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ABSTRACT

Contention resolution on a multiple-access communication channel
is a classical problem in distributed and parallel computing. In this
problem, a set of nodes arrive over time, each with a message it
intends to send. Time proceeds in synchronous slots, and in each
slot each node can broadcast its message or remain idle. If in a
slot one node broadcasts alone, it succeeds; otherwise, if multiple
nodes broadcast simultaneously, messages collide and none suc-
ceeds. Nodes can differentiate collision and silence (that is, no node
broadcasts) only if a collision detection mechanism is available. Ide-
ally, a contention resolution algorithm should satisfy at least three
criteria: (a) low time complexity (i.e., high throughput), meaning
it does not take too long for all nodes to succeed; (b) low energy
complexity, meaning each node does not make too many broadcast
attempts before it succeeds; and (c) strong robustness, meaning the
algorithm can maintain good performance even if interference is
present. Such interference is often modeled by jamming—a jammed
slot always generates collision.

Previous work has shown, with collision detection, there are
“perfect” contention resolution algorithms satisfying all three crite-
ria. On the other hand, without collision detection, it was not until
2020 that an algorithm was discovered which can achieve optimal
time complexity and low energy cost, assuming there is no jamming.
More recently, the trade-off between throughput and robustness
was studied. However, an intriguing and important question re-
mains unknown: without collision detection, are there “perfect”
contention resolution algorithms? In other words, when collision
detection is absent and jamming is present, can we achieve both
low total time complexity and low per-node energy cost?

In this paper, we answer the above question affirmatively. Specif-
ically, a new randomized algorithm for robust contention resolution
is developed, assuming collision detection is not available. Lower
bound results demonstrate it achieves both optimal time complex-
ity and optimal energy complexity. If all nodes start execution
simultaneously—which is often referred to as the “static case” in
literature—another algorithm is developed that runs even faster.
The separation on time complexity suggests, for robust contention
resolution without collision detection, “batch” instances (that is,
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nodes start simultaneously) are inherently easier than “scattered”
ones (that is, nodes arrive over time).
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1 INTRODUCTION

In computer systems, there are many scenarios in which a collection
of players contend to access a shared resource. For example, a set
of processes try to access a shared file on a hard drive or a table
in a database, a set of radio transceivers each with a packet try
to send these packets over a wireless channel, a set of users each
with a document try to print them out using a printer, etc. In these
settings, usually the goal is to let each player successfully access
the shared resource (at least) once. However, the challenge lies in
the requirement that successful accesses must be mutual exclusive:
if two or more players make access attempts simultaneously, a
collision occurs and all these attempts fail.

In distributed and parallel computing, the above problem is
known as contention resolution. In studying this problem, often
the shared resource is modeled as a synchronous multiple-access
communication channel, and each player is modeled as a node
with a message that needs to be sent over this channel. (See, e.g.,
[6, 7, 11, 13, 15, 22].) More specifically, the system proceeds in syn-
chronous time slots. Each player joins the system at the beginning
of some slot, but players do not have access to any global clock. In
each slot, each player may try to send its message by broadcasting
it on the shared communication channel, or remain idle. If in a slot
only one player 𝑢 broadcasts, it succeeds in that slot and all players
are informed of this success. Moreover, by the end of that slot, 𝑢
will halt and exit the system. On the other hand, if in a slot multiple
players broadcast simultaneously, then all of them fail as messages
collide with each other. In such a case, the exact channel feedback
depends on the availability of a collision detection mechanism. In
particular, when collision detection is available, for each slot not
containing a success, the channel will inform all players whether
the slot is silent (that is, no node broadcasts) or noisy (that is, mul-
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tiple nodes broadcast and a collision occurs). By contrast, without
collision detection, the channel feedback for each slot is binary:
either the slot contains a success, or not.

Performance metrics. To evaluate the performance of contention
resolution algorithms, often the following three metrics are used:

Throughput (Time complexity). Achieving a high through-
put is usually the primary objective of any contention resolution
algorithm. Although the exact definition of throughput depends
on the specific model being considered, intuitively it captures the
number of messages the algorithm can successfully transmit within
a given period of time, representing how efficient can the algorithm
process incoming requests. In synchronous systems, since each slot
contains at most one successful transmission, constant throughput
is the best result any contention resolution algorithm can hope for;
that is, generating 𝑛 successes within Θ(𝑛) slots.

Number of access attempts (Energy complexity). Due to
collisions, it is likely that each player has to make multiple access
attempts before succeeding. However, in many scenarios, there is a
certain cost associated with each attempt. A prominent example
is radio networks: modern lightweight wireless devices are often
battery powered, and the energy cost of emitting or receiving ra-
dio signals might be large when compared with computation [25].
Therefore, contention resolution algorithms also try to minimize
participating players’ number of access attempts. In studying con-
tention resolution, especially in the context of radio networks, re-
searches often call the maximum number of access attempts any
node may make as the energy complexity of the algorithm. (See, e.g.,
[6, 9, 10, 15, 22].) In this paper, we also adopt this terminology.

Robustness. Collision is not the only possible reason a trans-
mission attempt fails. Participating nodes, or sometimes even the
communication channel itself (e.g., when the channel models a
shared printer), could suffer hardware or software errors. Even
without internal failures, external interference might exist. For ex-
ample, a wireless link may be affected by electromagnetic noise, a
server may be the victim of denial-of-service attacks, etc. In study-
ing contention resolution, these interference are often modeled
by jamming. (See, e.g., [3, 6, 11, 13].) Formally, if a slot is jammed,
a collision occurs in that slot, regardless of the actual number of
broadcasting nodes. Robust contention resolution algorithms are
preferable, sometimes even necessary. However, as we detail below,
jamming could affect the complexity of the problem.

Existing results. Given its importance and wide applicability, it
is not surprising that contention resolution is extensively stud-
ied. Nonetheless, many important breakthroughs are only made
recently. In particular, it was not until 2018 that a “perfect” con-
tention resolution algorithm was proposed which simultaneously
achieves high throughput and low energy complexity, even when
adversarial jamming is present [6]. In particular, assuming 𝑛 nodes
are injected over time by an adversary, and 𝑑 slots could be jammed
by the adversary, Bender, Fineman, Gilbert, and Young proposed an
algorithm called Re-Backoff guaranteeing: (a) constant throughput
in expectation; and (b) each node makes 𝑂 (log2 (𝑛 + 𝑑)) access at-
tempts in expectation. In 2019, Chang, Jin, and Pettie [11] proposed
another algorithm that can achieve similar guarantees, by using a
multiplicative weight update scheme. Compared with [6], this new
algorithm is simpler and achieves higher throughput (though the

asymptotic throughput of these two algorithms are identical).
Both of the above two algorithms rely on the availability of

collision detection. Generally speaking, if a node observes a noisy
slot or many collisions within an interval, then the node can infer
that the channel is congested and it should “backoff” by not sending
its message. By contrast, if a node observes a silent slot or many
empty slots within an interval, then the node should “backon” and
send more frequently. Fundamentally, collision detection explicitly
reveals why a slot fails, thus allowing nodes to act accordingly in the
following slots. As a result, without collision detection, contention
resolution becomes harder.

In real world, although in many cases detecting collision is feasi-
ble (e.g., in Ethernet, "carrier-sense multiple access with collision
detection" (CSMA/CD) is part of the MAC protocol [21]), there also
exist cases in which detecting collision becomes more challenging
or complicates software implementation. For instance, in wireless
networks, a standard radio transceiver often cannot simultaneously
listen and transmit, thus it becomes harder to perform "carrier
sensing" to detect collision. As a result, in the literature, both the
scenarios of with and without collision detection are considered
practical and studied.

Unfortunately, for a very long time, it was unclear whether
achieving constant throughput for contention resolution is pos-
sible if collision detection is not available, even without any in-
terference.1 Before 2020, the best result was from De Marco and
Stachowiak [15]: if nodes arrive over time and no errors occur, then
each injected node succeeds within 𝑂 ((𝑛 ln2 𝑛)/ln ln𝑛) slots.2

Two years ago, Bender, Kopelowitz, Kuszmaul, and Pettie [7]
resolved the aforementioned long standing problem by providing
an algorithm that achieves constant throughput without collision
detection, even when the nodes are injected adversarially. They also
proved a lower bound showing constant throughput is impossible
when jamming is present. This demonstrates a fundamental sepa-
ration between contention resolution with and without collision
detection. More recently, Chen, Jiang, and Zheng [13] extended [7]
by taking adversarial interference into consideration. In particular,
for any level of jamming ranging from none to constant fraction,
they prove an upper bound on the best possible throughput, along
with an algorithm attaining that bound.

However, one important piece is still missing in the big picture.
Although the algorithms in [13] are able to achieve optimal through-
put for any given level of jamming, their (as well as the algorithms
in [7]) energy complexity could be high when jamming is present.
In particular, assuming the adversary jams 𝑑 slots, there are nodes
who might have to make Ω(

√
𝑑) attempts before succeeding. By

contrast, when collision detection is available, achieving similar
guarantees only requires 𝑂 (poly-log(𝑛 + 𝑑)) attempts. Therefore,
the intriguing question is: without collision detection, are there
“perfect” contention resolution algorithms? In other words, when
collision detection is not available and jamming is present, are there
contention resolution algorithms that can achieve best possible

1Nonetheless, if all nodes are injected simultaneously, then algorithms achieving
constant throughput without collision detection were already known for a while. See,
e.g., the paper by Mosteiro, Fernandez Anta, and Muñoz [24].
2In the same paper, the authors also showed that if nodes are allowed to include
control bits in their broadcast contents and may stay in the system after successful
transmissions, then constant throughput is possible.

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

108



Robust and Optimal Contention Resolution without Collision Detection SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

throughout, while maintaining low per-node energy cost?

Contribution and new results. This paper answers above ques-
tion affirmatively: we design two new randomized algorithms for
robust contention resolution, without using collision detection.

Our first algorithm works for the case where 𝑛 nodes are injected
over time by an adversary, which we refer to as the dynamic case.
The time complexity—that is, the number of slots required to let
all nodes succeed—of this algorithm is 𝑂 (𝑛 log𝑛 + 𝑑), with high
probability in𝑛+𝑑 . (Throughout the paper, we say an event happens
“with high probability (w.h.p.)” in some parameter 𝜆 if it happens
with probability at least 1−1/𝜆𝛽 , for some desirable constant 𝛽 ≥ 1.)
This is optimal given the lower bound proved in [13]. As for energy
complexity, our algorithm ensures the number of access attempts
any node made is 𝑂 (log2 𝑛 + log2 𝑑), w.h.p. in 𝑛 + 𝑑 . Once again,
we prove a matching lower bound demonstrating its optimality.
Technically, this algorithm draws inspirations from various existing
work: readers with expertise in contention resolution will find some
design and analysis techniques familiar. Nevertheless, we stress
that it is non-trivial to correctly employ and modify these existing
toolkits to obtain a desired algorithm. Moreover, deriving a clean
and concise analysis for the dynamic case algorithm also becomes
more challenging when jamming is present.

Our second algorithm shows if a stronger level of “synchrony”
is provided, then constant throughput is attainable. Specifically,
if 𝑛 nodes start execution simultaneously, which we refer to as
the static case, then all of them can succeed within 𝑂 (𝑛 + 𝑑) slots,
w.h.p. in 𝑛 + 𝑑 . Clearly, this is optimal: each slot can generate at
most one success, and the adversary can jam 𝑑 slots to block any
communication. This second algorithm also ensures w.h.p. in 𝑛 + 𝑑
the energy complexity of each node is 𝑂 (log2 𝑛 + log2 𝑑), which
almost matches the Ω(log log𝑛 + log2 𝑑) lower bound we proved.
Inside this algorithm is a novel two stage approach: the first phase of
it mainly handles the scenario where jamming from the adversary
is weak, whereas the second phase handles the scenario where
jamming is strong. A particularly interesting point is the condition
for transitioning from phase one to phase two, as it works for
arbitrary 𝑑 values, without knowing any estimate of 𝑑 . We believe it
could be potentially used in other algorithms to achieve robustness
while maintaining efficiency.

Before stating the results formally, we clarify some additional
model details and assumptions. We often call the adversary Eve,
and she is adaptive. Before execution starts, Eve decides a value
𝑛, meaning 𝑛 nodes will be injected into the system. Eve also has
a jamming budget 𝑑 , meaning she can jam up to 𝑑 slots. Nodes
do not know the value of 𝑛 or 𝑑 . In the static case, Eve injects
(i.e., activates) all nodes at the beginning of slot one; whereas in
the dynamic case, she can inject nodes in an arbitrary fashion.
Therefore, in the dynamic case, there might be slots in which there
are no active nodes, yet some nodes are still not injected by Eve.
(Recall a node halts and leaves once its message is successfully
sent.) We say a slot is an active slot if in that slot at least one node
is active. The adaptivity of Eve is reflected by the assumption that,
at the beginning of each slot, Eve is given the past behavior of all
nodes, and she can use this information to determine her behavior
in the current slot. (Specifically, whether to inject any new nodes
and whether to jam this slot.) However, Eve does not know active

nodes’ behavior in the current slot.
The following definition introduces (𝑓 , 𝑔)-time-cost and (𝑓 , 𝑔)-

energy-cost. It formalizes the notation of throughput and energy
complexity, and simplifies later presentation.

Definition 1.1 (Throughput and Energy Complexity). LetA be
the algorithm each node runs after its activation. Let 𝑓 , 𝑔 : N+ → R+
be two functions.
• An active slot is a slot in which at least one node is active.
• Algorithm A achieves (𝑓 , 𝑔)-time-cost if there exists a con-
stant 𝐶 such that for any integer 𝑛,𝑑 ≥ 1 and any adaptive
adversary that injects 𝑛 nodes and has jamming budget 𝑑 ,
the total number of active slots is at most 𝐶 · (𝑓 (𝑛) + 𝑔(𝑑)),
with high probability in 𝑛 + 𝑑 .3
• AlgorithmA achieves (𝑓 , 𝑔)-energy-cost if there exists a con-
stant 𝐶 such that for any integer 𝑛,𝑑 ≥ 1 and any adaptive
adversary that injects 𝑛 nodes and has jamming budget 𝑑 ,
the max number of broadcasting attempts any node made is
at most 𝐶 · (𝑓 (𝑛) + 𝑔(𝑑)), with high probability in 𝑛 + 𝑑 .

The following two theorems state our algorithmic results, notice
the difference on the time complexity.

Theorem 1.2 (Dynamic Case Upper Bound). There exists
an algorithm achieving (𝑛 log𝑛,𝑑)-time-cost and (log2 𝑛, log2 𝑑)-
energy-cost. That is, this algorithm generates 𝑛 successes within

𝑂 (𝑛 log𝑛 + 𝑑) active slots, and each node makes 𝑂 (log2 𝑛 + log2 𝑑)
access attempts, with high probability in 𝑛 + 𝑑 .

Theorem 1.3 (Static Case Upper Bound). If all nodes start
simultaneously, then there exists an algorithm achieving (𝑛,𝑑)-time-

cost and (log2 𝑛, log2 𝑑)-energy-cost. That is, this algorithm gener-

ates 𝑛 successes within 𝑂 (𝑛 + 𝑑) active slots, and each node makes

𝑂 (log2 𝑛 + log2 𝑑) access attempts, with high probability in 𝑛 + 𝑑 .

The following two theorems state our lower bound results.

Theorem 1.4 (Dynamic Case Lower Bound). If an algorithm
achieves (𝑓𝑡 , 𝑔𝑡 )-time-cost and (𝑓𝑒 , 𝑔𝑒 )-energy-cost with 𝑔𝑡 (𝑑) = 𝑑 ,

then 𝑓𝑡 (𝑛) = Ω(𝑛 log𝑛), 𝑓𝑒 (𝑛) = Ω(log2 𝑛), and 𝑔𝑒 (𝑑) = Ω(log2 𝑑).

Theorem 1.5 (Static Case Lower Bound). If all nodes start
execution simultaneously and an algorithm achieves (𝑓𝑡 , 𝑔𝑡 )-time-

cost and (𝑓𝑒 , 𝑔𝑒 )-energy-cost with 𝑓𝑡 (𝑛) = 𝑛 and 𝑔𝑡 (𝑑) = 𝑑 , then

𝑓𝑒 (𝑛) = Ω(log log𝑛) and 𝑔𝑒 (𝑑) = Ω(log2 𝑑).

We conclude this part by noting that our lower bounds hold even
for a weaker oblivious adversary.
Additional related work. Perhaps the most classical algorithm
to resolve contention is binary exponential backoff. One standard
implementation of it is to let each node send its message with prob-
ability 1/𝑖 in the 𝑖-th slot since the node’s activation. Despite binary
exponential backoff is widely used in practice (e.g., Ethernet and
WiFi networks [21], concurrency control in operating systems and
database management systems [26, 28]), it is long known that this
scheme cannot always achieve optimal throughput [2, 5, 20]. There-
fore, many variants are proposed and analyzed, such as quadratic
backoff [20], saw-tooth backoff, loglog-iterated backoff [5]. Our
3In this paper, we require with high probability in 𝑛 + 𝑑 (instead of just 𝑛) since we
want the failure probability to go down as the time cost grows up (recall time cost
depends on both 𝑛 and 𝑑).
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algorithms also utilize variants of binary exponential backoff.
As mentioned previously, the availability of collision detection

greatly affects the performance of contention resolution algorithms.
Around 2010, a series of elegant results were published (see, e.g.,
[4, 27]), demonstrating how constant throughput could be attained
by using collision detection, even if jamming is present, in the
context of single-channel wireless networks. In these works, the
considered adversary is so-called “rate limited”: for any sufficiently
long time interval, the adversary can only jam a limited fraction (e.g.,
a constant fraction) of slots. Over the last few years, similar results
were also obtained in the standard multiple-access communication
channel model with a fully adaptive jamming adversary [6, 11].
However, it was not until 2020 that an algorithm was developed
which can achieve constant throughput without collision detec-
tion [7]. This paper also focuses on the more challenging scenario
where collision detection is not available.

Besides throughput, number of access attempts before succeed-
ing is another key performance metric. This is especially relevant in
radio networks since energy consumption of radio transceivers of-
ten dominate the total energy expenditure of wireless devices [25],
and contention resolution is closely related to many fundamental
communication primitives in radio networks [9, 10, 12, 17]. There-
fore, the number of channel accesses is also referred to as energy
complexity in the literature. Existing contention resolution algo-
rithms achieving good throughput usually have energy complexity
that are poly-logarithmic in the number of participating nodes,
though [8] shows in fact 𝑂 (log(log∗ (𝑛))) accesses are sufficient in
expectation.4 However, when collision detection is not available
and jamming is present, to the best of our knowledge, no existing
work can achieve good throughput while maintaining low energy
complexity. Our paper addresses this open problem.

Although this paper and many previous work assume worst-
case (i.e., adversarial) arrival pattern, another major line of research
assumes the arrivals of nodes follow some statistical pattern. In
those works (e.g., [2, 18, 19]), often the main objective is to analyze
the maximum stable packet arrival rate for various contention
resolution algorithms.

It is also worth noting, if a single success is sufficient (instead of
requiring every node to succeed once), then contention resolution
degrades to another classical symmetry breaking problem: leader
election. Leader election is used implicitly in many contention res-
olution algorithms, [15] is a recent example. A classical result by
Willard [29] shows a tight Θ(log log𝑛) bound for leader election,
assuming 𝑛 nodes start simultaneously and collision detection is
available. More recent results consider more diverse settings (e.g.,
[12, 14, 16]). Interestingly, it seems our lower bounds could also ap-
ply to the leader election problem, as in deriving them we consider
the time and energy required to generate the first success.

Lastly, we stress that contention resolution is an extensively stud-
ied problem, only the most relevant results are briefly mentioned
here, and many interesting works are not discussed. For example, a
recent trend is focusing on deterministic algorithms [3, 22]; there

4In fact, this𝑂 (log(log∗ (𝑛) ) ) bound counts both the number of “send” and “listen”,
where “listen” means obtaining channel feedback for one slot. In this paper, we only
consider “sending complexity” and assume channel feedback is provided for free. This
assumption is used in many works studying contention resolution. On the other hand,
the assumption that “listen” is not free is usually made in the context of radio networks.

are also papers considering messages with delivery deadlines [1].
Paper outline. In the next section, we give an overview on the de-
sign and analysis of the two new contention resolution algorithms,
as well as the key ideas we exploit in proving the lower bounds.
Then, in Section 3 and Section 4, we introduce the two algorithms
in detail. For each of these two sections, we will first give a more
through discussion on the intuition, then present algorithm pseu-
docode, and finally proceed to the analysis. We will conclude this
paper by proving the lower bounds on time complexity and energy
complexity. Due to space constraints, omitted proofs are provided
in the full version of the paper.

2 TECHNICAL OVERVIEW

Contention. When designing efficient contention resolution algo-
rithms, the key is tomaintain a proper contention on the communica-
tion channel throughout the execution. Specifically, the contention
of a slot on a channel is defined to be the sum of the broadcasting
probabilities of all active nodes. By definition, the contention of a
slot denotes the expected total energy expenditure of nodes in that
slot. On the other hand, the contention of a slot also indicates the
likelihood of a slot being a successful one. Particularly, the follow
lemma holds, where 𝑛 denotes the number of active nodes in a slot,
𝑝𝑖 denotes the broadcast probability of node 𝑖 , and 𝑝 denotes the
contention of that slot. (See full paper for its proof.)

Lemma 2.1. Let 𝑛 ∈ N+, let 𝑋𝑖 be an indicator random variable

with Pr[𝑋𝑖 = 1] = 𝑝𝑖 for all 𝑖 ∈ [𝑛] = {1, 2, · · · , 𝑛}, and let 𝑝 =∑𝑛
𝑖=1 𝑝𝑖 . If 𝑋1, 𝑋2, ..., 𝑋𝑛 are independent, then:

• Pr
[ (∑𝑛

𝑖=1 𝑋𝑖
)
= 1

]
≥ min {4−𝑝 , 𝑝/4} when all 𝑝𝑖 ∈ [0, 1/2]

• Pr
[ (∑𝑛

𝑖=1 𝑋𝑖
)
= 0

]
≥ 4−𝑝 when all 𝑝𝑖 ∈ [0, 1/2]

• Pr
[ (∑𝑛

𝑖=1 𝑋𝑖
)
= 1

]
≤ 𝑝 · 𝑒−𝑝+1

Some important implications of the above lemma are: (a) if the
contention of a slot is some constant, then the probability that this
slot generates a success is some constant; (b) if the contention of
a slot is sufficiently large in Ω(log 𝜆) where 𝜆 > 1, then with high
probability in 𝜆 this slot will not generate a success; and (c) if the
contention of a slot is sufficiently small in 𝑂 (log 𝜆) where 𝜆 > 1,
then the success probability in this slot is at least 1/𝜆𝛽 for some
constant 0 < 𝛽 < 1. Notice (b) and (c) together imply Θ(log 𝜆) is
the “right” contention if we want to create a success in Θ(𝜆) slots.
Exponential backoff. Recall a standard way to implement binary
exponential backoff is to let each node broadcast with probability
1/𝑖 in the 𝑖-th slot since its arrival. Consider the scenario in which
𝑛 nodes start running binary exponential backoff simultaneously,
observe how the contention evolves. In the first 𝑛 slot, the con-
tention is Ω(1) and limited successes will occur; particularly, at
least a constant fraction of all 𝑛 nodes will remain active by the end
of slot 𝑛. Then, from slot 𝑛 + 1 to, say, slot 10𝑛, the contention will
remain to be a constant. By Lemma 2.1, we know in expectation a
success will occur every some constant slots. Thus, by the end of
slot 10𝑛, at most some constant fraction of all 𝑛 nodes will remain
active. Lastly, from slot 10𝑛 + 1, the contention will continue to
drop, and eventually reach 𝑜 (1), which is too small for successful
transmissions to occur frequently. In short, the first Θ(𝑛) slots of
binary exponential backoff are efficient in that Θ(𝑛) successes are
likely to occur, and each node’s energy cost is𝑂 (log𝑛). Nonetheless,
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beyond this interval, throughput will drop. In this paper, we will
use both standard exponential backoff and its variants. To simplify
presentation, we define the following generalized backoff pattern.

Definition 2.2 (ℎ-backoff). Let ℎ : N+ → R+ be a function. We
say a node runs ℎ-backoff from slot 𝑠 , if for any 𝑥 ∈ N+, the node
sends its message with probability min{1, ℎ(𝑥)} in slot 𝑠 + 𝑥 − 1.

For example, 1/𝑥-backoff is the standard exponential backoff.
The two-channel model. When designing and analyzing our
algorithms, it is often more convenient to assume there are two
channels. Here, we introduce the two-channel model, and defer the
discussion on how to covert a two-channel algorithm to a single-
channel algorithm to later parts of the paper.

Simply put, the two channels act like two independent multiple-
access communication channels: in each slot, for each of the two
channels, each active node and the adversary can independently
decide its behavior on this channel: broadcast its message, jam the
channel, or remain idle. In each slot, both channels give feedback
to the active nodes. Time complexity naturally extends to the two-
channel model. As for energy complexity, if in a slot a node sends
on both channels (respectively, Eve jams both channels), then the
energy expenditure of this node (respectively, the jamming budget
Eve spends) is counted as two.
Overview of algorithm for the dynamic scenario. Recall we
have argued above that the first Θ(𝑛) slots of binary exponential
backoff are efficient. In fact, in previous works that achieve con-
stant throughput without using collision detection, a core idea is to
“repeat the efficient part of the exponential backoff process” [7, 13].
However, when jamming is present, the energy complexity of this
scheme grows quickly. Specifically, for each repetition of exponen-
tial backoff, Eve can jam all the first Θ(𝑛) slots and then allow one
success to occur so that the next repetition starts. If this process is
repeated 𝑛/2 times, then the energy consumption of Eve is Θ(𝑛2),
and the energy consumption of each of the remaining 𝑛/2 nodes is
Ω(𝑛 log𝑛). In other words, if Eve can jam 𝑑 = Θ(𝑛2) slots, then the
energy consumption of a node might reach Ω(

√
𝑑 log𝑛). To over-

come this difficulty, we let each node run one instance of standard
binary backoff continuously, from the slot it joins the system to the
slot it succeeds. This is a major change on the high-level structure
of the algorithm, and it has important implications.

Particularly, on the one hand, the above modification enforces
good energy complexity: assuming all nodes start simultaneously
and the adversary jams the first 𝑑 slots, the cost of each node in the
first 𝑑 slots would be only Θ(log𝑑). On the other hand, however,
this simple tweak results in sub-optimal time complexity: if Eve
jams the channel sufficiently long and then stops, it would take
remaining nodes too many slots to send out their messages.

This is where the second channel comes into play. For each
node, upon arrival, it will run a backoff procedure with more “ag-
gressive” sending probabilities on channel two. As it turns out,
(𝑐 log𝑥)/𝑥-backoff is the proper choice, where 𝑐 is some large
constant. Together with channel one, these two backoff procedures
guarantee good time complexity regardless of the jamming pattern.
In particular, Eve can jam sufficiently long to let the contention of
both channels become 𝑜 (1), but through careful analysis we show
in such a case channel two can still generate successes sufficiently

often, at least in an amortized sense, thus enforcing the desired
𝑂 (𝑛 log𝑛 + 𝑑) total time complexity. (It is worth noting, although
Θ(log𝑥)/𝑥-backoff is also utilized in [7, 13], the purposes are very
different: in previous works, Θ(log𝑥)/𝑥-backoff is used to gener-
ate “signals” so that nodes arriving at different times can group into
“batches”, whereas in this paper the procedure is used to ensure
sufficiently frequent successful transmissions. Θ(log𝑥)/𝑥-backoff
has also been used for this latter purpose in [15].)

Interestingly, the above two-channel scheme works even if nodes
are injected over time by the adversary (though the analysis be-
comes harder), so the only remaining issue is to let it work in the
single-channel model. Notice that if nodes can access global slot
indices, then a simple solution exists: all odd slots correspond to the
first channel, and all even slots correspond to the second channel.
Unfortunately, we do not assume nodes can access such informa-
tion. Instead, we use a “synchronization procedure” inspired by [7].
For each node 𝑢, upon arrival, it will first run the synchronization
procedure; when the synchronization procedure ends, all nodes
that are in the system reach agreement on the parity of slots, so 𝑢
can start running the two-channel algorithm (and other existing
nodes resume running the two-channel algorithm).

Overview of algorithm for the static scenario. In this case, we
gain the advantage that all nodes start simultaneously. This allows
us to easily convert any two-channel algorithm into a correspond-
ing single-channel algorithm, as all nodes agree on slot indices.
Nonetheless, in this case, we are also targeting an improved𝑂 (𝑛+𝑑)
time complexity, thus the dynamic algorithm is inadequate.

Recall that when collision detection is not available and jamming
is not present, to achieve constant throughput, previous works
rely on repeating the “efficient part” of the binary exponential
backoff procedure. Specifically, imagine there are 𝑛 nodes running
1/𝑥-backoff on one channel—called the data channel, and these
nodes also run (𝑐 log𝑥)/𝑥-backoff on another channel—called
the control channel. Then it can be shown, the first success on
the control channel will happen in slot Θ(𝑛). By then, remaining
nodes will restart 1/𝑥-backoff on the data channel, and restart
(𝑐 log𝑥)/𝑥-backoff on the control channel.

Our first observation is that restarting the two backoff proce-
dures from scratch is not necessary. Indeed, if 𝑛 nodes run 1/𝑥-
backoff and (𝑐 log𝑥)/𝑥-backoff on two channels, then in the first
𝑛 slots only limited number of successes would occur due to high
contention. Hence, in our static algorithm, each node maintains a
variable ℓ to control its sending probability: in each slot, each node
sends on the data channel with probability 1/ℓ and sends on the
control channel with probability (𝑐 log ℓ)/ℓ . Initially ℓ = 1, then in
each of the following slots, if the control channel does not gener-
ate a success, each node increases ℓ by one; otherwise each node
halves the value of ℓ . Compared with the scheme used in previous
works (which is resetting ℓ = 1 after each control channel success),
this new scheme only doubles the sending probability upon seeing
a control channel success, efficiently maintaining the contention
of the data channel within a desirable interval. (Notice that here
Θ(log𝑥)/𝑥-backoff is used to generate “signals” every some time
to restart backoff procedures, and not intended for generating a
large amount of successes. This is also the reason we call the second
channel as “control channel” in the static scenario.)
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Unfortunately, this doubling scheme still suffers poor energy
efficiency if Eve focuses on jamming slots where the data channel
contention is Θ(1). Nevertheless, a critical observation and an im-
portant advantage of this doubling scheme is, it only suffers poor
energy efficiency if Eve jams at least Ω(𝑛 log𝑛) slots, which implies
𝑑 = Ω(𝑛 log𝑛). But once 𝑑 = Ω(𝑛 log𝑛), the time complexity we
are targeting—which is𝑂 (𝑛+𝑑)—is dominated by 𝑑 . In other words,
when 𝑑 = Ω(𝑛 log𝑛), after running the above doubling scheme for
a while, the remaining nodes can switch to running another al-
gorithm. This phase two algorithm can afford Θ(𝑑) running time
(which might be 𝜔 (𝑛)), in exchange for good energy efficiency.

So the condition for the transition from phase one to phase two
is crucial. In the final algorithm, we come up with a simple criterion
that works for arbitrary 𝑑 values, without any prior knowledge
on the value of 𝑑 . Specifically, whenever a control channel success
occurs, the value of ℓ (after halving) is recorded. Nodes use a variable
𝑚 to maintain the minimum of these recorded values. By the end
of each slot 𝑡 , if𝑚 ≤ 𝑡/log 𝑡 , remaining nodes will switch to phase
two, which is to run a simple (𝑐 log𝑥)/𝑥-backoff from scratch on
the control channel. (Here, Θ(log𝑥)/𝑥-backoff is used to generate
successful transmissions; i.e., similar to its role in the dynamic case
algorithm.) In Section 4, we will explain the effectiveness of this
transition condition in detail.
Lower bounds. For any robust communication algorithm that does
not utilize collision detection, before the first successful message
transmission, nodes cannot differentiate the following cases: (a)
they have small sending probabilities, creating a contention too
low; (b) they have large sending probabilities, creating a contention
too high; or (c) the contention is right but the adversary is jamming.
This dilemma suggests, if nodes want to achieve a good time com-
plexity (even for creating the first success), they have to account
for the first possibility and send sufficiently often upon arrival. Ex-
ploiting this observation allows us to prove a key technical lemma
which connects the energy complexity and the time complexity of
contention resolution algorithms.

Notice that the static scenario has trivial time complexity lower
bound Ω(𝑛 + 𝑑). As for the dynamic scenario, the Ω(𝑛 log𝑛 + 𝑑)
time complexity bound is a direct corollary of Theorem 1.3 of [13].
Lastly, to obtain the energy complexity lower bounds, we combine
the time complexity lower bounds and the aforementioned lemma.
Concentration inequalities.We conclude this section by intro-
ducing two concentration inequalities that will be frequently used.
The first one is the so-called “convenient” Chernoff bound, which
can be found in various textbooks on randomized algorithms (such
as [23]). The second one is Lemma 3.4 from [13], which in turn
relies on Lemma 3 of [7]. It will be used in an amortized argument
that appears multiple times in the analysis.

Lemma 2.3 (Chernoff Bound). Suppose 𝑋1, 𝑋2, · · · , 𝑋𝑁 are 𝑁

independent indicator random variables such that Pr[𝑋𝑖 = 1] = 𝑝𝑖

for all 1 ≤ 𝑖 ≤ 𝑁 . Let 𝑋 =
∑𝑁
𝑖=1 𝑋𝑖 , then we have:

• Pr[𝑋 ≥ (1 + 𝛿)E[𝑋 ]] ≤ exp
(
−𝛿

2E[𝑋 ]
3

)
for any 0 < 𝛿 ≤ 1

• Pr[𝑋 ≤ (1 − 𝛿)E[𝑋 ]] ≤ exp
(
−𝛿

2E[𝑋 ]
2

)
for any 0 < 𝛿 < 1

• Pr[𝑋 ≥ 𝑅] ≤ 2−𝑅 for any 𝑅 ≥ 6 · E[𝑋 ]

Lemma 2.4 (Lemma 3.4 of [13]). Suppose 𝑋1, 𝑋2, · · · , 𝑋𝑁 are 𝑁

(not necessarily independent) random variables such that Pr[𝑋𝑖 =

𝑡 | 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, · · · , 𝑋𝑖−1 = 𝑥𝑖−1] ≤ 1/𝑡Ω (1) holds for any
sufficiently large 𝑡 , any 1 ≤ 𝑖 ≤ 𝑁 , and any values 𝑥1, 𝑥2, · · · , 𝑥𝑖−1
of 𝑋1, 𝑋2, · · · , 𝑋𝑖−1, then

∑𝑁
𝑖=1 𝑋𝑖 = 𝑂 (𝑁 ) w.h.p. in 𝑁 .

3 THE DYNAMIC SCENARIO

We now present our algorithm for the case where nodes are injected
over time by the adversary. We will first give a more through intro-
duction of the algorithm in the two-channel model, then present
the pseudocode, and finally proceed to the analysis. Due to space
constraints, detailed discussion on how to convert the algorithm to
work in the single-channel setting is provided in the full paper.

Recall the high-level structure of the dynamic two-channel algo-
rithm introduced in Section 2. To enforce good energy efficiency,
each node runs one instance of 1/𝑥-backoff continuously on the
first channel upon arrival. However, a downside of this mecha-
nism is sub-optimal time complexity: if Eve jams for a sufficiently
long time period and then stops, remaining nodes would take too
many additional slots to succeed. To fix this issue, for each node,
upon its arrival, we let it run one instance of (𝑐 log𝑥)/𝑥-backoff
continuously on the second channel, where 𝑐 is a large constant.

To understand why Θ(log𝑥)/𝑥-backoff on the second channel
helps reduce time complexity, consider the simpler case where all 𝑛
nodes start simultaneously, and let us examine how the contention
evolves in the above two-channel algorithm. In the first 𝑛 slots,
the contention on both channels are Ω(1) and limited successes
would occur. This part is inherently inefficient but short, so overall
it has no large impact on performance. Next, consider slots from
𝑛 + 1 to 𝜆𝑛 log𝑛 where 𝜆 is some large constant. If Eve does not
jam a constant fraction of these slots on channel one, then the
first channel alone would allow all nodes to succeed by the end of
slot 𝜆𝑛 log𝑛 (see [5]). In such a case, the overall time complexity
is 𝑂 (𝑛 log𝑛). If, on the contrary, Eve does jam at least constant
fraction of slots from 𝑛 + 1 to 𝜆𝑛 log𝑛 on channel one, then 𝑑 =

Ω(𝑛 log𝑛). In such a case, assume slot 𝑠𝑑 is the first slot after slot
𝜆𝑛 log𝑛 that is not jammed by Eve, then we know 𝑑 = Ω(𝑠𝑑 ).
Consider a node𝑢 that is still active in slot 𝑠𝑑 , its sending probability
on the second channel is (𝑐 log 𝑠𝑑 )/𝑠𝑑 . Notice that the contention on
channel two in slot 𝑠𝑑 is at most 𝑛 · (𝑐 log (𝜆𝑛 log𝑛))/(𝜆𝑛 log𝑛) =
𝑂 (1), as 𝑠𝑑 ≥ 𝜆𝑛 log𝑛. Therefore, in slot 𝑠𝑑 and the Θ(𝑠𝑑 ) slots
following slot 𝑠𝑑 , the probability that 𝑢 succeeds on channel two is
at least Θ((log 𝑠𝑑 )/𝑠𝑑 ). In other words, in interval [𝑠𝑑 , 2𝑠𝑑 ], if Eve
does not jam a constant fraction of these slots on channel two, then
𝑢 will halt by the end of slot 2𝑠𝑑 = 𝑂 (𝑑), with high probability in
𝑠𝑑 = Ω(𝑛 log𝑛). A union bound implies this claim holds for every
node that is still active in slot 𝑠𝑑 . To sum up, informally, if the two-
channel algorithm is executed for a duration sufficiently large in
Ω(𝑛 log𝑛), and if Eve does not jam some constant fraction of these
slots on at least one channel, then all nodes must have succeeded
by the end of these slots. In other words, the time complexity of
the two-channel algorithm is𝑂 (𝑛 log𝑛 + 𝑑). This would also imply
the energy cost of each node is 𝑂 (log2 (𝑛 log𝑛 + 𝑑)), which could
also be expressed as 𝑂 (log2 𝑛 + log2 𝑑).

The above discussion intuitively illustrates the effectiveness of
our algorithm, later in the complete analysis we will show it pro-
vides similar guarantees even if the𝑛 nodes are injected dynamically
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by the adversary. The high-level argument, which is a generaliza-
tion of the above discussion, being: (a) the total number of slots in
which the contention on the first channel is Ω(1) cannot be too
large, as each node runs a backoff instance continuously; (b) during
the time period in which the contention of the first channel is be-
tweenΘ(1) andΘ(1/log𝑛), ifΘ(𝑛 log𝑛) such slots are not jammed,
all 𝑛 nodes would succeed; and (c) for slots where the contention of
the first channel is 𝑂 (1/log𝑛), Eve must have jammed sufficiently
many slots previously to let such slots occur, thus though success-
ful transmissions will not occur too frequently, the overall time
complexity can still be bounded by an amortized argument.

3.1 Algorithm Description

Assuming nodes can access two independent communication chan-
nels, the algorithm for the dynamic case is very simple: for each
node, in the 𝑖-th slot since its activation, send with probability 1/𝑖
on channel one, and send with probability (𝑐 log 𝑖)/𝑖 on channel
two. Here, 𝑐 > 0 is some sufficiently large constant.

Algorithm for each node in the dynamic scenario:

From the arriving slot, run (1/𝑥)-backoff on channel one, and
run (𝑐 log𝑥)/𝑥-backoff on channel two.

3.2 Algorithm Analysis

In this subsection, we formally analyze the performance of the
dynamic algorithm in the two-channel setting. We assume jamming
on one channel for one slot costs one unit of energy, and Eve has a
total energy budget of 𝑑 . On the other hand, to facilitate the process
that converts a two-channel algorithm to the single-channel setting,
we extend Eve’s ability on injecting nodes:

Definition 3.1 (ℎ-interference). Let ℎ : N+ → R+ be a func-
tion. In the two-channel model, we say Eve has the ability of ℎ-
interference if she can inject additional nodes called interference

nodes. For each interference node, on the first channel, the adver-
sary can specify whether the node starts running ℎ-backoff from
the slot the node is injected or from the slot following the slot the
node is injected; for each interference node, on the second chan-
nel, the node always starts running ℎ-backoff from the slot it is
injected. An interference node will halt and leave the system upon
hearing a success on any channel.

In analyzing the dynamic scenario two-channel algorithm, we as-
sume Eve has the ability of (𝑐 log𝑥)/𝑥-interference. In particular,
she can inject up to 𝑛 interference nodes beside the 𝑛 normal nodes.
In such setting, the definition for the throughput and the energy
complexity of a two-channel algorithm, as well as the definition for
active slot, need to be adjusted accordingly.

Definition 3.2 (Throughput and Energy Complexity with (𝑐 log𝑥)/𝑥-
interference). Let A be the two-channel algorithm each normal
node runs after arriving. Let 𝑓 , 𝑔 : N+ → R+ be two functions.
• A slot is active if either some interference node or some
normal node is still active in that slot.
• Algorithm A achieves (𝑓 , 𝑔)-time-cost if there exists a con-
stant 𝐶 such that for any integer 𝑛,𝑑 ≥ 1 and any adaptive
adversarywith jamming budget𝑑 that injects𝑛 normal nodes

and up to 𝑛 interference nodes, the number of active slots is
at most 𝐶 · (𝑓 (𝑛) + 𝑔(𝑑)), w.h.p. in 𝑛 + 𝑑 .
• Algorithm A achieves (𝑓 , 𝑔)-energy-cost if there exists a
constant 𝐶 such that for any integer 𝑛,𝑑 ≥ 1 and any adap-
tive adversary with jamming budget 𝑑 that injects 𝑛 normal
nodes and up to 𝑛 interference nodes, the maximum number
of broadcasting attempts a normal node or an interference
node made is at most 𝐶 · (𝑓 (𝑛) + 𝑔(𝑑)), w.h.p. in 𝑛 + 𝑑 .

The following lemma reveals the fact that by allowing the adver-
sary to (𝑐 log𝑥)/𝑥-interference, we can convert a two-channel
algorithm to work in the single-channel setting, with guarantees
on both time complexity and energy complexity. We defer its proof
to the full paper where we discuss the conversion in detail.

Lemma 3.3. Suppose there is a two-channel algorithm achieving

(𝑛 log𝑛,𝑑)-time-cost and (log2 𝑛, log2 𝑑)-energy-cost when the ad-

versary can (𝑐 log𝑥)/𝑥-interference and inject 𝑛 interference nodes,

then there is a single-channel algorithm achieving (𝑛 log𝑛,𝑑)-time-

cost and (log2 𝑛, log2 𝑑)-energy-cost.

Thus, we only need to focus on analyzing the runtime of the two-
channel algorithmwhen the adversary can (𝑐 log𝑥)/𝑥-interference.
Specifically, we intend to prove the following theorem.

Theorem 3.4. The two-channel algorithm achieves (𝑛 log𝑛,𝑑)-
time-cost and (log2 𝑛, log2 𝑑)-energy-cost, even if the adversary can

(𝑐 log𝑥)/𝑥-interference and inject 𝑛 interference nodes.

To prove the above theorem, we divide active slots into two
categories according to the contention on the second channel—ones
that such contention reaches 0.5 and ones that such contention is
below 0.5—and provide bounds for each of them. Throughout the
analysis, when calculating the contention on a channel, we sum
up the broadcasting probabilities of both interference nodes and
normal nodes. Due to space constraints, complete proofs of the
lemmas stated in this subsection are provided in the full paper.
Slots with large contention. In this part, we count the number
of active slots in which the contention of the second channel is at
least 0.5. To facilitate presentation, we define congest slots.

Definition 3.5. We say a slot is a congest slot if at least one of the
following events happens in that slot: (a) channel one is jammed
by Eve; (b) the contention created by normal nodes on channel one
is at least 1; and (c) there exists a (normal or interference) node on
channel one that sends with probability at least 0.5.

With the above definition, we can further divide the slots we
care (i.e., active slots in which the contention of the second channel
is at least 0.5) into the following three categories: (a) congest slots;
(b) slots in which at least one interference node is active; and (c)
remaining slots not in the above two categories.

Intuitively, due to the fact that each normal node runs 1/𝑥-
backoff on the first channel upon arrival and that the jamming
budget of the adversary is limited, an 𝑂 (𝑛 log𝑛 + 𝑑) bound can
be obtained on the number of slots that belong to the first cate-
gory. As for the number of slots belonging to the last category,
observe that in each such slot, the first channel is not jammed and
no interference nodes are present; moreover, the contention of the
first channel is both lower bounded (since the contention of the
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second channel is lower bounded and the contention of the two
channels differ by a logarithmic factor) and upper bounded (due
to the assumption that this slot is not a congest slot). Therefore,
for category three slots, successes are likely to occur frequently,
implying the number of such slots is limited.

Bounding the number of category two slots is more involved. To
that end, we introduce the following definition and lemma.

Definition 3.6. During an execution of the dynamic two-channel
algorithm, define interference intervals 𝐼1 = [𝐿1, 𝑅1], 𝐼2 = [𝐿2, 𝑅2],
..., 𝐼𝑘 = [𝐿𝑘 , 𝑅𝑘 ] inductively as following. Define 𝑅0 = 0. For any
𝑖 ∈ [𝑘], 𝐿𝑖 is the first slot after 𝑅𝑖−1 where the adversary injects
interference nodes; and 𝑅𝑖 is the first slot since 𝐿𝑖 in which there is
a successful message transmission on any channel.

Lemma 3.7. For any 𝑖 ∈ [𝑘], denote the number of interference

nodes injected during interference interval 𝐼𝑖 as 𝑛
′
𝑖
, and denote the

number of congest slots in interval 𝐼𝑖 as 𝑑
′
𝑖
. Then for any positive

integer 𝑡 > 𝐶3 (𝑛′
𝑖
log𝑛′

𝑖
+𝑑′

𝑖
) where𝐶 is a sufficiently large constant,

for any fixed ℓ1, ℓ2, ..., ℓ𝑖−1, we have:

Pr [ |𝐼𝑖 | = 𝑡 | |𝐼1 | = ℓ1, |𝐼2 | = ℓ2, ..., |𝐼𝑖−1 | = ℓ𝑖−1 ] ≤ 1/𝑡Ω (1) .

In a nutshell, Lemma 3.7 states that any interference interval
cannot be too long, and its proof employs the following strategy:
when 𝑡 > 𝐶3 (𝑛′

𝑖
log𝑛′

𝑖
+ 𝑑′

𝑖
) > 𝐶3𝑑′

𝑖
, a large fraction of the 𝑡 slots

are not congest slots; similarly, when 𝑡 > 𝐶3 (𝑛′
𝑖
log𝑛′

𝑖
+ 𝑑′

𝑖
) >

𝐶3𝑛′
𝑖
log𝑛′

𝑖
, for a large fraction of the 𝑡 slots, the contention created

by the interference nodes on channel one is limited. Together, they
enforce a good upper bound on the total contention of channel one,
for a large fraction of the 𝑡 slots. On the other hand, since at least one
interference node is active in an interference interval, there is also
a lower bound on the total contention of channel one throughout
the 𝑡 slots: namely, (𝑐 log 𝑡)/𝑡 . Therefore, given sufficient slots with
contention neither too high nor too low, a success will likely occur
within 𝑡 slots on channel one.

With Lemma 3.7, we can use an amortized argument to bound
the number of slots in which some interference node is active (i.e.,
number of category two slots). Recall the strategies we discussed
previously for bounding category one slots and category three slots,
we are now ready to state the main technical lemma of this part.

Lemma 3.8. The number of active slots in which the contention on

the second channel is at least 0.5 is 𝑂 (𝑛 log𝑛 + 𝑑), w.h.p. in 𝑛 + 𝑑 .

Slots with small contention.We now count the number of active
slots where the contention of the second channel is less than 0.5.

Throughout this part, we treat the slots in which the contention
on channel two reaches 0.5 as jammed slots. Formally, we say an
active slot is a busy slot if in that slot at least one channel is jammed
by the adversary or in that slot the contention on channel two
reaches 0.5. Assume there are 𝑑′ busy slots throughout the entire
execution, due to Lemma 3.8, we know 𝑑′ = 𝑂 (𝑛 log𝑛 + 𝑑).

To facilitate presentation, we further introduce the notation of
complete intervals.

Definition 3.9. During an execution, the active interval of a (nor-
mal or interference) node is the interval between the node’s ar-
riving and leaving (both inclusive). We define complete intervals

𝐼1 = [𝐿1, 𝑅1], 𝐼2 = [𝐿2, 𝑅2], ..., 𝐼𝑘 = [𝐿𝑘 , 𝑅𝑘 ] inductively as follow-

ing. Define 𝑅0 = 0. For any 𝑖 ∈ [𝑘], let 𝑂𝑖 be the first active slot
after 𝑅𝑖−1. Then, 𝐼𝑖 is defined to be the union of the active intervals
that intersect with 𝑂𝑖 .

See Figure 1 for an example. By the above definition, all active
slots of an execution are contained within the union of all complete
intervals, so

∑𝑘
𝑖=1 |𝐼𝑖 | is an upper bound on the total number of

active slots. However, bounding
∑𝑘
𝑖=1 |𝐼𝑖 | differs from the proof of

Lemma 3.7. In particular, interference intervals do not intersect
with each other, so in the proof of Lemma 3.7, we can bound the
length of each interference interval, conditioned on any previous
execution history. By contrast, complete intervals may overlap.

𝐼1 𝐼3 𝐼5

𝐼2 𝐼4

Figure 1: An example of complete intervals, where each solid horizontal

line denotes the active interval of a node. Complete intervals with the

same parity of index do not overlap with each other. Notice that not every

active interval is necessarily included in some complete interval. For

example, see the thick light-gray line in the figure.

Nonetheless, an important observation about complete intervals
is that 𝐼1, 𝐼3, 𝐼5, · · · are disjoint, so are 𝐼2, 𝐼4, 𝐼6, · · · . This can be veri-
fied easily: any node with active interval intersecting a slot after 𝑅𝑖
must not intersect slot 𝑅𝑖−1 + 1, otherwise it should be included in
interval 𝐼𝑖 , thus 𝑅𝑖 should be larger, which is a contradiction. Hence,
we can bound |𝐼1 | + |𝐼3 | + |𝐼5 | + · · · and |𝐼2 | + |𝐼4 | + · · · separately.

Lemma 3.10. For any 𝑖 ∈ [𝑘], denote the number of injected (nor-

mal or interference) nodes during complete interval 𝐼𝑖 as𝑛𝑖 , and denote

the number of busy slots in 𝐼𝑖 as 𝑑
′
𝑖
. Then for any positive integer

𝑡 > 𝐶 (𝑛𝑖 + 𝑑′𝑖 ) where 𝐶 is a sufficiently large constant, for any odd 𝑖

and any fixed ℓ1, ℓ3, ..., ℓ𝑖−2, we have:

Pr [ |𝐼𝑖 | = 𝑡 | |𝐼1 | = ℓ1, |𝐼3 | = ℓ3, ..., |𝐼𝑖−2 | = ℓ𝑖−2 ] ≤ 1/𝑡Ω (1) .
Similarly, for any even 𝑖 and any fixed ℓ2, ℓ4, ..., ℓ𝑖−2, we have:

Pr [ |𝐼𝑖 | = 𝑡 | |𝐼2 | = ℓ2, |𝐼4 | = ℓ4, ..., |𝐼𝑖−2 | = ℓ𝑖−2 ] ≤ 1/𝑡Ω (1) .

With the help of the above lemma, we can use an amortized
argument to obtain the main technical lemma of this part.

Lemma 3.11. Suppose during the execution of the two-channel

algorithm there are 𝑎 active slots in which the contention on the

second channel is at least 0.5. Then, the total number of active slots is

at most 𝑂 (𝑎 + 𝑛 + 𝑑), with high probability in 𝑛 + 𝑑 .

Proof sketch of Theorem3.4.Combine Lemma 3.8 and Lemma 3.11,
we know that for the two-channel algorithm, the total number of
active slots is at most 𝑂 (𝑛 log𝑛 + 𝑑). Since each (normal or inter-
ference) node runs some backoff procedure continuously on each
channel, the above time complexity bound implies the total con-
tention created by each node during its entire life cycle is at most
𝑂 (log2 (𝑛 log𝑛 + 𝑑)). Recall that the total contention created by a
node is also the expected number of times it broadcast during its
life cycle, thus we can also derive the desired energy complexity
bound. Again, see the full paper for complete proof.
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We conclude this section by noting that combining Lemma 3.3
and Theorem 3.4 immediately gives Theorem 1.2, which states the
time complexity and the energy complexity of our dynamic algo-
rithm in the single-channel setting. (Complete proof of Lemma 3.3
is given in the full version of the paper.)

4 THE STATIC SCENARIO

In this section, we introduce our algorithm for the scenariowhere all
nodes start execution simultaneously. Similar to Section 3, we first
give a more through discussion on the intuition of the algorithm,
then present the pseudocode, and finally proceed to the analysis.

In the static scenario, all nodes agree on slot indices, so the two-
channel model is easy to implement: odd slots correspond to the
first channel, which we also refer to as the “data channel”; and even
slots correspond to the second channel, which we also refer to as
the “control channel”.

Assume indeed nodes can access two channels, recall the two-
phase static algorithm we have discussed in Section 2. Specifically,
in the first phase, nodes uses a variable ℓ to control its sending
probability: in each slot, send with probability 1/ℓ on the data chan-
nel, and send with probability (𝑐 log ℓ)/ℓ on the control channel.
Initially ℓ = 1. In each slot, if a control channel success occurs then
ℓ = ℓ/2, effectively doubling the sending probability; otherwise,
simply update ℓ = ℓ + 1. This phase one algorithm efficiently main-
tains the contention of the data channel within a desirable interval,
enforcing a total time complexity of 𝑂 (𝑛 + 𝑑).

However, the above phase one algorithm could suffer poor en-
ergy efficiency when jamming from the adversary is strong. As a
result, in the final algorithm, when nodes realize the adversary has
jammed a lot, they will switch to a phase two algorithm, which is
simply running (𝑐 log𝑥)/𝑥-backoff on the control channel. Assum-
ing 𝑛′ nodes remain when phase two starts, the energy complexity
of each such node during phase two will be 𝑂 (log2 𝑛′ + log2 𝑑),
and the time complexity of phase two will be 𝑂 (𝑛′ log𝑛′ + 𝑑). If
we want to enforce the static algorithm’s total time complexity
to be 𝑂 (𝑛 + 𝑑), then we require 𝑛′ log𝑛′ = 𝑂 (𝑛 + 𝑑). Therefore,
the transition from phase one to phase two is crucial: it cannot
happen too late, otherwise phase one would incur large energy
cost; it also cannot happen too early, otherwise we might have
𝑛′ log𝑛′ = 𝜔 (𝑛 + 𝑑), resulting in sub-optimal total time complexity.

Interestingly, a simple criterion exists. Upon arrival, each node
initializes a variable called𝑚 and sets𝑚 = ∞. During phase one,
whenever a control channel success occurs and ℓ is halved, nodes
update 𝑚 = min{𝑚, ℓ}. By the end of each slot 𝑡 , if 𝑚 ≤ 𝑡/log 𝑡 ,
remaining nodes will switch to phase two. Next, we explain in detail
why this criterion is the proper transition condition.

The value of𝑚 is an asymptotic upper bound on the number of

remaining nodes. In phase one, the contention of the control chan-
nel will increase (particularly, double) only if a success occurs on
the control channel. Moreover, due to Lemma 2.1, with high prob-
ability in ℓ a success will not happen when the contention of the
control channel reaches Ω(log ℓ). Hence, the algorithm restricts
the contention of the control channel to be 𝑂 (log ℓ). Recall that
the contention of the two channels differ by a Θ(log ℓ) factor, thus
the contention of the data channel is restricted to be 𝑂 (1) in phase
one. On the other hand, by definition, the contention of the data

channel is 𝑛′ · (1/ℓ) where 𝑛′ is the number of remaining nodes. As
a result, 𝑛′ = 𝑂 (ℓ) always holds throughout phase one. Recall that
𝑚 is always the minimum value of ℓ up to now and the number of
remaining nodes only decrease over time, we conclude𝑚 is always
an asymptotic upper bound on the number of remaining nodes.

Energy complexity of phase one is guaranteed.Consider phase one
of the algorithm. Assume it takes 𝑇𝑎 slots for the first control
channel success to occur. Then, for each slot after the first con-
trol channel success, Θ((log𝑚)/𝑚) is an upper bound on nodes’
sending probabilities as by then 𝑚 = 𝑂 (ℓ) always hold. Recall
that for each slot 𝑡 in phase one, 𝑚 = Ω(𝑡/log 𝑡). Moreover, 𝑚
only decreases overtime. As a result, if phase one ends by the end
of slot 𝑇 , then for each slot in [𝑇𝑎 + 1,𝑇 ], each node’s sending
probability is 𝑂 (log(𝑇 /log𝑇 )/(𝑇 /log𝑇 )) = 𝑂 ((log2𝑇 )/𝑇 ). This
implies the expected energy cost of each node for phase one is
𝑂 (log2𝑇𝑎 + (𝑇 − 𝑇𝑎) · (log2𝑇 )/𝑇 ) = 𝑂 (log2𝑇 ). Recall that phase
one lasts for at most𝑂 (𝑛 +𝑑) slots (otherwise all nodes would have
succeeded), we conclude the energy cost of each node during phase
one is 𝑂 (log2 (𝑛 + 𝑑)) = 𝑂 (log2 𝑛 + log2 𝑑).

Time complexity of phase two is guaranteed.Due to the above dis-
cussion, we have 𝑛′ = 𝑂 (𝑚) = 𝑂 (𝑇 /log𝑇 ), where 𝑛′ is the number
of nodes entering phase two and 𝑇 is the duration of phase one.
Moreover,𝑇 = 𝑂 (𝑛 +𝑑) as phase one has time complexity𝑂 (𝑛 +𝑑).
Therefore, we conclude 𝑛′ log𝑛′ = 𝑂 (𝑛 + 𝑑), implying the time
complexity of phase two is 𝑂 (𝑛′ log𝑛′ + 𝑑) = 𝑂 (𝑛 + 𝑑).

In summary,𝑚 = Ω(𝑡/log 𝑡) guarantees the energy complexity
of phase one, while𝑚 = 𝑂 (𝑡/log 𝑡) guarantees the time complexity
of phase two. Since𝑚 is decreasing over time and 𝑡 is increasing over
time, the first time𝑚 ≤ 𝑡/log 𝑡 is satisfied is the proper moment to
transition from phase one to phase two.

4.1 Algorithm Description

Algorithm for each node in the static scenario:

Phase I: Initialize ℓ ← 1, 𝑡 ← 1,𝑚 ←∞. Repeat the following
in each slot until𝑚 ≤ 𝑡/log 𝑡 , or the node succeeds (and halts).

(1) Send with probability min{1/ℓ, 1} on the data channel,
and send with probability min{(𝑐 log ℓ)/ℓ, 1} on the con-
trol channel, where 𝑐 is a sufficiently large constant.

(2) If in this slot the control channel generates a success, then
let ℓ ← max{ℓ/2, 1} and let𝑚 ← min{𝑚, ℓ}; otherwise
let ℓ ← ℓ + 1.

(3) 𝑡 ← 𝑡 + 1.
Phase II: Run a fresh instance of (𝑐 log𝑥)/𝑥-backoff on the
control channel, until the node succeeds (and halts).

Our static algorithm is shown above. It is described in the two-
channel model for simplicity, and can be easily converted to the
single-channel setting.

4.2 Algorithm Analysis

Due to space constraints, complete proofs for the lemmas stated
in this subsection are in the full paper. Nevertheless, we will often
provide a sketch to allow readers to grasp the high-level idea.

We first argue the energy consumption of each node is poly-
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logarithmic in its total running time. This is because the life cycle
of each node can be divided into (at most) three parts: the first
part ends when first control channel success occurs, the second
part ends when phase one ends, and the third part ends when
the node succeeds. The energy consumption during part one and
part three are obvious, since in each of the two parts the node
runs some backoff procedures continuously. Obtaining the energy
consumption for part two relies on the property that our algorithm
ensures an upper bound on each node’s broadcasting probability
(as a function of the value of𝑚) during phase one.

Lemma 4.1. Each node running the static algorithm sends𝑂 (log2 𝑡)
times in the first 𝑡 slots, with high probability in 𝑡 .

In the reminder of this subsection, we inspect the time complexity
of our static algorithm, and we do so by proving a bound for phase
one and phase two separately.

We will first focus on phase two since it is easier to analyze.
In particular, if a node 𝑢 runs phase two for 𝑡 = Ω(𝑛′ log𝑛′ + 𝑑)
slots where 𝑛′ is the number of nodes entering phase two, then
most of these slots are not jammed (since 𝑑 = 𝑂 (𝑡)). Moreover,
among the non-jammed slots, there will also exist many slots in
which the contention created by nodes beside 𝑢 is bounded, and
in each such slot 𝑢 broadcasts with probability at least (𝑐 log 𝑡)/𝑡 .
Therefore, when 𝑡 = Ω(𝑛′ log𝑛′ + 𝑑), node 𝑢 will likely to succeed
within 𝑡 slots during phase two. A union bound then implies this
holds for all nodes entering phase two. In summary, we claim:

Lemma 4.2. Denote the duration of phase two as𝑇 , denote the num-

ber of nodes that join phase two as 𝑛′. Then for any 𝑡 ≥ 𝑐2 (𝑛′ log𝑛′ +
𝑑), we have Pr[𝑇 = 𝑡] ≤ 1/𝑡Ω (1) .

Next, we analyze the time complexity of phase one. To that end,
we define complete intervals. Specifically, a complete interval during
phase one is the time interval between two (consecutive) control
channel successes. Clearly, phase one can be partitioned into a set
of complete intervals.

The following lemma shows the first complete interval will not be
too long. Its proof strategy is somewhat similar to that of Lemma 4.2.
Specifically, a large fraction of the first Θ(𝑛 + 𝑑) slots of phase one
are not jammed. Among many of these non-jammed slots, the
contention on the control channel has both a proper lower bound
and a proper upper bound. As a result, a success will likely occur
within these Θ(𝑛 + 𝑑) slots.

Lemma 4.3. In phase one, the first control channel success happens

in 𝑂 (𝑛 + 𝑑) slots, with high probability in 𝑛 + 𝑑 .

Then, we bound the duration of the complete intervals after the
first control channel success, since these complete intervals can be
amortized by the number of congest slots defined as below.

Definition 4.4. In phase one, we say a slot is a congest slot if it is
jammed by the adversary (on either channel), or the contention of
the data channel in this slot is at least 1/𝑐2.

The following lemma shows the total number of congest slots
cannot be too large. To prove it, we first argue, during phase one,
for each slot after the first control channel success and before slot
(𝑛 + 𝑑)2, the contention on the control channel is 𝑂 (log(𝑛 + 𝑑)).
Then, we argue that during this time interval, the value of ℓ satisfies

log ℓ = Ω(log(𝑛 + 𝑑)). Since the contention of data channel and
the contention of control channel differs by a Θ(log ℓ) factor, we
conclude the contention on data channel during this interval is
𝑂 (1). Now, recall that a congest slot means the contention on data
channel is at least 1/𝑐2. This means during phase one, after the
first control channel success, in each non-jammed congest slot,
a success will occur with constant probability. Hence, all nodes
will succeed within 𝑂 (𝑛) non-jammed congest slots after the first
control channel success. Since Eve jams at most𝑑 slots, we conclude
there are 𝑂 (𝑛 + 𝑑) congest slots, which is the lemma statement.

Lemma 4.5. In phase one, the number of congest slots in the first

(𝑛 + 𝑑)2 slots is 𝑂 (𝑛 + 𝑑), with high probability in 𝑛 + 𝑑 .
At this point, we are ready to formally define complete interval

and use an amortized argument to bound its length. Notice that in
proving the following lemma, besides congest slots, we also use the
change in the value of ℓ to amortize interval length.

Lemma 4.6. Suppose 𝑘 control channel successes happen during

phase one, and the 𝑖-th success happens in slot 𝑡𝑖+1. Define 𝑡1 = 0, and
define 𝑡𝑘+1 be the last slot of phase one. For every 𝑖 ∈ [𝑘], define com-

plete interval 𝐼𝑖 = [𝑡𝑖 + 1, 𝑡𝑖+1], define 𝑑′𝑖 to be the number of congest

slots during 𝐼𝑖 , and define Δℓ𝑖 to be the value of ℓ at the beginning of
slot 𝑡𝑖 +1minus the value of ℓ at the end of slot 𝑡𝑖+1. Then, for any posi-
tive integer 𝑡 > 𝐶 (𝑑′

𝑖
+Δℓ𝑖 ), where𝐶 is a sufficiently large constant, we

have Pr [ |𝐼𝑖 | = 𝑡 | |𝐼1 | = 𝑇1, |𝐼2 | = 𝑇2, ..., |𝐼𝑖−1 | = 𝑇𝑖−1 ] ≤ 1/𝑡Ω (1) ,
for any fixed 𝑇1,𝑇2, ...,𝑇𝑖−1.

We are now ready to prove the guarantees enforced by our static
algorithm.

Proof of Theorem 1.3. We first bound the length of phase one.
Assume 𝑘 control channels successes occur during phase one, so
phase one can be divided into 𝑘 complete intervals. For every 𝑖 ∈
[𝑘], let𝑇𝑖 be a random variable such that𝑇𝑖 = |𝐼𝑖 | if |𝐼𝑖 | > 𝐶 (𝑑′

𝑖
+Δℓ𝑖 ),

otherwise 𝑇𝑖 = 0. (Recall 𝐼𝑖 ,𝐶, 𝑑′𝑖 ,Δℓ𝑖 are defined in Lemma 4.6.)
For every 𝑖 ∈ [𝑘 + 1, 𝑛 + 𝑑], define 𝑇𝑖 = 0. Thus, the duration of
phase one is

∑𝑘
𝑖=1 |𝐼𝑖 | ≤

∑𝑘
𝑖=1 (𝑇𝑖 + 𝐶 (𝑑′𝑖 + Δℓ𝑖 )) =

∑𝑘
𝑖=1𝑇𝑖 + 𝐶 ·∑𝑘

𝑖=1 (𝑑′𝑖 + Δℓ𝑖 ) =
∑𝑛+𝑑
𝑖=1 𝑇𝑖 +𝐶 ·

∑𝑘
𝑖=1 (𝑑′𝑖 + Δℓ𝑖 ). Due to Lemma 4.6

and Lemma 2.4,
∑𝑛+𝑑
𝑖=1 𝑇𝑖 = 𝑂 (𝑛 + 𝑑), w.h.p. in 𝑛 + 𝑑 . Due to the

analysis in the proof of Lemma 4.5,
∑𝑘
𝑖=1 𝑑

′
𝑖
= 𝑂 (𝑛 + 𝑑), w.h.p. in

𝑛 + 𝑑 . Lastly, notice Δℓ𝑖 = ℓ𝑡𝑖+1 − ℓ𝑡𝑖+1/2 and ℓ𝑡𝑖+1+1 = ℓ𝑡𝑖+1/2, hence∑𝑘
𝑖=1 Δℓ𝑖 = ℓ𝑡1+1 − ℓ𝑡𝑘+1+1/2 ≤ ℓ𝑡1+1 = 1. Therefore, length of phase

one is 𝑂 (𝑛 + 𝑑) +𝐶 ·𝑂 (𝑛 + 𝑑) +𝐶 · 1 = 𝑂 (𝑛 + 𝑑), w.h.p. in 𝑛 + 𝑑 .
Next, we bound the length of phase two, and we consider two

complement cases depending on the relationship between 𝑛 and 𝑑 .
The first case is 𝑑 = Ω(𝑛 log𝑛). According to Lemma 4.2, in such a
case, the second phase runs for 𝑂 (𝑛 log𝑛 + 𝑑) slots, w.h.p. in 𝑛 + 𝑑 .
The other case is 𝑑 = 𝑂 (𝑛 log𝑛), and its analysis is more involved.
(Notice, when 𝑑 = 𝑂 (𝑛 log𝑛), if an event happens w.h.p. in 𝑛, then
it also happens w.h.p. in 𝑛 + 𝑑 .)

Assume 𝑑 = 𝑂 (𝑛 log𝑛), we first prove the claim that in phase
one the first control channel success happens after time slot 𝑛, with
high probability in 𝑛. To see this, notice that in phase one, for each
slot before slot 𝑛 and before the first control channel success, the
contention on the control channel is at least 𝑛 · (𝑐 log𝑛)/𝑛 ≥ 𝑐 log𝑛.
Hence, due to Lemma 2.1, with high probability in 𝑛, a control
channel success will not occur in this slot. Take a union bound over
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the first 𝑛 slots in phase one, the claim is proved.
Then we argue, in phase one, for any slot after the first control

channel success and before slot (𝑛 + 𝑑)2, the contention of the data
channel in that slot is 𝑂 (1), with high probability in 𝑛. To see this,
notice that due to Claim 4.5.1 (see page 17 of the full paper) and the
assumption 𝑑 = 𝑂 (𝑛 log𝑛), in phase one, for any slot after the first
control channel success and before slot (𝑛 + 𝑑)2, the contention of
the control channel in that slot is 𝑂 (log𝑛). On the other hand, in
phase one, if the first control channel success happens after slot 𝑛
(this happens with high probability in 𝑛 due to the discussion in the
last paragraph), then by algorithm description, ℓ ≥ 𝑛/log𝑛 always
holds after the first control channel success. (Otherwise, phase one
will end.) Lastly, notice that in phase one, for each slot after the first
control channel success, the contention on the data channel and
the control channel differs by a factor of 𝑐 log ℓ , which is at least
Ω(log𝑛) since we have shown ℓ ≥ 𝑛/log𝑛. At this point, we can
conclude, in phase one, for any slot after the first control channel
success and before slot (𝑛 + 𝑑)2, the contention of the data channel
in that slot is 𝑂 (1), with high probability in 𝑛.

Now, suppose phase one ends by the end of slot 𝑇 and 𝑛′ nodes
remain. Suppose the value of ℓ at the beginning of 𝑇 is ℓ𝑇 . By
algorithm description, we know ℓ𝑇 /2 ≤ 𝑇 /log𝑇 . Since in slot 𝑇
each node sends on the data channel with probability 1/ℓ𝑇 and we
have shown above with high probability in 𝑛 the contention on
the data channel is 𝑂 (1) in that slot, we know 𝑛′ = 𝑂 (1)/(1/ℓ𝑇 ) =
𝑂 (ℓ𝑇 ) = 𝑂 (𝑇 /log𝑇 ) with high probability in 𝑛. Recall we have
already shown the time complexity of phase one—which is 𝑇—is
𝑂 (𝑛+𝑑), with high probability in 𝑛+𝑑 . Hence, when 𝑑 = 𝑂 (𝑛 log𝑛),
by Lemma 4.2, the time complexity of phase two is𝑂 (𝑛′ log𝑛′+𝑑) =
𝑂 (𝑛 + 𝑑), with high probability in 𝑛.

At this point, we have proved the total time complexity of the
static algorithm is 𝑂 (𝑛 + 𝑑), with high probability in 𝑛 + 𝑑 . Finally,
recall Lemma 4.1, we can also conclude the energy complexity of
each node is 𝑂 (log2 𝑛 + log2 𝑑), with high probability in 𝑛 + 𝑑 . □

5 LOWER BOUNDS

In this part, we prove several complexity lower bounds for the con-
tention resolution problem, when collision detection is not available
and external interference is present. These bounds show both our
algorithms achieve optimal time complexity. As for energy complex-
ity, the dynamic algorithm also exactly matches the lower bound,
whereas the static algorithm misses the lower bound by a poly-
logarithmic factor regarding the dependency on 𝑛 (and matches the
lower bound regarding the dependency on 𝑑). In particular, in the
static scenario, the lower bound is Ω(log log𝑛 + log2 𝑑), while our
algorithm incurs a per-node energy cost of 𝑂 (log2 𝑛 + log2 𝑑).

Before proving the lower bounds, we first introduce the following
key technical lemma. Recall the discussion in Section 2, this lemma
helps us to connect the time complexity and the energy complexity
of a contention resolution algorithm.

Lemma 5.1. For any function 𝑓 : N+ → R+, if algorithm A
achieves (𝑓 (𝑛), 𝑔(𝑑))-time-cost in the static case with 𝑔(𝑑) = 𝑑 , and

if algorithm A does not observe any success in the first 𝑡 slots, then

in expectation algorithm A sends Ω(log2 𝑡) times in the first 𝑡 slots.

Proof. Consider the case one node 𝑢 runsA. SinceA achieves

(𝑓 (𝑛), 𝑑)-time cost, there exists a constant 𝐶 such that the number
of active slots—i.e., the time required for 𝑢 to succeed—is at most
𝐶 (𝑓 (1) + 𝑑), w.h.p. in 𝑑 . Here, 𝑑 is the number of slots jammed by
Eve. Now, consider the first 𝑡 slots, assume Eve uses the following
strategy. She jams first 𝑡/(4𝐶) slots; she also jams another 𝑡/(4𝐶)
slots chosen uniformly at random from interval (𝑡/(4𝐶), 𝑡]. In this
scenario, by the end of slot 𝑡 , we have𝐶 (𝑓 (1) +𝑑) = 𝐶𝑓 (1) +𝑡/2 < 𝑡

for any 𝑡 > 2𝐶𝑓 (1). Hence, there is at least one success in the first
𝑡 slots, w.h.p. in 𝑑 . Since 𝑑 = Θ(𝑡), this claim also holds w.h.p. in 𝑡 .

Denote 𝑘 (𝑡) as the number of times node 𝑢 broadcasts in inter-
val (𝑡/(4𝐶), 𝑡]. Since in interval (𝑡/(4𝐶), 𝑡] Eve randomly chooses
𝑡/(4𝐶) slots to jam, the probability that no success occurs in these
slots is at least

∑
𝑘≤ 𝑡

8𝐶

Pr[𝑘 (𝑡 )=𝑘 ]
(8𝐶 )𝑘 . Recall there must exist a success

in these slots with probability at least 1−1/𝑡 , so∑𝑘≤ 𝑡
8𝐶

Pr[𝑘 (𝑡 )=𝑘 ]
(8𝐶 )𝑘 ≤

1
𝑡 . Since

𝑡
8𝐶 ≥ log8𝐶

𝑡
2 for sufficiently large 𝑡 , we have:∑︁

𝑘≤ 𝑡
8𝐶

Pr[𝑘 (𝑡 ) = 𝑘 ]
(8𝐶 )𝑘

≥
∑︁

𝑘≤log8𝐶 𝑡
2

Pr[𝑘 (𝑡 ) = 𝑘 ]
(8𝐶 )𝑘

≥
∑︁

𝑘≤log8𝐶 𝑡
2

Pr[𝑘 (𝑡 ) = 𝑘 ]
(8𝐶 ) log8𝐶 𝑡/2

≥
∑︁

𝑘≤log8𝐶 𝑡
2

Pr[𝑘 (𝑡 ) = 𝑘 ]
𝑡/2 =

Pr
[
𝑘 (𝑡 ) ≤ log8𝐶 (𝑡/2)

]
𝑡/2

If Pr
[
𝑘 (𝑡) ≤ log8𝐶

𝑡
2
]
> 1/2, then∑𝑘≤ 𝑡

8𝐶

Pr[𝑘 (𝑡 )=𝑘 ]
(8𝐶 )𝑘 >

1/2
𝑡/2 = 1

𝑡 ,
which is a contradiction. Therefore, Pr

[
𝑘 (𝑡) > log8𝐶

𝑡
2
]
≥ 1−1/2 =

1/2, implying E[𝑘 (𝑡)] ≥ 1
2 log8𝐶

𝑡
2 .

By a similar argument, we know the expected number of times 𝑢
broadcasts in interval

(
𝑡

(4𝐶 )𝑖+1 ,
𝑡
(4𝐶 )𝑖

]
is at least 1

2 log8𝐶
𝑡/2
(4𝐶 )𝑖 , for

any 1 ≤ 𝑖 ≤ 𝑙 where 𝑙 = log4𝐶 𝑡 . Therefore, in total the expected
number of times 𝑢 broadcasts in the first 𝑡 slots is at least:∑︁

0≤𝑖≤𝑙

1
2
log8𝐶

𝑡/2
(4𝐶)𝑖

≥
∑︁

0≤𝑖≤𝑙/2

1
2
log8𝐶

𝑡/2
(4𝐶)𝑙/2

= Ω
(
log2 𝑡

)
□

Since an algorithm with (𝑓 (𝑛), 𝑔(𝑑))-time cost in the dynamic
case is also an algorithm with (𝑓 (𝑛), 𝑔(𝑑))-time cost in the static
case, the above lemma also holds for dynamic algorithms.

We are now ready to prove the lower bounds, and we start by
considering the dynamic case.

Proof of Theorem 1.4. Notice that 𝑓𝑡 (𝑛) = Ω(𝑛 log𝑛) is im-
plied by Theorem 1.3 of [13]. In the reminder of the proof, we focus
on the energy complexity.

We first prove 𝑔𝑒 (𝑑) = Ω(log2 𝑑). Consider a simple adversary
strategy that injects one node in the first slot and jams the first 𝑑
slots, then there are no successes in the first 𝑑 slots. According to
Lemma 5.1, the injected node will send in expectation Ω(log2 𝑑)
times in those slots. Suppose𝑔𝑒 (𝑑) = 𝑜 (log2 𝑑), thenwith high prob-
ability in 𝑑 , the node sends 𝑜 (log2 𝑑) times in the first 𝑑 slots, this
leads to an expectation of at most 𝑜 (log2 𝑑) +𝑑 ·1/𝑑Ω (1) = 𝑜 (log2 𝑑)
times of sending in the first 𝑑 slots, which is a contradiction.

Then we prove 𝑓𝑒 (𝑛) = Ω(log2 𝑛). Consider the adversary strat-
egy that injects

√
𝑛 nodes in each of the first

√
𝑛 slots. Without loss

of generality, assume the algorithm instructs each node to send
in the first slot (after arriving) with probability 𝑥1 > 0. Then, for
each of the first

√
𝑛 slots, the contention is at least 𝑥1

√
𝑛. Since the

algorithm does not know the value of 𝑛, the value of 𝑥1 cannot
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depend on the value of 𝑛; this implies 𝑥1
√
𝑛 ≥ 𝑛0.4 when 𝑛 is suffi-

ciently large. Therefore, due to Lemma 2.1 and the union bound,
for sufficiently large 𝑛, in the first

√
𝑛 slots, with high probability

in 𝑛 no success will occur. Consider a node 𝑢 that is injected in the
first slot. Due to Lemma 5.1, we can further conclude, in the first√
𝑛 slots, in expectation 𝑢 sends at least Ω(log2

√
𝑛) = Ω(log2 𝑛)

times. Now, if 𝑓𝑒 (𝑛) = 𝑜 (log2 𝑛), then with high probability in 𝑛,
node 𝑢 sends 𝑜 (log2 𝑛) times in the first

√
𝑛 slots; this leads to an

expectation of at most 𝑜 (log2 𝑛) +
√
𝑛 · 1/𝑛Ω (1) = 𝑜 (log2 𝑛) times

of sending in the first
√
𝑛 slots, which is a contradiction. □

Next, we consider the static case (i.e., Theorem 1.5). In such
scenario, the Ω(𝑛 + 𝑑) time complexity bound is obvious, since in
each slot there is at most one success (thus giving the Ω(𝑛) bound)
and the adversary can jam 𝑑 slots to block any success (thus giving
the Ω(𝑑) bound). Therefore, the non-trivial part in Theorem 1.5 is
the Ω(log log𝑛 + log2 𝑑) energy complexity. Notice the proof for
𝑔𝑒 (𝑑) = Ω(log2 𝑑) in the proof of Theorem 1.4 can be carried over to
the static case without any modification, so what remains is to show
𝑓𝑒 (𝑛) = Ω(log log𝑛). Due to space constraints, complete proof for
𝑓𝑒 (𝑛) = Ω(log log𝑛) is deferred to the full paper. Nonetheless,
the high-level strategy for proving it is similar to that of proving
𝑓𝑒 (𝑛) = Ω(log2 𝑛) in the proof of Theorem 1.4: we first come up
with a jamming strategy that ensures no node would succeed for
a sufficiently long time period in the static case (regardless of the
algorithm the nodes use), and then apply Lemma 5.1.

Finally, we note that our lower bounds are strong in the sense that
they hold even for an oblivious adversary (i.e., an offline adversary).
By contrast, our algorithms can tolerate an adaptive adversary.
Moreover, since the lower bounds only consider the time and the
energy required to generate the first success, it is likely that they
also hold for the leader election problem in similar models.
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