G1 and FC G1, as these gradients shared either anterior-posterior or 

visual-to-somatomotor trajectories (Fig. 4A). Additional significant, but weaker correlations 

for RC G1 were to BB G1 and MPC G1, which represent the main axes of cortical 

cytoarchitectural similarity47, and FC G2, which separates unimodal from association 

cortices65. Functional network decoding revealed that RC G1 separates visuo-limbic from 

somatomotor cortices. Similar to the first receptome gradient, RC G2 correlated significantly 

to SC G1 and FC G1, while separating visuo-limbic from control networks. RC G3 showed the 

strongest correlations to SC G2, which separated occipital and temporal cortex. Further 

significant correlations were to FC G1, MPC G1 and BB G1. While there was a close 

relationship between visual and limbic networks in the first two receptome gradients, functional 

network decoding placed these networks on opposite ends on RC G3.  
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After finding overlaps in main organizational axes, we next investigated node-level similarities 

between the receptome and FC, SC and MPC. We performed row-wise correlations of the 

receptome matrix to each other aforementioned matrix, respectively. Taking SC as an example, 

this yielded one value per parcel expressing the similarity between a parcel’s receptomic 

relationship to every other parcel and its structural connectivity relationship to every other 

parcel (Fig. 4B). The resulting correlation coefficients expressed the strength of coupling 

between two measures. Generally,  coupling strength of the receptome to the aforementioned 

measures was found to decrease along a sensory-fugal gradient of laminar differentiation, an 

influential theoretical framework that attributes cognitive processing complexity to cortical 

areas using cytoarchitectural classes66. Average coupling strength across cytoarchitectural 

classes was significantly different across all metrics. RC-SC decoupling along the sensory-

fugal gradient (Kruskal-Wallis’ h=24.43, p < 0.001) was driven by significantly stronger 

coupling in idiotypic relative to heteromodal and paralimbic cortices (post-hoc Dunn’s test 

with Bonferroni correction p < 0.001). RC-FC coupling strengths in idiotypic cortices 

were significantly increased relative to unimodal, heteromodal and paralimbic cortices 

(h=16.68, p < 0.001; Dunn’s test p < 0.02). Last, RC-MPC decoupling across cytoarchitectural 

classes (h=9.16, p < 0.05) was primarily reflected by decreased coupling in heteromodal 

versus idiotypic regions (Dunn’s test p < 0.02). 

Our previous decoding results hint at a relationship between cortical hierarchy and receptomic 

characteristics. We thus aimed to analyze cortical receptomic heterogeneity in the context of 

cytoarchitectural classes66. To this end, we leveraged the Leiden community detection 

algorithm to discover cortical communities of receptor similarity. We observed that new 

communities primarily formed in the frontal cortex when sampling the parameter space, 

indicating more unique receptor fingerprints. To capture how stably receptomic communities 

recapitulate cytoarchitectural classes when increasing the number of receptomic communities 

detected, we developed the modular stability score (see Methods). A cytoarchitectural class 

that is largely covered by a single receptomic community and does not increasingly fracture 

with an increase in the overall number of communities has a high modular stability score. 

Overall, paralimbic cortices exhibited modular stability similar to idiotypic cortices, while 

heteromodal and unimodal regions were less stable (Fig. 2D). This suggests that idiotypic and 

paralimbic cortices show a more homogeneous receptomic profile, while heteromodal and 

unimodal cortices have a more diverse chemoarchitectural landscape. We made similar 

observations studying the relationship of receptomic communities to networks of resting-state 
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functional connectivity64, where visual, limbic and sensory-motor networks exhibited higher 

modular stability than the ventral and dorsal attention, control and default mode networks (Fig. 

S2C).  In further investigation through agglomerative hierarchical clustering of mean NTRM 

densities in functional networks, we found that dorsal and ventral attention, somato-motor and 

default networks were first combined into one cluster, before visual and finally limbic networks 

were merged to that cluster (Fig. S2D). This indicates more distinct chemoarchitectural profiles 

in limbic and visual networks with little overlap amongst each other. 
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Fig. 4. Cortical NTRM covariance. A) Heatmap of correlation strengths between cortical receptome gradients 

and FC, SC and MPC gradients and the BigBrain gradient (BB G1). The color scheme is scaled to absolute values. 

Gradients are displayed on the cortical surface next to their respective rows and columns B) Coupling of the 

cortical receptome to SC, FC and MPC. Left: Projection of coupling strengths on the cortical surface. Right: 

Coupling strengths by cytoarchitectural classes. C) Mesulam cytoarchitectural classes projected to the cortical 

surface D) Modular stability of receptome similarity clustering in Mesulam cytoarchitectural classes, reflecting 

the heterogeneity of receptomic profile. 

Robustness analysis 

Owing to the low spatial resolution of PET NTRM imaging, we chose to present our main 

findings in the coarse resolution of 100 Schaefer parcels. To assess validity, we replicated our 

analyses in Schaefer parcellations 200-40051. Selecting a finer granularity than 400 parcels was 

not reasonable due to the limited resolution of PET images67. Surface projections of receptome 

gradients showed good replicability across parcellations (Fig. S3A-D), although an increase in 

parcellation granularity shifted one extreme in RC G1 and RC G2 towards the temporal poles. 

Notably, for granularities of 200 and 400 parcels, there is a component ranking switch meaning 

that the pattern captured by RC G1 in the main results is captured by RC G2 in the replication, 

and vice-versa. As gradients of rsFC, SC and MPC also change as a function of parcellation 

granularity, we repeated the correlation analyses across different parcellations. The shift 

towards the temporal pole in RC G1 and G2 lead to a clearer separation between one receptome 

gradient that strongly correlated to SC G1, and another one that significantly correlated to FC 

G2 in parcellation granularities 200 and 300 (Tables S2A-D). Additionally, to ensure 

robustness of hierarchical clustering results of subcortical and cortical NTRM densities, we 

replicated the analysis using different linkage methods (Fig. S4, Fig. S5). 
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DISCUSSION 

In the present work, we set out to investigate the organizational principles of neurotransmitter 

transporter and receptor similarity in the human cerebral cortex and subcortex. Additionally, 

we aimed to dissect the functional relevance of receptor similarity and its relationship to other 

measures of brain organization. Thus, we studied the connection of cortical receptor similarity 

to markers of brain function and disease, and explored its relationship to the structural, 

functional and cytoarchitectural organization of the cortex. In sum, we introduce and 

thoroughly characterize receptor similarity as an additional layer of macro-scale brain 

architecture. Leveraging this architectural layer, we present novel insights into structure-

function relationships in the human brain. 

A cornerstone technique of our study was the use of a nonlinear dimensionality reduction 

technique to derive principal gradients of the receptome, a matrix of regional receptor 

similarity. The first receptome gradient, RC G1, describes an axis stretching between sensory-

motor regions and inferior temporal and occipital lobe, and differentiates the density profiles 

of 5-HT2a, 5-HT4, GABAa, 5-HTT and M1 from VAChT, H3, α4β2 and NAT. On the 

organizational level, the first axis of cortical receptor similarity combines key features of 

structural and functional organization. RC G1 established similar relationships between 

cortices as the organization of physical connections, captured by SC G1, which is likely driven 

by the distance-dependent nature of cortical wiring68. It also captures meaningful variation in 

cytoarchitecture, exemplified by correlations MPC G1 and BB G1, and functional organization, 

signified by correlations to FC G1 and FC G2, although these correlations are not consistent 

across parcellation granularities. The anchors of RC G1 on the one end are involved in 

somatomotor and control functions, and visual, memory and socio-cognitive functions (Theory 

of Mind) on the other end, as revealed by term-based activation decoding. Finally, RC G1 

correlates significantly with cortical thickness alterations patterns associated with obsessive-

compulsive disorder. Taken together, the first receptome gradient can be summarized to 

primarily capture the differentiation of the somato-motor network from the remaining cortex, 

with the most pronounced differences outlined against visual and limbic cortices. This 

dissimilarity is likely linked on one side by the differences in expression patterns of 5-HTT, 5-

HT4, 5-HT2a, GABAa and M1, which are predominantly expressed in the temporal and 

occipital cortices. On the other side, NAT, α4β2, H3 and VAChT are predominantly expressed 

pericentrally and in the frontal cortex. RC G1 also connects these receptor co-expression 
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profiles to morphological changes in obsessive-compulsive disorder, where the relationship it 

outlines to serotonin signaling is particularly interesting. Selective Serotonin Reuptake 

Inhibitors (SSRIs) target 5-HTT and are the preferred pharmacological intervention in the 

treatment of OCD34,69. Genetically, 5-HT2a and 5-HTT variants have been identified as risk 

factors for the development of obsessive-compulsive disorder70, and OCD patients showed in 

peripheral 5-HTT and 5-HT2a functionality71. Furthermore, there is emerging evidence that 

GABA signaling abnormalities are related to the development of obsessive-compulsive 

disorder44, although conclusive evidence is lacking.  

The second gradient of receptor similarity, RC G2, spans between temporo-occipital and 

frontal anchors, separating visual and limbic networks from attention and control networks. 

This gradient separates 5-HTT, DAT, NMDA, D1 and GABAa from MU, H3, CB1, 5-HT1b 

and α4β2. It correlates significantly to the first gradients of structural and functional 

connectivity. Term-based functional activation decoding reveals that RC G2 spans between 

cortices of primary visual function to cortices involved in complex cognitive functions such as 

control, abstract constructs, decision making, memory and (social) cognition, but also 

(pre)motor areas. Moreover, it captures cortical morphological alterations associated with 

bipolar disorder, as shown by its correlation to cortical thickness alteration patterns. Our results 

thus indicate that RC G2 captures variation in receptor similarity that is best summarized as 

separating unimodal from transmodal cortices. The relevance of NTRM co-expression patterns 

to differentiate sensory from association areas is in line with recent work that employed 

principal component analysis to autoradiography-derived NTRM densities72. This 

correspondence across methodological approaches is especially important, since PET imaging 

is of considerably lower resolution and cannot pick up on cortical layering as a pivotal 

determinant of receptor and transporter expression10. Furthermore, RC G2 establishes a link 

between bipolar disorder cortical thinning patterns and receptor fingerprints, notably to 5-HTT, 

DAT and NMDA co-expression. These receptors have been implicated in genesis and treatment 

of bipolar disorder73–76. As both RC G1 and RC G2 outline meaningful relationships between 

receptor expression profiles and disease morphology, receptor similarity could provide novel 

perspectives in the understanding of the neurobiological basis underlying psychiatric diseases. 

Investigating receptor co-expression patterns rather than focusing on single molecules could 

shed light on the enigmatic mechanism of actions of psychotropic drugs, especially when 

taking into account that most take effect through binding multiple types and classes of receptor 

molecules77–79. 
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Lastly, the third receptome gradient, RC G3, is anchored between the occipital and temporal 

cortices. It separates GABAa expression patterns from D2, 5-HT1a, CB1, MU, 5-HT4 and 

VAChT. Its relationship to other modes of brain organization is best described by its significant 

correlation to the second gradient of structural connectivity. It also significantly correlates to 

the first gradient of functional connectivity, and gradients of cytoarchitectural variation. Term-

based decoding of brain activation reveals that it separates cortices involved in visual processes 

from cortices involved in auditory processes. RC G3 separates visual from limbic cortices, 

which differentiates it from the two aforementioned receptome gradients, where limbic and 

visual cortices are closely aligned. This separation is also described by SC G2. In general, 

gradient-based analysis indicates that visual and limbic cortices are relevant drivers of cortical 

receptor similarity axes, as they are polar at either one (RC G1 and G2) or anchors of a gradient 

(RC G3). Hierarchical clustering of average NTRM densities separate the both the visual and 

limbic network from other functional networks, mirroring clustering results obtained via 

autoradiography80, and indicating more unique chemoarchitectural compositions in these 

regions. Summarizing the interrelationships of receptome gradients and brain structure and 

function, our results suggest that receptor similarity is organized in a fashion that combines 

organizational principles of cytoarchitectural, structural and functional differentiation, 

although interrelationships to structural and functional connectivity and cytoarchitectural 

variation present differently across parcellation granularities. Incorporating receptor similarity 

as a novel layer in studies of structure-function relationships might thus be crucial in discerning 

a governing set of rules in hierarchical brain architecture81.  

Analysis of architectural correspondence on the node-level showed significant decoupling of 

SC and FC from RC in particular in heteromodal and paralimbic regions, whereas primary 

areas showed strongest coupling. This suggests that both structure-function as well as structure-

structure relationships dissociate in regions conveying more abstract cognitive processes such 

as attention, cognitive control, and memory82–85 . Previous work has shown that structural and 

functional connectivity are more closely linked in unimodal cortices and exhibit gradual 

decoupling towards transmodal cortices, a phenomenon that is hypothesized to be instrumental 

for human flexible cognition86–88. Replicating this observation for receptor similarity suggests 

that diversification of receptor fingerprints may be  equally important to enable flexible 

cognitive functions1. We corroborate this hypothesis through clustering analysis, where we 

found that functional networks involved in higher-order cognitive functions and heteromodal 

cortices show greater receptomic diversity, meaning a wider spread of receptor fingerprints 
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represented in them. This is consistent with the observation that associative areas show high 

segregation into sub-areas based on their receptor architecture89. High receptomic diversity 

might be a disease vulnerability factor, as recent work has shown that cortical thickness 

alterations across different diseases are most pronounced in heteromodal cortices90. Notably, 

our results exemplify a chemoarchitectural divide between heteromodal and paralimbic 

cortices, as the latter show similar receptor co-distribution homogeneity to idiotypic cortices. 

A mechanistic explanation might be that, next to memory and emotion91, olfactory areas are 

also located in paralimbic cortices, which adds a sensory component to their function92. 

Additionally, recent work has indicated a differentiation  between heteromodal and  paralimbic 

regions, where the former show decreased heritability and  cross-species similarity88. We thus 

argue for a more nuanced differentiation of paralimbic from heteromodal cortices, as increasing 

evidence of architectural differences challenges viewing their relationship purely through a 

unimodal-to-transmodal lens. 

Finally, our analysis of subcortical regions provides novel insights into the chemoarchitecture 

of subcortical structures and their projections to the cortex. Hierarchical agglomerative 

clustering of NTRM fingerprints reveals a meaningful separation of subcortical structures 

based on their functionality, exemplified by the differentiation of striatal structures (putamen, 

accumbens and caudate nuclei) and pallidal globe from thalamus. Striatum and pallidal globe 

constitute the basal ganglia, which, together with the thalamus, form the cortico-basal ganglia-

thalamic loop. Here, basal ganglia are implicated in motor functions and complex signal 

integration, while the thalamus orchestrates the communication between large-scale cortical 

networks93–95. This functional divide is not only reflected in receptor fingerprints, but also in 

receptomic Leiden clustering and principal gradient decomposition, where the first principal 

subcortical receptomic gradient describes a striato-thalamic axis. We thus expand a 

chemoarchitecturally-driven structure-function relationship observed in the cortex15–17,80 to 

subcortical structures. Furthermore, we observe partial similarity in receptor co-expression 

patterns driving subcortical and cortical receptor similarity. While differences in co-expression 

patterns of 5-HT4 and M1 from α4β2 and NAT seem to be relevant in both cortex and 

subcortex, the two areas differ in other relevant co-expression patterns. For example, 5-HTT 

and α4β2 distributions in the cortex are prominently anticorrelated but show similar 

distributions in the subcortex. Irrespective of individual receptor co-expressions, a general 

similarity in subcortical and cortical receptome organization is indicated by overlapping 

cortical and subcortico-cortical receptome gradients. Considering similarities and differences 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

21 

in receptor fingerprints could be important when investigating the modulating influence of 

subcortico-cortical projections on functional brain networks 95,96.  

It is of note that the resource we used to comprise the receptome, while extensive, does not 

contain all cerebral neurotransmitters. Important molecules such as the α2 noradrenaline 

receptor, which is an important drug target in the central nervous system97,98, are missing from 

our dataset. Our findings must be viewed with the incompleteness of our primary resource in 

mind. Furthermore, while PET scans were performed on healthy participants, information on 

medication and medical history was not available for all participants. Thus, we cannot control 

for potential medication or disease effects. Additionally, the comparatively low spatial 

resolution of PET imaging is exacerbated by the group-average nature of our dataset. This 

especially limits the ability to investigate subcortical structures. For example, the thalamus 

consists of more than 60 nuclei with distinct cellular composition and diverging functionality99, 

important properties we cannot pick up on. Other important subcortical structures, e.g. the 

subthalamic nuclei, cannot be confidently studied due to their size, limiting our whole-brain 

perspective to larger nuclei. A more detailed analysis of the subcortical receptome will require 

methods with higher resolution100. Additionally, due to the normalization of tracer uptake in 

PET images to the cerebellum, our resource also does not permit the analysis of receptor 

similarity in the cerebellar cortex, limiting our analyses to the telencephalon. 

In sum, our work outlines the organization of receptor similarity across the cortex and 

subcortical structures, yielding an additional layer of brain organization that has meaningful 

connections to brain structure and function in both health and disease. Incorporating this layer 

in future studies may provide important steps towards answering the question of how flexible 

cognition is supported by its physical substrates. Meeting this ultimate goal will provide new 

avenues to understand, treat and prevent psychiatric diseases and lessen both the personal and 

societal burden posed by mental illnesses. 
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MATERIALS & METHODS 

NTRM data generation 

To investigate cortical and subcortical NTRM covariance, we made use of an open-access dataset 

described previously45. The associated receptor/transporters, tracers, number of healthy participants, 

ages, and original publications, for which we refer to full methodological details, are listed in Table S1. 

In brief, images were acquired in healthy participants, using best practice imaging protocols 

recommended for each radioligand101 and averaged across participants before being shared. Images 

were registered to the MNI152 template (2009c, asymmetric). No medication history of participants 

was available. The accuracy and validity of receptor density as derived from the PET images has been 

confirmed using autoradiography data, and mean age of participants was shown to have negligible 

influence on tracer density values45. The cortical receptor density maps were parcellated to 100, 200, 

300 and 400 regions based on the Schaefer parcellation51, averaging the intensity values per parcel. 

Subcortical NTRM densities were extracted using a functional connectivity-derived topographic 

atlas102. For tracers where more than one study was included, a weighted average was generated. This 

resulted in a parcel x 19 matrix of format (parcel x receptor). The intensity values were z-score 

normalized per tracer. We then performed parcel x parcel Spearman rank correlation of receptor 

densities, yielding the receptome matrix of regional receptor similarity. 

Principal gradient decomposition 

To assess the driving axes of cortical and subcortical covariance organization, we employed principal 

gradient decomposition65 using the brainspace python package103. To calculate principal gradients of 

cortical NTRM covariance, rsFC and MPC, the full matrix was used. SC gradients were separately 

calculated for intrahemispheric connections in both hemispheres, using procrustes analysis to align the 

gradients to increase comparability, and subsequently concatenated. To calculate the principal 

gradients, the respective input matrices were thresholded at 90% and, using a normalized angle 

similarity kernel, transformed into a square non-negative affinity matrix. We then applied diffusion 

embedding104, a nonlinear dimensionality reduction technique, to extract a low-dimensional embedding 

of the affinity matrix. Diffusion embedding projects network nodes into a common gradient space, 

where their distance is a function of connection strengths. This means that nodes closely together in this 

space display either many supra-threshold or few very strong connections, while nodes distant in 

gradient space display weak to no connections. In diffusion embedding, a parameter α controls the 

influence of sampling density on the underlying manifold (where α = 0 equals no influence and α = 1 

equals maximal influence). Similar to previous work65, we set α to 0.5 to retain global relations in the 

embedded space and provide robustness to noise in the original matrix. 
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Structural, functional and microstructural profile covariance data generation 

To contextualize receptor similarity organization, we aimed to compare it to structural connectivity 

(SC), resting state functional connectivity (FC) and Microstructural Profile Covariance (MPC). The 

diversity pertaining to age and sociodemographic variables of the subjects in the PET dataset made the 

selection of matched reference subjects for FC, SC and MPC analysis infeasible. Instead, we opted for 

the construction of group-consensus FC, SC and MPC matrices collected from the same healthy 

individuals, obtained and processed in a reproducible pipeline to ultimately provide comparability of 

the receptome to SC, FC and MPC measures of reference nature. We thus chose the Microstructure 

Informed Connectomics (MICA-MICs) dataset105 to obtain FC, SC and MPC data. MRI data was 

acquired at the Brain Imaging Centre of the Montreal Neurological Institute and Hospital, using a 3T 

Siemens Magnetom Prisma-Fit equipped with a 64-channel head coil, from 50 healthy young adults 

with no prior history of neurological or mental illnesses (23 women; 29.54±5.62 years). No medication 

history was available. For each participant, (1) a T1-weighted (T1w) structural scan, (2) multi-shell 

diffusion-weighted imaging (DWI), (3) resting-state functional MRI (rs-fMRI), and (4) a second T1-

weighted scan, followed by quantitative T1 (qT1) mapping. Image preprocessing was performed via 

micapipe, an open-access processing pipeline for multimodal MRI data106. Individual functional 

connectomes were generated by averaging rs-fMRI time series within cortical parcels and cross-

correlating all nodal time series. Individual structural connectomes were defined as the weighted count 

of tractography-derived whole-brain streamlines. To estimate individual microstructural profile 

covariance, 14 equivolumetric surfaces were generated to sample vertex-wise qT1 intensities across 

cortical depths, and subsequently averaged within parcels. Parcel-level qT1 intensity values were cross-

correlated using partial correlations while controlling for the average cortical intensity profile. The 

resulting values were log-transformed to obtain the individual MPC matrices47. 

To generate the group-average matrix of each modality, precomputed and pre-parcellated matrices of 

50 individual subjects were used. As no PET data was available for the medial wall, the rows and 

columns representing it in all SC, FC and MPC matrices were discarded. For SC and FC matrices 

additionally, rows and columns containing values for subcortical regions were discarded as well, as no 

analysis of subcortical SC and FC was intended. To generate the group-consensus MPC matrix, parcel 

values across the subjects were averaged. To generate the group-consensus FC matrix, the subject 

matrices underwent Fisher’s r-to-z transformation, and subsequently, parcel values across the subjects 

were averaged. To generate the group-consensus SC matrix, individual matrices were log-transformed 

and parcel values across subjects were averaged. Afterwards, we applied distance-dependent 

thresholding to account for the over-representation of short-range and under-representation of long-

range connections in non-thresholded group-consensus SC matrices107, and the resulting thresholded 

matrix was used in subsequent analyses. 
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Coupling analysis 

To investigate the coupling between receptor similarity and FC, SC and MPC, we performed row-wise 

Spearman rank correlation analyses of the non-zero elements of the respective matrices. 

Leiden clustering 

To evaluate whether receptor similarity intrinsically structures the cortical surface and subcortical 

structures, we applied the Leiden clustering algorithm52. The Leiden algorithm is a greedy optimization 

method that aims to maximize the number of within-group edges and minimize the number of between-

group edges, with the resulting network modularity being governed by the resolution parameter ɣ. To 

incorporate anticorrelations, we used a negative-assymetric approach, meaning that we aimed to 

maximize positive edge weights within communities and negative edge weights between communities. 

To search the feature space, we chose a ɣ range of 0.5 to 10 in increments of 0.05 for cortical data, 

calculating 1000 partition solutions per ɣ. For subcortical structures, we chose a ɣ range of 1 to 10 in 

increments of 0.5, calculating 250 partitions per ɣ. To assess partition stability, we calculated the z-rand 

score for every partition with every other partition per ɣ value and chose the partition with the highest 

mean z-rand score, indicating highest similarity to all other partitions for the given ɣ108,109. Additionally, 

we calculated the variance of z-rand scores between partitions per ɣ. A high mean z-rand score and a 

low z-rand score variance indicated a stable partition solution. 

Modular stability 

To assess the overlap of cortical partitions derived from rsFC and receptomic clustering, we developed 

the modular stability score. The modular stability score quantifies to what degree functional networks 

break up into different receptomic communities with an increased receptomic network modularity. It is 

calculated as 𝑃𝑚𝑎𝑥 × (
1

𝑃𝑖𝑛 ÷ 𝑃𝑡𝑜𝑡
) ×  𝑠, where Pmax is the biggest single partition in a network, Pin is 

the number of partitions inside the network, Ptot is the total number of partitions, and s is the network 

size in percent. 

Meta-analytic decoding 

To assess the functional loadings of principal receptome gradients, we performed correlation analyses 

with meta-analysis derived terms of brain activation from the neurosynth database49. We parcellated 

pre-computed activation maps supplied in the brainstat toolbox110 and correlated the term-specific 

activation patterns with principal receptome gradient values, resulting in a total of 3328 values of 

gradient-term correlations, which were subsequently tested for statistical significance. We then 

extracted correlation strengths of terms that cover topics from unimodal to transmodal functionality, as 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

25 

well as neurological and psychiatric diseases. A full list of terms can be found in (List supplement). In 

cases where redundancy was present (e.g. “disorder asd” and “autism spectrum”), the strongest 

correlating version of the term was selected.  

Disorder impact 

To assess the relationship between principal receptome gradients and various neurological and 

psychiatric diseases, we used publicly available multi-site summary statistics of cortical thinning 

published by the ENIGMA Consortium50. Covariate-adjusted case-vs-control differences, denoted by 

across-site random-effects meta-analyses of Cohen’s d-values for cortical thickness, were acquired 

through the ENIGMA toolbox python package53. Multiple linear regression analyses were used to fit 

age, sex, and site information to cortical thickness measures. Before computing summary statistics, raw 

data was preprocessed, segmented and parcellated according to the Desikan-Killiany atlas in FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu) at each site and according to standard ENIGMA quality control 

protocols (see http://enigma.ini.usc.edu/protocols/imaging-protocols). To assess a diverse range of 

cerebral illnesses, we included eight diseases in our analysis: autism spectrum disorder (ASD)54, 

attention deficit hyperactivity disorder (ADHD)55, bipolar disorder (BPD)56, DiGeorge-syndrome 

(22q11.2 deletion syndrome) (DGS)57, epilepsy (EPS)58, major depressive disorder (MDD)59, obsessive 

compulsive disorder (OCD)60 and schizophrenia (SCZ)61. Sample sizes ranged from 1,272 (ADHD) to 

9,572 (SCZ). Summary statistics were derived from adult samples, except for ASD, where all age ranges 

were used. 

Hierarchical clustering 

To discern a similarity hierarchy of subcortical structures based on mean NTRM density, we performed 

agglomerative hierarchical clustering. Initially, a set of n samples consists of m clusters, where m=n. In 

an iterative approach, the samples that are most similar are combined into a cluster, where after each 

iteration, there are m - # iteration clusters111. This process is repeated until m = 1. We use euclidean 

distance to assess the distance between clusters, and use the WPGMA method to select the closest pair 

of subsets112. 

Null models 

Assessment of statistical significance in brain imaging data may be biased when not accounting for 

spatial autocorrelation of brain imaging signals113,114. To generate permuted brain maps that preserve 

spatial autocorrelation in parcellated data, we resorted to variogram matching (VGM)115. Here, we 

randomly shuffle the input data, and then apply distance-dependent smoothing and rescaling to recover 

spatial autocorrelation. To assess the significance when comparing surface-projected data, we applied 
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spin permutation113 to generate randomly permuted brain maps by random-angle spherical rotation of 

surface-projected data points, which preserves spatial autocorrelation. Parcel values that got rotated into 

the medial wall, and values from the medial wall that got rotated to the cortical surface, were 

discarded116. In each approach, we generated 1000 permuted brain maps. 

 

Data availability 

All data and software used in this study is openly accessible. PET data is available at 

https://github.com/netneurolab/hansen_receptors. FC, SC and MPC data is available at 

https://portal.conp.ca/dataset?id=projects/mica-mics. ENIGMA data is available through 

enigmatoolbox (https://github.com/MICA-MNI/ENIGMA). Meta-analytical functional activation data 

is available through brainstat (https://github.com/MICA-MNI/BrainStat). The code used to perform the 

analyses can be found at https://github.com/CNG-LAB/cngopen/receptor_similarity.  
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Fig. S1: Subcortical receptome. A) Leiden clustering of the subcortical receptome. Left: Mean and variance of 

z-rand scores across Leiden algorithm partition resolutions. Note that the clustering results are very stable across 

gammas. Right: Distribution of a stable partition at gamma=2.5 across subcortical structures. B) Projection of a 

stable partition at gamma=2.5 to subcortical structures. C) Spearman rank correlation of subcortico-cortical to 

cortical receptome gradients. 
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D) Principal receptome gradient decomposition of the subcortical receptome. Left: Subcortical projection of the 

second principal gradient of the subcortical receptome. Middle: Distribution of sRC G2 values across subcortical 

structures. Right: Spearman rank correlations of sRC G2 values with individual NTRM densities. E) Principal 

receptome gradient decomposition of the subcortical receptome. Left: Subcortical projection of the third principal 

gradient of the subcortical receptome. Middle: Distribution of sRC G3 values across subcortical structures. Right: 

Spearman rank correlations of sRC G3 values with individual NTRM densities. 
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Fig. S2. Contextualization of gradients in hierarchical brain organization. A) Variance explained by principal 

gradient decomposition. Left: MPC; Middle: FC; Right: SC B) Distribution of RC G1 (top), RC G2 (middle) and 

RC G3 (bottom) values across functional networks C) Modular stability of receptome similarity clustering in 

functional networks D) Hierarchical clustering, using euclidean distance and the WPGMA algorhithm, of NTRM 

densities in functional networks. 
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Fig. S3. Robustness of receptome gradients and functional decoding. Robustness of principal receptome 

gradient decomposition across different parcellation granularities. Left: RC G1, RC G2 and RC G3 (top-to-

bottom) projected on the cortical surface. Middle: Variance explained by principal gradient decomposition. Right: 

Receptome matrix. A) 100 parcels, B) 200 parcels, C) 300 parcels, D) 400 parcels. E) Squared Spearman rank 

correlation coefficients between neurosynth terms-receptome gradient values associations. 
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Fig. S4. Robustness of agglomerative hierarchical clustering - subcortex. Replication of agglomerative 

hierarchical clustering of average NTRM densities in subcortical structures, using euclidean distance and different 

linkage methods. 
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Fig. S5. Robustness of agglomerative hierarchical clustering - cortex. Replication of agglomerative 

hierarchical clustering of NTRM densities in functional networks, using euclidean distance and different linkage 

methods. 
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NTRM  Neurotransmitter Tracer Measure N Age References 

D1 dopamine [11C]SCH23390 BPND 13 33 ± 13 
Kaller et al., 

2017117 

D2 dopamine [11C]FLB-457 BPND 37 
48.4 ± 
16.9 

Smith et al., 

2019118,119 

D2 dopamine [11C]FLB-457 BPND 55 32.5 ± 9.7 
Sandiego et al., 

2015118–122 

DAT dopamine [123I]-FP-CIT SUVR 174 61 ± 11 
Dukart et al., 

2018123 

NET norepinehprine [11C]MRB BPND 77 33.4 ± 9.2 
Ding et al., 

2010124–127 

5-HT1A serotonin [11C]WAY-100635 BPND 36 26.3 ± 5.2 
Savli et al., 

2012128 

5-HT1B serotonin [11C]P943 BPND 65 33.7 ± 9.7 
Gallezot et al., 

2010129–135 

5-HT1B serotonin [11C]P943 BPND 23 28.7 ± 7.0 
Savli et al., 

2012128 

5-HT2A serotonin [11C]Cimbi-36 Bmax 29 22.6 ± 2.7 
Beliveau et al., 

201718 

5-HT4 serotonin [11C]SB207145 Bmax 59 25.9 ± 5.3 
Beliveau et al., 

201718 

5-HT6 serotonin [11C]GSK215083 BPND 30 36.6 ± 9.0 

Radhakrishnan 
et al., 

2018136,137 

5-HTT serotonin [11C]DASB Bmax 100 25.1 ± 5.8 
Beliveau et al., 

201718 

α4β2 acetylcholine [18F]flubatine VT 30 
33.5 ± 
10.7 

Hillmer et al., 

2016138,139 

M1 acetylcholine [11C]LSN3172176 BPND 24 
40.5 ± 
11.7 

Naganawa et 

al., 2021140 

VAChT acetylcholine [18F]FEOBV SUVR 4 37 ± 10.2 

PI: Lauri 
Tuominen & 
Synthia 
Guimond 

VAChT acetylcholine [18F]FEOBV SUVR 18 66.8 ± 6.8 
Aghourian et 

al., 2017141 

VAChT acetylcholine [18F]FEOBV SUVR 5 68.3 ± 3.1 
Bedard et al., 

2019142 

NMDA glutamate [18F]GE-179 VT 29 
40.9 ± 
12.7 

Galovic et al., 

2021143–145 

mGluR5 glutamate 
[11C]ABP688 BPND 

73 
19.9 ± 
3.04 

Smart et al., 

2019146 

mGluR5 glutamate 
[11C]ABP688 BPND 

22 
67.9 ± 9.6 

PI: Pedro Rosa-
Neto & Eliane 
Kobayashi 

mGluR5 glutamate 
[11C]ABP688 BPND 

28 
33.1 ± 
11.2 

DuBois et al., 

2016147 

GABAa GABA 
[11C]flumazenil Bmax 

16 
26.6 ± 8 

Nørgaard et al., 

202119 

H3 histamine 
[11C]GSK189254 VT 

8 
31.7 ± 9.0 

Gallezot et al., 

2017148 

CB1 cannabinoids 
[11C]OMAR VT 

77 
30.0 ± 8.9 

Normandin et 

al., 2015149–152 

MU opioid 
[11C]carfentanil BPND 

204 
32.3 ± 
10.8 

Kantonen et al., 

2020153 
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Table S1: Neurotransmitter receptors and transporters included in analyses. BPND = non-displaceable 

binding potential; VT = tracer distribution volume; Bmax = density (pmol/ml) converted from binding potential 

or distributional volume using autoradiography-derived densities; SUVR = standard uptake value ratio. 

Neurotransmitter receptor maps without citations refer to unpublished data. Table adapted from Hansen et al45 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

38 

REFERENCES 

 

1. Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking Structure and Function 

in Macroscale Brain Networks. Trends Cogn. Sci. 24, 302–315 (2020). 

2. Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien 

dargestellt auf Grund des Zellenbaues. (Barth, 1909). 

3. Economo, C. von, Koskinas, Georg N. ,. Die Cytoarchitektonik der Hirnrinde des 

erwachsenen Menschen. (1925). 

4. Vogt, C. & Vogt, O. Allgemeine ergebnisse unserer hirnforschung. vol. 21 (JA Barth, 

1919). 

5. Broca, P. Remarques sur le siège de la faculté du langage articulé, suivies d’une 

observation d’aphémie (perte de la parole). Bull. Memoires Soc. Anat. Paris 6, 330–357 

(1861). 

6. Wernicke, C. Der aphasische Symptomencomplex: eine psychologische Studie auf 

anatomischer Basis. (Cohn., 1874). 

7. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. 

J. Neurol. Neurosurg. Psychiatry 20, 11 (1957). 

8. Douglas, R. J., Mahowald, M., Martin, K. A. C. & Stratford, K. J. The role of synapses in 

cortical computation. J. Neurocytol. 25, 893–911 (1996). 

9. Eickhoff, S. B., Rottschy, C. & Zilles, K. Laminar distribution and co-distribution of 

neurotransmitter receptors in early human visual cortex. Brain Struct. Funct. 212, 255–

267 (2007). 

10. Zilles, K. & Amunts, K. Receptor mapping: architecture of the human cerebral cortex. 

Curr. Opin. Neurol. 22, 331–339 (2009). 

11. Zilles, K. & Palomero-Gallagher, N. Cyto-, Myelo-, and Receptor Architectonics of the 

Human Parietal Cortex. NeuroImage 14, S8–S20 (2001). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

39 

12. Eickhoff, S. B., Rottschy, C., Kujovic, M., Palomero-Gallagher, N. & Zilles, K. 

Organizational Principles of Human Visual Cortex Revealed by Receptor Mapping. 

Cereb. Cortex N. Y. NY 18, 2637–2645 (2008). 

13. Zilles, K., Palomero-Gallagher, N. & Schleicher, A. Transmitter receptors and functional 

anatomy of the cerebral cortex. J. Anat. 205, 417–432 (2004). 

14. Zilles, K. et al. Architectonics of the human cerebral cortex and transmitter receptor 

fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur. 

Neuropsychopharmacol. 12, 587–599 (2002). 

15. Morosan, P., Schleicher, A., Amunts, K. & Zilles, K. Multimodal architectonic mapping 

of human superior temporal gyrus. Anat. Embryol. (Berl.) 210, 401–406 (2005). 

16. Dehaene, S., Hauser, M. D., Duhamel, J.-R. & Rizzolatti, G. From monkey brain to 

human brain: A Fyssen foundation symposium. (MIT press, 2005). 

17. Zilles, K., Bacha-Trams, M., Palomero-Gallagher, N., Amunts, K. & Friederici, A. D. 

Common molecular basis of the sentence comprehension network revealed by 

neurotransmitter receptor fingerprints. Cortex 63, 79–89 (2015). 

18. Beliveau, V. et al. A High-Resolution In Vivo Atlas of the Human Brain’s Serotonin 

System. J. Neurosci. 37, 120–128 (2017). 

19. Nørgaard, M. et al. A high-resolution in vivo atlas of the human brain’s benzodiazepine 

binding site of GABAA receptors. NeuroImage 232, 117878 (2021). 

20. Malén, T. et al. Atlas of type 2 dopamine receptors in the human brain: Age and sex 

dependent variability in a large PET cohort. NeuroImage 255, 119149 (2022). 

21. Forstmann, B. U., de Hollander, G., van Maanen, L., Alkemade, A. & Keuken, M. C. 

Towards a mechanistic understanding of the human subcortex. Nat. Rev. Neurosci. 18, 

57–65 (2017). 

22. Shine, J. M., van den Brink, R. L., Hernaus, D., Nieuwenhuis, S. & Poldrack, R. A. 

Catecholaminergic manipulation alters dynamic network topology across cognitive 

states. Netw. Neurosci. 2, 381–396 (2018). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

40 

23. Alavash, M. et al. Dopaminergic modulation of hemodynamic signal variability and the 

functional connectome during cognitive performance. NeuroImage 172, 341–356 

(2018). 

24. Tagliazucchi, E. et al. Increased Global Functional Connectivity Correlates with LSD-

Induced Ego Dissolution. Curr. Biol. 26, 1043–1050 (2016). 

25. Shine, J. M. Neuromodulatory Influences on Integration and Segregation in the Brain. 

Trends Cogn. Sci. 23, 572–583 (2019). 

26. Zarkali, A. et al. Organisational and neuromodulatory underpinnings of structural-

functional connectivity decoupling in patients with Parkinson’s disease. Commun. Biol. 

4, 1–13 (2021). 

27. Uddin, L. Q. Complex relationships between structural and functional brain connectivity. 

Trends Cogn. Sci. 17, 600–602 (2013). 

28. Nautiyal, K. M. & Hen, R. Serotonin receptors in depression: from A to B. 

F1000Research 6, 123 (2017). 

29. Seeman, P. Schizophrenia and dopamine receptors. Eur. Neuropsychopharmacol. J. 

Eur. Coll. Neuropsychopharmacol. 23, 999–1009 (2013). 

30. Quah, S. K. L., McIver, L., Roberts, A. C. & Santangelo, A. M. Trait Anxiety Mediated 

by Amygdala Serotonin Transporter in the Common Marmoset. J. Neurosci. Off. J. Soc. 

Neurosci. 40, 4739–4749 (2020). 

31. Lydiard, R. B. The role of GABA in anxiety disorders. J. Clin. Psychiatry 64 Suppl 3, 

21–27 (2003). 

32. Cipriani, A. et al. Comparative efficacy and acceptability of 21 antidepressant drugs for 

the acute treatment of adults with major depressive disorder: a systematic review and 

network meta-analysis. The Lancet 391, 1357–1366 (2018). 

33. Huhn, M. et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the 

acute treatment of adults with multi-episode schizophrenia: a systematic review and 

network meta-analysis. The Lancet 394, 939–951 (2019). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

41 

34. Soomro, G. M., Altman, D. G., Rajagopal, S. & Browne, M. O. Selective serotonin re‐

uptake inhibitors (SSRIs) versus placebo for obsessive compulsive disorder (OCD). 

Cochrane Database Syst. Rev. (2008) doi:10.1002/14651858.CD001765.pub3. 

35. Geddes, J. R. & Miklowitz, D. J. Treatment of bipolar disorder. The Lancet 381, 1672–

1682 (2013). 

36. Hirschfeld, R. M. A. History and Evolution of the Monoamine Hypothesis of Depression. 

J. Clin. Psychiatry 61, 8272 (2000). 

37. Kendler, K. S. & Schaffner, K. F. The dopamine hypothesis of schizophrenia: An 

historical and philosophical analysis. Philos. Psychiatry Psychol. 18, 41–63 (2011). 

38. Moncrieff, J. et al. The serotonin theory of depression: a systematic umbrella review of 

the evidence. Mol. Psychiatry 1–14 (2022) doi:10.1038/s41380-022-01661-0. 

39. Kaltenboeck, A. & Harmer, C. The neuroscience of depressive disorders: A brief review 

of the past and some considerations about the future. Brain Neurosci. Adv. 2, 

2398212818799269 (2018). 

40. Kesby, J. P., Eyles, D. W., McGrath, J. J. & Scott, J. G. Dopamine, psychosis and 

schizophrenia: the widening gap between basic and clinical neuroscience. Transl. 

Psychiatry 8, 1–12 (2018). 

41. Dean, J. & Keshavan, M. The neurobiology of depression: An integrated view. Asian J. 

Psychiatry 27, 101–111 (2017). 

42. Harrison, P. J., Geddes, J. R. & Tunbridge, E. M. The Emerging Neurobiology of 

Bipolar Disorder. Trends Neurosci. 41, 18–30 (2018). 

43. Luvsannyam, E. et al. Neurobiology of Schizophrenia: A Comprehensive Review. 

Cureus 14, (2022). 

44. Pauls, D. L., Abramovitch, A., Rauch, S. L. & Geller, D. A. Obsessive–compulsive 

disorder: an integrative genetic and neurobiological perspective. Nat. Rev. Neurosci. 

15, 410–424 (2014). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

42 

45. Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional 

organization of the human neocortex. 2021.10.28.466336 Preprint at 

https://doi.org/10.1101/2021.10.28.466336 (2022). 

46. Yeh, C. H., Jones, D. K., Liang, X., Descoteaux, M. & Connelly, A. Mapping Structural 

Connectivity Using Diffusion MRI: Challenges and Opportunities. J. Magn. Reson. 

Imaging 53, 1666–1682 (2021). 

47. Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated 

in transmodal cortices. PLOS Biol. 17, e3000284 (2019). 

48. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature vol. 453 

869–878 (2008). 

49. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-

scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 

665–670 (2011). 

50. Thompson, P. M. et al. The ENIGMA Consortium: large-scale collaborative analyses of 

neuroimaging and genetic data. Brain Imaging Behav. 8, 153–182 (2014). 

51. Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from 

Intrinsic Functional Connectivity MRI. Cereb. Cortex N. Y. N 1991 28, 3095–3114 

(2018). 

52. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-

connected communities. Sci. Rep. 9, 5233 (2019). 

53. Larivière, S. et al. The ENIGMA Toolbox: multiscale neural contextualization of multisite 

neuroimaging datasets. Nat. Methods doi:10.1038/s41592-021-01186-4. 

54. van Rooij, D. et al. Cortical and Subcortical Brain Morphometry Differences Between 

Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: 

Results From the ENIGMA ASD Working Group. Am. J. Psychiatry 175, 359–369 

(2018). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

43 

55. Hoogman, M. et al. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of 

Large-Scale Clinical and Population-Based Samples. Am. J. Psychiatry 176, 531–542 

(2019). 

56. Hibar, D. P. et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 

individuals from the ENIGMA Bipolar Disorder Working Group. Mol. Psychiatry 23, 

932–942 (2018). 

57. Sun, D. et al. Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: 

Convergence with idiopathic psychosis and effects of deletion size. Mol. Psychiatry 25, 

1822–1834 (2020). 

58. Whelan, C. D. et al. Structural brain abnormalities in the common epilepsies assessed 

in a worldwide ENIGMA study. Brain 141, 391–408 (2018). 

59. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major 

depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major 

Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017). 

60. Boedhoe, P. S. W. et al. Cortical Abnormalities Associated With Pediatric and Adult 

Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive 

Disorder Working Group. Am. J. Psychiatry 175, 453–462 (2018). 

61. Erp, T. G. M. van et al. Cortical Brain Abnormalities in 4474 Individuals With 

Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics 

Through Meta Analysis (ENIGMA) Consortium. Biol. Psychiatry 84, 644–654 (2018). 

62. Foit, N. A. et al. A Whole-Brain 3D Myeloarchitectonic Atlas: Mapping the Vogt-Vogt 

Legacy to the Cortical Surface. 2022.01.17.476369 Preprint at 

https://doi.org/10.1101/2022.01.17.476369 (2022). 

63. Amunts, K. et al. BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. Science 

340, 1472–1475 (2013). 

64. Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by 

intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

44 

65. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of 

macroscale cortical organization. Proc. Natl. Acad. Sci. U. S. A. 113, 12574–12579 

(2016). 

66. Mesulam, M. M. From sensation to cognition. Brain J. Neurol. 121 ( Pt 6), 1013–1052 

(1998). 

67. Moses, W. W. Fundamental Limits of Spatial Resolution in PET. Nucl. Instrum. 

Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 648 

Supplement 1, S236–S240 (2011). 

68. Markov, N. T. et al. Cortical High-Density Counterstream Architectures. Science 342, 

1238406 (2013). 

69. Lissemore, J. I. et al. Brain serotonin synthesis capacity in obsessive-compulsive 

disorder: effects of cognitive behavioral therapy and sertraline. Transl. Psychiatry 8, 1–

10 (2018). 

70. Taylor, S. Molecular genetics of obsessive-compulsive disorder: a comprehensive 

meta-analysis of genetic association studies. Mol. Psychiatry 18, 799–805 (2013). 

71. Delorme, R. et al. Platelet Serotonergic Markers as Endophenotypes for Obsessive-

Compulsive Disorder. Neuropsychopharmacology 30, 1539–1547 (2005). 

72. Goulas, A. et al. The natural axis of transmitter receptor distribution in the human 

cerebral cortex. Proc. Natl. Acad. Sci. 118, (2021). 

73. Ghasemi, M. et al. The role of NMDA receptors in the pathophysiology and treatment of 

mood disorders. Neurosci. Biobehav. Rev. 47, 336–358 (2014). 

74. Ashok, A. H. et al. The dopamine hypothesis of bipolar affective disorder: the state of 

the art and implications for treatment. Mol. Psychiatry 22, 666–679 (2017). 

75. Pinsonneault, J. K. et al. Dopamine Transporter Gene Variant Affecting Expression in 

Human Brain is Associated with Bipolar Disorder. Neuropsychopharmacology 36, 

1644–1655 (2011). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

45 

76. Rao, S. et al. Associations of the serotonin transporter promoter polymorphism (5-

HTTLPR) with bipolar disorder and treatment response: A systematic review and meta-

analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 89, 214–226 (2019). 

77. Sullivan, L. C., Clarke, W. P. & Berg, K. A. Atypical Antipsychotics and Inverse 

Agonism at 5-HT2 Receptors. Curr. Pharm. Des. 21, 3732–3738 (2015). 

78. Moraczewski, J. & Aedma, K. K. Tricyclic Antidepressants. StatPearls [Internet] 

(StatPearls Publishing, 2022). 

79. Thase, M. E. Are SNRIs more effective than SSRIs? A review of the current state of the 

controversy. Psychopharmacol. Bull. 41, 58–85 (2008). 

80. Zilles, K. & Palomero-Gallagher, N. Multiple Transmitter Receptors in Regions and 

Layers of the Human Cerebral Cortex. Front. Neuroanat. 11, (2017). 

81. García-Cabezas, M. Á., Zikopoulos, B. & Barbas, H. The Structural Model: a theory 

linking connections, plasticity, pathology, development and evolution of the cerebral 

cortex. Brain Struct. Funct. 224, 985–1008 (2019). 

82. Spreng, R. N., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical 

memory, prospection, navigation, theory of mind, and the default mode: a quantitative 

meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009). 

83. Smallwood, J., Brown, K., Baird, B. & Schooler, J. W. Cooperation between the default 

mode network and the frontal–parietal network in the production of an internal train of 

thought. Brain Res. 1428, 60–70 (2012). 

84. Smallwood, J. et al. The default mode network in cognition: a topographical 

perspective. Nat. Rev. Neurosci. 22, 503–513 (2021). 

85. Langner, R., Leiberg, S., Hoffstaedter, F. & Eickhoff, S. B. Towards a human self-

regulation system: Common and distinct neural signatures of emotional and 

behavioural control. Neurosci. Biobehav. Rev. 90, 400–410 (2018). 

86. Preti, M. G. & Van De Ville, D. Decoupling of brain function from structure reveals 

regional behavioral specialization in humans. Nat. Commun. 10, 4747 (2019). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

46 

87. Liu, Z.-Q. et al. Time-resolved structure-function coupling in brain networks. Commun. 

Biol. 5, 1–10 (2022). 

88. Valk, S. L. et al. Genetic and phylogenetic uncoupling of structure and function in 

human transmodal cortex. Nat. Commun. 13, 2341 (2022). 

89. Amunts, K. et al. Broca’s Region: Novel Organizational Principles and Multiple 

Receptor Mapping. PLOS Biol. 8, e1000489 (2010). 

90. Hettwer, M. D. et al. Coordinated Cortical Thickness Alterations across Psychiatric 

Conditions: A Transdiagnostic ENIGMA Study. 2022.02.03.22270326 Preprint at 

https://doi.org/10.1101/2022.02.03.22270326 (2022). 

91. Rajmohan, V. & Mohandas, E. The limbic system. Indian J. Psychiatry 49, 132–139 

(2007). 

92. Courtiol, E. & Wilson, D. A. The Olfactory Mosaic: Bringing an Olfactory Network 

Together for Odor Perception. Perception 46, 320–332 (2017). 

93. Hwang, K., Bertolero, M. A., Liu, W. B. & D’Esposito, M. The Human Thalamus Is an 

Integrative Hub for Functional Brain Networks. J. Neurosci. 37, 5594–5607 (2017). 

94. Lanciego, J. L., Luquin, N. & Obeso, J. A. Functional Neuroanatomy of the Basal 

Ganglia. Cold Spring Harb. Perspect. Med. 2, a009621 (2012). 

95. Bell, P. T. & Shine, J. M. Subcortical contributions to large-scale network 

communication. Neurosci. Biobehav. Rev. 71, 313–322 (2016). 

96. Janacsek, K. et al. Subcortical Cognition: The Fruit Below the Rind. Annu. Rev. 

Neurosci. 45, null (2022). 

97. Smith, H. & Elliott, J. Alpha2 receptors and agonists in pain management. Curr. Opin. 

Anesthesiol. 14, 513–518 (2001). 

98. Alam, A., Voronovich, Z. & Carley, J. A. A Review of Therapeutic Uses of Mirtazapine 

in Psychiatric and Medical Conditions. Prim. Care Companion CNS Disord. 15, 

PCC.13r01525 (2013). 

99. Fama, R. & Sullivan, E. V. Thalamic structures and associated cognitive functions: 

Relations with age and aging. Neurosci. Biobehav. Rev. 54, 29–37 (2015). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

47 

100. Gaudin, É. et al. Performance Simulation of an Ultra-High Resolution Brain PET 

Scanner Using 1.2-mm Pixel Detectors. IEEE Trans. Radiat. Plasma Med. Sci. 3, 334–

342 (2019). 

101. Nørgaard, M. et al. Optimization of preprocessing strategies in Positron Emission 

Tomography (PET) neuroimaging: A [11C]DASB PET study. NeuroImage 199, 466–

479 (2019). 

102. Tian, Y., Margulies, D. S., Breakspear, M. & Zalesky, A. Topographic organization of 

the human subcortex unveiled with functional connectivity gradients. Nat. Neurosci. 23, 

1421–1432 (2020). 

103. Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in 

neuroimaging and connectomics datasets. Commun. Biol. 3, 1–10 (2020). 

104. Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 

(2006). 

105. Royer, J. et al. An Open MRI Dataset for Multiscale Neuroscience. 2021.08.04.454795 

Preprint at https://doi.org/10.1101/2021.08.04.454795 (2021). 

106. Cruces, R. R. et al. Micapipe: A Pipeline for Multimodal Neuroimaging and Connectome 

Analysis. 2022.01.31.478189 Preprint at https://doi.org/10.1101/2022.01.31.478189 

(2022). 

107. Betzel, R. F., Griffa, A., Hagmann, P. & Mišić, B. Distance-dependent consensus 

thresholds for generating group-representative structural brain networks. Netw. 

Neurosci. 3, 475–496 (2019). 

108. Steinley, D. Properties of the Hubert-Arable Adjusted Rand Index. Psychol. Methods 9, 

386–396 (2004). 

109. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Mach. Learn. PYTHON 

6. 

110. Wael, R. V. de et al. BrainStat: A toolbox for brain-wide statistics and neuroscientific 

contextualization. 2022.01.18.476795 Preprint at 

https://doi.org/10.1101/2022.01.18.476795 (2022). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

48 

111. Nielsen, F. Hierarchical Clustering. in Introduction to HPC with MPI for Data Science 

(ed. Nielsen, F.) 195–211 (Springer International Publishing, 2016). doi:10.1007/978-3-

319-21903-5_8. 

112. Sokal, R. R., Michener, C. D. & Kansas, U. of. A Statistical Method for Evaluating 

Systematic Relationships. (University of Kansas, 1958). 

113. Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of 

human brain structure and function. NeuroImage 178, 540–551 (2018). 

114. Váša, F. & Mišić, B. Null models in network neuroscience. Nat. Rev. Neurosci. 23, 493–

504 (2022). 

115. Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of 

brain maps with spatial autocorrelation. NeuroImage 220, 117038 (2020). 

116. Markello, R. D. & Misic, B. Comparing spatial null models for brain maps. NeuroImage 

236, 118052 (2021). 

117. Kaller, S. et al. Test-retest measurements of dopamine D1-type receptors using 

simultaneous PET/MRI imaging. Eur. J. Nucl. Med. Mol. Imaging 44, 1025–1032 

(2017). 

118. Sandiego, C. M. et al. Reference region modeling approaches for amphetamine 

challenge studies with [11C]FLB 457 and PET. J. Cereb. Blood Flow Metab. 35, 623–

629 (2015). 

119. Smith, C. T. et al. Partial-volume correction increases estimated dopamine D2-like 

receptor binding potential and reduces adult age differences. J. Cereb. Blood Flow 

Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 39, 822–833 (2019). 

120. Slifstein, M. et al. Deficits in prefrontal cortical and extrastriatal dopamine release in 

schizophrenia: a positron emission tomographic functional magnetic resonance imaging 

study. JAMA Psychiatry 72, 316–324 (2015). 

121. Sandiego, C. M. et al. The Effect of Treatment with Guanfacine, an Alpha2 Adrenergic 

Agonist, on Dopaminergic Tone in Tobacco Smokers: An [11C]FLB457 PET Study. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

49 

Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 43, 1052–1058 

(2018). 

122. Zakiniaeiz, Y. et al. Sex differences in amphetamine-induced dopamine release in the 

dorsolateral prefrontal cortex of tobacco smokers. Neuropsychopharmacol. Off. Publ. 

Am. Coll. Neuropsychopharmacol. 44, 2205–2211 (2019). 

123. Dukart, J. et al. Cerebral blood flow predicts differential neurotransmitter activity. Sci. 

Rep. 8, 4074 (2018). 

124. Belfort-DeAguiar, R. et al. Noradrenergic Activity in the Human Brain: A Mechanism 

Supporting the Defense Against Hypoglycemia. J. Clin. Endocrinol. Metab. 103, 2244–

2252 (2018). 

125. Sanchez-Rangel, E. et al. Norepinephrine transporter availability in brown fat is 

reduced in obesity: a human PET study with [11C] MRB. Int. J. Obes. 2005 44, 964–

967 (2020). 

126. Li, C. R. et al. Decreased norepinephrine transporter availability in obesity: Positron 

Emission Tomography imaging with (S,S)-[(11)C]O-methylreboxetine. NeuroImage 86, 

306–310 (2014). 

127. Ding, Y.-S. et al. PET imaging of the effects of age and cocaine on the norepinephrine 

transporter in the human brain using (S,S)-[(11)C]O-methylreboxetine and HRRT. 

Synap. N. Y. N 64, 30–38 (2010). 

128. Savli, M. et al. Normative database of the serotonergic system in healthy subjects using 

multi-tracer PET. NeuroImage 63, 447–459 (2012). 

129. Baldassarri, S. R. et al. Inverse changes in raphe and cortical 5-HT1B receptor 

availability after acute tryptophan depletion in healthy human subjects. Synap. N. Y. N 

74, e22159 (2020). 

130. Gallezot, J.-D. et al. Kinetic modeling of the serotonin 5-HT(1B) receptor radioligand 

[(11)C]P943 in humans. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood 

Flow Metab. 30, 196–210 (2010). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

50 

131. Matuskey, D. et al. Reductions in Brain 5-HT1B Receptor Availability in Primarily 

Cocaine-Dependent Humans. Biol. Psychiatry 76, 816–822 (2014). 

132. Murrough, J. W. et al. The Effect of Early Trauma Exposure on Serotonin Type 1B 

Receptor Expression Revealed by Reduced Selective Radioligand Binding. Arch. Gen. 

Psychiatry 68, 892–900 (2011). 

133. Murrough, J. W. et al. Reduced ventral striatal/ventral pallidal serotonin1B receptor 

binding potential in major depressive disorder. Psychopharmacology (Berl.) 213, 547–

553 (2011). 

134. Pittenger, C. et al. OCD is associated with an altered association between sensorimotor 

gating and cortical and subcortical 5-HT1b receptor binding. J. Affect. Disord. 196, 87–

96 (2016). 

135. Saricicek, A. et al. Test-retest reliability of the novel 5-HT1B receptor PET radioligand 

[11C]P943. Eur. J. Nucl. Med. Mol. Imaging 42, 468–477 (2015). 

136. Radhakrishnan, R. et al. Age-Related Change in 5-HT6 Receptor Availability in Healthy 

Male Volunteers Measured with 11C-GSK215083 PET. J. Nucl. Med. 59, 1445–1450 

(2018). 

137. Radhakrishnan, R. et al. In vivo 5-HT6 and 5-HT2A receptor availability in antipsychotic 

treated schizophrenia patients vs. unmedicated healthy humans measured with 

[11C]GSK215083 PET. Psychiatry Res. Neuroimaging 295, 111007 (2020). 

138. Baldassarri, S. R. et al. Use of Electronic Cigarettes Leads to Significant Beta2-

Nicotinic Acetylcholine Receptor Occupancy: Evidence From a PET Imaging Study. 

Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 20, 425–433 (2018). 

139. Hillmer, A. T. et al. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (−)-

[18F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to 

acetylcholine in human brain. NeuroImage 141, 71–80 (2016). 

140. Naganawa, M. et al. First-in-Human Assessment of 11C-LSN3172176, an M1 

Muscarinic Acetylcholine Receptor PET Radiotracer. J. Nucl. Med. Off. Publ. Soc. Nucl. 

Med. 62, 553–560 (2021). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

51 

141. Aghourian, M. et al. Quantification of brain cholinergic denervation in Alzheimer’s 

disease using PET imaging with [18F]-FEOBV. Mol. Psychiatry 22, 1531–1538 (2017). 

142. Bedard, M.-A. et al. Brain cholinergic alterations in idiopathic REM sleep behaviour 

disorder: a PET imaging study with 18F-FEOBV. Sleep Med. 58, 35–41 (2019). 

143. Galovic, M. et al. In vivo NMDA receptor function in people with NMDA receptor 

antibody encephalitis. 2021.12.04.21267226 Preprint at 

https://doi.org/10.1101/2021.12.04.21267226 (2021). 

144. Galovic, M. et al. Validation of a combined image derived input function and venous 

sampling approach for the quantification of [18F]GE-179 PET binding in the brain. 

NeuroImage 237, 118194 (2021). 

145. McGinnity, C. J. et al. Initial evaluation of 18F-GE-179, a putative PET Tracer for 

activated N-methyl D-aspartate receptors. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 55, 

423–430 (2014). 

146. Smart, K. et al. Sex differences in [11C]ABP688 binding: a positron emission 

tomography study of mGlu5 receptors. Eur. J. Nucl. Med. Mol. Imaging 46, 1179–1183 

(2019). 

147. DuBois, J. M. et al. Characterization of age/sex and the regional distribution of mGluR5 

availability in the healthy human brain measured by high-resolution [(11)C]ABP688 

PET. Eur. J. Nucl. Med. Mol. Imaging 43, 152–162 (2016). 

148. Gallezot, J.-D. et al. Determination of receptor occupancy in the presence of mass 

dose: [11C]GSK189254 PET imaging of histamine H3 receptor occupancy by PF-

03654746. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 37, 

1095–1107 (2017). 

149. D’Souza, D. C. et al. Rapid Changes in CB1 Receptor Availability in Cannabis 

Dependent Males after Abstinence from Cannabis. Biol. Psychiatry Cogn. Neurosci. 

Neuroimaging 1, 60–67 (2016). 

150. Hirvonen, J. et al. Reduced cannabinoid CB1 receptor binding in alcohol dependence 

measured with positron emission tomography. Mol. Psychiatry 18, 916–921 (2013). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/


Hänisch et al. 

52 

151. Normandin, M. D. et al. Imaging the cannabinoid CB1 receptor in humans with 

[11C]OMAR: assessment of kinetic analysis methods, test-retest reproducibility, and 

gender differences. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow 

Metab. 35, 1313–1322 (2015). 

152. Ranganathan, M. et al. Reduced Brain Cannabinoid Receptor Availability in 

Schizophrenia. Biol. Psychiatry 79, 997–1005 (2016). 

153. Kantonen, T. et al. Interindividual variability and lateralization of μ-opioid receptors in 

the human brain. NeuroImage 217, 116922 (2020). 

 

 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505274
http://creativecommons.org/licenses/by/4.0/

