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Abstract

Training semantic segmentation models requires a large
amount of finely annotated data, making it hard to quickly
adapt to novel classes not satisfying this condition. Few-
Shot Segmentation (FS-Seg) tackles this problem with many
constraints. In this paper, we introduce a new benchmark,
called Generalized Few-Shot Semantic Segmentation (GFS-
Seg), to analyze the generalization ability of simultane-
ously segmenting the novel categories with very few ex-
amples and the base categories with sufficient examples.
It is the first study showing that previous representative
state-of-the-art FS-Seg methods fall short in GFS-Seg and
the performance discrepancy mainly comes from the con-
strained setting of FS-Seg. To make GFS-Seg tractable,
we set up a GFS-Seg baseline that achieves decent per-
formance without structural change on the original model.
Then, since context is essential for semantic segmentation,
we propose the Context-Aware Prototype Learning (CAPL)
that significantly improves performance by 1) leveraging
the co-occurrence prior knowledge from support samples,
and 2) dynamically enriching contextual information to the
classifier, conditioned on the content of each query image.
Both two contributions are experimentally manifested for
their substantial practical merit. Extensive experiments
on Pascal-VOC and COCO also show that CAPL general-
izes well to FS-Seg by achieving competitive performance.
Code is available at https://github.com/dvlab-
research/GFS-Seg.

1. Introduction
Development of deep learning has yielded significant

performance gain to semantic segmentation tasks. Repre-
sentative semantic segmentation methods [5, 64] benefit a
wide range of applications for robotics, automatic driving,
medical imaging, etc. However, once these frameworks are
trained, without sufficient fully-labeled data, they are un-
able to deal with unseen classes in new applications. Even
if the required data of novel classes are ready, fine-tuning
costs additional time and resources.

In order to quickly adapt to novel classes with only lim-

(a) GFS-Seg

Base Class Learning Novel Class Registration Evaluation

Input: Few support images/labels 
containing the novel classes.
Output: The novel classes registered
classifier.

Input: Query image. 
Output: Predictions on all possible 
base and novel classes without any 
prior knowledge.

(b) FS-Seg

Base Class Learning Evaluation

Input: Query image, support 
images/labels.
Output: Predictions on the novel 
classes exactly provided by the 
support labels.

Figure 1. Pipeline illustrations of GFS-Seg and FS-Seg. (a) GFS-
Seg has an additional novel class registration phase that registers
the novel information to the new classifier, therefore, in the last
evaluation phase, GFS-Seg methods are able to make predictions
on all possible base and novel classes as testing normal segmen-
tation models without forwarding additional support samples that
provide the prior knowledge of target classes. Contrarily, (b) FS-
Seg models in the evaluation phase require support images/labels
to provide the information of target classes exactly contained in
each query image.

ited labeled data, few-shot segmentation (denoted as FS-
Seg) [31] models are trained on well-labeled base classes
and are tested on previously unseen novel classes. Dur-
ing training, FS-Seg divides data into the support and query
sets. Samples of support set aim to provide FS-Seg models
with target categorical information to identify target regions
in query samples, with the purpose to mimic the situation
where only a few labeled data of novel classes are available.
After training, both support and query samples are sent to
FS-Seg models to yield query predictions on previously un-
seen classes based on the support information.

Limitations of FS-Seg. However, FS-Seg requires sup-
port samples to contain classes that exist in query samples.
It may be overly strong in many situations to have this prior
knowledge because providing support samples in the same
classes requires cumbersome manual selection. Besides,
FS-Seg only evaluates the novel classes, while test samples
in normal semantic segmentation may also contain the base
classes. Experiments show that exemplar FS-Seg models
cannot well tackle the practical situation of evaluation on
both base and novel classes due to these constraints.
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New benchmark and our solution. With these facts, we
set up a new task, named Generalized Few-Shot Semantic
Segmentation (GFS-Seg). As shown in Figure 1, a typical
GFS-Seg method has three phases: 1) Base class learning
phase, 2) novel class registration phase with few support
samples containing novel classes, and 3) evaluation phase
on both base and novel classes. The difference between
GFS-Seg and FS-Seg is that, during evaluation, GFS-Seg
does not require forwarding support samples that contain
the same target classes in the test (query) samples to make
predictions, because GFS-Seg should have obtained the in-
formation of base and novel classes during the base class
learning phase and novel class registration phase respec-
tively. GFS-Seg performs well on novel classes without sac-
rificing the accuracy of base classes when making predic-
tions on them simultaneously without knowing what classes
are contained in the query images in advance, achieving the
essential step towards practical use of semantic segmenta-
tion in more challenging situations.

Inspired by [12, 26], we design a baseline for GFS-Seg
with decent performance. Considering that the contextual
relation is essential for semantic segmentation, we propose
the Context-Aware Prototype Learning (CAPL) that pro-
vides significant performance gain to the baseline by updat-
ing the weights of base prototypes with adapted features.
CAPL not only exploits essential co-occurrence informa-
tion from support samples, but also adapts the model to
various contexts of query images. The baseline method
and the proposed CAPL can be applied to normal seman-
tic segmentation models, e.g., FCN [32], PSPNet [64] and
DeepLab [5]. Also, CAPL demonstrates its effectiveness in
the setting of FS-Seg by improving the baseline by a large
margin, reaching state-of-the-art performance. Our overall
contributions are as follows.

• We extend the classic Few-Shot Segmentation (FS-
Seg) and propose a more practical setting – General-
ized Few-Shot Semantic Segmentation (GFS-Seg).

• Based on our experimental results, we analyze existing
performance gap between FS-Seg and GFS-Seg, and
situations that recent popular FS-Seg models cannot
well handle.

• We propose the Context-Aware Prototype Learning
(CAPL) that yields significant performance gains to
the baseline models in both settings of GFS-Seg and
FS-Seg. It is applied to various normal semantic
segmentation models without specific structural con-
straints.

2. Related Work
Semantic segmentation. Semantic segmentation is a fun-
damental while challenging task to accurately predict the

label for each pixel. FCN [32] is the first framework
designed for semantic segmentation by replacing the last
fully-connected layer in a classification network with con-
volution layers. To get per-pixel predictions, encoder-
decoder style approaches [1, 25, 29] are adopted to help re-
fine the output in steps. The receptive field is vital for se-
mantic segmentation – dilated convolution [5, 53] is intro-
duced to enlarge the receptive field. Context information
plays an important role for semantic segmentation and con-
text modeling architectures are introduced, including global
pooling [19] and pyramid pooling [5, 50, 63, 64]. Mean-
while, attention models [10, 16, 36, 42, 54, 59, 65] are also
shown to be effective for capturing long-range relation in-
side scenes. Despite the success of these powerful segmen-
tation frameworks, they cannot be easily adapted to unseen
classes without fine-tuning on sufficient annotated data.

Few-shot learning. Few-shot learning aims at making
prediction on novel classes with only a few labeled exam-
ples. Popular solutions include meta-learning based meth-
ods [4,9,30] and metric-learning ones [35,37,40,56]. Data
augmentation additionally helps models achieve better per-
formance by combating overfitting. Therefore, synthesizing
new training samples or features based on a few labeled data
is also a feasible solution for tackling the few-shot prob-
lem [13, 44, 60]. Generalized few-shot learning was pro-
posed in [13] where the query images can be from either
base or novel categories.

Though combination of a supervised model (for base
classes) and a prototype-based approach (for novel classes)
was explored in low-shot visual recognition [12, 26], dense
pixel labeling in semantic segmentation is different from the
image-level classification where the latter does not contain
contextual information for each target.

Few-shot segmentation. Few-Shot Segmentation (FS-
Seg) places semantic segmentation in the few-shot scenario
[2,8,11,15,18,20,21,24,27,28,33,34,38,41,48,51,52,57,
61, 62, 66, 67], where dense pixel labeling is performed on
new classes with only a few support samples. OSLSM [31]
introduces this setting in segmentation and provides a so-
lution by yielding weights of the final classifier for each
query-support pair during evaluation. The idea of the pro-
totype is used in PL [7] where predictions are based on the
cosine similarity between pixels and the prototypes. Also,
prototype alignment regularization is introduced in PANet
[43]. Predictions can be also generated by convolutions.
PFENet [39] uses the prior knowledge from a pre-trained
backbone to help find the region of the interest, and the spa-
tial inconsistency between the query and support samples is
alleviated by Feature Enrichment Module (FEM).

Though FS-Seg models perform well on identifying
novel classes given the corresponding support samples, as
shown in Section 5, without the prior knowledge of the tar-
get classes contained in query images, even state-of-the-art
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FS-Seg models cannot well tackle the practical setting in-
volving both base and novel classes.

3. Generalized Few-shot Semantic Segmenta-
tion

Revisit the classic setting. In classic Few-Shot Segmen-
tation (FS-Seg) [31], data is split into two sets for support
S and query Q. An FS-Seg model needs to make pre-
dictions on Q based on the class information provided by
S. It is trained on base classes Cb in the base class learn-
ing phase and is tested on previously unseen novel classes
Cn(Cb ∩ Cn = ∅) in the evaluation phase. To deal with
novel classes, the episodic paradigm was proposed in [40] to
train and evaluate few-shot models. Each episode is formed
by a support set S and a query set Q of the same class
c. In a K-shot task, the support set S contains K samples
S = {S1,S2, ...,SK} of class c. Each support sample Si

is a pair of {si,mi} where si and mi are the support image
and mask of class c.

For the query set, Q = {q,y} where q is the input query
image and y is the ground truth mask of class c. The input
data batch used for model training is the query-support pair
{q;S} = {q; s1,m1, ..., sk,mk}. The ground truth mask
y of q is not accessible because it is to evaluate the predic-
tion of the query image in each episode. More details for the
episodic training paradigm in FS-Seg are included in [31].

In summary, there are two key criteria in the classic Few-
Shot Segmentation task. (1) Samples of testing classes Cn

are not seen by the model during training. (2) The model re-
quires its support samples to contain target classes existing
in query samples to make corresponding prediction.

Our generalized setting. Criterion (1) of classic few-shot
segmentation evaluates model generalization ability to new
classes with only a few provided samples. Criterion (2)
makes this setting not practical in many cases since users
may not know exactly how many and what classes are con-
tained in each test image. So it is hard to feed the support
samples that contain the same classes as the query sample
to the model.

Besides, even if users have already known that there
are N classes contained in the test image, FS-Seg mod-
els [3, 17, 23, 39, 55, 57, 58] may need to process NK ad-
ditional manually selected support images/labels to make
predictions over all possible classes for the test image. This
is insufficient in real applications, where models are sup-
posed to directly output predictions of all possible classes
in the test image without processing NK additional sup-
port images/labels that contain prior knowledge of classes
in the query image.

In GFS-Seg, base classes Cb have sufficient labeled
training data and each novel class Cn

i ∈ Cn only has lim-
ited K labeled samples (e.g., K = 1, 5, 10). Similar to FS-
Seg, models in GFS-Seg are first trained on base classes Cb

to learn good representations, which is the first base class
learning phase in GFS-Seg. Then, when the first phase is
accomplished, the model acquires information of N novel
classes from the limited NK support samples and forms a
new classifier in the novel class registration phase. In the
last evaluation phase, GFS-Seg models are evaluated on im-
ages of the test set to predict labels from both base and novel
classes Cb ∪Cn, rather than only evaluating novel classes
Cn as FS-Seg.

Query images in GFS-Seg may contain either the novel
classes, base classes, or both, and there is no prior knowl-
edge of what classes are contained in the query images.
Therefore, the major evaluation metric of GFS-Seg is the
total mIoU that is averaged over all classes rather than the
novel mIoU used in FS-Seg. The episodic training paradigm
might not be a good choice for GFS-Seg, since the input
data during evaluation phase is no longer the query-support
pair {q;S} used in FS-Seg. Instead, it is only the query im-
age IQ as testing common semantic segmentation models.

To better distinguish between FS-Seg and GFS-Seg, we
illustrate a 2-way K-shot task of FS-Seg and a case of GFS-
Seg with the same query image in Figure 2, where Cow and
Motorbike are novel classes, and Person and Car are base
classes. FS-Seg model (Figure 2(a)) is limited to predict-
ing binary segmentation masks only for the classes that are
included in the support set. Person on the right and Car at
the top are missing in the prediction because the support set
does not provide information for these classes, even if the
model is trained on these base classes for sufficient steps.

In addition, if redundant novel classes that do not appear
in the query image (e.g., Aeroplane) are provided by sup-
port set of (a), they may adversely affect performance be-
cause FS-Seg has a prerequisite that the query images must
contain the classes provided by support samples.

As shown in Section 5.1, FS-Seg models only learn to
predict the foreground masks for the given novel classes.
Thus, their performance is severely degraded in our gener-
alized setting of GFS-Seg where all possible base and novel
classes require predictions. Differently, GFS-Seg (Figure
2(b)) identifies base and novel classes simultaneously with-
out the prior knowledge of classes contained in query im-
age. Extra support classes (e.g., Aeroplane at the top-left of
Figure 2(b)) should not affect the model much.

4. Our Method

4.1. Prototype Learning

Prototype learning in FS-Seg. In Few-Shot Segmen-
tation (FS-Seg) frameworks [7, 43] of a N -way K-shot
FS-Seg task (with N novel classes, each with K support
samples), all support samples sij (i ∈ {1, 2, ..., N}, j ∈
{1, 2, ...,K}) are first processed by a feature extractor F
and mask average pooling. They are then averaged over K
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(h, w, d)

Generalized K-shot Semantic Segmentation
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Feature Extractor

Register only one time for all test samples.

(𝑵𝒃 , d) New Classifier

Base classes: 

Dist

K
1

(a) (b)

Figure 2. Illustrations of (a) classic Few-Shot Segmentation (FS-Seg) and (b) Generalized Few-Shot Semantic Segmentation (GFS-Seg).
‘Dist’ can be any methods measuring the distance/similarity between each feature and prototype and making predictions based on that
distance/similarity. FS-Seg models only predict novel classes provided by the support set, while GFS-Seg models make predictions on
base and novel classes simultaneously without being affected by redundant classes. Also, during evaluation, GFS-Seg models do not
require the prior knowledge of what target classes exist in the query images by registering the novel classes to form a new classifier once
for all test images (blue area in (b) representing the novel class registration phase).

shots to form N prototypes pi (i ∈ {1, 2, ..., N}) as

pi =
1

K
∗

K∑
j=1

∑
h,w[mi

j ◦ F(sij)]h,w∑
h,w[mi

j ]h,w
, i ∈ {1, 2, ..., N}, (1)

where mi
j ∈ Rh,w,1 is the class mask for class ci on

F(sij) ∈ Rh,w,d. sij represents the j-th support image of
class ci, and ◦ is the Hadamard Product. After acquiring
N prototypes, for query features F(q), the predictions are
assigned by the class labels of the most similar prototypes.

Baseline for GFS-Seg. FS-Seg only requires identify-
ing targets from novel classes. But our generalized set-
ting in GFS-Seg requires predictions on both base and novel
classes. It is hard and also inefficient for the FS-Seg model
to form prototypes for base classes via Eq. (1) by forward-
ing all samples of base classes to the feature extractor, es-
pecially when the training set is large.

Common semantic segmentation frameworks can be de-
composed into feature extractor and classifier parts. Fea-
ture extractor projects input image into d-dimensional latent
space and the classifier of size N b×d makes predictions on
N b base classes. The classifier of size N b × d can be seen
as N b base prototypes (P b ∈ RNb,d). Since forwarding all
base samples to form the base prototypes is impractical, in-
spired by low-shot learning [12, 26], we learn the classifier
via back-propagation during training on base classes.

Specifically, our baseline for GFS-Seg is trained on base
classes as normal segmentation frameworks. After training,
prototypes P n ∈ RNn,d for Nn novel classes are formed
in Eq. (1) with Nn ×K support samples. P n and P b are
concatenated to form P all ∈ RNb+Nn,d, the new classifier,
to simultaneously predict base and novel classes.

Since the dot product used by classifier of common se-
mantic segmentation frameworks produces different norm
scales of F(sij) that negatively impact the average opera-
tion in Eq. (1), following [43], we adopt cosine similarity

as the distance metric ϕ to yield output O for pixels in query
sample q ∈ Rh,w,3 as

Ox,y = argmax
i

exp(αϕ(F(qx,y),p
i))∑

pi∈Pall exp(αϕ(F(qx,y),p
i))

, (2)

where x ∈ {1, ..., h}, y ∈ {1, ..., w}, i ∈ {1, ..., N b+Nn},
and α is set to 10 in all experiments.

4.2. Context-Aware Prototype Learning (CAPL)

Motivation. Prototype Learning (PL) is applicable to few-
shot classification and FS-Seg. But it is inferior to GFS-
Seg in terms of performance. In the setting of FS-Seg, tar-
get labels of query samples are only from novel classes.
Thus there is no essential co-occurrence interaction between
novel and base classes that can be utilized for further im-
provement. However, in GFS-Seg, there is no such limita-
tion on the classes contained in each test image – predic-
tions on all possible base and novel classes are required.

Contextual cue always plays an important role in seman-
tic segmentation (e.g., PSPNet [64] and Deeplab [6]), es-
pecially in the proposed setting of GFS-Seg. For example,
Dog and People are base classes. The learned base proto-
types only capture the contextual relation between Dog and
People during training. If Sofa is a novel class and some
instances of Sofa in support samples appear with Dog (e.g.,
a dog on sofa), merely mask-pooling in each support sam-
ple of Sofa to form the novel prototype may result in the
base prototype of Dog losing the contextual co-occurrence
information with Sofa. It hence yields inferior results.

To remedy it, for GFS-Seg, reasonable utilization of con-
textual information is the key to better performance, and
our proposed method enables the model to meta-learn the
behavior that the contextual information can be enriched by
a simple adaptive fusion strategy without significantly alter-
ing model structure. The contextual cues can be mined from
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Figure 3. Visual illustration of CAPL. The weights of Nn novel classes (e.g. motor and cow) are directly set by the averaged novel features.
Also, the weights of nb base classes (e.g. person, car, sheep and bus) that appear in support samples are enriched by SCE with the original
weights. DQCE dynamically enriches the weights of Nb base classes in the classifier with temporary contextual hints extracted from query
samples. The new classifier takes the merits from both SCE and DQCE.

both support and query samples. Therefore, we propose
the Context-Aware Prototype Learning (CAPL) to tackle
GFS-Seg by effectively enriching the classifier with con-
textual information. To facilitate understanding, illustration
of CAPL is shown in Figure 3.

Support Contextual Enrichment (SCE). SCE mines
support context in the novel class registration phase. Let
N b and Nn denote the numbers of base classes Cb and
novel classes Cn respectively. We use nb(nb ⩽ N b) to de-
note the number of base classes cb,i ∈ Cb(i ∈ {1, ..., nb})
contained in Nn×K support samples for Nn unseen novel
classes cn,u ∈ Cn(u ∈ {1, ..., Nn}). Before evaluation,
the novel prototypes are formed as Eq. (1). The updated
prototype pb,i for base class cb,i is the weighted sum of the
weights of original classifier pb,i

cls and the new base proto-
types pb,i

sup generated from support features as

pb,i
sup =

∑Nn

u=1

∑K
j=1

∑
h,w[mi,u

j ◦ F(suj )]h,w∑Nn

u=1

∑K
j=1

∑
h,w[mi,u

j ]h,w

where i ∈ {1, ..., nb}, u ∈ {1, ..., Nn}.

(3)

Now pb,i is expressed as

pb,i = γi
sup ∗ pb,i

cls + (1− γi
sup) ∗ pb,i

sup, i ∈ {1, ..., nb}, (4)

where mi,u
j represents the binary mask for base class cb,i

on F(suj ), and suj is the j-th support sample of novel class
cn,u. The adaptive weight γi

sup balances the impacts of the
old and new base prototypes.

We note that γi
sup is data-dependent and its value is con-

ditioned on each pair of old and new prototypes. For base
class cb,i, γi

sup is calculated as γi
sup = Gsup(p

b,i
cls,p

b,i
sup)

where Gsup serves as a correlation estimator that produces
the weighing factor γi

sup.

Dynamic Query Contextual Enrichment (DQCE). The
aforementioned SCE only takes place in the novel class
registration phase and it exploits the hints from the sup-
port samples to offer the co-occurrence prior knowledge.
However, during the evaluation phase, the new classifier
is shared by all query images. Hence the introduced prior
might be biased towards the content of the limited support
samples, causing inferior generalization ability to different
query images. To alleviate this issue, we propose the Dy-
namic Query Contextual Enrichment (DQCE) that adapts
the new classifier to different context by dynamically incor-
porating essential semantic information mined from indi-
vidual query samples.

Specifically, we first let the original classifier to yield a
temporary prediction yqry ∈ Rhqwq×Nb

on the query fea-
ture F(q) ∈ Rhqwq×d, where hq , wq , N b and d are height,
width, base class number and dimension number respec-
tively. Then, the categorical representatives pb

qry ∈ RNb×d

of query sample Q are yielded as

pb
qry = Softmax(yt

qry)×F(q), (5)

where the Softmax operation is performed on the second
dimension of the transposed ycls (yt

cls ∈ RNb×hqwq ), so as
to weigh the elements on the query feature map F(q).

Since the query label is not available, the dynamic pro-
totypes pb

qry yielded via query predictions are not as sound
as pb

sup and might introduce unnecessary noise. We still
need reliability measure γi

qry for the estimated pb
qry. Sim-

ilar to Eq. (4), a weighing factor γi
qry = Gqry(p

b,i
cls,p

b,i
qry)

is required to accomplish the dynamic context enrichment
for each base class. We obtain the dynamically enriched
prototypes as

pb,i
dyn = γi

qry ∗ pb,i
cls + (1− γi

qry) ∗ pb,i
qry , i ∈ {1, ..., Nb}. (6)
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It is worth noting that, different from Eq. (4) where only
nb classes contained in the support set are enriched, Eq. (6)
considers all N b base classes since there is no prior knowl-
edge of what classes are contained in the current query im-
age. Besides, we empirically find that cosine similarity is
better for Gqry and MLP is more suitable for Gsup. Ab-
lations on other alternatives are in the supplementary file.
Now,

pb,i
capl = pb,i + pb,i

dyn, i ∈ {1, ..., Nb}. (7)

P b
capl is then concatenated with the prototypes P n of novel

classes to form P all
capl ∈ RNb+Nn,d. It predicts all possible

base and novel classes during evaluation.

Training. Directly applying the weighted sum in Eq. (4)
and Eqs. (6)-(7) is difficult because the averaged sup-
port/query features and classifier’s weights are in different
feature spaces. To make it tractable, we accordingly modify
the training scheme to let the feature extractor F learn to
yield features compatible with P b

cls.
For prior knowledge from support samples, we let B de-

note the training batch size and N b denote the number of
all base classes. Our work randomly selects ⌊B

2 ⌋ train-
ing samples as the ‘Fake Support’ (FS) samples and the
rest as ‘Fake Query’ ones. Let N b

f denote the number of
base classes contained in FS samples. We randomly select

⌊Nb
f

2 ⌋ as the ‘Fake Novel’ (FN) classes CFN and set the rest

N b
f − ⌊Nb

f

2 ⌋ as the ‘Fake Context’ (FC) classes CFC . The
selected CFN and CFC classes are both base classes. But
they mimic the behaviors of real novel and base classes con-
tained in the support set respectively. Formation of the up-
dated prototypes pb,i (i ∈ {1, ..., N b

f , ..., N
b}) during train-

ing is

pb,i =


γi
sup ∗ pb,i

cls + (1− γi
sup) ∗ pb,i

sup ci ∈ CFC

pb,i
sup ci ∈ CFN

pb,i
cls Otherwise

(8)

pb,i
sup =

∑⌊B
2
⌋

j=1

∑
h,w[mi

j ◦ F(sij)]h,w∑⌊B
2
⌋

j=1

∑
h,w[mi

j ]h,w

. ci ∈ CFC ∪CFN (9)

Specifically, FC classes CFC act as the base classes con-
tained in support samples of novel classes during testing.
The features of FC classes update P b

cls with γsup as shown
in Eq. (8). Also, features of FN classes CFN yield FN pro-
totypes via Eq. (9) that directly replace the learned weights
of the corresponding base classes in P b

cls. Weights of the
rest classes for this training batch are kept as the original
ones in the classifier.

To make the classifier adapt to different contexts of in-
dividual query samples, the dynamic prototypes pb,i

dyn(i ∈
{1, ..., N b}) are generated by following Eqs. (5) and (6).
Finally, the context-aware classifier P b

capl is formed as
Eq. (7), and the overall training objective is to minimize
the standard cross-entropy loss calculated on the predictions
made by P b

capl.

5. Experiments
This section presents the experimental results. Imple-

mentation details are provided in the supplementary file.

5.1. Comparison with FS-Seg Models in GFS-Seg

To show that models in the setting of FS-Seg are un-
able to perform well when predicting both base and novel
classes, we evaluate four recently proposed exemplar FS-
Seg frameworks in the setting of GFS-Seg. They are
CANet [58], PFENet [39] SCL [55] and PANet [43]).

The major difference of these frameworks is on the ‘Dist’
shown in Figure 2(a) related to the way to process query
and support feature and make predictions. SCL, PFENet,
and CANet are relation-based models and PANet is cosine-
based. Specifically, CANet uses convolutions as a relation
module [37] to process the concatenated query and sup-
port prototypes. It yields prediction on the query image.
PANet generates results by measuring the cosine similarity
between every query feature and prototypes obtained from
support samples.

Though FS-Seg only requires evaluation of novel
classes, if the prototypes, i.e., averaged features, of base
classes are available, the FS-Seg models should also be able
to identify regions of them in query images. It is noted that
some recent frameworks, e.g., RePRI [3] and HSNet [23],
are not practical to be applied to the setting of GFS-Seg be-
cause their inference process requires independent reason-
ing with the full support feature maps, instead of the pro-
totypical feature vectors adopted by above methods where
the prior mask cannot be used in PFENet. Thus, under an
n-way k-shot setting, for each query image, these methods
need to perform entire feature reasoning for additional nk
times on the full support feature maps, causing low effi-
ciency or even Out of Memory issues.

We use the publicly available codes and follow the de-
fault training configuration. We modify the inference code
to feed all prototypes (base and novel) for each query im-
age. The base prototypes are formed by averaging features
belonging to base classes in all training samples. As shown
in Table 1, CANet, SCL, PFENet, and PANet perform less
satisfyingly than those implemented with CAPL. ‘PANet +
CAPL’ differs from PANet only in the training and classifier
formation strategies.

We note that the results of novel mIoU in Table 1 are
worse than the GFS-Seg setting. The numbers are lower
than those reported in the original papers of FS-Seg mod-
els. This discrepancy is caused by different settings. In
GFS-Seg, models are required to identify all classes in a
given testing image, including both base and novel classes.
Note, in FS-Seg, models only need to find pixels belonging
to one specific novel class with support samples that provide
the prior knowledge of what the target class is. Therefore,
it is much harder to identify the novel classes under the in-

11568



1-shot 5-shot
Methods Base Novel Total Base Novel Total
CANet [58] 8.73 2.42 7.23 9.05 1.52 7.26
PFENet [39] 8.32 2.67 6.97 8.83 1.89 7.18
SCL [58] 8.88 2.44 7.35 9.11 1.83 7.38
PANet [43] 31.88 11.25 26.97 32.95 15.25 28.74
PANet + CAPL 63.06 14.96 51.60 63.81 19.66 53.30
DeepLab-V3 + CAPL 65.71 15.05 53.77 67.01 23.26 56.59
PSPNet + CAPL 65.48 18.85 54.38 66.14 22.41 55.72

Table 1. Comparisons with FS-Seg models in GFS-Seg where the
base and novel classes are simultaneously identified. All models
are based on ResNet-50. Base: mIoU results of all base classes.
Novel: mIoU results of all novel classes. Total: mIoU results of
all (base + novel) classes.

1-shot 5-shot
Methods MLP Cos Base Novel Total Base Novel Total

Pascal-5i

Baseline N/A N/A 60.47 14.55 49.54 61.88 16.68 51.12
DQCE ! - 63.25 15.42 51.82 64.12 20.37 53.70
DQCE - ! 64.16 15.39 52.55 65.26 21.32 54.80
DQCE-Sw - ! 58.28 15.96 48.20 60.68 20.66 51.15
SCE ! - 62.17 17.88 51.63 63.62 20.50 53.35
SCE - ! 59.87 16.80 49.62 61.60 19.92 51.68
SCE-Sw - ! 60.92 16.39 50.32 62.75 21.18 52.83
CAPL N/A N/A 65.48 18.85 54.38 66.14 22.41 55.72

COCO-20i

Baseline N/A N/A 36.68 5.84 29.06 36.91 7.26 29.59
CAPL N/A N/A 44.61 7.05 35.46 45.24 11.05 36.80

Table 2. Comparison of contextual enrichment strategies. ‘MLP’
and ’Cos’ mean two-layers MLPs and cosine similarity to yield
weighing factors γqry and γsup respectively. SCE mines co-
occurrence cues from support data (Eqs. (3)-(4), and ’DQCE’ ex-
tracts temporary query context (Eqs. (5)-(6)). ‘CAPL’ combines
‘SCE (MLP)’ and ’DQCE (Cos)’ in Eq. (7).

terference of the base classes in GFS-Seg.
In particular, FS-Seg models fall short mainly because

the episodic training/testing schemes of FS-Seg only focus
on making models discriminative between background and
foreground, where the decision boundary for each episode
only lies between one target class and the background in
each query sample. Also, FS-Seg requires query images
to contain the classes provided by support samples, while
GFS-Seg distinguishes between not only multiple novel
classes but also all possible base classes simultaneously,
even without the prior knowledge of classes in query sam-
ples. Moreover, to maintain the high generalization ability
on unseen novel classes in FS-Seg, both CANet, SCL and
PFENet fix their backbones during training, causing limited
adaptation in the complex scenario of GFS-Seg that requires
multi-class labeling.

5.2. Ablation Study

In this section, we investigate effectiveness of compo-
nents of CAPL with PSPNet on Pascal-5i in GFS-Seg where
the base and novel classes are required to be simultaneously
identified. The baselines for following ablation study are

1-shot 5-shot
Methods Train Test Base Novel Total Base Novel Total
Baseline N/A N/A 60.47 14.55 49.54 61.88 16.68 51.12
Baseline+ N/A N/A 60.60 16.53 50.10 62.28 19.39 52.07
CAPL-Tr ! - 59.73 17.40 49.65 61.34 21.72 51.91
CAPL-Te - ! 60.89 7.00 48.06 61.13 10.90 49.17
CAPL ! ! 65.48 18.85 54.38 66.14 22.41 55.72

Table 3. Comparison of training & testing strategies of CAPL.
‘Baseline+’ only replaces fake novel prototypes during training.
‘CAPL-Tr’ adopts CAPL’s training strategy while keeping the
novel class registration and evaluation phases same as the base-
line. ‘CAPL-Te’ performs CAPL during novel class registration
and evaluation – its training scheme is not altered.

based on PSPNet [64] with ResNet-50 [14].

Design options for components of CAPL. The effects of
the support contextual enrichment method (SCE) as well as
its dynamic counterpart (DQCE) are investigated in Table 2.
SCE enriches the classifier with the essential co-occurrence
relations between novel and base classes (Eqs. (3)-(4)),
while DQCE further adapts the enrichment process to con-
tent of individual query images (Eqs. (5)-(7)). Thus, Gsup

and Gqry are used by SCE and DQCE to yield γsup and
γqry respectively.

It can be observed in Table 2 that both SCE and DQCE
are most conducive to the baseline when Gqry=‘Cos’ and
Gsup=‘MLP’. Cosine similarity works better for DQCE be-
cause it serves as the reliability estimator to weigh the pro-
totypes extracted from the query features since they may
introduce irrelevant information. MLP is more likely to
give high confidence to the original classifier to avoid the
risk brought by Eq. (5), yielding suboptimal results. Also,
switching the weighing factors for pb,i

cls and pb,i
qry (DQCE-

Sw) undoubtedly worsens the performance because the new
prototype is dominated by untrustworthy pb,i

qry.
Nonetheless, cosine similarity is less effective than MLP

for SCE, and ‘Cos’ achieves comparable results to the base-
line. This could be caused by the fact that pb,i

sup is produced
by ground-truth masks, hence pb,i

sup is a reliable categorical
representation, leading to a high similarity with pb,i

cls that
directly suppresses context brought by pb,i

sup in Eq. (4). If
we switch the weighing factors for pb,i

cls and pb,i
sup in Eq. (4)

(‘SCE-Sw’ in Table 2), the results rely more on the content
of pb,i

sup, losing the generalization power of pb,i
cls.

Differently, we observe that values of γsup yielded by
MLP are within a certain range (0.4-0.7) without corrupt-
ing to 0 or 1. They are generally proportional to the dis-
crepancy between pb,i

cls and pb,i
sup of base class i. Thus,

SCE (MLP) outweighs SCE-Sw (Cos) by producing moder-
ate data-conditioned values to adequately balance the novel
contextual and original information.

Training and contextual enrichment strategies. Since
the training of CAPL picks ‘Fake Novel’ and ‘Fake Con-
text’ samples to make the averaged features compatible with
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Pascal-5i COCO-20i

Methods Venue Backbone 1-Shot 5-Shot 1-Shot 5-Shot

PANet [43] ICCV-19 Res-50 48.1 55.7 20.9 29.7
PFENet [39] TPAMI-20 Res-50 60.8 61.9 32.1 37.5
ASGNet [17] CVPR-21 Res-50 59.3 63.9 34.5 42.5
SCL [55] CVPR-21 Res-50 61.8 62.9 - -
SAGNN [46] CVPR-21 Res-50 62.1 62.8 - -
RePri [3] CVPR-21 Res-50 59.1 66.8 34.0 42.1
CWT [22] ICCV-21 Res-50 56.4 63.7 32.9 41.3
MMNet [45] ICCV-21 Res-50 61.8 63.4 37.5 38.2
CMN [47] ICCV-21 Res-50 62.8 63.7 39.3 43.1
Mining [49] ICCV-21 Res-50 62.1 66.1 33.9 40.6
HSNet [23] ICCV-21 Res-50 64.0 69.5 39.2 46.9
CAPL (PANet) Res-50 60.6 66.1 38.0 47.3
CAPL (PFENet) Res-50 62.2 67.1 39.8 48.3
PFENet [39] TPAMI-20 Res-101 60.1 61.4 32.4 37.4
SAGNN [46] CVPR-21 Res-101 - - 37.2 42.7
ASGNet [17] CVPR-21 Res-101 59.3 64.4 - -
CWT [22] ICCV-21 Res-101 58.0 64.7 32.4 42.0
Mining [49] ICCV-21 Res-101 62.6 68.8 36.4 44.4
HSNet [23] ICCV-21 Res-101 66.2 70.4 41.2 49.5
CAPL (PFENet) Res-101 63.6 68.9 42.8 50.4

Table 4. Class mIoU results on Pascal-5i and COCO-20i in FS-
Seg where only the novel classes are required to be identified.

learned weights for building the updated classifier, we mod-
ify the training scheme of the baseline (denoted as ‘Base-
line+’) accordingly for fair comparison. Because the base-
line only replaces the novel prototypes during the evalu-
ation, only ‘Fake Novel’ is sampled and used to replace
the base prototypes during training Baseline+. Therefore,
Baseline+ is analogous to the methods in few-shot classi-
fication [12, 26]. Besides, ‘CAPL-Tr’ denotes that CAPL
is only performed during the training phase, keeping the
novel class registration and evaluation same as the baseline.
‘CAPL-Te’ represents that CAPL is only performed during
novel class registration and evaluation phases. There is no
change of baseline training. Since γsup is yielded by a train-
able two-layers MLP, we set γsup to the mean converged
values of CAPL for CAPL-Te.

The results in Table 3 show that the training and contex-
tual enrichment strategies of CAPL complement each other
– both are indispensable. CAPL-Tr brings minor improve-
ment to the baseline with only training alignment imple-
mented. CAPL-Te proves that, without the proposed train-
ing strategy, the contextual enrichment method of CAPL
produces sub-optimal results due to misalignment between
the original classifier and the features.

5.3. Apply CAPL to FS-Seg

FS-Seg is an extreme case of GFS-Seg. To validate the
proposed CAPL in the setting of FS-Seg, in Table 4, we in-
corporate CAPL to PANet and PFENet. CAPL achieves sig-
nificant improvement to the baselines. Specifically, CAPL
only alters the prototype construction process of PANet by
making it dynamically adapt to different query and support
pairs, following the method introduced in Section 4.

We also incorporate CAPL to PFENet whose decoder
processes concatenation of the prior mask and middle-level

(a) (b) (c) (d) (e)

Figure 4. Visualizations of GFS-Seg (top) and FS-Seg (bottom).
(a): Input; (b): GT; (c): Baseline; (d): SCE; (e): SCE+DQCE.

features to make predictions. However, the prior mask is
enhanced by CAPL. Since there is no significant structural
change on both PANet and PFENet, the improved models
have nearly the same inference speed as the original ones.
More implementation details regarding this section are in-
cluded in the supplementary material.

5.4. Visual Examples

Visual comparison is presented in Fig 4 where SCE and
DQCE refine the baseline predictions. More examples are
shown in the supplementary file.

6. Concluding Remarks

Summary. We have presented the new benchmark of
Generalized Few-Shot Semantic Segmentation (GFS-Seg)
with a novel solution – Context-Aware Prototype Learning
(CAPL). Different from the classic Few-Shot Segmentation
(FS-Seg), GFS-Seg aims at identifying both base and novel
classes that FS-Seg models fall short. Our proposed CAPL
achieves significant performance improvement by dynam-
ically enriching the context information with adapted fea-
tures. CAPL has no structural constraints on the base model
and thus it can be easily applied to normal semantic seg-
mentation frameworks. It also generalizes well to FS-Seg.

Limitation & Discussion with HSNet. CAPL dynami-
cally leverages the contextual hints in both GFS-Seg and
FS-Seg, while it does not introduce new designs for dense
spatial reasoning between query and support features in
FS-Seg. Thus, though new SOTA performance has been
achieved on the challenging COCO-20i (20 novel classes)
where the semantic cues are better exploited, CAPL does
not outperform another advanced method that adopts the
hyper-correlations between query and support features, i.e.,
HSNet [23], on Pascal-5i (5 novel classes) in FS-Seg.
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