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The Spatiotemporal Neural Dynamics of Object Recognition
for Natural Images and Line Drawings
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Drawings offer a simple and efficient way to communicate meaning. While line drawings capture only coarsely how objects
look in reality, we still perceive them as resembling real-world objects. Previous work has shown that this perceived similarity
is mirrored by shared neural representations for drawings and natural images, which suggests that similar mechanisms
underlie the recognition of both. However, other work has proposed that representations of drawings and natural images
become similar only after substantial processing has taken place, suggesting distinct mechanisms. To arbitrate between those
alternatives, we measured brain responses resolved in space and time using fMRI and MEG, respectively, while human partic-
ipants (female and male) viewed images of objects depicted as photographs, line drawings, or sketch-like drawings. Using
multivariate decoding, we demonstrate that object category information emerged similarly fast and across overlapping regions
in occipital, ventral-temporal, and posterior parietal cortex for all types of depiction, yet with smaller effects at higher levels
of visual abstraction. In addition, cross-decoding between depiction types revealed strong generalization of object category in-
formation from early processing stages on. Finally, by combining fMRI and MEG data using representational similarity analy-
sis, we found that visual information traversed similar processing stages for all types of depiction, yet with an overall
stronger representation for photographs. Together, our results demonstrate broad commonalities in the neural dynamics of
object recognition across types of depiction, thus providing clear evidence for shared neural mechanisms underlying recogni-
tion of natural object images and abstract drawings.
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When we see a line drawing, we effortlessly recognize it as an object in the world despite its simple and abstract style. Here
we asked to what extent this correspondence in perception is reflected in the brain. To answer this question, we measured
how neural processing of objects depicted as photographs and line drawings with varying levels of detail (from natural images
to abstract line drawings) evolves over space and time. We find broad commonalities in the spatiotemporal dynamics and the
neural representations underlying the perception of photographs and even abstract drawings. These results indicate a shared
basic mechanism supporting recognition of drawings and natural images. /

ignificance Statement

Introduction

Line drawings are universal in human culture and provide a sim-
ple and efficient tool for visualization. With just a few strokes we
can depict the things that we encounter in everyday life in a way
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that is easily recognizable by others. Line drawings of objects can
be recognized without any previous experience (Kennedy and
Ross, 1975), by infants only a few months after birth (DeLoache
et al, 1979), and across a large variation of styles and levels of
detail of the drawing (Eitz et al., 2012). This ease of recognition
raises the question as to how line drawings convey meaning so
efficiently.

One possible explanation for our ability to recognize line
drawings efficiently is that they resemble natural object images
in terms of some core visual features that are central to object


https://orcid.org/0000-0001-7257-428X
mailto:johannes.singer@arcor.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Singer etal. o Object Recognition for Natural Images and Drawings

recognition (Fan et al., 2018). It has been suggested that these
visual features correspond to the edges of an image (Biederman
and Ju, 1988). Considering the architecture of visual cortex, it
has been proposed that lines in drawings drive early visual
brain areas in a similar fashion to edges in natural images
and therefore lead to a similar representation of objects in
the brain (Sayim and Cavanagh, 2011). This notion is sup-
ported by work demonstrating that the recognition of object
drawings engages the same brain regions as photographs (Ishai
et al., 2000; Kourtzi and Kanwisher, 2000) and that early and
high-level visual brain regions similarly represent category in-
formation for drawings and natural object images (Haxby et al.,
2001; Spiridon and Kanwisher, 2002). While these results indi-
cate that drawings and natural object images share a representa-
tional format in some visually responsive brain regions, the
exact spatial extent, the temporal dynamics, and the spatiotem-
poral evolution of the similarities in processing of natural
object images and drawings remain largely unknown.

An alternative explanation for the recognition of drawings
is that the visual information retained in line drawings is too
abstract and therefore insufficient to drive visual recognition
mechanisms tuned to natural images. According to this view,
additional processing steps are required to refine the repre-
sentation of drawings, making it more similar to the repre-
sentation of natural images over time. For scenes, there is
evidence suggesting that similarities in processing of natural
scene images and scene drawings become progressively stron-
ger with the depth of visual processing (Walther et al., 2011)
or even emerge only late in time (Lowe et al., 2018). In addi-
tion, previous results in support of a shared representational
format for natural object images and drawings (Haxby et al.,
2001; Spiridon and Kanwisher, 2002) used fMRI alone, mak-
ing it impossible to infer whether the effects were driven by
the same or distinct underlying temporal dynamics for draw-
ings and natural images. This leaves open whether drawings
and natural object images are similarly processed from early
on or whether the shared representational format is a result of
additional processing steps required for drawings.

To provide evidence in favor or against these explanations,
here we resolved the similarities and differences in processing of
natural object images and drawings across space and time. To
this end, we measured fMRI and MEG in two sessions while par-
ticipants viewed object images depicted across three levels of vis-
ual abstraction: colored photographs, detailed black-and-white
line drawings, and abstract sketch-like drawings. Using spatially
and temporally resolved multivariate decoding and representa-
tional similarity analysis (RSA) (Kriegeskorte et al., 2008), we
provide clear evidence in favor of common representational dy-
namics for objects across levels of visual abstraction in visual
cortex. These results elucidate the representational nature of
drawings in visual cortex and suggest common neural mecha-
nisms for object recognition across levels of visual abstraction.

Materials and Methods

Participants

Thirty-one healthy adults with normal or corrected-to-normal vision
took part in the study and provided their written informed consent
before participating. In total, we excluded 8 participants from the anal-
ysis of the fMRI data and 9 from the analysis of the MEG data. We
based the exclusion on withdrawn participation (one participant, both
fMRI and MEG sessions), low alertness (>20% missed catch trials, see
Experimental Task Paradigm, 2 fMRI sessions and 5 MEG sessions),
missing data (no structural image, one fMRI session), noisy data (>1%
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outlier volumes in framewise intensity difference/excessive head motion,
four fMRI sessions), and excessive eye movements on the stimulus (>5%
of experimental trials, see section on eye movement recording and analysis,
affecting three MEG sessions). Hence, for the fMRI analyses, we included
data of 23 participants (mean age =29.22 years, SD = 3.97 years, 13 female,
10 male), while for the MEG analyses, we included 22 partly overlapping
participants (mean age =28.91 years, SD =4.02 years, 10 female, 12 male,
17 overlapping with fMRI analysis). Post hoc analyses, including all the sub-
jects into the analysis for whom data were available, did not qualitatively
change the pattern of results, demonstrating that exclusion criteria did not
alter the overall pattern of results. The study was approved by the local
ethics committee of the University Medical Center Leipzig (012/20-ek) in
accordance with the Declaration of Helsinki, and participants were reim-
bursed for their participation.

Experimental stimuli

We used object images of the same 48 categories in three different types
of depiction (144 stimuli in total), each representing one level of visual
abstraction (Fig. 1a). Twenty-four of these object categories were
natural objects (e.g., animals and plants), while the other 24 were
man-made (e.g., food, tools, and vehicles). For each category and
type of depiction, there was one exemplar. For the first type of de-
piction (“photographs”), we used colored photographs of objects,
cropped from their background. For the second type of depiction
(“drawings”), we asked an artist to draw black-and-white line draw-
ings based on the photographs with a high level of detail. In these
drawings, color and some texture features were abstracted while
retaining most of the contours of the objects. Finally, in the third
type of depiction (“sketches”), the artist was instructed to draw line
drawings of the photographs in a highly abstracted way. Compared
with the drawings and photographs, the sketches distorted the con-
tours and the size of some parts of the objects, and texture informa-
tion was reduced to a minimum.

Quantitative validation of the experimental stimuli. To be able to
meaningfully compare object recognition for photographs and drawings
at different levels of visual abstraction, we reasoned that our stimulus set
is required to suffice two main criteria: stimuli in the three types of
depiction should (1) differ in terms of their low-level visual features,
reflecting a difference in the degree of visual abstraction and (2) be per-
ceived similarly at a conceptual level by human participants.

First, to quantitatively validate that the stimuli in the three types of
depiction differ in their level of visual abstraction, we extracted low-level
visual features for them using the deep convolutional neural network
VGG16 (Simonyan and Zisserman, 2015). The network is widely used
and prominent for its appearance at the ImageNet Large Scale Visual
Recognition Challenge (Russakovsky et al., 2015) in 2014, where it
reached a top-5 test accuracy of 92.7% on the ImageNet dataset. VGG16
contains five convolutional blocks, each composed of a series of convolu-
tional layers, followed by a max pooling and a ReLU layer. After the con-
volutional layers, there are three fully connected layers. The last fully
connected layer outputs class probability values for all of the 1000 classes
in the ImageNet dataset (Deng et al., 2009) after applying a softmax acti-
vation function. We used VGGI16 as it has not only achieved good per-
formance in image recognition tasks but also repeatedly has been shown
to learn representations that resemble visual object representations in
the human brain (Giiglii and van Gerven, 2015; Schrimpf et al., 2020;
Storrs et al., 2021). As an approximation for low-level visual feature rep-
resentations, we extracted network activations from pooling layer 2 in
response to our object images (Bankson et al., 2018; Greene and Hansen,
2020; Xie et al., 2020; Reddy et al., 2021). For feeding the object images
through the network, the objects were put on a square gray background
and resized to 224 x 224 pixels. Next, we computed representational dis-
similarity matrices (RDMs) (Kriegeskorte et al., 2008) by correlating all
activations in a given type of depiction with each other and computing
pairwise distances by using 1 — Pearson correlation as a distance mea-
sure. This yielded one low-level visual RDM for each type of depiction.
We finally compared these RDMs by correlating their lower triangular
parts to each other using Pearson correlation. This resulted in one corre-
lation value for a given comparison between two types of depiction (e.g.,
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Stimuli and experimental paradigm. a, Stimulus set used in the experiment. We used images of the same 48 object categories in three types of depiction (144 stimuli in total).

Objects were depicted as photographs, drawings, or sketches, with each type of depiction reflecting a different level of visual abstraction. b, MEG paradigm. In the MEG experiment, participants
viewed sequences of object images in random order while fixating on a central fixation cross. Their task was to respond to rare catch trials by pressing a button and blinking. ¢, fMRI paradigm.
Analogous to the MEG experiment, in the fMRI experiment, participants viewed sequences of object images in random order while fixating on the central fixation cross. Object sequences were
interspersed with catch trials in which participants were instructed to respond with a button press. Stimulus presentation timing and ISIs were adjusted according to the modality-specific

requirements.

photo-drawing), reflecting the degree of low-level feature similarity of
the stimuli.

To ensure that human participants perceive the stimuli in the dif-
ferent types of depiction similarly at a conceptual level, we used data
from a previous study (Singer et al, 2022) in which workers on
Amazon Mechanical Turk had performed a triplet odd-one-out task
(Hebart et al., 2020) on the same stimuli as used here. In this task,
participants were instructed to find the odd-one-out in triplets of
object images belonging to the same type of depiction. Based on these
triplet judgments, we constructed human perceptual similarity matrices
for each type of depiction separately, describing the representational
object space based on human behavior. Subsequently, we correlated the
lower triangular parts of the similarity matrices from the different types
of depiction using Pearson correlation, yielding a measure of perceptual
similarity between all types of depiction.

Experimental design and procedure

All participants first completed one fMRI experiment, followed by an
MEG experiment on a separate day, which took place on average 30.57 d
after the first experiment (range 7-85). Before the fMRI experiment, par-
ticipants were familiarized with the stimuli used in both experiments.
This was done to ensure that every participant was able to recognize
the objects depicted in all of the images to rule out the possibility of
differences between types of depiction based on the recognizability of
the images.

Experimental paradigm. During both experiments (fMRI, MEG),
subjects were presented with images of the same object categories in
three types of depiction (photographs, drawings, sketches). Depiction
types were not mixed within runs but presented in separate runs to
avoid carryover effects of consecutive presentation of the same object
in different types of depiction. Participants were instructed to maintain
fixation at the center of the screen indicated by a fixation cross during
the whole experiment (Fig. 1b,c).

Stimuli were presented at the center of the screen overlaid with a
semitransparent crosshair fixation cross (Thaler et al., 2013), which

subtended 0.63° in the fMRI experiment and 0.5° of visual angle in
the MEG experiment. The individual stimulus size was manually
adjusted before the experiment such that the area an object image
occupied on the screen was approximately equal for all object images.
Hence, the stimulus size could vary across object images, and one
object image subtended on average 4.34° (range = [2.97°, 5.85°]) in
the fMRI experiment and 6.15° of visual angle (range = [4.21°, 8.25°])
in the MEG experiment.

Stimulus presentation timings were adjusted to the specifics of the
imaging modality. In the MRI experiment, each stimulus was presented
for 500 ms followed by an interstimulus interval (ISI) of 2500 ms (total
trial duration 3 s). In the MEG experiment, each stimulus was presented
for 450 ms followed by an ISI, which was randomly sampled from a
range of values between 250and 450 ms in steps of 50ms to reduce
effects of phase synchronization (average total trial duration 800 ms).

In both experiments, stimulus presentations were interleaved with
catch trials in which participants were instructed to respond to a given
stimulus, to keep the subjects alert. In the MRI experiment, participants
were instructed to respond with a button press when the fixation cross
turned red. In the MEG experiment, they were instructed to respond to
a paperclip stimulus (which was presented in the type of depiction of the
corresponding run, e.g., as a drawing) and to blink, to reduce blinking
artifacts during the experimental trials. In the MRI experiment, the ISI
for catch trials was equal to the ISI of experimental trials (total trial dura-
tion 3 s). Catch trials in the MEG experiment were followed by a longer
ISI (range of values between 1050 and 1250 ms in steps of 50 ms) to give
participants time to respond and for the MEG signal to return back to
baseline after the blink (average total trial duration 1600 ms).

In a given run, each object image of a given type of depiction
was presented twice in the MRI and 8 times in the MEG experi-
ment. Stimulus presentation order was randomized while prohibit-
ing immediate stimulus repetition. Catch trials accounted for 20%
of the trials in both experiments and were presented after every fourth
to sixth object image presentation. In total, each participant completed
12 runs in the MRI experiment (four from each condition, randomized
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in order, total run duration 6 min 16.5 s) and 9 runs in the MEG experi-
ment (three from each condition, randomized in order, total run dura-
tion 7 min 44.8 s), resulting in 8 stimulus presentations per image and
condition across runs in the MRI experiment and 24 stimulus presenta-
tions per image and condition across runs in the MEG experiment.

Functional localizer task. Before the experimental task in the fMRI
experiment, participants underwent one functional localizer run inde-
pendent from the experimental runs, which was later used for defining
ROIs. Subjects were presented with fully visible object images (objects),
scrambled object images (scrambled), or a fixation cross. Participants
were instructed to fixate on the fixation cross and to respond with a but-
ton press if the same object was presented in two consecutive trials.
Objects and scrambled objects were presented at the center of the screen
for a duration of 400 ms, followed by a presentation of a fixation cross
for 350 ms. Both types of images were presented in blocks of 15 s each
and interleaved with blocks of 7.5 s of fixation. The localizer run com-
prised 12 blocks of fixation and 12 blocks of both objects and scrambled
objects with a total run duration of 7 min 45 s.

fMRI acquisition, preprocessing, and univariate analysis

fMRI acquisition. We recorded fMRI data on a Siemens Magnetom
Prisma Fit 3T system (Siemens) using a 32-channel head coil. Functional
images were acquired using a multiband 3 sequence (TR=1.5s, TE=
33.2ms, in-plane resolution: 2.49 x 2.49 mm, matrix size =82 x 82, FOV =
204 mm, flip angle=70° 57 slices, slice thickness=2.5 mm) with whole-
brain coverage. Existing T1-weighted structural images obtained in previous
studies were used that varied in exact sequence parameters (MPRAGE,
voxel size=1 mm°).

fMRI preprocessing. All preprocessing and univariate analyses of the
fMRI data were conducted using SPM12 (https://www.fil.ion.ucl.ac.uk/
spm/software/spm12/) and custom scripts in MATLBA R2021a (www.
mathworks.com).

First, we screened functional data for outliers in image intensity dif-
ference and head motion. To this end, we conducted initial realignment
and computed the difference in image intensity of each functional
volume and its subsequent volume for each brain slice, excluding the
eyeballs. Next, to determine outlier volumes, we scaled the differences
between functional images relative to the overall mean of differences
across all functional images. We excluded subjects for whom >1% of
volumes showed a >30-fold increase in image intensity difference or
a displacement of >0.5 mm in any direction. For all other subjects,
we removed and then linearly interpolated the images that exceeded
the criteria.

Following outlier removal, functional images were realigned to
the first image of the run, slice-time corrected, and coregistered to
the anatomic image. The functional images of the localizer task were
smoothed with a Gaussian kernel (FWHM =5 mm) while the images
from the experimental runs were not smoothed.

Further, we estimated noise components for the functional images of
the experimental runs by using the aCompCor method (Behzadi et al.,
2007) implemented in the TAPAS PhysIO toolbox (Kasper et al., 2017).
To this end, tissue-probability maps for the gray matter, white matter, and
CSF were estimated based on the structural image of a participant, and
noise components were extracted based on the tissue-probability maps of
the white matter and CSF in combination with the fMRI time series.

fMRI univariate analysis. We modeled the fMRI responses to each
object image in a given run with a GLM. The onsets and durations of
each object image were entered as regressors into the model and were
convolved with an HRF resulting in 48 regressors for the experimental
conditions in each run. As nuisance regressors, we included the noise
components extracted from the white matter and CSF maps as well as
the movement parameters and their first- and second-order deriva-
tives. We repeated this GLM approach 20 times, each time convolv-
ing with a different HRF obtained from an openly available library
of HRFs (https://github.com/kendrickkay/GLMsingle), which was
derived from a large fMRI dataset of participants viewing natural
scenes (Allen et al., 2022). After fitting the GLMs, for each voxel we
extracted the B values for the object image regressors from the
GLM with the HRF that had resulted in the minimum mean residual
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for that given voxel. Since the true HRF is variable across subjects, tasks,
and even brain regions (Polimeni and Lewis, 2021), this approach allows
a closer approximation of the true HRF compared with using the canon-
ical HRF while it does not lead to positively biased statistics at the group
level. This procedure yielded 48 8 maps (one for each object category)
for each run and participant. For later searchlight analyses, we normal-
ized these 8 maps to the MNI template brain.

The fMRI responses for the localizer experiment were modeled in a
separate GLM, with the onsets and durations of the blocks of objects
and scrambled objects convolved with the canonical HRF as regressors.
Only movement parameters were included as nuisance regressors in
this GLM. From the resulting 8 estimates, we computed three con-
trasts. The first contrast was used to localize activity in early visual
brain areas and was defined as scrambled > objects. The second contrast
was used to localize activity in object-selective cortex and was defined as
objects > scrambled. The third contrast was used to localize activity in
posterior parietal cortex and was defined as objects + scrambled > base-
line. This way, we obtained three t-maps for the three contrasts for each
participant.

ROI definition. We focused on regions in early visual cortex (EVC;
ie, V1, V2, V3), the lateral occipital complex (LOC), comprising
object-selective regions LO and pFs in the ventral stream, and on the
posterior intraparietal sulcus (pIPS), comprising the regions IPSO and
IPS1 in the dorsal stream.

To define EVC, we first transformed the subject-specific t maps from
the scrambled > objects contrast from the localizer GLM into MNI
space. Based on these transformed f-maps, we computed a contrast com-
paring the group-level activation against zero, which resulted in one
t-map across subjects. We then thresholded this t-map at the p < 0.001
level and calculated the overlap between the thresholded t-map and the
combined anatomic definition of V1, V2, and V3 from the Glasser Brain
Atlas (Glasser et al., 2016). Finally, we transformed this overlap image
back into the native subject space for each subject, resulting in subject-
specific EVC masks. A more fine-grained definition of the ROIs V1, V2,
V3, and V4 based on the Wang et al. (2015) atlas led to qualitatively sim-
ilar results as the EVC definition.

To define object-selective cortex, we manually identified the peaks in
the subject-specific +-maps of the objects > scrambled contrast from the
localizer GLM, which corresponded anatomically to LO and pFS. We
then defined spheres with a radius of 6 voxels around both peaks, includ-
ing only those voxels in the spheres that had ¢ values corresponding to
p <<0.0001. This resulted in one ROI mask for LO and pES, respectively.
Initial exploratory analyses revealed that LO and pFS yielded highly
comparable results. Therefore, we merged the two ROI masks into one
combined LOC mask. This resulted in one object-selective cortex mask
for each subject.

To define pIPS, we first combined the probability masks for IPSO and
IPS1 from the Wang et al. (2015) atlas and then thresholded this com-
bined IPSO-1 mask at a value of 20%. Next, we transformed the com-
bined pIPS mask into the individual subject space. Finally, we computed
the overlap between the individual pIPS mask and the subject-specific
t-map of the contrast from the localizer GLM comparing all objects and
scrambled objects against baseline, thresholded at p < 0.0001. This pro-
cedure resulted in one pIPS ROI mask for each subject. In case the EVC,
object-selective cortex, or pIPS masks overlapped in a given subject, the
overlapping voxels were discarded from all masks.

MEG acquisition and preprocessing

MEG acquisition. Before the MEG measurement started, participants’
head shape was digitized using a Polhemus FASTRAK device. Additionally,
five coils were placed on the head of the participant which were later used
to track the head position inside the MEG. During the experiment that took
place inside a magnetically shielded room, we recorded neuromagnetic sig-
nals using a 306-channel NeuroMag VectorView MEG system (Elekta) with
a sampling rate of 1000 Hz and an online filter between 0 and 330 Hz.

MEG preprocessing. To remove external noise and correct for
head movements during the MEG measurement, we applied tempo-
ral signal space separation (Taulu and Simola, 2006) and movement
correction to the MEG data using the Maxfilter software (Elekta).
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All further preprocessing steps were implemented in MATLAB
R2021a (www.mathworks.com), using the utilities of the Fieldtrip
toolbox (Oostenveld et al., 2011) and custom scripts.

First, independent component analysis was applied to the com-
bined data from all blocks to identify components corresponding to
eye movements, blinks, or heartbeat. The resulting independent com-
ponent analysis components were manually inspected in combination
with their topographies and time courses, and only those components
that could be clearly attributed to eye movements, blinks, or heartbeat
were removed from the data. Using this procedure, for a given subject,
we removed an average of 1.73 components (SD =0.69). The removal
of eye movement and blink-related independent components is only
meant to clean the data from noise related to these components and is
unrelated to the exclusion criteria based on eye movements on the
stimulus. Next, the data were filtered with a 0.5 Hz high pass filter and
a 40 Hz low pass filter and segmented into trials starting 100 ms before
the onset of a given stimulus and ending 1001 ms after the stimulus pre-
sentation. Importantly, triggers indicating the beginning of the stimulus
presentation were adjusted to match the exact time of the onset of a
given image presentation by aligning them to the onset of the response
of an optical sensor attached to the projection monitor in the MEG.
Following this step, data were baseline-corrected with respect to the time
period -100 to Oms relative to stimulus onset and downsampled to
100 Hz to speed up later multivariate analyses. Finally, multivariate noise
normalization was applied to the data (following general guidelines for
multivariate pattern analysis of MEG/EEG data) (Guggenmos et al.,
2018). In sum, this procedure resulted in trials of 111 time points across
306 channels for every participant.

Eye movement recording and analysis

During the MEG experiment, eye movements of the subject were
recorded using an SR Research EyeLink 1000 system (SR Research).
These data were only acquired for the purpose of identifying subjects
that made a significant amount of eye movements on the presented stim-
ulus, which might be informative about the stimulus identity and could
therefore bias results of multivariate pattern analysis (Mostert et al.,
2018; Thielen et al., 2019). No reliable eye movement data could be
acquired for 4 subjects, so they were excluded from further eye move-
ment data analyses.

First, the data were filtered with a 0.1 Hz high pass filter to remove
slow drifts, followed by segmentation into epochs beginning 100 ms
before and ending 500ms after stimulus onset. Second, we removed
epochs that contained estimated eye movements with an amplitude >3°
of visual angle based on the assumption that these movements could not
have fallen on the presented stimulus and thus could not constitute an
eye movement on the stimulus but rather must reflect noise or occa-
sional noninformative eye movements beyond the stimulus. Finally, we
discarded the pupil diameter channel from the data and retained only
the horizontal and vertical position channels for further analyses.

As an index for an eye movement on the stimulus, we detected
saccades and microsaccades in the extracted clean epochs by using
the microsaccade detection algorithm by Engbert and Kliegl (2003).
Subsequently, we computed the amplitude of movement in a given
detected micro-saccade and labeled only the micro-saccades with an
amplitude >1.5° of visual angle as eye movements on the stimulus,
given that any smaller eye movements would be hard to distinguish
from noise. Finally, we computed the ratio of trials containing eye
movements on the stimulus to all experimental trials (excluding catch
trials) to determine how many experimental trials were contaminated
by eye movements on the stimulus for a given subject. Based on this
estimate, we excluded 3 participants from the MEG analysis because
they showed such eye movements in >5% of the remaining experi-
mental trials.

Multivariate decoding of object category information

We used multivariate decoding on the preprocessed fMRI voxel patterns
and MEG channel patterns to determine where and when the category
information of a presented object can be read out from brain activity. To
this end, separately for every type of depiction, we trained and tested
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linear support vector machine (SVM) classifiers (Chang and Lin, 2011)
to distinguish between the responses to two given objects for every possi-
ble combination of objects, resulting in one accuracy value for every pair
of objects (50% chance level). Subsequently, we averaged all pairwise
accuracies to obtain a measure of overall object discriminability. This
procedure was repeated across ROIs or searchlights for the fMRI data
and across time points for the MEG data. All decoding analyses were
performed separately for every participant.

Spatially resolved multivariate fMRI decoding. To ask where in the
brain category information can be read out from fMRI voxel activity pat-
terns, we used both an ROI-based and a spatially unbiased searchlight
procedure (Kriegeskorte et al., 2006; Haynes et al., 2007).

For the ROI-based procedure, we arranged the 8 values from the
voxels in a given ROI into pattern vectors for each object category and
run. We then evaluated classifiers using a leave-one-out cross-validation
procedure, training on the pattern vectors from three runs and test-
ing on the pattern vector from the remaining run. We repeated this
procedure until every pattern vector had been used once for testing
(for visualization of the approach, see Fig. 2a). This resulted in
decoding accuracies for every ROI, each type of depiction, and each
participant.

For the spatially unbiased searchlight analysis, we defined a sphere
with a radius of four voxels around a given voxel and formed pattern
vectors based on all the B values within this sphere. Analogous to the
ROI-based procedure, we then evaluated classifiers using a leave-one-
out cross-validation procedure. This evaluation procedure was iterated
over all possible searchlights, yielding accuracy values across the whole
brain for each type of depiction and each participant separately. The
resulting searchlight maps were subsequently smoothed with a Gaussian
kernel (FWHM =5 mm).

Temporally resolved multivariate MEG decoding. For the temporally
resolved decoding analyses, we arranged the preprocessed MEG data
into pattern vectors containing the MEG data across channels for every
object category, trial, and time point. Subsequently, to improve the
signal-to-noise ratio, we averaged data from two trials of the same
object category into one supertrial, resulting in 12 supertrials per object
category and time point. We then evaluated SVM classifiers using a
leave-one-out cross-validation framework, training the classifiers on 11
supertrials and testing on the left out supertrial and repeating this pro-
cedure until every supertrial had been used once for testing (for visual-
ization of the approach, see Fig. 5a). To increase the robustness of the
results, we repeated the whole cross-validation procedure and the aver-
aging of trials into supertrials 5 times while randomizing the assign-
ment from trials to supertrials. Accuracies were subsequently averaged
across repetitions. This procedure was repeated for every time point and
for each type of depiction separately, which resulted in object decoding
time courses for every type of depiction and every participant.

fMRI and MEG cross-decoding of category information between types
of depiction. To determine where and when object category information
generalizes between types of depictions, we used cross-decoding. This
approach was analogous to the regular decoding procedure, but instead
of training and testing on data from the same type of depiction, we
trained a classifier on data from one type of depiction (e.g., photographs)
and tested on data from another type (e.g., drawings). We conducted
cross-decoding for three types of comparisons: photo-drawing, photo-
sketch, and drawing-sketch. Further, we computed the cross-decoding
accuracies for both train-test directions and averaged the accuracies sub-
sequently. This way, data from both types of depiction were used once
for training and once for testing the classifier. Analogous to the regular
decoding procedure, we repeated this procedure across ROIs and search-
lights for fMRI and across time points for MEG data, resulting in cross-
decoding accuracies across space and time for the three comparisons
and for each participant separately.

MEG temporal generalization analysis. To investigate at which
points in time the object category MEG pattern information generalized
to other points in time, we used the temporal generalization method
(King and Dehaene, 2014). For a given time point, we trained a classifier
analogous to the temporally resolved decoding procedure. To determine
the generalization of this classifier across time, we tested the classifier on
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Figure 2. Representation and generalization of category information in early and high-level visual cortex at different levels of visual abstraction. a, Spatially resolved decoding procedure.

We trained SVM dlassifiers on the voxel activity pattems of a given ROI or searchlight to classify whether a given pattern belonged to object category i or j for all possible pairs of objects using
a leave-one-out cross-validation framework. Subsequently, we averaged the pairwise decoding accuracies for all object pairs, resulting in decoding accuracies across ROIs or searchlights for
each participant and type of depiction separately. b, Category decoding accuracies in early and high-level visual cortex across levels of visual abstraction. We found above-chance decoding accu-
racies for all types of depiction in EVC, LOC, and pIPS. There were no significant differences in decoding accuracies between types of depiction in any of the ROs. ¢, Cross-decoding accuracies
between types of depiction across ROls. We found significant cross-decoding accuracies between all types of depictions in EVC, LOC, as well as pIPS. Error bars indicate the SEM across

participants.

patterns not only at the matching time point but at all time points. Then,
we repeated this training-generalization approach for every time point,
yielding a time X time temporal generalization matrix of decoding accu-
racies for each type of depiction and each participant.

RSA-based MEG-fMRI fusion

For combining the information about visual processing in the spatial
dimension from fMRI data with the temporal dimension from MEG
data, we used RSA-based MEG-fMRI fusion (Cichy et al., 2014; Hebart
etal,, 2018; Cichy and Oliva, 2020) (for visualization of the approach, see
Fig. 8a). The basic idea behind RSA is to characterize the representa-
tional space in a given measurement component (e.g., an fMRI ROI)
with an RDM. An RDM describes the representational space in terms of
pairwise distances between responses to all of the conditions of interest,
thereby abstracting from the activity patterns of measurement channels
(e.g., tMRI voxels or MEG sensors). RDMs can be obtained e.g., across
different regions in the brain or points in time and can subsequently be
compared by correlating them. If two RDMs exhibit a positive correla-
tion, it is assumed that the underlying representational geometry is simi-
lar. Following this rationale, we computed RDMs for each time point,
RO], type of depiction, and each subject separately. For this, we first
averaged all run-wise fMRI or trial-wise MEG pattern vectors for a given
object category extracted at different ROIs or time points. Subsequently,
we computed the pairwise dissimilarities between pattern vectors as 1 —
Pearson correlation and stored these dissimilarities in one RDM for a
given ROI or time point. Then, we correlated the lower triangular parts

of the ROI-specific and temporally resolved RDMs with each other using
Pearson correlation, resulting in MEG-fMRI fusion time courses for
each RO, each type of depiction, and each participant separately.

Statistical analyses
To assess the statistical significance of the decoding accuracies as well
as RDM correlations, we used nonparametric sign-permutation tests
(Nichols and Holmes, 2002). To this end, we obtained null distributions
by randomly permuting the sign of the results at the participant level a
total number of 10,000 times. Based on these null distributions, we
obtained p values for the empirical results and thresholded these p values
at the p <0.001 level. p values obtained for decoding accuracies were
based on one-sided tests, while p values for RDM correlations as well as
differences of decoding accuracies were based on two-sided tests.
Uncorrected p values were only used for inference when testing
decoding accuracies against chance in individual ROIs since results
for photographs, drawings, and sketches were treated as testing sep-
arate hypotheses. However, when testing for pairwise differences
between conditions (i.e., photograph vs drawing, photograph vs
sketch, drawing vs sketch) or when testing cross-decoding accura-
cies for multiple combinations of depiction types (i.e., photo-draw-
ing, photo-sketch, drawing-sketch) against chance within a given
ROI, we corrected the p values with the Benjamini-Hochberg FDR
correction (Benjamini and Hochberg, 1995).

For statistical tests across voxels or time involving a large number
of multiple comparisons, we applied cluster correction to control the
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a-error rate (Maris and Oostenveld, 2007). The data points that
exceeded the p < 0.001 threshold were clustered based on temporal or
spatial adjacency, and the maximum cluster size was computed for
each permutation. This way, we obtained a null distribution of the
maximum cluster size statistic. Finally, the clusters in the empirical
results were then thresholded based on the null distribution of the
maximum cluster size statistic at the p <0.05 level. To correct for
multiple tests of significance of pairwise differences between condi-
tions (e.g., photograph vs drawing, photograph vs sketch, drawing vs
sketch) or for testing cross-decoding accuracies for multiple combi-
nations of depiction types (i.e., photo-drawing, photo-sketch, draw-
ing-sketch), we obtained the cluster-size statistic which corresponded
to the given statistical threshold (p < 0.05) for all of the multiple tests
and used the maximum cluster-size statistic computed across tests as
the threshold for all clusters from all tests.

In order to estimate CIs for the decoding accuracy and RDM correla-
tion peak latencies, we used a bootstrapping procedure. For this, we ran-
domly sampled participant-specific time series with replacement for a
total number of 100,000 times. Next, we averaged the results across par-
ticipants for every bootstrap sample and then estimated the peak latency
by finding the maximum of the average time series. Based on the mean
and SD of the resulting distribution of peak latencies, we computed the
95% Cls of the peak latency.

For comparing decoding accuracy and RDM correlation peak laten-
cies, we used a bootstrapping procedure analogous to the approach
described above. However, instead of estimating CIs of peak latencies of
one condition, we estimated the CIs of the difference between conditions
by subtracting the peak latencies for two given conditions estimated for
each bootstrap sample. This yielded a distribution of peak latency differ-
ences from which we obtained the 95% CI of the difference. We regarded
a given difference between peak latencies as significant if the CI of the
difference did not include zero.

Finally, to test for the statistical equivalence of decoding accuracy or
RDM correlation peak latencies, we used a two one-sided test (TOST)
procedure (Lakens, 2017).

Data and code availability

All results of the decoding and RSA analyses are publicly available via
https://osf.io/vsc6y/ along with preprocessed fMRI and MEG data from
an exemplary subject. The raw MEG and fMRI data can be accessed on
OpenNeuro via https://openneuro.org/datasets/ds004330 and https://
openneuro.org/datasets/ds004331. Code to reproduce the results and fig-
ures in the paper is provided via https://github.com/Singerjohannes/
object_drawing_dynamics.

Results

Natural object images and line drawings differ in low-level
visual features but are perceived similarly

To ensure that our stimulus set is well suited for comparing
object recognition across different levels of visual abstraction, we
aimed to quantitatively validate that objects are perceived simi-
larly by human subjects at a conceptual level despite differences
at the visual level. As a proxy for low-level visual features, we first
extracted features from pooling layer 2 of the deep convolutional
neural network VGG16 (Simonyan and Zisserman, 2015) for all
of the object images, in line with previous work (Bankson et al.,
2018; Greene and Hansen, 2020; Xie et al., 2020; Reddy et al,,
2021). We then computed RDMs based on the extracted features
separately for the different types of depiction and correlated the
lower triangular parts of the RDMs between types of depiction.
As expected, photographs and drawings showed the highest
RDM correlation (r=0.79) while the correlation for photographs
and sketches (r=0.41) as well as the correlation between draw-
ings and sketches (r=0.45) were lower. Next, to confirm that
human subjects perceive the object images in the different
types of depiction similarly at a conceptual level, we used
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previously acquired data (Singer et al., 2022) where workers
on Amazon Mechanical Turk indicated which of three object
images they thought was the odd-one-out (Hebart et al,
2020). These triplet judgments were used to construct percep-
tual similarity matrices for each type of depiction separately,
which we subsequently correlated to each other to estimate
their representational similarity. As expected, human subjects
perceived all types of depictions highly similarly (all pairwise
correlations r=0.97). In sum, these analyses quantitatively
confirm that, while there is a gradual difference in low-level
visual features across the three types of depiction reflecting
the degree of visual abstraction, there is also a correspondence
in how human participants perceive these images at a concep-
tual level.

Object category information can be decoded and generalizes
across types of depiction in early and high-level visual cortex
Based on previous findings (Haxby et al., 2001; Spiridon and
Kanwisher, 2002; Walther et al., 2011), we hypothesized that in-
formation about the category of a presented object is represented
in early and high-level visual cortex for natural images as well as
for line drawings and that this information generalizes across lev-
els of visual abstraction. To test this hypothesis, we trained and
tested SVM classifiers on the fMRI data to decode the category of
a presented object for each ROI and for every type of depiction
separately. We focused on EVC and LOC as proxies for early
and high-level visual processing, respectively. In addition, we
explored the region pIPS in the dorsal stream since a growing
body of evidence supports an important role of regions in the
dorsal visual pathway for object recognition (for review, see
Freud et al.,, 2016; Ayzenberg and Behrmann, 2022) and has
shown a selectivity for object format in these regions (Snow et
al., 2011; Freud et al., 2018).

The category decoding results for EVC, LOC, and pIPS are
shown in Figure 2b. Category information could be decoded
with accuracies significantly above chance from the voxel activity
patterns from EVC, LOC, as well as pIPS for all types of depic-
tion (p <0.001, sign-permutation test). When directly com-
paring decoding accuracies between types of depiction within
an ROI, we found that there were no significant differences
between any of the types of depiction in EVC (all p>0.205,
sign-permutation test, FDR-corrected), LOC (all p > 0.083, sign-
permutation test, FDR-corrected), or pIPS (all p > 0.364, sign-
permutation test, FDR-corrected). Finally, decoding accuracies
for all types of depiction were higher in EVC than in both LOC
and pIPS (all p <0.001, sign-permutation test, FDR-corrected)
and higher in LOC than in pIPS (all p < 0.001, sign-permutation
test, FDR-corrected), which is expected given the strong visual
differences between object categories in a given type of depiction.
To control that these differences in decoding accuracies between
ROIs are not simply driven by a larger number of voxels for any
of the ROIs, we conducted the same decoding analysis after
equating the number of voxels included in all ROI masks by ran-
domly subsampling the bigger ROI masks. This control analysis
led to comparable results, demonstrating that the differences
between ROIs are not driven by a larger ROI size of any of the
ROIs. In sum, this suggests that information about the category
of a presented object is represented in early and high-level visual
brain regions for all levels of visual abstraction.

To identify the degree to which category information general-
izes between photographs, drawings, and sketches, we conducted
cross-decoding. The rationale behind this approach is that, if the
classifier trained on data from one type of depiction (e.g.,
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Decoding accuracies within type of depiction were significantly higher than the decoding
accuracies across types of depiction in EVC and LOC but only to some extent in pIPS. These
differences were smaller for LOC and pIPS compared with EVC and smaller in pIPS than in
LOC. Error bars indicate the SEM across participants.

photographs) can be used for data from another type of depic-
tion (e.g., drawings), it is concluded that the underlying repre-
sentational format is similar. We evaluated three different
comparisons (photo-drawing, photo-sketch, and drawing-
sketch), resulting in three values for each ROI. We found sig-
nificant cross-decoding accuracies between all types of depic-
tion already in EVC but also in LOC and pIPS (all p <0.001,
sign-permutation test; FDR-corrected, Fig. 2c). To evaluate
the robustness of these findings, we also correlated the lower
triangular parts of RDMs of different types of depiction with
each other for each ROI separately. This led to qualitatively
similar results, confirming the cross-decoding results.

Next, to further examine the degree of generalization between
types of depiction, we asked whether the decoding accuracies
within types of depiction were different compared with the
cross-decoding accuracies across types of depiction in each
ROL. If these accuracies are not significantly different, this
would indicate that the representation of object category is
invariant to the type of depiction. If, however, the cross-
decoding accuracies are lower than the decoding accuracies
within type of depiction, this would indicate that the repre-
sentation is tolerant but not invariant to the type of depiction
(Hebart and Baker, 2018). The results for all comparisons are
shown in Figure 3. Accuracies across types of depiction were
significantly lower than the corresponding accuracies within
types of depiction for all comparisons in both EVC and LOC
(all p <0.002, sign-permutation test, FDR-corrected). In pIPS,
only the comparisons “Photo minus Photo-Sketch” and
“Drawing minus Drawing-Sketch” reached significance (all
p <0.003, sign-permutation test, FDR-corrected), while the
other comparisons were only marginally significant (all
p=0.051, sign-permutation test, FDR-corrected). The fact
that these differences were less pronounced in pIPS might be
explained by the overall smaller decoding accuracies in pIPS.
Moreover, the differences in LOC and pIPS were significantly
smaller than the ones in EVC, and the differences in pIPS were
smaller than the ones in LOC (all p < 0.004, sign-permutation
test, FDR-corrected). These smaller effects in LOC and pIPS are
consistent with the idea of gradually increasing tolerance to the
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type of depiction with depth of visual processing, yet, could also
be explained by overall smaller decoding accuracies in LOC and
pIPS. Overall, these results suggest that, while the representation
of object category in EVC, LOC, and to some extent in pIPS is
not invariant to the type of depiction, it exhibits tolerance to the
type of depiction.

Together, these findings corroborate earlier studies showing
that category information can be decoded and is similarly repre-
sented in early and high-level visual cortex for natural object
images and abstract drawings.

Large parts of occipital and ventral temporal cortex
conjointly carry object category information which
generalizes across levels of visual abstraction

While the results from the ROI analyses suggest a shared repre-
sentational format of object category information across types of
depiction in these ROIs, they leave open the spatial extent of this
shared representation beyond these ROIs. To identify where cat-
egory information is reflected in the brain across levels of visual
abstraction and where it generalizes between types of depiction,
we conducted a spatially unbiased searchlight analysis, iterating
the decoding procedure over all possible searchlight locations in
the brain.

The searchlight maps for decoding within types of depiction
are shown in Figure 4a. We found significant accuracies across
large parts of occipital, ventral-temporal, and to some extent also
posterior parietal cortex (p<<0.05, cluster-based permutation
test), with a strong overlap in the significance maps across types
of depiction. Yet, significant voxels for photographs extended
more into anterior parts of ventral-temporal cortex than for
drawings and sketches. To quantify the overlap between types of
depiction, we conducted a conjunction analysis based on the
intersection between all voxels that were significant for all three
types of depiction (Nichols et al., 2005). The resulting conjunc-
tion map shows where category information was conjointly
found across levels of visual abstraction (Fig. 4a). Confirming
our initial observation, the conjunction map covered large parts
of the occipital and ventral-temporal cortex, as well as a part of
posterior parietal cortex. Beyond these similarities, no significant
differences in decoding accuracies were found between different
types of depictions (all p > 0.05, cluster-based permutation test).

The results for the searchlight cross-decoding between differ-
ent types of depiction can be seen in Figure 4b. We found signifi-
cant cross-decoding accuracies between all types of depiction in
large regions in occipital and ventral-temporal cortex, and to a
smaller extent in posterior parietal cortex (p < 0.05, cluster-based
permutation test). The conjunction map for all three types of
comparisons showed a broad overlap for all three comparisons
mirroring the results from the within-type decoding.

In sum, this suggests that, beyond localized regions in early
and high-level visual cortex, a large part of the ventral visual
stream as well as parts of the dorsal visual stream reflect informa-
tion about the object in a format that can be generalized across
different levels of visual abstraction of the image.

Category information can be decoded rapidly from MEG
activity patterns and generalizes early across types of
depiction

Having established where category information can be decoded
and where it generalizes across types of depiction, we investi-
gated when information about the category of a presented object
can be read out and when this information generalizes across
types of depiction. Assuming that drawings and natural object
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Figure 4.

Representation and generalization of category information at different levels of visual abstraction across the whole brain. a, Searchlight significance maps of the decoding of object

category across levels of visual abstraction. The color-coded masks indicate individually significant voxels for the decoding accuracies for each type of depiction separately. The conjunction map
(color-coded in white) indicates conjointly significant voxels for all types of depiction. While significant areas for photographs spanned more anterior parts of ventral temporal cortex than the
ones for drawings and sketches, overall we found large parts of occipital and ventral-temporal and a part of posterior parietal cortex that conjointly reflected category information regardless of
the level of visual abstraction. b, Significance maps of the cross-decoding of object category between types of depiction. Searchlight cross-decoding across the whole brain resulted in significant
accuracies between all types of depiction in large parts of occipital and ventral-temporal cortex as well as a part of posterior parietal cortex. The conjunction map revealed a broad overlap in

the locus of the generalizable information between all types of depiction.

images are similarly processed from early on in the visual system
(Sayim and Cavanagh, 2011), we expected that (1) object cate-
gory information should emerge with similar temporal dynamics
for all types of depiction and (2) category information should
generalize early. In contrast, if additional processing is required
to resolve the abstract visual information in drawings, we ex-
pected delayed emergence of category information for drawings
and sketches compared with photographs and generalization of
category information only late in time. To distinguish between
these alternatives, we trained and tested SVM classifiers either
on the MEG channel patterns from the same or different types
of depiction to decode the category of a presented object for
each time point analogous to the fMRI decoding procedure.
The results of the temporally resolved MEG decoding analy-
ses within photographs, drawings, and sketches are shown in
Figure 5b. Irrespective of the type of depiction, there was a rapid
early rise in decoding accuracy, followed by a steady decline that
continued into the end of the trial and that remained significant
for all three levels of depiction (p <0.05, cluster-based per-
mutation test). Overall, time courses were very similar for
the three conditions, peaking at 100 ms for all conditions
(photograph peak 95% CI = [99.91 ms, 100.09 ms], drawing
peak CI = [98.61 ms, 101.45 ms], sketch peak CI = [86.15 ms
105.49 ms]), with no significant differences between peak
latencies (all p > 0.05, based on bootstrap CI). A TOST pro-
cedure testing for statistical equivalence of the peak latencies
revealed significant results for all comparisons (photograph
vs drawing, MD = —0.5ms, p <0.001; photograph vs sketch,
MD =5 ms, p =0.004; drawing vs sketch, MD = 5.5 ms, p =0.007,
FDR-corrected). Despite these similarities, the overall accuracy
for the three conditions was different, as highlighted in the
difference time courses (Fig. 5¢). There were significantly
higher decoding accuracies for photographs than for both draw-
ings and sketches and significantly higher decoding accuracies
for drawings than for sketches (all p < 0.05, cluster-based permu-
tation test). These differences suggest that there was a gradual

decrease in the strength of the representation of category infor-
mation with an increasing level of visual abstraction potentially
related to the additional visual information (e.g., color, texture)
contained in photographs and drawings.

The cross-decoding time courses, which are depicted in
Figure 6a, showed a similar pattern for all comparisons, with a
sharp increase shortly after stimulus presentation leading up to
a peak after which accuracies declined slowly and remained sig-
nificant for all three comparisons up until the end of the trial
(p <0.05 cluster-based permutation test). Accuracies for all three
comparisons peaked at 100 ms (photo-drawing 95% peak CI =
[93.40 ms, 104.78 ms], photo-sketch CI = [85.54 ms, 105.21 ms],
drawing-sketch CI = [86.18 ms, 105.58 ms]) with no significant
differences between any of the peak latencies (all p > 0.05, based
on bootstrap CI). Testing for equivalence of the peak latencies
revealed significant results for the comparison of photo-drawing
and drawing-sketch peaks (p=0.008, TOST, FDR-corrected) but
nonsignificant results for the other two comparisons (both p=0.24,
TOST, FDR-corrected). An analysis correlating the lower triangular
parts of RDMs of different types of depiction with each other for
each time point led to comparable results, corroborating these
findings.

Moreover, to further assess the generalization between types
of depiction, we compared decoding accuracies within types of
depiction with accuracies across types of depiction in a time-
resolved fashion. We found significantly higher decoding accura-
cies within types of depiction for all comparisons, which remained
significant throughout most of the trial (p < 0.05, cluster-based per-
mutation test; Fig. 6b). Differences increased rapidly, peaked early
at ~100ms, and declined afterward. In line with the results from
the fMRI data, these results suggest that the representation of object
category is tolerant rather than invariant to the type of depiction.

Together, these results show that object category can be
decoded from stimulus-evoked brain activity for natural images
and drawings regardless of the level of visual abstraction,
with similar temporal dynamics but a larger effect for natural
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Figure 5.  MEG-based category information resolved in time across levels of visual abstraction. a, Temporally resolved decoding procedure. For each time point, an SVM dassifier was applied to MEG
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Figure 6.  Generalization of object category information between types of depiction across time. a, Cross-decoding between types of depiction across time. Between all types of depiction,
we found high cross-decoding accuracies based on the MEG data already early on, peaking at ~100 ms, and remaining high until shortly after the offset of the stimulus. b, Differences between
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Colored lines below the accuracy plots indicate significant time points (p << 0.05, cluster-based permutation test).
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Figure 7.  Generalization of the representation of category information across time for all types of depiction. a, Temporal generalization matrices for the three types of depiction. For all three

types of depiction, we found strong generalization across time covering large parts of the trial. The pattem for the three types of depiction was qualitatively similar with a strong early on-diag-
onal component, followed by a later component, which showed additional strong off-diagonal elements. b, Differences in temporal generalization between types of depiction. The direct com-
parison of the temporal generalization between types of depiction revealed that there were differences in the strength of generalization. These differences between photographs and sketches
as well as drawings and sketches were most pronounced for on-diagonal elements. In addition, we found differences between photographs and drawings, which were less pronounced and
without a clear pattern. Significant time points are indicated by the outlined areas (p << 0.05, cluster-based permutation test).

object images which decreased across levels of visual abstrac-
tion. Furthermore, object category information generalized
strongly across all levels of visual abstraction beginning al-
ready in the early stages of visual processing and persisting
into late stages of visual processing. This suggests that recog-
nition of drawings and natural object images share strong
similarities from early on in visual processing.

Comparable generalization of category information across
time for all levels of visual abstraction

The temporally resolved decoding analyses suggest that object
category information emerges similarly fast for all types of depic-
tion and generalizes early across depiction types. Yet, there might
be differences in the dynamics and the stability of the representa-
tions between levels of visual abstraction. Such differences in the
temporal dynamics between types of depiction would indicate
differences in the underlying neural mechanisms for recognition
of natural object images and line drawings. To investigate how
the representation of category information for photographs, draw-
ings, and sketches generalizes across time, we used temporal gen-
eralization analysis (Meyers et al., 2008; King and Dehaene, 2014),
training a classifier on one time point and testing on all other time
points for every type of depiction separately.

The resulting time x time generalization matrices for
photographs, drawings, and sketches are shown in Figure 7a.
We found a similar pattern for all three types of depiction
with strong generalization of the representation of category

information beginning shortly after stimulus onset and con-
tinuing across the whole trial period (p <0.05, cluster-based
permutation test). For all types of depiction there was a strong
on-diagonal pattern from 50to ~200 ms with comparatively
weak off-diagonal accuracies early on. Later on, there was a
stronger off-diagonal component after ~200 until ~500 ms.
The overall pattern observed in the temporal generalization
matrices was qualitatively similar across types of depiction
indicating that the representation of the category of a pre-
sented object underwent comparable representational trans-
formations in time for all types of depiction.

The direct comparison of the pattern of generalization between
photographs, drawings, and sketches, shown in Figure 7b, revealed
significant differences between all depiction types (p < 0.05, clus-
ter-based permutation test). Accuracies for photographs were
overall higher than for sketches, with the strongest differences
spanning on-diagonal elements. Moreover, there were significantly
higher decoding accuracies for drawings than for sketches. The
strongest differences again mostly covered on-diagonal elements,
yet with some distributed off-diagonal differences. For the com-
parison of photographs and drawings the differences were less
strong and did not show a clear pattern as for the other compari-
sons. Significant differences were more distributed with higher
values for photographs mostly on the diagonal and also some oft-
diagonal elements showing higher values for drawings.

In sum, these results demonstrate similarities in the overall
pattern of generalization of category information across time but
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also differences in the strength of generalization. These differen-
ces were strongest for on-diagonal elements for the photo-sketch
and drawing-sketch comparison, suggesting differences in
the overall representation of category information between
types of depiction but less so for the generalization across
time. Differences between photographs and drawings were
less pronounced and scattered, limiting a strong interpreta-
tion of these results.

Similarities and differences in the combined spatiotemporal
dynamics of object recognition for different levels of visual
abstraction

Our results so far suggest that there are broad commonalities in
the spatial and temporal dynamics of the representation of object
category across levels of visual abstraction. Further, object cate-
gory information generalized strongly from early visual process-
ing stages on. Yet, the temporally resolved decoding results and
temporal generalization results indicate that there were differen-
ces in the strength of representation between types of depiction
while the spatially resolved decoding results did not show such
differences. Hence, the question remains where differences in the
neural dynamics between photographs, drawings, and sketches
arise and at what time they arise in a given region. To combine
the temporal and spatial information from MEG and fMRI
data, we used RSA-based MEG-fMRI fusion (Cichy et al., 2014;
Hebart et al., 2018; Cichy and Oliva, 2020). We computed
RDMs for each ROI for the fMRI data and for each time point
for the MEG data and correlated the lower triangular parts of
the temporally resolved and ROI-specific RDMs (for visualiza-
tion of the approach, see Fig. 8a). This way, we could ask in
what ROI and at what point in time the representation of
objects was similar, revealing the spatiotemporal dynamics of
object processing for photographs, drawings, and sketches. For
visualization purposes, we also conducted the MEG-fMRI fusion
analysis using a spatially unbiased searchlight approach (Cichy et
al.,, 2016), iterating the RDM correlation across searchlights and
time points. The resulting MEG-fMRI fusion movies are publicly
available via https://osf.io/vsc6y/.

The fusion time courses for all types of depiction in EVC and
LOC are shown in Figure 8b and Figure 8d, respectively. In EVC,
we found an early increase in MEG-fMRI correlation for all types
of depiction leading up to peaks, followed by a sharp decrease
and another rise. After this second rise in correlation, the MEG-
fMRI correlations slowly decayed for drawings and sketches,
while for photographs there was another increase. Finally,
there was a last spike in correlation for all types of depiction
at ~500-540 ms likely reflecting effects induced by the offset
of the stimulus. Peak latencies for all types of depiction were
found in the time from 90 to 100ms (95% CI photograph =
[89.47 ms, 106.55 ms], drawing = [83.32 ms, 95.29 ms], and sketch =
[81.63 ms, 103.06 ms]) with no significant differences between any
types of depiction (all p > 0.05, based on bootstrap CI of dif-
ference). Moreover, we tested for equivalence of the peak
latencies which revealed nonsignificant results for all com-
parisons (all p > 0.626, FDR-corrected). The comparison of
fusion time courses between photographs and both drawings
and sketches in EVC, shown in Figure 8¢, revealed that there
were significantly higher correlations for photographs than
for both drawings and sketches (p < 0.05, cluster-based per-
mutation test). These differences were strongest in the time
from ~100 to 200 ms and the time from ~300 to ~500 ms.
Differences between drawings and sketches in EVC were
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only small but significant (p <0.05, cluster-based permuta-
tion test). In sum, object information regardless of the level
of visual abstraction first peaked in EVC at ~100 ms and
then reemerged later at ~200 ms, after which the representa-
tion slowly decayed for drawings and sketches, while for
photographs there was another late rise.

In LOC, we found a rise in correlation for all types of depic-
tion with peaks at 150 ms for all three types of depiction (95%
CI photograph = [141.60 ms, 155.65 ms], drawing = [136.50 ms,
156.39 ms], sketch = [146.03 ms, 154.92 ms]), significantly later
than the peak latencies in EVC for all types of depiction (all
p < 0.05, based on bootstrap CI of difference; Fig. 8d). After
these peaks, the correlation decayed up until the end of the trial
only interrupted by a small rise shortly after the offset of the
stimulus. There were no significant differences between peak
latencies of different types of depiction in LOC (all p > 0.05,
based on CI of difference). Testing for statistical equivalence
revealed nonsignificant results for all comparisons of peak laten-
cies (all p=0.841, TOST, FDR-corrected). Furthermore, MEG-
fMRI correlations were stronger for photographs than for both
drawings and sketches in LOC, while there were no signifi-
cant differences between drawings and sketches (p <0.05
cluster-based permutation test; Fig. 8e). Significant differ-
ences between photographs and both drawings and sketches
in LOC were mostly confined to early time points before
150 ms.

Finally, we also explored the spatiotemporal dynamics of vis-
ual processing for photographs, drawings, and sketches in the
region pIPS in the dorsal visual pathway. The MEG-fMRI corre-
lation and MEG-fMRI correlation difference time courses for
pIPS are shown in Figure 9a and Figure 9b, respectively. In pIPS,
correlations increased up to a peak at 130 ms for photographs
and drawings and at 150 ms for sketches (95% CI photograph =
[57.15ms, 207.54 ms], drawing = [6.95 ms, 312.74 ms], sketch =
[91.27 ms, 204.49 ms]), followed by a sharp decrease and a late
rise in correlation after the offset of the stimulus. No significant
differences between peak latencies were found (all p>0.05,
based on CI of difference) and equivalence tests revealed non-
significant results for all comparisons (all p =0.99, TOST, FDR-
corrected). Because of overall weaker effects in pIPS, the first
peak in the time series could not be reliably detected using the
whole trial period for detection. Therefore, we restricted the
peak detection to the time period from the beginning of the trial
up to the time the stimulus presentation ended (—100 to 450 ms).
Moreover, we found significant differences between the correla-
tions for all types of depiction (p < 0.05 cluster-based permutation
test; Fig. 9b). However, these differences were overall rather small
and did not follow a clear pattern, limiting strong interpretation of
these effects.

Together, the spatiotemporal dynamics of object recognition
followed a comparable pattern across levels of visual abstraction.
For all types of depiction, object information first peaked in EVC
and later in LOC. This was followed by reemergence of object in-
formation in EVC and a late phase of object processing with a
sustained response in EVC. In addition, even in high-level visual
regions in the dorsal visual pathway, there was no difference in
the emergence of object information between types of depiction.
Despite these similarities, photographs were distinctive in terms
of the strength of representational similarity between fMRI and
MEG data and showed both early and late differences in EVC as
well as particularly early differences in LOC. In pIPS, differences
were overall less pronounced and less stable, making the inter-
pretation of these effects more challenging. In sum, these results
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indicate additional processing at multiple stages for photographs
compared with both drawings and sketches.

Discussion

In this study, we sought to identify the spatiotemporal neural
dynamics underlying the processing of object drawings and to
determine the similarities and differences to the processing of
natural object images. Specifically, we used fMRI and MEG to
distinguish between two alternative predictions: that photo-
graphs, drawings, and sketches share the same representational
format in both space and time, or that, alternatively, additional,
potentially time-consuming processes would be required for
the recognition of drawings and sketches. While these two pre-
dictions are not mutually exclusive, our findings only confirm
the former prediction in four ways. First, we demonstrated that
information about the category of a presented object could be
read out from brain activity similarly fast and across large parts
of the ventral visual stream as well as posterior parietal cortex,
regardless of the type of depiction of the image. Second, the
representation of object category information generalized begin-
ning early in visual processing. Third, results from temporal
generalization analyses suggest that there were qualitatively sim-
ilar temporal dynamics for photographs, drawings, and sketches.
Finally, the MEG-fMRI fusion results indicate that visual infor-
mation processing follows similar stages, first peaking in EVC
and then later in LOC for all types of depiction, with similar dy-
namics even in pIPS outside the ventral visual stream. In sum,
this demonstrates that there are broad temporal and spatial
commonalities in the neural dynamics as well as similar under-
lying representations for natural images and drawings from
early on in visual processing.

In addition, we did not find evidence confirming the lat-
ter prediction proposing additional processing for drawings
and sketches. Rather, our results suggest the opposite, that
is, enhanced processing for photographs at multiple stages.
We found a gradual decline in the strength of category rep-
resentations across levels of visual abstraction in the MEG
data, with photographs showing the strongest representation,
followed by drawings and sketches. Moreover, the comparison
of the spatiotemporal dynamics between types of depiction
showed that photographs exhibited a stronger representation
both early and late in time in early visual brain regions, and
exclusively early on in high-level visual cortex compared with
both drawings and sketches.

Collectively, our findings substantiate the hypothesis that line
drawings resemble natural object images in terms of some core
visual features (Fan et al., 2018), leading to a similar representa-
tion of drawings and natural images in the brain (Sayim and
Cavanagh, 2011). Contrary to the hypothesis of additional process-
ing for the recognition of line drawings, our results suggest
that more in-depth processing is elicited by natural object
images at multiple stages. Finally, these results indicate that

«—

The differences between drawings and sketches in EVC were small but significant. d, MEG-
fMRI fusion time courses in LOC. MEG-fMRI correlations in LOC peaked significantly later than
in EVC ~150 ms. There were no differences between peak latencies of different types of
depiction. e, MEG-fMRI fusion difference time courses between types of depiction in LOC. In
LOG, there were no significant differences between drawings and sketches while photographs
showed a stronger correlation than both drawings and sketches particularly early on before
150 ms. Shaded areas represent the SEM across participants for each time point. Colored lines
below the accuracy plots indicate significant time points (p << 0.05, cluster-based permuta-
tion test).
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the same neural mechanisms that support natural object rec-
ognition might also hold for drawings across different levels
of visual abstraction.

Despite the abstraction of substantial amounts of visual infor-
mation in line drawings, we found broad commonalities in the
neural dynamics of object recognition for natural object images
and line drawings. In combination with earlier findings (Haxby
et al.,, 2001; Spiridon and Kanwisher, 2002; Walther et al., 2011;
Lowe et al., 2018), these results provide evidence for the hypothe-
sis that the information retained in line drawings serves as a basis
for visual recognition, consistent with an edge-based account of
recognition (Biederman and Ju, 1988). However, our results also
show that object representations are stronger for photographs
compared with drawings or sketches. This is consistent with the
theory on the role of surface information in object recognition
(Tanaka et al, 2001) and empirical evidence (for review, see
Bramado et al., 2011), which propose that visual information only
contained in natural images, such as color and texture, exerts
influence on object recognition. Our findings substantiate this
notion and suggest that, while edge-based information in draw-
ings might be sufficient to elicit qualitatively similar spatiotem-
poral representational dynamics as for natural images, surface
information significantly contributes to object recognition
at multiple processing stages.

Previous work has suggested a shared representational format
for objects depicted as natural photographs or line drawings in
early and high-level visual cortex (Haxby et al., 2001; Spiridon
and Kanwisher, 2002), while for scenes such similarities have
been shown to become stronger or to only arise late in the visual
hierarchy (Walther et al.,, 2011; Lowe et al., 2018). Our results
corroborate and extend earlier findings in object recognition by
demonstrating that commonalities between natural object images
and line drawings emerge early in time and early in the visual hier-
archy. Yet, these results conflict to some part with previous work
in scene recognition. This discrepancy might be explained by the
fact that our stimulus set comprised a single exemplar instead of
multiple exemplars per category (Walther et al., 2011; Lowe et al.,
2018), which emphasizes low-level visual feature differences in
decoding category information. Yet, it is possible that these partly
conflicting findings point to a distinction in the representation
and relevance of low-level visual features, such as edges in object
and scene recognition (Groen et al., 2017), which invites further
exploration.

We demonstrated that object category information emerges
similarly fast in the brain for abstract drawings compared with
color photographs. This suggests that object recognition can be
resolved with the same amount of processing resources for dif-
ferent levels of visual abstraction of the image. This is consistent
with previous computational work showing that representations
for photographs and drawings at different levels of visual abstrac-
tion become highly similar when being processed in feedforward
deep convolutional neural networks trained to categorize natural
object images (Fan et al., 2018; Singer et al., 2022). While other
work has demonstrated that additional recurrent processing is
necessary for resolving degraded (Wyatte et al., 2012), occluded
(Tang et al., 2018; Rajaei et al., 2019), or otherwise challenging
images (Kar et al., 2019), our findings indicate that no additional
mechanisms are needed for the robust recognition of abstract
drawings. Future research could identify precisely in which cases
visual recognition can be resolved with or without the need for
additional processing which might serve as an important con-
straint for future efforts in modeling object recognition.
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The y axes were scaled to be consistent with Figure 8b—e.

One difference in visual processing between photographs and
both drawings and sketches was found with MEG-fMRI fusion
very early on in high-level visual cortex. LOC exhibited a faster
rise of object representations for photographs than for the other
depiction types. While the source of this specific difference is
unclear and not found for MEG and fMRI data alone, one possi-
ble explanation for this finding is the marked difference in the
spatial frequency spectrum between drawings and photographs.
While drawings and sketches contain mainly high spatial fre-
quency information, photographs additionally contain low spa-
tial frequency information (Walther et al., 2011). This increased
presence of low spatial frequency information may have contrib-
uted to an earlier rise of information related to rapid extraction
of coarse information (Schyns and Oliva, 1994; Sugase et al.,
1999; Bar, 2003; Bar et al., 2006; Kveraga et al., 2007; Peyrin et
al., 2010; Musel et al., 2014; Petras et al., 2019). Future studies
that carefully control spatial frequency in an image might reveal
to what extent the spatiotemporal dynamics of object recognition
are influenced by different spatial frequency patterns (Perfetto et
al., 2020).

Previous work has shown that regions in the dorsal visual
stream respond differently to real objects and images of objects
(Snow et al,, 2011; Freud et al., 2018). Therefore, we explored
whether a similar sensitivity for the type of depiction of an object
(i.e., photograph vs drawing) can be observed in these regions.
We found category information that could be generalized across
types of depiction and no evidence for differences in the emer-
gence of category representations between types of depiction in
pIPS. However, we also found differences in the strength of the
spatiotemporal dynamics of object recognition in pIPS, which
may lend support to a differentiation of drawings and natural
images in the dorsal stream. However, the effects in pIPS were
overall smaller and less pronounced compared with the results in
occipitotemporal cortex, which might point to low signal-to-
noise ratio in this region, potentially constraining the conclu-
sions that can be drawn from our results. Future investigations
focusing specifically on the dorsal visual pathway could use

experimental designs and imaging protocols tailored to these
regions to be able to more clearly contribute to the growing evi-
dence for the involvement of the dorsal visual pathway in object
recognition (Freud et al., 2016; Ayzenberg and Behrmann, 2022).

It should be noted that, while we ensured that stimuli in dif-
ferent types of depiction are perceptually different, we did not ex-
plicitly control which details were included in the drawings and
sketches and which not. Some details, such as junctions and cur-
vatures, have been shown to crucially contribute to the recogniz-
ability of drawings (Walther et al, 2011; Walther and Shen,
2014). To rule out that differences in the representation of draw-
ings and natural images can simply be explained by differences
in the recognizability, we ensured that the participants were able
to recognize all stimuli. Yet, the presence of some features in a
drawing might determine whether it is processed similarly as
natural images in the visual system or not. While our results
do not answer the question what features exactly allow for the
recognition of drawings, they demonstrate that the features
that are commonly retained lead to a similar representation of
drawings and natural images in the brain. Disentangling what
types of features contribute to the representations in the visual
system is an overarching goal in visual neuroscience, and
ongoing efforts as well as future investigations might reveal
distinct contributions of different features (Bankson et al.,
2018; Groen et al., 2018).

In conclusion, our results show that the set of core visual fea-
tures retained in line drawings is sufficient to elicit a processing cas-
cade in the visual system that is remarkably similar to the one of
natural images. This suggests that the same neural mechanisms
that support natural object recognition might also hold for abstract
line drawings. While we did not find any evidence for the involve-
ment of additional processing for drawings, our findings indicate
that visual information unique to natural images modulates visual
processing at multiple stages. These results contribute to the under-
standing of how drawings convey meaning efficiently on the one
hand and provide important insights into the neural mechanisms
that underlie robust object recognition on the other hand.
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