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1. Abstract 
Drawings offer a simple and efficient way to communicate meaning. While line 
drawings capture only coarsely how objects look in reality, we still perceive them as 
resembling real-world objects. Previous work has shown that this perceived similarity 
is mirrored by shared neural representations for drawings and natural images, which 
suggests that similar mechanisms underlie the recognition of both. However, other 
work has proposed that representations of drawings and natural images become 
similar only after substantial processing has taken place, suggesting distinct 
mechanisms. To arbitrate between those alternatives, we measured brain responses 
resolved in space and time using fMRI and MEG, respectively, while participants 
viewed images of objects depicted as photographs, line drawings, or sketch-like 
drawings. Using multivariate decoding, we demonstrate that object category 
information emerged similarly fast and across overlapping regions in occipital and 
ventral-temporal cortex for all types of depiction, yet with smaller effects at higher 
levels of visual abstraction. In addition, cross-decoding between depiction types 
revealed strong generalization of object category information from early processing 
stages on. Finally, by combining fMRI and MEG data using representational similarity 
analysis, we found that visual information traversed similar processing stages for all 
types of depiction, yet with an overall stronger representation for photographs. 
Together our results demonstrate broad commonalities in the neural dynamics of 
object recognition across types of depiction, thus providing clear evidence for shared 
neural mechanisms underlying recognition of natural object images and abstract 
drawings. 
 
Keywords:  
object recognition - line drawings - fMRI - MEG - decoding - representational similarity 
analysis  

2. Significance Statement 
When we see a line drawing, we effortlessly recognize it as an object in the world 
despite its simple and abstract style. Here we asked to what extent this 
correspondence in perception is reflected in the brain. To answer this question, we 
measured how neural processing of objects depicted as photographs and line 
drawings with varying levels of detail (from natural images to abstract line drawings) 
evolves over space and time. We find broad commonalities in the spatiotemporal 
dynamics and the neural representations underlying the perception of photographs 
and even abstract drawings. These results indicate a shared basic mechanism 
supporting recognition of drawings and natural images.    
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3. Introduction 

Line drawings are universal in human culture and provide a simple and efficient tool 
for visualization. With just a few strokes we can depict the things that we encounter in 
everyday life in a way that is easily recognizable by others. Line drawings of objects 
can be recognized without any previous experience (Kennedy & Ross, 1975), by 
infants only a few months after birth (DeLoache et al., 1979), and across a large 
variation of styles and levels of detail of the drawing (Eitz et al., 2012). This ease of 
recognition raises the question as to how line drawings convey meaning so efficiently. 

One possible explanation for our ability to recognize line drawings efficiently is 
that they resemble natural object images in terms of some core visual features that 
are central to object recognition (Fan et al., 2018). It has been suggested that these 
visual features correspond to the edges of an image (Biederman & Ju, 1988). 
Considering the architecture of visual cortex, it has been proposed that lines in 
drawings drive early visual brain areas in a similar fashion to edges in natural images 
and therefore lead to a similar representation of objects in the brain (Sayim & 
Cavanagh, 2011). This notion is supported by work demonstrating that the recognition 
of object drawings engages the same brain regions as photographs (Ishai et al., 2000; 
Kourtzi & Kanwisher, 2000) and that early and high-level visual brain regions similarly 
represent category information for drawings and natural object images (Haxby et al., 
2001; Spiridon & Kanwisher, 2002). While these results indicate that drawings and 
natural object images share a representational format in some visually responsive 
brain regions, the exact spatial extent, the temporal dynamics, and the spatiotemporal 
evolution of the similarities in processing of natural object images and drawings remain 
largely unknown.  

An alternative explanation for the recognition of drawings is that the visual 
information retained in line drawings is too abstract and therefore insufficient to drive 
visual recognition mechanisms tuned to natural images. According to this view, 
additional processing steps are required to refine the representation of drawings, 
making it more similar to the representation of natural images over time. For scenes, 
there is evidence suggesting that similarities in processing of natural scene images 
and scene drawings become progressively stronger with the depth of visual 
processing (Walther et al., 2011) or even emerge only late in time (Lowe et al., 2018). 
In addition, previous results in support of a shared representational format for natural 
object images and drawings (Haxby et al., 2001; Spiridon & Kanwisher, 2002) used 
fMRI alone, making it impossible to infer whether the effects were driven by the same 
or distinct underlying temporal dynamics for drawings and natural images. This leaves 
open whether drawings and natural object images are similarly processed from early 
on or whether the shared representational format is a result of additional processing 
steps required for drawings.  

To provide evidence in favor or against these explanations, here we resolved 
the similarities and differences in processing of natural object images and drawings 
across space and time. To this end, we measured fMRI and MEG in two sessions 
while participants viewed object images depicted across three levels of visual 
abstraction: colored photographs, detailed black-and-white line drawings, and abstract 
sketch-like drawings. Using spatially and temporally-resolved multivariate decoding 
and representational similarity analysis (RSA, Kriegeskorte et al., 2008), we provide 
clear evidence in favor of common representational dynamics for objects across levels 
of visual abstraction in visual cortex. These results elucidate the representational 
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nature of drawings in visual cortex and suggest common neural mechanisms for object 
recognition across levels of visual abstraction.  

4. Materials and Methods 

4.1. Participants  
Thirty-one healthy adults with normal or corrected-to-normal vision took part in the 
study and provided their written informed consent before participating. In total, we 
excluded 8 participants from the analysis of the fMRI data and 9 from the analysis of 
the MEG data. We based the exclusion on withdrawn participation (one participant, 
both fMRI and MEG sessions), low alertness (>20% missed catch trials, see 
Experimental Task Paradigm, 2 fMRI sessions and 5 MEG sessions), missing data 
(no structural image, one fMRI session), noisy data (>1% outlier volumes in framewise 
intensity difference / excessive head motion, 4 fMRI sessions), and excessive eye 
movements on the stimulus (>5% of experimental trials, see section on eye movement 
recording and analysis, affecting 3 MEG sessions). Hence, for the fMRI analyses, we 
included data of 23 participants (mean age=29.22, SD=3.97, 13 female, 10 male), 
while for the MEG analyses, we included 22 partly overlapping participants (mean 
age=28.91, SD=4.02, 10 female, 12 male, 17 overlapping with fMRI analysis). The 
study was approved by the local ethics committee of the University Medical Center 
Leipzig (012/20-ek) in accordance with the declaration of Helsinki, and participants 
were reimbursed for their participation. 

4.2. Experimental stimuli  
We used object images of the same 48 categories in three different types of depiction 
(144 stimuli in total), each representing one level of visual abstraction (Fig. 1a). 24 of 
these object categories were natural objects (e.g. animals and plants), while the other 
24 were man-made (e.g. food, tools and vehicles). For each category and type of 
depiction there was one exemplar. For the first type of depiction (“photos”), we used 
colored photographs of objects, cropped from their background. For the second type 
of depiction (“drawings”), we asked an artist to draw black and white line drawings 
based on the photos with a high level of detail. In these drawings, color and some 
texture features were abstracted while retaining most of the contours of the objects. 
Finally, in the third type of depiction (“sketches”), the artist was instructed to draw line 
drawings of the photos in a highly abstracted way. In comparison to the drawings and 
photos, the sketches distorted the contours and the size of some parts of the objects, 
and texture information was reduced to a minimum. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503484doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503484
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 
Figure 1. Stimuli and experimental paradigm. a) Stimulus set used in the experiment. We used 
images of the same 48 object categories in three types of depiction (144 stimuli in total). Objects were 
depicted as either photos, drawings, or sketches, with each type of depiction reflecting a different level 
of visual abstraction. b) MEG paradigm. In the MEG session, participants viewed sequences of object 
images in random order while fixating on a central fixation cross. Their task was to respond to rare catch 
trials by pressing a button and blinking. c) fMRI paradigm. Analogous to the MEG session, in the fMRI 
session participants viewed sequences of object images in random order while fixating on the central 
fixation cross. Object sequences were interspersed with catch trials in which participants were 
instructed to respond with a button press. Stimulus presentation timing and ISIs were adjusted 
according to the modality-specific requirements. 

4.2.1. Quantitative validation of the experimental stimuli  
To be able to meaningfully compare object recognition for photographs and drawings 
at different levels of visual abstraction we reasoned that our stimulus set is required to 
suffice two main criteria: stimuli in the three types of depiction should (1) differ in terms 
of their low-level visual features, reflecting a difference in the degree of visual 
abstraction and (2) be perceived similarly at a conceptual level by human participants.  

First, to quantitatively validate that the stimuli in the three types of depiction 
differ in their level of visual abstraction, we extracted low-level visual features for them 
using the deep convolutional neural network VGG16 (Simonyan & Zisserman, 2015). 
The network is widely used and prominent for its appearance at the ImageNet Large 
Scale Visual Recognition Challenge (Russakovsky et al., 2015) in 2014, where it 
reached a top-5 test accuracy of 92.7% on the ImageNet dataset. VGG16 contains 
five convolutional blocks, each composed of a series of convolutional layers, followed 
by a max pooling and a ReLU layer. After the convolutional layers there are three fully 
connected layers. The last fully connected layer outputs class probability values for all 
of the 1,000 classes in the ImageNet dataset (Deng et al., 2009) after applying a 
softmax activation function. We used VGG16 as it has not only achieved good 
performance in image recognition tasks but also repeatedly has been shown to learn 
representations that resemble visual object representations in the human brain (Güçlü 
& Gerven, 2015; Schrimpf et al., 2020; Storrs et al., 2021). As an approximation for 
low-level visual feature representations, we extracted network activations from pooling 
layer 2 in response to our object images (Bankson et al., 2018; Greene & Hansen, 
2020; Reddy et al., 2021; Xie et al., 2020). For feeding the object images through the 
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network, the objects were put on a square gray background and resized to 224 x 224 
pixels. Next, we computed representational dissimilarity matrices (RDMs, 
Kriegeskorte et al., 2008) by correlating all activations in a given type of depiction with 
each other and computing pairwise distances by using 1-Pearson correlation as a 
distance measure. This yielded one low-level visual RDM for each type of depiction. 
We finally compared these RDMs by correlating their lower triangular parts to each 
other using Pearson correlation. This resulted in one correlation value for a given 
comparison between two types of depiction (e.g. photo-drawing), reflecting the degree 
of low-level feature similarity of the stimuli.  

To ensure that human participants perceive the stimuli in the different types of 
depiction similarly at a conceptual level, we used data from a previous study (Singer 
et al., 2022) in which workers on Amazon Mechanical Turk had performed a triplet 
odd-one out task (Hebart et al., 2020) on the same stimuli as used here. In this task 
participants were instructed to find the odd-one out in triplets of object images 
belonging to the same type of depiction. Based on these triplet judgments we 
constructed human perceptual similarity matrices for each type of depiction separately, 
describing the representational object space based on human behavior. 
Subsequently, we correlated the lower triangular parts of the similarity matrices from 
the different types of depiction using Pearson correlation, yielding a measure of 
perceptual similarity between all types of depiction.  

4.3. Experimental design and procedure  
All participants first completed one fMRI session, followed by an MEG session on a 
separate day, which took place on average 30.57 days after the first session (range 7-
85). Before the fMRI session, participants were familiarized with the stimuli used in the 
experiment. This was done to ensure that every participant was able to recognize the 
objects depicted in all of the images in order to rule out the possibility of differences 
between types of depiction based on the recognizability of the images.  

4.3.1. Experimental paradigm  
During both sessions (fMRI, MEG), subjects were presented with images of the same 
object categories in three types of depiction (photos, drawings, sketches). Depiction 
types were not mixed within runs but presented in separate runs to avoid carry-over 
effects of consecutive presentation of the same object in different types of depiction. 
Participants were instructed to maintain fixation at the center of the screen indicated 
by a fixation cross during the whole experiment (Fig. 1b-c).  
 Stimuli were presented at the center of the screen overlaid with a semi-
transparent crosshair fixation cross (Thaler et al., 2013), which subtended 0.63° in the 
fMRI session and 0.5° of visual angle in the MEG session. The individual stimulus size 
was manually adjusted before the experiment such that the area an object image 
occupied on the screen was approximately equal for all object images. Hence, the 
stimulus size could vary across object images, and one object image subtended on 
average 4.34° (Range = [2.97°, 5.85°]) in the fMRI session and 6.15° of visual angle 
(Range = [4.21°, 8.25°]) in the MEG session.  

Stimulus presentation timings were adjusted to the specifics of the imaging 
modality. In the MRI, each stimulus was presented for 500ms followed by an 
interstimulus interval (ISI) of 2500ms (total trial duration 3s). In the MEG, each stimulus 
was presented for 450ms followed by an ISI which was randomly sampled from a 
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range of values between 250ms to 450ms in steps of 50ms to reduce effects of phase 
synchronization (average total trial duration 800ms). 

In both sessions, stimulus presentations were interleaved with catch trials in 
which participants were instructed to respond to a given stimulus, in order to keep the 
subjects alert. In the MRI, participants were instructed to respond with a button press 
when the fixation cross turned red. In the MEG, they were instructed to respond to a 
paperclip stimulus (which was presented in the type of depiction of the corresponding 
run e.g., as a drawing) and to blink, in order to reduce blinking artifacts during the 
experimental trials. In the MRI, the ISI for catch trials was equal to the ISI of 
experimental trials (total trial duration 3s). Catch trials in the MEG were followed by a 
longer ISI (range of values between 1,050ms and 1,250ms in steps of 50ms) to give 
participants time to respond and for the MEG signal to return back to baseline after 
the blink (average total trial duration 1600ms). 

In a given run, each object image of a given type of depiction was presented 
twice in the MRI and eight times in the MEG. Stimulus presentation order was 
randomized while prohibiting immediate stimulus repetition. Catch trials accounted for 
20% of the trials in both sessions and were presented after every 4th to 6th object 
image presentation. In total, each participant completed 12 runs in the MRI (4 from 
each condition, randomized in order, total run duration 6min 16.5s) and 9 runs in the 
MEG (3 from each condition, randomized in order, total run duration 7min 44.8s), 
resulting in 8 stimulus presentations per condition across runs in the MRI and 24 
stimulus presentations per condition across runs in the MEG. 

4.3.2. Functional localizer task  
Before the experimental task in the fMRI session, participants underwent one 
functional localizer run independent from the experimental runs, which was later used 
for defining regions of interest (ROIs). Subjects were presented with either fully visible 
object images (objects), scrambled object images (scrambled), or a fixation cross. 
Participants were instructed to fixate on the fixation cross and to respond with a button 
press if the same object was presented in two consecutive trials. Objects and 
scrambled objects were presented at the center of the screen for a duration of 400ms, 
followed by a presentation of a fixation cross for 350ms. Both types of images were 
presented in blocks of 15s each and interleaved with blocks of 7.5s of fixation. The 
localizer run comprised 12 blocks of fixation and 12 blocks of both objects and 
scrambled objects with a total run duration of 7min 45s.  

4.4. fMRI acquisition, preprocessing and univariate analysis 

4.4.1. fMRI acquisition  
We recorded fMRI data on a Siemens Magnetom Prisma Fit 3T system (Siemens, 
Erlangen, Germany) using a 32-channel head coil. Functional images were acquired 
using a multiband 3 sequence (TR=1.5s, TE=33.2ms, in-plane resolution: 
2.49×2.49mm, matrix size=82×82, FOV=204mm, flip angle=70°, 57 slices, slice 
thickness=2.5mm) with whole brain coverage. Existing T1-weighted structural images 
obtained in previous studies were used that varied in exact sequence parameters 
(MPRAGE, voxel size = 1mm3). 
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4.4.2. fMRI preprocessing 
All preprocessing and univariate analyses of the fMRI data were conducted using 
SPM12 (https://www._l.ion.ucl.ac.uk/spm/) and custom scripts in Matlab R2021a 
(www.mathworks.com).  

First, we screened functional data for outliers in image intensity difference and 
head motion. To this end, we carried out initial realignment and computed the 
difference in image intensity of each functional volume and its subsequent volume for 
each brain slice, excluding the eyeballs. Next, to determine outlier volumes, we scaled 
the differences between functional images relative to the overall mean of differences 
across all functional images. We excluded subjects for whom more than 1% of 
volumes showed a more than 30-fold increase in image intensity difference or a 
displacement of more than 0.5mm in any direction. For all other subjects, we removed 
and then linearly interpolated the images that exceeded the criteria. 

Following outlier removal, functional images were realigned to the first image 
of the run, slice-time corrected, and coregistered to the anatomical image. The 
functional images of the localizer task were smoothed with a Gaussian kernel (FWHM 
= 5mm) while the images from the experimental runs were not smoothed.  

Further, we estimated noise components for the functional images of the 
experimental runs by using the aCompCor method (Behzadi et al., 2007) implemented 
in the TAPAS PhysIO toolbox (Kasper et al., 2017). To this end, tissue-probability 
maps for the gray matter, white matter, and cerebrospinal fluid (CSF) were estimated 
based on the structural image of a participant, and noise components were extracted 
based on the tissue-probability maps of the white matter and CSF in combination with 
the fMRI time series.  

4.4.3. fMRI univariate analysis 
We modeled the fMRI responses to each object image in a given run with a general 
linear model (GLM). The onsets and durations of each object image were entered as 
regressors into the model and were convolved with a hemodynamic response function 
(HRF) resulting in 48 regressors for the experimental conditions in each run. As 
nuisance regressors, we included the noise components extracted from the white 
matter and CSF maps as well as the movement parameters and their first and second 
order derivatives. We repeated this GLM approach 20 times, each time convolving 
with a different HRF obtained from an openly available library of HRFs 
(https://github.com/kendrickkay/GLMsingle) which was derived from a large fMRI 
dataset of participants viewing natural scenes (Allen et al., 2022). After fitting the 
GLMs, for each voxel we extracted the beta values for the object image regressors 
from the GLM with the HRF that had resulted in the minimum mean residual for that 
given voxel. Please note that this procedure does not lead to positively biased statistics 
at the group level. This yielded 48 beta maps (one for each object category) for each 
run and participant. For later searchlight analyses, we normalized these beta maps to 
the MNI template brain.  

The fMRI responses for the localizer experiment were modeled in a separate 
GLM, with the onsets and durations of the blocks of objects and scrambled objects 
convolved with the canonical HRF as regressors. Only movement parameters were 
included as nuisance regressors in this GLM. From the resulting beta estimates we 
computed two contrasts. The first contrast was used to localize activity in early visual 
brain areas and was defined as scrambled > objects. The second contrast was used 
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to localize activity in object-selective cortex and was defined as objects > scrambled. 
This way, we obtained two t-maps for the two contrasts for each participant. 

4.4.4. Region-of-interest definition  
We focused on regions in early visual cortex (EVC) i.e., V1, V2, V3, and on the lateral 
occipital complex (LOC), comprising object-selective regions LO and pFs.  

To define EVC, we first transformed the subject-specific t-maps from the 
scrambled > objects contrast from the localizer GLM into MNI-space. Based on these 
transformed t-maps we computed a contrast comparing the group-level activation 
against zero, which resulted in one t-map across subjects. We then thresholded this t-
map at the p<0.001 level and calculated the overlap between the thresholded t-map 
and the combined anatomical definition of V1, V2 and V3 from the Glasser Brain Atlas 
(Glasser et al., 2016). Finally, we transformed this overlap image back into the native 
subject space for each subject resulting in subject-specific EVC masks.  

To define object-selective cortex, we manually identified the peaks in the 
subject-specific t-maps of the objects > scrambled contrast from the localizer GLM 
which corresponded anatomically to LO and pFS. We then defined spheres with a 
radius of 6 voxels around both peaks, including only those voxels in the spheres that 
had t-values corresponding to p<0.001. This resulted in one ROI mask for LO and 
pFS, respectively. Initial exploratory analyses revealed that LO and pFS yielded highly 
comparable results. Therefore, we merged the two ROI masks into one combined LOC 
mask. This resulted in one object-selective cortex mask for each subject. In case the 
EVC and object-selective cortex masks overlapped in a given subject, the overlapping 
voxels were discarded from both masks.  

4.5. MEG acquisition and preprocessing 

4.5.1. MEG acquisition 
Before the MEG measurement started, participants’ head shape was digitized using a 
Polhemus FASTRAK device. Additionally, five coils were placed on the head of the 
participant which were later used to track the head position inside the MEG. During 
the experiment that took place inside a magnetically shielded room, we recorded 
neuromagnetic signals using a 306-channel NeuroMag VectorView MEG system 
(Elekta, Stockholm) with a sampling rate of 1,000Hz and an online filter between 0 and 
330Hz. 

4.5.2. MEG preprocessing  
To remove external noise and correct for head movements during the MEG 
measurement, we applied temporal signal space separation (Taulu & Simola, 2006) 
and movement correction to the MEG data using the Maxfilter software (Elekta, 
Stockholm). All further preprocessing steps were implemented in Matlab R2021a 
(www.mathworks.com), using the utilities of the Fieldtrip toolbox (Oostenveld et al., 
2011) and custom scripts. 

First, Independent Component Analysis (ICA) was applied to the combined data 
from all blocks to identify components corresponding to eye movements, blinks, or 
heartbeat. The resulting ICA components were manually inspected in combination with 
their topographies and time courses, and only those components that could be clearly 
attributed to eye movements, blinks, or heartbeat were removed from the data. Using 
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this procedure, for a given subject, we removed an average of 1.73 components (SD 
= 0.69). Subsequently to improve the signal to noise ratio for later data downsampling, 
we smoothed the remaining ICA component time courses with a Gaussian kernel (3.8 
FDHM), and these temporally smoothed components were then projected back into 
sensor space. Next, the data were filtered with a 0.5Hz high pass filter and a 40Hz low 
pass filter and segmented into trials starting 100ms prior to the onset of a given 
stimulus and ending 1,001ms after the stimulus presentation. Importantly, triggers 
indicating the beginning of the stimulus presentation were adjusted to match the exact 
time of the onset of a given image presentation by aligning them to the onset of the 
response of an optical sensor attached to the projection monitor in the MEG. Following 
this step, data were baseline corrected with respect to the time period -100ms to 0ms 
relative to stimulus onset and downsampled to 100Hz to speed up later multivariate 
analyses. Finally, multivariate noise normalization was applied to the data (following 
general guidelines for multivariate pattern analysis of M/EEG data (Guggenmos et al., 
2018)). In sum, this procedure resulted in trials of 111 timepoints across 306 channels 
for every participant. 

4.6. Eye movement recording and analysis  
During the MEG session, eye movements of the subject were recorded using an SR 
Research EyeLink 1000 system (SR Research Ltd). These data were only acquired 
for the purpose of identifying subjects that made a significant amount of eye 
movements on the presented stimulus, which might be informative about the stimulus 
identity and could therefore bias results of multivariate pattern analysis (Mostert et al., 
2018; Thielen et al., 2019). No reliable eye movement data could be acquired for 4 
subjects, so they were excluded from further eye movement data analyses.  

First, the data were filtered with a 0.1Hz high pass filter to remove slow drifts, 
followed by segmentation into epochs beginning 100ms prior to and ending 500ms 
after stimulus onset. Second, we removed epochs that contained estimated eye 
movements with an amplitude greater than 3° of visual angle based on the assumption 
that these movements could not have fallen on the presented stimulus and thus could 
not constitute an eye movement on the stimulus but rather must reflect noise or 
occasional non-informative eye movements beyond the stimulus. Finally, we 
discarded the pupil diameter channel from the data and retained only the horizontal 
and vertical position channels for further analyses.  

As an index for an eye movement on the stimulus, we detected saccades and 
microsaccades in the extracted clean epochs by using the microsaccade detection 
algorithm by Engbert & Kliegl (2003). Subsequently, we computed the amplitude of 
movement in a given detected micro-saccade and labeled only the micro-saccades 
with an amplitude greater than 1.5° of visual angle as eye movements on the stimulus, 
given that any smaller eye movements would be hard to distinguish from noise. Finally, 
we computed the ratio of trials containing eye movements on the stimulus to all 
experimental trials (excluding catch trials) to determine how many experimental trials 
were contaminated by eye movements on the stimulus for a given subject. Based on 
this estimate, we excluded three participants from the MEG analysis because they 
showed such eye movements in more than 5% of the remaining experimental trials. 
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4.7. Multivariate decoding of object category information 
We used multivariate decoding on the preprocessed fMRI voxel patterns and MEG 
channel patterns to determine where and when the category information of a 
presented object can be read out from brain activity. To this end, separately for every 
type of depiction, we trained and tested linear Support Vector Machine (SVM) 
classifiers (Chang & Lin, 2011) to distinguish between the responses to two given 
objects for every possible combination of objects, resulting in one accuracy value for 
every pair of objects (50% chance level). Subsequently, we averaged all pairwise 
accuracies to obtain a measure of overall object discriminability. This procedure was 
repeated across ROIs or searchlights for the fMRI data and across time points for the 
MEG data. All decoding analyses were performed separately for every participant. 

4.7.1. Spatially-resolved multivariate fMRI decoding 
To ask where in the brain category information can be read out from fMRI voxel activity 
patterns, we used both an ROI-based and a spatially unbiased searchlight procedure 
(Haynes et al., 2007; Kriegeskorte et al., 2006). 

For the ROI-based procedure, we arranged the beta values from the voxels in 
a given ROI into pattern vectors for each object category and run. We then evaluated 
classifiers using a leave-one-out cross-validation procedure, training on the pattern 
vectors from three runs and testing on the pattern vector from the remaining run. We 
repeated this procedure until every pattern vector had been used once for testing (see 
Fig. 2a for visualization of the approach). This resulted in decoding accuracies for 
every ROI, each type of depiction, and each participant.  
 For the spatially unbiased searchlight analysis, we defined a sphere with a 
radius of 4 voxels around a given voxel and formed pattern vectors based on all the 
beta values within this sphere. Analogous to the ROI-based procedure, we then 
evaluated classifiers using a leave-one-out cross-validation procedure. This 
evaluation procedure was iterated over all possible searchlights, yielding accuracy 
values across the whole brain for each type of depiction and each participant 
separately. The resulting searchlight maps were subsequently smoothed with a 
Gaussian kernel (FWHM = 5mm). 

4.7.2. Temporally-resolved multivariate MEG decoding  
For the temporally-resolved decoding analyses, we arranged the preprocessed MEG 
data into pattern vectors containing the MEG data across channels for every object 
category, trial and time point. Subsequently, to improve the signal-to-noise ratio, we 
averaged data from two trials of the same object category into one supertrial, resulting 
in twelve supertrials per object category and time point. We then evaluated SVM 
classifiers using a leave-one-out cross-validation framework, training the classifiers on 
eleven supertrials and testing on the left out supertrial and repeating this procedure 
until every supertrial had been used once for testing (see Fig. 3a for visualization of 
the approach). To increase the robustness of the results, we repeated the whole cross-
validation procedure and the averaging of trials into supertrials five times while 
randomizing the assignment from trials to supertrials. Accuracies were subsequently 
averaged across repetitions. This procedure was repeated for every time point and for 
each type of depiction separately, which resulted in object decoding time courses for 
every type of depiction and every participant. 
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4.7.3. fMRI and MEG cross-decoding of category information between types of 
depiction 
To determine where and when object category information generalizes between types 
of depictions, we used cross-decoding. This approach was analogous to the regular 
decoding procedure, but instead of training and testing on data from the same type of 
depiction, we trained a classifier on data from one type of depiction (e.g., photos) and 
tested on data from another type (e.g., drawings). We carried out cross-decoding for 
three types of comparisons: photo-drawing, photo-sketch and drawing-sketch. 
Further, we computed the cross-decoding accuracies for both train-test directions and 
averaged the accuracies subsequently. This way, data from both types of depiction 
was used once for training and once for testing the classifier. Analogous to the regular 
decoding procedure, we repeated this procedure across ROIs and searchlights for 
fMRI and across time points for MEG data, resulting in cross-decoding accuracies 
across space and time for the three comparisons and for each participant separately. 

4.7.4. MEG temporal generalization analysis 
To investigate at which points in time the object category MEG pattern information 
generalized to other points in time, we used the temporal generalization method (King 
& Dehaene, 2014). For a given time point, we trained a classifier analogous to the 
temporally-resolved decoding procedure. To determine the generalization of this 
classifier across time, we tested the classifier on patterns not only at the matching time 
point but at all timepoints. Then, we repeated this training-generalization approach for 
every time point, yielding a time × time temporal generalization matrix of decoding 
accuracies for each type of depiction and each participant.  

4.8. RSA-based MEG-fMRI fusion   
For combining the information about visual processing in the spatial dimension from 
fMRI data with the temporal dimension from MEG data, we used RSA-based MEG-
fMRI fusion (Cichy et al., 2014; Cichy & Oliva, 2020; Hebart et al., 2018; see Fig.7a 
for a visualization of the approach). The basic idea behind RSA is to characterize the 
representational space in a given measurement component (e.g. an fMRI ROI) with 
an RDM. An RDM describes the representational space in terms of pairwise distances 
between responses to all of the conditions of interest, thereby abstracting from the 
activity patterns of measurement channels (e.g. fMRI voxels or MEG sensors). RDMs 
can be obtained e.g. across different regions in the brain or points in time and can 
subsequently be compared by correlating them. If two RDMs exhibit a positive 
correlation, it is assumed that the underlying representational geometry is similar. 
Following this rationale, we computed RDMs for each time point, ROI, type of depiction 
and each subject separately. For this, we first averaged all run-wise fMRI or trial-wise 
MEG pattern vectors for a given object category extracted at different ROIs or time 
points. Subsequently, we computed the pairwise dissimilarities between pattern 
vectors as 1 - Pearson correlation and stored these dissimilarities in one RDM for a 
given ROI or time point. Then, we correlated the lower triangular parts of the ROI-
specific and temporally-resolved RDMs with each other using Pearson correlation, 
resulting in MEG-fMRI fusion time courses for each ROI, each type of depiction and 
each participant separately. 
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4.9. Statistical analyses 
To assess the statistical significance of the decoding accuracies as well as RDM 
correlations, we used non-parametric sign-permutation tests (Nichols & Holmes, 
2002). To this end, we obtained null distributions by randomly permuting the sign of 
the results at the participant level a total number of 10,000 times. Based on these null 
distributions, we obtained p-values for the empirical results and thresholded these p-
values at the p<0.001 level. P-values obtained for decoding accuracies were based 
on one-sided tests, while p-values for RDM-correlations as well as differences of 
decoding accuracies were based on two-sided tests. Uncorrected p-values were only 
used for inference when testing decoding accuracies against chance in individual ROIs 
since results for photos, drawings, and sketches were treated as testing separate 
hypotheses. However, when testing for pairwise differences between conditions (i.e. 
photo vs. drawing, photo vs. sketch, drawing vs. sketch) or when testing cross-
decoding accuracies for multiple combinations of depiction types (i.e. photo-drawing, 
photo-sketch, drawing-sketch) against chance within a given ROI, we corrected the p-
values with the Benjamini-Hochberg FDR correction (Benjamini & Hochberg, 1995).  

For statistical tests across voxels or time involving a large number of multiple 
comparisons, we applied cluster correction to control the alpha-error rate (Maris & 
Oostenveld, 2007). The data points that exceeded the p<0.001 threshold were 
clustered based on temporal or spatial adjacency, and the maximum cluster size was 
computed for each permutation. This way, we obtained a null-distribution of the 
maximum cluster size statistic. Finally, the clusters in the empirical results were then 
thresholded based on the null-distribution of the maximum cluster size statistic at the 
p<0.05 level. To correct for multiple tests of significance of pairwise differences 
between conditions (e.g., photo vs. drawing, photo vs. sketch, drawing vs. sketch) or 
for testing cross-decoding accuracies for multiple combinations of depiction types (i.e. 
photo-drawing, photo-sketch, drawing-sketch), we obtained the cluster-size statistic 
which corresponded to the given statistical threshold (p<0.05) for all of the multiple 
tests and used the maximum cluster-size statistic computed across tests as the 
threshold for all clusters from all tests. 
 In order to estimate confidence intervals for the decoding accuracy and RDM 
correlation peak latencies, we used a bootstrapping procedure. For this, we randomly 
sampled participant specific time series with replacement for a total number of 100,000 
times. Next, we averaged the results across participants for every bootstrap sample 
and then estimated the peak latency by finding the maximum of the average time 
series. Based on the mean and standard deviation of the resulting distribution of peak 
latencies we computed the 95% confidence intervals of the peak latency.  

For comparing decoding accuracy and RDM correlation peak latencies we used 
a bootstrapping procedure analogous to the approach described above. However, 
instead of estimating confidence intervals of peak latencies of one condition we 
estimated the confidence intervals of the difference between conditions by subtracting 
the peak latencies for two given conditions estimated for each bootstrap sample. This 
yielded a distribution of peak latency differences from which we obtained the 95% 
confidence interval of the difference. We regarded a given difference between peak 
latencies as significant if the confidence interval of the difference did not include zero.  
 Finally, to test for the statistical equivalence of decoding accuracy or RDM 
correlation peak latencies we used a two one-sided tests procedure (TOST) (Lakens, 
2017). 
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4.10. Data and code availability  
All results of the decoding and RSA analyses are publicly available via 
https://osf.io/vsc6y/ along with preprocessed fMRI and MEG data from an exemplary 
subject. Code to reproduce the results and figures in the paper is provided via 
https://github.com/Singerjohannes/object_drawing_dynamics.  

5. Results 

5.1. Natural object images and line drawings differ in low-level visual 
features but are perceived similarly   
To ensure that our stimulus set is well suited for comparing object recognition across 
different levels of visual abstraction, we aimed to quantitatively validate that objects 
are perceived similarly by human subjects at a conceptual level despite differences at 
the visual level. As a proxy for low-level visual features, we first extracted features 
from pooling layer 2 of the deep convolutional neural network VGG16 (Simonyan & 
Zisserman, 2015) for all of the object images, in line with previous work (Bankson et 
al., 2018; Greene & Hansen, 2020; Reddy et al., 2021; Xie et al., 2020). We then 
computed RDMs based on the extracted features separately for the different types of 
depiction and correlated the lower triangular parts of the RDMs between types of 
depiction. As expected, photos and drawings showed the highest RDM correlation 
(r=0.79) while the correlation for photos and sketches (r=0.41) as well as the 
correlation between drawings and sketches (r=0.45) were lower. Next, to confirm that 
human subjects perceive the object images in the different types of depiction similarly 
at a conceptual level, we used previously acquired data (Singer et al., 2022) where 
workers on Amazon Mechanical Turk indicated which of three object images they 
thought was the odd-one out (Hebart et al., 2020). These triplet judgments were used 
to construct perceptual similarity matrices for each type of depiction separately, which 
we subsequently correlated to each other to estimate their representational similarity. 
As expected, human subjects perceived all types of depictions highly similarly (all 
pairwise correlations r=0.97). In sum, these analyses quantitatively confirm that while 
there is a gradual difference in low-level visual features across the three types of 
depiction reflecting the degree of visual abstraction, there is also a correspondence in 
how human participants perceive these images at a conceptual level. 

5.2. Object category information can be decoded and generalizes 
across types of depiction in early and high-level visual cortex 
Based on previous findings (Haxby et al., 2001; Spiridon & Kanwisher, 2002; Walther 
et al., 2011), we hypothesized that information about the category of a presented 
object is represented in early and high-level visual cortex for natural images as well as 
for line drawings and that this information generalizes across levels of visual 
abstraction. To test this hypothesis, we trained and tested SVM classifiers on the fMRI 
data to decode the category of a presented object for two different ROIs and for every 
type of depiction separately. We focused on EVC and LOC as proxies for early and 
high-level visual processing, respectively. 

The category decoding results for EVC and LOC are shown in Fig. 2b. Category 
information could be decoded with accuracies significantly above chance from the 
voxel activity patterns from both EVC and LOC for all types of depiction (p<0.001, sign-
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permutation test). When directly comparing decoding accuracies between types of 
depiction within an ROI, we found that there were no significant differences between 
any of the types of depiction in EVC (all p>0.205, sign-permutation test, FDR-
corrected) nor in LOC (all p>0.083, sign-permutation test, FDR-corrected). Finally, 
decoding accuracies for all types of depiction were higher in EVC than in LOC (all 
p<0.001, sign-permutation test, FDR-corrected), which is expected given the strong 
visual differences between object categories in a given type of depiction. In sum, this 
suggests that information about the category of a presented object is represented in 
early and high-level visual brain regions for all levels of visual abstraction.  

To identify the degree to which category information generalizes between 
photos, drawings and sketches, we carried out cross-decoding. The rationale behind 
this approach is that if the classifier trained on data from one type of depiction (e.g. 
photos) can be used for data from another type of depiction (e.g. drawings), it is 
concluded that the underlying representational format is similar. We evaluated three 
different comparisons - photo-drawing, photo-sketch and drawing-sketch, resulting in 
three values for each ROI. We found significant cross-decoding accuracies between 
all types of depiction already in EVC but also in LOC (all p<0.001, sign-permutation 
test; FDR-corrected, Fig. 3a). 

Together, these findings corroborate earlier studies showing that category 
information can be decoded and is similarly represented in early and high-level visual 
cortex for natural object images and abstract drawings.  

Figure 2. Representation of category information across the brain for different levels of visual 
abstraction. a) Spatially resolved decoding procedure. We trained SVM classifiers on the voxel 
activity patterns of a given ROI or searchlight to classify if a given pattern belonged to object category i 
or j for all possible pairs of objects using a leave-one-out cross-validation framework. Subsequently, we 
averaged the pairwise decoding accuracies for all object pairs, resulting in decoding accuracies across 
ROIs or searchlights for each participant and type of depiction separately. b) Category decoding 
accuracies in early and high-level visual cortex across levels of visual abstraction. We found 
above chance decoding accuracies for all types of depiction both in EVC and in LOC. There were no 
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significant differences in decoding accuracies between types of depiction in neither EVC nor LOC. Error 
bars reflect the standard error of the mean across participants. c) Searchlight significance maps of 
the decoding of object category across levels of visual abstraction. The color-coded masks 
indicate individually significant voxels for the decoding accuracies for each type of depiction separately. 
The conjunction map (color-coded in white) indicates conjointly significant voxels for all types of 
depiction. While significant areas for photos spanned more anterior parts of ventral temporal cortex than 
the ones for drawings and sketches, overall there was a large part of occipital and ventral-temporal 
cortex that conjointly reflected category information regardless of the level of visual abstraction. 

5.3. Large parts of occipital and ventral temporal cortex conjointly 
carry object category information which generalizes across levels of 
visual abstraction  
While the results from EVC and LOC suggest a shared representational format of 
object category information across types of depiction in these two ROIs, they leave 
open the spatial extent of this shared representation beyond these ROIs. To identify 
where category information is reflected in the brain across levels of visual abstraction 
and where it generalizes between types of depiction, we carried out a spatially 
unbiased searchlight analysis, iterating the decoding procedure over all possible 
searchlight locations in the brain.   

The searchlight maps for decoding within types of depiction are shown in Fig. 
2c. We found significant accuracies across large parts of occipital and ventral-temporal 
cortex (p<0.05, cluster-based permutation test), with a strong overlap in the 
significance maps across types of depiction. Yet, significant voxels for photos 
extended more into anterior parts of ventral-temporal cortex than for drawings and 
sketches. To quantify the overlap between types of depiction, we conducted a 
conjunction analysis based on the intersection between all voxels that were significant 
for all three types of depiction (Nichols et al., 2005). The resulting conjunction map 
shows where category information was conjointly found across levels of visual 
abstraction (Fig. 2c). Confirming our initial observation, the conjunction map covered 
large parts of the occipital and ventral-temporal cortex. Beyond these similarities, no 
significant differences in decoding accuracies were found between different types of 
depictions (all p>0.05, cluster-based permutation test). 

The results for the searchlight cross-decoding between different types of 
depiction can be seen in Fig. 3b. We found significant cross-decoding accuracies 
between all types of depiction in large regions in occipital and ventral-temporal cortex 
(p<0.05, cluster-based permutation test). The conjunction map for all three types of 
comparisons showed a broad overlap for all three comparisons mirroring the results 
from the within-type decoding. 

In sum, this suggests that a large part of the ventral visual stream beyond 
localized regions in early and high-level visual cortex reflects information about the 
object in a format that can be generalized across different levels of visual abstraction 
of the image. 
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Figure 3. Generalizable category information between types of depiction across the brain. a) 
Cross-decoding accuracies between types of depiction across ROIs. We found significant cross-
decoding accuracies between all types of depictions in EVC as well as LOC. Error bars reflect the 
standard error of the mean across participants. b) Significance maps of the cross-decoding of 
object category between types of depiction. Searchlight cross-decoding across the whole brain 
resulted in significant accuracies between all types of depiction in large parts of occipital and ventral-
temporal cortex. The conjunction map revealed a broad overlap in the locus of the generalizable 
information between all types of depiction.  

5.4. Category information can be decoded rapidly from MEG activity 
patterns and generalizes early across types of depiction  
Having established where category information can be decoded and where it 
generalizes across types of depiction, we investigated when information about the 
category of a presented object can be read out and when this information generalizes 
across types of depiction. Assuming that drawings and natural object images are 
similarly processed from early on in the visual system (Sayim & Cavanagh, 2011), we 
expected (1) that object category information should emerge with similar temporal 
dynamics for all types of depiction and (2) that category information should generalize 
early. In contrast, if additional processing is required to resolve the abstract visual 
information in drawings, we expected delayed emergence of category information for 
drawings and sketches in comparison to photos and generalization of category 
information only late in time. To distinguish between these alternatives, we trained and 
tested SVM classifiers either on the MEG channel patterns from the same or different 
types of depiction to decode the category of a presented object for each time point 
analogous to the fMRI decoding procedure.  
 The results of the temporally-resolved MEG decoding analyses within photos, 
drawings and sketches are shown in Figure 4b. Irrespective of the type of depiction, 
there was a rapid early rise in decoding accuracy, followed by a steady decline that 
continued into the end of the trial and that remained significant for all three levels of 
depiction (p<0.05, cluster-based permutation test). Overall, time courses were very 
similar for the three conditions, peaking at 100ms for all conditions (photo peak 95% 
confidence interval (CI) = [99.91ms 100.09ms], drawing peak CI = [98.54ms 
101.54ms], sketch peak CI = [86.29ms 105.56ms]), with no significant differences 
between peak latencies (all p>0.05, based on bootstrap CI). A two one-sided tests 
procedure (TOST) testing for statistical equivalence of the peak latencies revealed 
significant results for all comparisons (Photo vs. Drawing, MD=0, p<0.001; Photo vs. 
Sketch, MD= 0.55, p=0.007; Drawing vs. Sketch, MD=0.55, p=0.007, FDR-corrected). 
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Despite these similarities, the overall accuracy for the three conditions was different, 
as highlighted in the difference time courses (Fig 4c). There were significantly higher 
decoding accuracies for photos than for both drawings and sketches and significantly 
higher decoding accuracies for drawings than for sketches (all p<0.05, cluster-based 
permutation test). 

 
Figure 4. MEG-based category information resolved in time across levels of visual abstraction. 
a) Temporally resolved decoding procedure. For each time point, an SVM classifier was applied to 
MEG channel pattern supertrials in a repeated leave-one-out cross-validation scheme for all object 
categories i and j. The resulting decoding accuracies were then averaged over all possible object pairs 
and all repetitions for every time point. This yielded decoding accuracy time-courses for every 
participant and every type of depiction separately. b) Temporally resolved decoding accuracies 
across levels of visual abstraction. For all types of depiction, category information emerged rapidly 
after stimulus presentation, peaking at 100ms and gradually declining afterwards. The decline was 
interrupted by a small increase in accuracies shortly after stimulus offset around 530ms. c) Differences 
in decoding accuracies between types of depiction. When directly comparing decoding accuracies 
between types of depiction across time we found that accuracies were significantly higher for photos 
compared to both drawings and sketches. Additionally, drawing accuracies were higher than sketch 
accuracies. Shaded areas represent the standard error of the mean across participants for each time 
point. Colored lines below the accuracy plots indicate significant time points (p<0.05, cluster-based 
permutation test). 
 

The cross-decoding time courses, which are depicted in Fig. 5, showed a 
similar pattern for all comparisons, with a sharp increase shortly after stimulus 
presentations leading up to a peak after which accuracies declined slowly and 
remained significant for all three comparisons up until the end of the trial (p<0.05 
cluster-based permutation test). Accuracies for all three comparisons peaked at 
100ms (photo-drawing 95% peak CI = [93.62ms 104.68ms], photo-sketch CI = 
[85.82ms 105.39ms], drawing-sketch CI = [86.35ms 105.64ms]) with no significant 
differences between any of the peak latencies (all p>0.05, based on bootstrap CI). 
Testing for equivalence of the peak latencies revealed significant results for the 
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comparison of photo-drawing and drawing-sketch peaks (p=0.008, TOST, FDR-
corrected) but non-significant results for the other two comparisons (both p=0.211, 
TOST, FDR-corrected). 

Together, these results show that object category can be decoded from 
stimulus evoked brain activity for natural images and drawings regardless of the level 
of visual abstraction, with similar temporal dynamics but a larger effect for natural 
object images which decreased across levels of visual abstraction. Furthermore, 
object category information generalized strongly across all levels of visual abstraction 
beginning already in early stages of visual processing and persisting into late stages 
of visual processing. This suggests that recognition of drawings and natural object 
images share strong similarities from early on in visual processing.  

Fig 5. Generalization of object category information between types of depiction across time. 
Between all types of depiction, we found high cross-decoding accuracies based on the MEG data 
already early on, peaking around 100ms, and remaining high until shortly after the offset of the stimulus. 
Shaded areas reflect the standard error of the mean across participants for each time point. Colored 
lines below the accuracy plots indicate significant time points (p<0.05, cluster-based permutation test).  

5.5. Comparable generalization of category information across time 
for all levels of visual abstraction  
The temporally-resolved decoding analyses suggest that object category information 
emerges similarly fast for all types of depiction and generalizes early across depiction 
types. Yet, there might be differences in the dynamics and the stability of the 
representations between levels of visual abstraction. Such differences in the temporal 
dynamics between types of depiction would indicate differences in the underlying 
neural mechanisms for recognition of natural object images and line drawings. To 
investigate how the representation of category information for photos, drawings and 
sketches generalizes across time, we used temporal generalization analysis (King & 
Dehaene, 2014; Meyers et al., 2008), training a classifier on one time point and testing 
on all other time points for every type of depiction separately. 

The resulting time × time generalization matrices for photos, drawings and 
sketches are shown in Fig. 6a. We found a similar pattern for all three types of 
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depiction with strong generalization of the representation of category information 
beginning shortly after stimulus onset and continuing across the whole trial period 
(p<0.05, cluster-based permutation test). For all types of depiction there was a strong 
on-diagonal pattern from 50ms to ~200ms with comparatively weak off-diagonal 
accuracies early on. Later on, there was a stronger off-diagonal component after 
~200ms until ~500ms. The overall pattern observed in the temporal generalization 
matrices was qualitatively similar across types of depiction indicating that the 
representation of the category of a presented object underwent comparable 
representational transformations in time for all types of depiction.  
 The direct comparison of the pattern of generalization between photos, 
drawings and sketches, shown in Fig. 6b, revealed significant differences between all 
depiction types (p<0.05, cluster-based permutation test). Accuracies for photos were 
overall higher than for sketches, with the strongest differences spanning on-diagonal 
elements. Moreover, there were significantly higher decoding accuracies for drawings 
than for sketches. The strongest differences again mostly covered on-diagonal 
elements, yet with some distributed off-diagonal differences. For the comparison of 
photos and drawings the differences were less strong and did not show a clear pattern 
as for the other comparisons. Significant differences were more distributed with higher 
values for photos mostly on the diagonal and also some off-diagonal elements 
showing higher values for drawings.  

In sum, these results demonstrate similarities in the overall pattern of 
generalization of category information across time but also differences in the strength 
of generalization. These differences were strongest for on-diagonal elements for the 
photo-sketch and drawing-sketch comparison, suggesting differences in the overall 
representation of category information between types of depiction but less so for the 
generalization across time. Differences between photos and drawings were less 
pronounced and scattered, limiting a strong interpretation of these results. 
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503484doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503484
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

 

Figure 6. Generalization of the representation of category information across time for all types 
of depiction. a) Temporal generalization matrices for the three types of depiction. For all three 
types of depiction, we found strong generalization across time covering large parts of the trial. The 
pattern for the three types of depiction was qualitatively similar with a strong early on-diagonal 
component followed by a later component which showed additional strong off-diagonal elements. b) 
Differences in temporal generalization between types of depiction. The direct comparison of the 
temporal generalization between types of depiction revealed that there were differences in the strength 
of generalization. These differences between photo and sketches as well as drawings and sketches 
were most pronounced for on-diagonal elements. In addition, we found differences between photos and 
drawings which were less pronounced and without a clear pattern. Significant time points are indicated 
by the outlined areas (p<0.05, cluster-based permutation test).  

5.6. Similarities and differences in the combined spatiotemporal 
dynamics of object recognition for different levels of visual 
abstraction  
Our results so far suggest that there are broad commonalities in the spatial and 
temporal dynamics of the representation of object category across levels of visual 
abstraction. Further, object category information generalized strongly from early visual 
processing stages on. Yet, the temporally-resolved decoding results and temporal 
generalization results indicate that there were differences in the strength of 
representation between types of depiction while the spatially-resolved decoding 
results did not show such differences. Hence, the question remains where differences 
in the neural dynamics between photos, drawings and sketches arise and at what time 
they arise in a given region. To combine the temporal and spatial information from 
MEG and fMRI data, we used RSA-based MEG-fMRI fusion (Cichy et al., 2014; Cichy 
& Oliva, 2020; Hebart et al., 2018). We computed RDMs for each ROI for the fMRI 
data and for each time point for the MEG data and and correlated the lower triangular 
parts of the temporally-resolved and ROI-specific RDMs (see Fig. 7a for visualization 
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of the approach). This way, we could ask in what ROI and at what point in time and 
the representation of objects was similar, revealing the spatiotemporal dynamics of 
object processing for photos, drawing and sketches. 

The fusion time courses for all types of depiction in EVC and LOC are shown 
in Fig. 7b. In EVC we found an early increase in MEG-fMRI correlation for all types of 
depiction leading up to peaks, followed by a sharp decrease and another rise. After 
this second rise in correlation the MEG-fMRI correlations slowly decayed for drawings 
and sketches while for photos there was another increase. Finally, there was a last 
spike in correlation for all types of depiction around 500 to 540ms likely reflecting 
effects induced by the offset of the stimulus. Peak latencies for all types of depiction 
were found in the time from 90ms to 100ms (95% CI photo = [89.57ms 106.51ms], 
drawing = [83.22ms 95.34ms], sketch = [81.66ms 102.98ms]) with no significant 
differences between any types of depiction (all p>0.05, based on bootstrap CI of 
difference). Moreover, we tested for equivalence of the peak latencies which revealed 
non-significant results for all comparisons (all p>0.539, FDR-corrected). The 
comparison of fusion time courses between photos and both drawings and sketches 
in EVC, shown in Fig. 7c, revealed that there were significantly higher correlations for 
photos than for both drawings and sketches (p<0.05, cluster-based permutation test). 
These differences were strongest in the time around 100ms to 200ms and the time 
from ~300ms to ~500ms. Differences between drawings and sketches in EVC were 
only small but significant (p<0.05, cluster-based permutation test). In sum, object 
information regardless of the level of visual abstraction first peaked in EVC at around 
100ms and then re-emerged later around 200ms, after which the representation slowly 
decayed for drawings and sketches, while for photos there was another late rise. 

In LOC we found a rise in correlation for all types of depiction with peaks at 
150ms for all three types of depiction (95% CI photo = [141.82ms 155.60ms], drawing 
= [136.68ms 156.46ms], sketch = [145.97ms 155.02ms]), significantly later than the 
peak latencies in EVC for all types of depictions (all p<0.05, based on bootstrap CI of 
difference; Fig. 7b). After these peaks, the correlation decayed up until the end of the 
trial only interrupted by a small rise shortly after the offset of the stimulus. There were 
no significant differences between peak latencies of different types of depiction in LOC 
(all p>0.05, based on CI of difference). Testing for statistical equivalence revealed 
non-significant results for all comparisons of peak latencies (all p=0.764, TOST, FDR-
corrected). Furthermore, MEG-fMRI correlations were stronger for photos than for both 
drawings and sketches in LOC while there were no significant differences between 
drawings and sketches (p<0.05 cluster-based permutation test). Significant 
differences between photos and both drawings and sketches in LOC were mostly 
confined to early time points before 150ms.  

Taken together, the spatiotemporal dynamics of object recognition followed a 
comparable pattern across levels of visual abstraction. For all types of depiction, object 
information first peaked in EVC and later in LOC. This was followed by re-emergence 
of object information in EVC and a late phase of object processing with a sustained 
response in EVC. Despite these similarities, photos were distinctive in terms of the 
strength of representational similarity between fMRI and MEG data and showed both 
early and late differences in EVC as well as particularly early differences in LOC. This 
indicates additional processing at multiple stages for photos in comparison to both 
drawings and sketches. 
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Figure 7. Spatiotemporal dynamics of object recognition for different levels of visual 
abstraction. a) RSA-based MEG-fMRI fusion procedure. For combining the spatial and temporal 
information from fMRI and MEG we first computed RDMs by calculating the pairwise dissimilarities (1- 
Pearson correlation) between all object-specific pattern vectors for every ROI or time point and every 
type of depiction separately. Then we correlated the lower triangular parts of the ROI-wise and time-
wise RDMs for each ROI and every type of depiction separately. This yielded MEG-fMRI fusion time 
courses for each ROI reflecting the spatiotemporal dynamics of object recognition for photos, drawings 
and sketches. b) MEG-fMRI fusion time courses in EVC and LOC for the different types of 
depiction. In EVC we found an early peak in MEG-fMRI correlation around 100ms for all types of 
depiction, while in LOC there was a later peak around 150ms. There were no differences between peak 
latencies of different types of depiction in neither EVC nor LOC. c) MEG-fMRI fusion difference time 
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courses between types of depiction in EVC and LOC. Photos showed a stronger correlation than 
both drawings and sketches in EVC, particularly around 100ms to 200ms and around 300ms to 500ms 
after stimulus presentation. The differences between drawings and sketches in EVC were small but 
significant. In LOC there were no significant differences between drawings and sketches while photos 
showed a stronger correlation than both drawings and sketches particularly early on before 150ms. 
Shaded areas represent the standard error of the mean across participants for each time point. Colored 
lines below the accuracy plots indicate significant time points (p<0.05, cluster-based permutation test).  

6. Discussion 

In this study, we sought to identify the spatiotemporal neural dynamics underlying the 
processing of object drawings and to determine the similarities and differences to the 
processing of natural object images. Specifically, we used fMRI and MEG to 
distinguish between two alternative predictions: That photos, drawings, and sketches 
share the same representational format in both space and time, or that, alternatively, 
additional, potentially time-consuming processes would be required for the recognition 
of drawings and sketches. While these two predictions are not mutually exclusive, our 
findings only confirm the former prediction in four ways. First, we demonstrated that 
information about the category of a presented object could be read out from brain 
activity similarly fast and across large parts of occipital and ventral-temporal cortex 
regardless of the type of depiction of the image. Second, the representation of object 
category information generalized beginning early in visual processing. Third, results 
from temporal generalization analyses suggest that there were qualitatively similar 
temporal dynamics for photos, drawings and sketches. Finally, the MEG-fMRI fusion 
results indicate that visual information processing follows similar stages, first peaking 
in EVC and then later in LOC for all types of depiction. In sum, this demonstrates that 
there are broad temporal and spatial commonalities in the neural dynamics as well as 
similar underlying representations for natural images and drawings from early on in 
visual processing. 

In addition, we did not find evidence confirming the latter prediction proposing 
additional processing for drawings and sketches. Rather, our results suggest the 
opposite, that is, enhanced processing for photos at multiple stages. We found a 
gradual decline in the strength of category representations across levels of visual 
abstraction in the MEG data, with photos showing the strongest representation, 
followed by drawings and sketches. Moreover, the comparison of the spatiotemporal 
dynamics between types of depiction showed that photos exhibited a stronger 
representation both early and late in time in early visual brain regions, and exclusively 
early on in high-level visual cortex as compared to both drawings and sketches.  
 Collectively, our findings substantiate the hypothesis that line drawings 
resemble natural object images in terms of some core visual features (Fan et al., 
2018), leading to a similar representation of drawings and natural images in the brain 
(Sayim & Cavanagh, 2011). Contrary to the hypothesis of additional processing for the 
recognition of line drawings, our results suggest that more in-depth processing is 
elicited by natural object images at multiple stages. Finally, these results indicate that 
the same neural mechanisms that support natural object recognition might also hold 
for drawings across different levels of visual abstraction. 

Despite the abstraction of substantial amounts of visual information in line 
drawings, we found broad commonalities in the neural dynamics of object recognition 
for natural object images and line drawings. In combination with earlier findings (Haxby 
et al., 2001; Lowe et al., 2018; Spiridon & Kanwisher, 2002; Walther et al., 2011), 
these results provide evidence for the hypothesis that the information retained in line 
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drawings serves as a basis for visual recognition, consistent with an edge-based 
account of recognition (Biederman & Ju, 1988). However, our results also show that 
object representations are stronger for photos compared to drawings or sketches. This 
is consistent with the theory on the role of surface information in object recognition 
(Tanaka et al., 2001) and empirical evidence (for a review see: Bramão et al., 2011) 
which propose that visual information only contained in natural images such as color 
and texture exerts influence on object recognition. Our findings substantiate this notion 
and suggest that while edge-based information in drawings might be sufficient to elicit 
qualitatively similar spatiotemporal representational dynamics as for natural images, 
surface information significantly contributes to object recognition at multiple 
processing stages. 

Previous work has suggested a shared representational format for objects 
depicted as natural photographs or line drawings in early and high-level visual cortex 
(Haxby et al., 2001; Spiridon & Kanwisher, 2002), while for scenes such similarities 
have been shown to become stronger or to only arise late in the visual hierarchy (Lowe 
et al., 2018; Walther et al., 2011). Our results corroborate and extend earlier findings 
in object recognition by demonstrating that commonalities between natural object 
images and line drawings emerge early in time and early in the visual hierarchy. Yet, 
these results conflict to some part with previous work in scene recognition. This 
discrepancy might be explained by the fact that our stimulus set comprised a single 
exemplar instead of multiple exemplars per category (Lowe et al., 2018; Walther et al., 
2011), which emphasizes low-level visual feature differences in decoding category 
information. Yet, it is possible that these partly conflicting findings point to a distinction 
in the representation and relevance of low-level visual features such as edges in object 
and scene recognition (Groen et al., 2017), which invites further exploration.  

We demonstrated that object category information emerges similarly fast in the 
brain for abstract drawings as compared to color photographs. This suggests that 
object recognition can be resolved with the same amount of processing resources for 
different levels of visual abstraction of the image. This is consistent with previous 
computational work showing that representations for photographs and drawings at 
different levels of visual abstraction become highly similar when being processed in 
feedforward deep convolutional neural networks trained to categorize natural object 
images (Fan et al., 2018; Singer et al., 2022). While other work has demonstrated that 
additional recurrent processing is necessary for resolving degraded (Wyatte et al., 
2012), occluded (Rajaei et al., 2019; Tang et al., 2018) or otherwise challenging 
images (Kar et al., 2019), our findings indicate that no additional mechanisms are 
needed for the robust recognition of abstract drawings. Future research could identify 
precisely in which cases visual recognition can be resolved with or without the need 
for additional processing which might serve as an important constraint for future efforts 
in modeling object recognition. 

One difference in visual processing between photos and both drawings and 
sketches was found with MEG-fMRI fusion very early on in high-level visual cortex. 
LOC exhibited a faster rise of object representations for photos than for the other 
depiction types. While the source of this specific difference is unclear and not found 
for MEG and fMRI data alone, one possible explanation for this finding is the marked 
difference in the spatial frequency spectrum between drawings and photographs. 
While drawings and sketches contain mainly high spatial frequency information, 
photos additionally contain low spatial frequency information (Walther et al., 2011). 
This increased presence of low spatial frequency information may have contributed to 
an earlier rise of information related to rapid extraction of coarse information (Bar, 
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2003; Bar et al., 2006; Kveraga et al., 2007; Musel et al., 2014; Petras et al., 2019; 
Peyrin et al., 2010; Schyns & Oliva, 1994; Sugase et al., 1999). Future studies that 
carefully control spatial frequency in an image might reveal to what extent the 
spatiotemporal dynamics of object recognition are influenced by different spatial 
frequency patterns (Perfetto et al., 2020). 

It should be noted that while we ensured that stimuli in different types of 
depiction are perceptually different, we did not explicitly control which details were 
included in the drawings and sketches and which not. Some details such as junctions 
and curvatures have been shown to crucially contribute to the recognizability of 
drawings (Walther et al., 2011; Walther & Shen, 2014). To rule out that differences in 
the representation of drawings and natural images can simply be explained by 
differences in the recognizability, we ensured that the participants were able to 
recognize all stimuli. Yet, the presence of some features in a drawing might determine 
if it is processed similarly as natural images in the visual system or not. While our 
results do not answer the question what features exactly allow for the recognition of 
drawings, they demonstrate that the features that are commonly retained lead to a 
similar representation of drawings and natural images in the brain. Disentangling what 
types of features contribute to the representations in the visual system is an 
overarching goal in visual neuroscience and ongoing efforts as well as future 
investigations might reveal distinct contributions of different features (Bankson et al., 
2018; Groen et al., 2018).  

6.1. Conclusion 
In conclusion, our results show that the set of core visual features retained in line 
drawings is sufficient to elicit a processing cascade in the visual system that is 
remarkably similar to the one of natural images. This suggests that the same neural 
mechanisms that support natural object recognition might also hold for abstract line 
drawings. While we did not find any evidence for the involvement of additional 
processing for drawings, our findings indicate that visual information unique to natural 
images modulates visual processing at multiple stages. These results contribute to the 
understanding of how drawings convey meaning efficiently on the one hand and 
provide important insights into the neural mechanisms that underlie robust object 
recognition on the other hand. 
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