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Abstract
A main goal of data-driven materials research is to find optimal low-dimensional descriptors,
allowing us to predict a physical property, and to interpret them in a human-understandable way.
In this work, we advance methods to identify descriptors out of a large pool of candidate features
by means of compressed sensing. To this extent, we develop schemes for engineering appropriate
candidate features that are based on simple basic properties of building blocks that constitute the
materials and that are able to represent a multi-component system by scalar numbers.
Cross-validation based feature-selection methods are developed for identifying the most relevant
features, thereby focusing on high generalizability. We apply our approaches to an ab initio dataset
of ternary group-IV compounds to obtain a set of descriptors for predicting lattice constants and
energies of mixing. In particular, we introduce simple complexity measures in terms of involved
algebraic operations as well as the amount of utilized basic properties.

1. Introduction

On the steady search for advanced materials with tailored properties and novel functions, high-throughput
screening has become a popular branch of materials research. Focusing on the computational side, the
amount of materials data produced on workstations, compute clusters, and supercomputers is growing
exponentially. This situation can be considered as a big-data problem as well as a chance—the chance to learn
from these data and obtain unprecedented insight, opening new routes for basic materials science and
engineering. In this sense, big data of materials science is all about the question: How to exploit the wealth of
information, inherently inside the materials data? For successfully exploring the chemical compound space,
new concepts need to be developed that allow us for extracting knowledge from the materials data,
identifying trends, anomalies, and mechanisms.

This is where machine learning (ML), and, more general, artificial intelligence (AI) come into play.
Learning from materials data in an automatized manner, as ML/AI may suggest, is, however, far from being
trivial, since learning the behavior of the entire quantum-mechanical many-body problem is a too difficult
task. To make reliable predictions, the most critical step is to find suitable descriptors, i.e. physically
meaningful parameters that describe a material’s property best. This will enable us to develop and/or use AI
tools to not only find optimal models but also to gain new insights into the underlying physical laws by
relating properties and descriptors.

An important aspect of AI is to learn physical quantities that are computationally expensive and
time-consuming from data that are easy to obtain. Predicting properties of bulk materials from atomic data
or interface properties from bulk results are just two examples out of many possibilities [1]. For finite
systems, atomization energies of relaxed molecules of similar kind have been successfully predicted within
chemical accuracy [2]. Conversely, due to the long-range interactions, materials properties are much harder
to predict. This has challenged both (a) the feature engineering, i.e. the design of convenient numerical
representations most relevant to a property, and (b) the approaches for feature selection, i.e. the
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identification of the relevant features out of a possibly (very) large pool. Important examples for (a) include
the generation of features for modeling the potential-energy surface of solids [3–5] or learning the cohesive
energies of compounds for arbitrary supercells [6]. More recently, crystal-graph representations applicable to
arbitrary crystal structures, so called n-grams, were successfully employed, in combination with kernel ridge
regression, to predict formation energies and band gaps of transparent conducting oxides [7]. An important
example [8, 9], advancing both (a) and (b), concerns a classical classification problem, namely separating the
binary octet semiconductors into whether they crystallize in rocksalt or zincblende structure. This problem
has a long history in materials science (for an overview, see [10]). It has been solved by symbolic regressions
via compressed sensing, in particular the LASSO+ ℓ0 [8, 9] and SISSO [11] approaches, and also by
subgroup discovery techniques [12]. Other examples are crystal-structure classification problems using
neural networks [13], the generation of structure-energy-property landscapes for molecular crystals [14], the
prediction of vibrational free energies and entropies [15], the determination of the electrical breakdown field
of insulators and the learning of the dielectric constant and band gap of polymers [16], the prediction of
band gap energies or glass-forming ability of crystalline and amorphous materials [17], and unified
frameworks for predicting atomic-scale properties of molecules and solids [18].

In this work, we advance some of the above methodology to identify suitable descriptors in two main
aspects. First, we show how meaningful, yet simple, candidate features can be constructed from basic
properties of the materials that constitute the building blocks of multi-component systems. Second, we
devise and assess strategies for model selection. Thereby we also consider the predictive power of the model
by making use of cross-validation (CV) for both model selection and validation. We demonstrate our
approaches with the example of group-IV zincblende ternary alloys, for which we aim at predicting lattice
constants and energies of mixing. We use an ab initio dataset obtained by density-functional theory on the
level of the local-density approximation which yields reasonable accuracy for the quantities of interest in our
work, i.e.∼1% for lattice constants and∼4% for energies of formation [19]. Since the properties of such
alloys are sensitive to both the composition and the atomic arrangement, this poses a challenge to the
construction of appropriate candidate features. Generating a feature space for disordered structures has, so
far, not been tackled systematically in the context of symbolic regression. Focusing on the two learning tasks,
we first determine a set of basic physical properties and mathematical operations for generating the feature
space that provides a starting point for applying compressed-sensing methodology [8, 9]. In particular, we
examine the quality of the models in terms of a measure of descriptor complexity, where the included
primary features as well as the descriptors’ algebraic form are considered. Further, we compare the different
model-selection strategies based on cross validation as well as LASSO+ ℓ0 and SISSO, that we use for
identifying the most meaningful descriptors. Finally, we present a set of optimal descriptors as a solution to
the two learning tasks and discuss their interpretability.

2. Background

2.1. Building a linear model
As very often in a learning task, one wants to find a linear model that allows one to predict a material
property P based on some input data D. More specifically, the aim is to obtain, in the context of compressed
sensing, a small subset of input vectors from the potentially huge matrix D which both gives an accurate
prediction P̂ of the property and desirably can be interpreted in a physically meaningful way. This subset is
called Ω-dimensional descriptorD, where Ω is the number of considered input vectors. Formally, the linear
model can be written as

P̂s =Ds · c=
Ω∑
i=1

Fskicki . (1)

The descriptorD can then be defined as a set of features Fk which map a material s to the corresponding set
of real numbers, i.e.

Fk : s→ Fsk ∈ IR, (2)

D : s→Ds = (Fsk1 , . . . ,FskΩ) ∈ IRΩ. (3)

The components of the coefficient vector c= (ck1 , ck2 , . . . , ckΩ) are found through fitting procedure to a
training set S= {(D1,P1), . . . ,(DN,PN)} where N is the number of training samples. The property Ps in each
data-point (Ds,Ps)must be known beforehand, either from calculations or measurements. The task of
finding the appropriate descriptor is achieved by first constructing a potentially huge pool ofM candidate
features {F1, . . . ,FM} and then learning from this pool the Ω features yielding the best model.

2



New J. Phys. 24 (2022) 113049 B Hoock et al

2.2. Compressed sensing methods
In order to extract only a few highly relevant features from the plenty of candidates contained in D (see
section 4), we make use of two different feature-selection methodsM, namely LASSO+ ℓ0 [8, 9] and SISSO
[11] that are based on compressed-sensing theory and are briefly sketched in the following. Utilizing these
two methods, we have developed various model-selection strategies, based on CV, which aim at
generalizability of the resulting models. They will be described in section 5.

2.2.1. The LASSO+ ℓ0 approach
Mathematically, in compressed sensing, the search for a descriptor is expressed by the optimization problem

argmin
c

∥P−Dc∥22 +λ∥c∥0 . (4)

Here, the input matrix D is of size N ×M containing the elements Fsk. ∥v∥p denotes the ℓp-norm of v,

defined as
(∑N

i=1 |vi|p
)1/p

. For the special case p= 0, ∥v∥0 is defined as the number of non-zero elements of

v, i.e.#{i forwhichvi ̸= 0}. The solution of equation (4) yields the coefficients c that minimize the mean
square error (MSE) between the target P and the prediction of the modelDc, on the condition that the vector
c is sparse, i.e. ci ̸= 0 for a few i ∈ {1, . . . ,M} only. The parameter λ is a positive real number. Higher values
of λ yield sparser models. If the solution has exactly Ω non-zero coefficients ci, the associated subset of
features {Fi} is an Ω-dimensional descriptor.

A solution to this problem consists of extracting all possible descriptorsD of dimension Ω from the pool
of features and selecting the one yielding the lowest MSE. This is, however, practically impossible due to the
combinatorial explosion of the number of possible descriptors at increasing Ω (NP-hard problem [20]). To
overcome this computational difficulty, in [8, 9] an approximation to the ℓ0-problem has been proposed,
consisting of two steps. First, one solves the convex optimization problem

argmin
c

∥P−Dc∥22 +λ∥c∥1 . (5)

Compared to equation (4), this equation contains the ℓ1-norm (also calledManhattan norm) of the
coefficient vector c. This approach is known as the least absolute shrinkage and selection operator (LASSO)
[21] and is the best convex proxy to equation (4). It yields a subset of moderate size M̃, containing the most
relevant features. Second, equation (4) is then solved exactly by going through all combinations of features,
in the subset obtained in the first step. This guarantees that the best Ω-dimensional descriptors out of M̃ are
obtained [9].

2.2.2. The SISSO approach
Although the LASSO+ ℓ0 approach has been successfully applied, e.g. to classification problems [8], it
turned out to experience difficulties. This happens on the one hand, at large feature matrix D where the
procedure becomes computationally very costly, and, on the other hand, if D contains highly correlated
features. As a solution to this undesirable situation, the SISSOmethod was proposed [11] as an alternative
approach to tackle the ℓ0-problem, also enabling to work with much larger feature spaces.

Similar to LASSO+ ℓ0, SISSO combines two feature-selection methods. First, the sure independence
screening method (SIS) [22] is applied to reduce the number of candidate features to a drastically smaller
subset. Second, the sparsifying operator (SO) further reduces the dimensionality, eventually determining the
Ω-dimensional descriptor. In more detail, SIS determines a first lower-dimensional subspace S1 of features by
choosing those being mostly correlated with the target P. Here, the Pearson correlation coefficient is used as a
measure. SO will then find an optimal 1D descriptorD1 from S1 (for 1D, this coincides with the first ranked
by SIS). After this, SIS again is used to find a second subspace S2 that now contains the features of highest
correlation with the residual P−D(1)c1 (D(1) being the feature matrix with rows given by equation (3) with
D→D1). Like above, SO determines the best 2D descriptor—but now from the union of subspaces S1 ∪ S2.
Thus, this procedure yields a sequence of almost orthogonal subsets and is iterated until a threshold in
accuracy or in descriptor dimension Ω is reached. For the selection operator SO, several options are
discussed in [11] that may put restrictions on the feasible size of the subspaces. In this work, we choose
SO(ℓ0) to solve the ℓ0 problem exactly on the subset. Thus, the essential difference between LASSO+ ℓ0 and
SISSO is the set onto which ℓ0 is operated, being LASSO or SIS, respectively.

3. Dataset of group-IV ternary alloys

We consider group-IV ternary compounds that are composed of three out of the four elements carbon,
silicon, germanium, and tin. This material class is of great interest because of its potential electronic,
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Figure 1. Supercell representing a configuration of the ternary structure Si6C4Ge6. Each atom is surrounded by four next
neighbors in tetrahedral coordination. Right to it are examples of building blocks considered for the feature space: single atom
(top), dimer (middle) and tetrahedron (bottom).

photoelectronic, and photovoltaic applications [23–25]. Here, we focus on ternary structures that can be
described by a 16-atom supercell (see figure 1) as constructed by doubling the two-atomic zincblende parent
lattice in each direction. The concentrations x, y, 1− x− y of types A, B and C are restricted to 0< x,y⩽ 0.5
and 0< 1− x− y⩽ 0.25. The code enumlib [26] was used to determine all symmetrically distinct structures
that satisfy these restrictions. These leads to a total of 504 different configurations, out of which 445 were
used [27].

In general, a certain composition (x, y) can be realized by several symmetrically inequivalent atomic
arrangements, i.e. (x, y) does not define a structure s uniquely. Typically, not only the composition but also
the configuration has an impact on the physical properties. This needs to be reflected in the construction of
the feature space. Specifically, for modeling the alloys’ properties P(x,y), this requires to go beyond pure
linear interpolation schemes like Vegard’s law [28]

Plin(x,y) = xPA + yPB +(1− x− y)PC. (6)

or interpolation of the properties of the binary compounds PAB, PAC, and PBC [29]. Instead,
configuration-aware features must be introduced.

The dataset used in this work was calculated with the all-electron full-potential code exciting [30]
using the Perdew–Wang exchange-correlation potential [31]. Muffin-tin radii of 1.45, 1.65, 1.8, and 1.9 a0
were employed for C, Si, Ge, and Sn, respectively, and the basis-set size was determined by the dimensionless
parameter RMT,min |G+ k|max = 7.0 for C, i.e. the species with the smallest sphere. For the density and the
potential, a plane-wave cut-off |G| of 12.0a−1

0 was applied. Brillouin-zone integrations were carried out on a
4× 4× 4 k-point mesh. The atomic positions were relaxed until all forces were converged better than
3.0× 10−4Ha/a0. The lattice constants a were determined by fitting the Murnaghan equation of state [32] to
five values of the volume varying by up to±4% around an initial guess from Vegard’s law. A final atomic
relaxation of the equilibrium supercell yielded the groundstate energy E(s) for each structure. The energy of
mixing per atom, is obtained as Emix = [E(s)− Elin(x,y)]/16, where Elin(x,y) = x · EA + y·
EB +(1− x− y)· EC is the linearly interpolated groundstate energy according to equation (6), and EA
(EB, EC) is the energy of the pristine crystal in the diamond structure for species A (B, C). Negative (positive)
values of Emix indicate that the compound s is stable (unstable) against phase separation into the pristine
crystals A, B, and C.

For these data, figure 2 shows the two target properties a (top) and Emix (bottom). The structures are
sorted by ascending concentration of atom type A, then B, and then C where A, B, and C are sorted by
ascending nuclear number. The insets, showing several groups of fixed composition, visualize the
dependence on the arrangement as mentioned above. This dependence can be as large as 0.22 Å for the lattice
constant and 0.41 eV for Emix, considering the entire data set. Further analyzing the dataset, we find that the
relaxed atomic positions frequently deviate quite markedly from those of the ideal zincblende structure. For
some structures, the bond lengths can differ by up to 10%. We note that even bond lengths within the same
bonding motif, for example bonds between silicon and germanium, and within the same structure may take
different values.

The data used in this work are available for download at the NOMAD Repository [33, 34], DOI https://
doi.org/10.17172/NOMAD/2022.05.20-1.
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Figure 2. Lattice constant, a, (top) and energy of mixing, Emix, (bottom) of the 445 structures in the dataset. The dotted vertical
lines separate groups of structures containing the same three elements, i.e. (C, Si, Ge), (C, Si, Sn), (C, Ge, Sn), and (Si, Ge, Sn)
from left to right. Data points used for model selection, Str, are indicated by white and black dots, data points in the hold-out set
Sho (different for a and Emix) are marked in red. The insets illustrate the impact of the atomic arrangement. Here, groups of fixed
composition are connected by a gray line.

4. Construction of feature spaces

How to build a feature space for materials-science problems, has been extensively described in [8, 9]. In
short, one first defines a set of primary features, {fk}, that are basic physical quantities of lower complexity
than the target properties, i.e. requiring (much) lower computational cost than what is needed for
computing the desired property. From this, one builds the full feature space by applying mathematical
operators. In [8, 9], binary semiconductors with up to only two atoms in the unit cell were considered,
hence, a representation with site-dependent f k’s was suitable. For the larger unit cells with disorder
considered in this work, such representation is not convenient, since it (a) is not invariant under symmetry
operations of the underlying crystal structure, and (b) relies on a fixed unit (super) cell. Therefore, we extend
the above described approach [8, 9] to make it applicable to supercells of arbitrary size with disorder.
Essentially, we use the site-dependent f k’s to define averaged primary features Fk. These are invariant under
symmetry operations of the underlying lattice and also independent of the supercell size. From these one
then builds the full feature space similar to [8, 9].

Starting from the primary features, as displayed in tables 1 and 2, these quantities are transformed into
scalar primary features that characterize a sample material with a potentially complex structure as a whole.
To obtain this, we perform an average of the {fk} over the crystal supercell as

Fsk =
1

m

∑
γ∈s

fk(γ) (7)

where the sum runs over all building blocks γ of a certain type, andm is the number of these building blocks
γ in the structure s. In the applications discussed in section 6, for instance, we employ averages over all single
atoms, all pairs (or, equivalently, all bonds) and all tetrahedral clusters in the 16-atom supercell (figure 1,
right). As an example, the equilibrium dimer distance fk = d2di from the pool of primary features is summed
over all pairs of nearest neighbors ⟨i, j⟩ in the supercell and divided by the total number of pairs in these
structures (m= 32). This averaging procedure can be viewed as a generalization of Vegard’s law.

Additional features are obtained by generalizations of equation (7), taking the qth raw moments of f k,

F̄q
sk =

1

m

∑
γ∈s

fk(γ)
q (8)
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Table 1. Primary features f k and different feature spaces Xa,i (i= 1–3) used for learning the lattice constant a. The crosses indicate that a
quantity is included in Xa,i. at, es, bi, 1di, 2di, tet used for atomic, elemental solid, binary solid, 1-atomic dimer, 2-atomic dimer, and
tetra, respectively.

Feature (f k) Description Xa,1 Xa,2 Xa,3

Properties of mono-atomic systems
Z Atomic number × × ×
P Period (in periodic table) × × ×
rs s-orbital radius × × ×
rp p-orbital radius × × ×
rd d-orbital radius × × ×
aes Lattice constant of elemental solid × ×
d1di Bond length of mono-atomic dimer × ×

Properties of two-atomic systems
abi Lattice constant of binary material × ×
d2di Bond length of bi-atomic dimer × ×

Properties of tetrahedra
dtet Bond length ×

Table 2. Primary features f k and different feature spaces XE,i (i= 1–3) used for learning the energy of mixing, Emix. The quantities Z, P,
rs, d2di and dtet are the same as in table 1. In addition, the Kohn–Sham band-gap and the energy of formation are considered here.

Feature Description XE,1 XE,2 XE,3

Properties of mono-atomic systems
Z Atomic number × × ×
P Period × × ×
rs s-orbital radius × × ×
Eg,at HOMO-LUMO gap of atom × × ×
Eg,es Gap of elemental solid at Γ-point × ×
Ef,es Energy of formation of elemental solid × ×
Ef,1di Energy of formation of mono-atomic dimer × ×
Eg,1di HOMO-LUMO gap of mono-atomic dimer × ×

Properties of two-atomic systems
Ef,bi Energy of formation of binary material × ×
Eg,bi Gap of binary material at the Γ-point × ×
d2di Bond length of two-atomic dimer × ×
Ef,2di Energy of formation of two-atomic dimer × ×
Eg,2di HOMO-LUMO gap of two-atomic dimer × ×

Properties of tetrahedra
dtet Bond length in tetrahedron ×
Ef,tet Energy of formation of tetrahedron ×
Eg,tet HOMO-LUMO gap of tetrahedron ×

and the qth root of the qth central moments,

F̃qsk =

[
1

m

∑
γ∈s

( fk(γ)− Fsk)
q

]1/q

(9)

where q ∈ N, q⩾ 2 defines the order of the moment. Equation (8) defines an average of higher powers of the
primary features. The central moments (equation (9)) carry information on the distribution of f k relative to
the mean. The case q= 2 can be understood as the standard deviation of f k, and q= 3 is related to its
skewness.

In many cases, materials’ properties depend on differences in atomic properties, both with respect to
geometry or composition. For instance, differences in atomic size can give rise to deviations from Vegard’s
law [35, 36]. We address this fact by augmenting the pool of candidate features with averages over nearest
neighbor differences of the atomic primary features:

∆Fsk ≡
1

m

∑
γ=⟨i,j⟩∈s

|fk(i)− fk( j)| . (10)
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Table 3. Feature-space sizes, NF , used for the comparison of LASSO and SISSO as well as the model selection strategies for learning the
lattice parameters (left columns) and the energy of mixing (right columns).

a Emix

Ti NF Ti NF

T1 5257 T1 8736
T r
2 239 797 T r

2 572 351
T2 13 820 653 T2 38 163 216

Likewise, we also generalize this average by qth raw (∆̄Fq
sk) and central (∆̃Fq

sk) moments as in equations (8)
and (9). Primary features, Fk, that are derived from building blocks consisting of single crystal sites (e.g.
fk = Z) will be independent to the atomic arrangement. On the contrary, if the averaging is carried out over
building blocks containing more atoms, there will be an impact of the local atomic environment. An example
of this are the tetrahedra, capturing the short-range order of five atomic sites (the center and the corners).
Thus, the bond length (feature fk = dtet in table 1) may have different values dependent on the configuration
of atoms in the tetrahedron.

To obtain the full feature space, we combine the primary features Fk by mathematical operations in
analogy to [8, 9]:

(a) first, the primary features Fk obtained from equations (7)–(10), with f k’s as listed in tables 1 and 2, are
added to the pool. These features are called tier 0, T0.

(b) Tier 1, T1, comprises the features obtained by the following procedure: first, the binary operations (·+ ·)
and | · − · | (here · represents a feature) are applied to all combinations of features Fk in T0, provided
they have the same physical dimension. Then, the resulting expressions are acted on by the unary
operators (·)n (n ∈ {±1/3,±1/2,±2,±3}), exp(·), 1/exp(·), log(·), and 1/ log(·). The power n= 1 is
not included since it leads to linear combinations already represented by two-dimensional descriptors.

(c) Furthermore, the previously generated features are combined by the product (· ∗ ·) operation, yielding
tier 2, T2. This can quickly lead to a combinatorial explosion of the number of features and thus become
computationally untractable. As a bypass, we also define a restricted subspace T r

2 formed by all the
products between one feature from T0 and one from T1. Note that all the features in T1 and T2 introduce
non-linearities in the feature space.

The final feature space is then obtained from the union of all considered tiers. The corresponding sizes
for the two learning tasks are displayed in table 3. We generally will use the symbols Ti as a shorthand
notation for feature spaces made up from tiers up to Ti.

5. Model selection strategies

Applying a model-selection method to the total available data set, guarantees optimal interpolation within
these data, it may, however, poorly perform with respect to predictions on new data. To evaluate the
predictive power of the model, typically, CV [37] is used, partitioning the data into training set and test set,
and building the model upon the training data only. Usually, this procedure is repeated several times on
different training and test sets until convergence is reached. CV can, however, not only be used for model
assessment but also formodel selection, i.e. to choose between several competing candidate models. In this
work, we devise strategies that transfer the concept of using CV to identifying descriptors as described in
section 2.

In the following, we describe three model selection strategies that we probe in this work. In the first one,
which corresponds to a typical usage of CV, termed Sall, some kind of learning method L is applied to all
data to determine an optimal modelD by minimizing a suitable cost function, here the root mean square
error (RMSE). In Sall, NCV-fold CV runs are performed in order to quantify the model’s performance.

Importantly, at each CV split i= 1-NCV, L has to be applied to the training set S(i)tr in exactly the same way as
before to the total data (i.e. with the same hyperparameters defining the subset size M̃, the descriptor
dimension Ω, etc). This procedure gives NCV modelsD(i) together with their individual training and test
errors, Errtr,i and Errte,i, respectively. The frequency of CV splits i in which the same model is found,
D(i) =D, serves to measure the stability ofD in [8, 9].

By contrast, our new strategies SCV
tr and SCV

te use the CV error, i.e. the average errors Errtr and Errte for
model selection. Both strategies consist of the same three steps, (1) a pre-selection of candidate models
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{D( j)}, through a CV procedure; (2) the calculation of the average training and test errors, Errtr and Errte,
for these candidates via a second CV procedure, and (3) the selection of the best candidate from the {D( j)}
based on the average errors. The difference between the strategies is that the final selection of the best
candidate model in step (3) is performed using average training errors in SCV

tr and average test errors in SCV
te .

Note that step (2) is carried out by a CV run where in each split individual training and test errors are
calculated for all candidates. In contrast to the CV procedure of step (1) or to the CV procedure in Sall, this
step does not include any model selection but solely fits the free parameters c (see equation (1)) for all
candidates to the training set of the corresponding split. This serves to generate unbiased values for Errtr and
Errte since, even if a model was selected in many CV-splits in step 1, it may still perform poorly for the splits
in which it was not selected.

Formally, step (3), yielding the candidate with the lowest average error, can be expressed as

argmin
D( j)

Errtr(D( j)) or argmin
D( j)

Errtest(D( j)) (11)

in SCV
tr and SCV

te , respectively.

6. Application to group-IV ternary alloys

In the following, we demonstrate and compare the approaches, introduced in sections 4 and 5, with the
example of ternary group-IV compounds in the zincblende structure as described in section 3. Since an
important aim is to keep the dimension Ω of the descriptors low, we investigate Ω= 1, . . . ,5. The number of
relevant features in LASSO+ ℓ0 and SISSO is set to M̃= 30 (see section 2.2). For this value, an exact solution
of the ℓ0 problem is still computationally feasible for Ω= 5. For SISSO, we use the selection operator SO(ℓ0),
i.e. the Ω-dimensional descriptor is obtained by explicitly solving the ℓ0-problem on the actual union of
subspaces. The latter is obtained by iterating SISSO five times, yielding in each iteration subspaces Si of
dimension 6, and then taking the union ∪5

i=1Si, of dimension M̃= 30. Unless indicated otherwise, we use the
RMSE as an error metric.

As explained in section 3, the target properties a and Emix are influenced by both the composition and the
actual atomic arrangements at fixed composition. In order to quantify how well the different models capture
them, the RMSE is employed. This measure, though, is not useful to assess a model’s ability to capture the
mere effect of atomic arrangements, as a model may capture them well but still poorly score on the RMSE. To
this end, we first calculate the mean absolute error (MAE) between the centered property (P−⟨P⟩) and the
centered prediction (P̂−⟨P̂⟩) at fixed composition, and then average this for all considered compositions:

MAEarr ≡ ⟨|(P−⟨P⟩)− (P̂−⟨P̂⟩)|⟩. (12)

Here, the overline indicates the average over all compositions (x, y), and ⟨·⟩ is the average over atomic
arrangements within composition (x, y). The subscript ‘arr’ stands for ‘arrangement’. This quantity is
invariant under the addition of a constant to the predictions, either concerning the whole data set or the data
with a certain composition.

All the numerical computations using LASSO+ ℓ0, SISSO, and the various feature selection strategies,
are performed with an in-house Python code.

6.1. Feature spaces
In this work, we generate three different feature spaces. The corresponding primary features are listed in
tables 1 and 2, respectively, for the two different learning tasks. They contain physical properties of single
atoms, molecular dimers, tetrahedral clusters, as well as elemental and binary solids. The radii rs, rp and rd
are defined as the maximum radial probability density for the s-, p- and d-orbitals of the isolated atoms,
respectively, taken from [9]. Dimer bond-lengths (d1di, d2di) and bulk lattice-constants (aes, abi) are obtained
by relaxation. The lattice constants of the elemental solids (aes) are computed in the diamond structure, those
of the binary materials (abi) in the zincblende structure. We also consider all tetrahedral clusters present in
the ternary materials. These are relaxed under the constraint of being fully symmetric, i.e. determined by the
distance dtet between the central atom and the corner atoms. Lattice constants, dimer bond lengths, and
tetrahedral bond lengths are scaled to radius equivalents (e.g. dimer lengths are divided by 2). This is done to
allow for a better interpretation of features that algebraically combine these properties. Also energies of
formation and Kohn–Sham band-gaps are included. For bulk materials, we consider the values at the
Γ-point, while for finite systems, the differences between the highest occupied and the lowest unoccupied
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Figure 3. Training errors (top left), hold-out errors (top right) and MAEarr (bottom) for predicting Emix when mathematical
operations of different complexity are employed. The superscript A indicates the exclusion of higher moments from T1. All
feature spaces are based on XE,2.

molecular orbitals (HOMO-LUMO gap). For the energies of formation, the ground-state energies of the
isolated atoms are used as a reference.

The feature spaces (Xa,i and XE,i, i= 1, . . . ,3) are constructed for the two learning tasks using the
primary features listed in tables 1 and 2, respectively. The first one, Xa/E,1, contains single-atom features only,
i.e. any average in equation (7) will be over atomic building blocks only (γ = i). Xa/E,2 additionally contains
pair features which are averaged over all γ = ⟨i, j⟩, and Xa/E,3 adds tetrahedral features.

6.2. Complexity of feature space
In the following analysis, we choose the model-selection strategy Sall in combination with LASSO+ ℓ0. We
verified that the use of SISSO leads to similar results.

6.2.1. Impact of mathematical operations
We start by studying how the mathematical operations used to construct the feature space impact the
performance of the resulting descriptors, in terms of the tiers Ti, i= 0,1,2 (section 4) as well as the specific
operations. Thereby, we restrict the analysis to the learning of Emix and note that the learning of the lattice
constant leads to very similar results.

Figure 3 shows the RMSE of the training and the hold-out set as well as the MAEarr on the training data
of the resulting descriptors for this learning task. We use feature spaces based on single-atom and pair
features (XE,2) on the three complexity levels T0, T1 and T r

2 [38]. Furthermore, to evaluate the effect of the
higher moments, we consider the feature space where the respective elements are eliminated from T1
(indicated by T A

1 ) As expected, an increase of complexity overall reduces the fitting error. The decrease of the
hold-out error indicates that the models do not suffer from overfitting. For T1 and T r

2 , the training error
converges to about∼30meV/atom. This means that optimalmodels are obtained for T1 at Ω= 5 and for T r

2

already at Ω= 3. For T0, a higher-dimensional descriptor could reach even lower training errors.
Arrangement effects are surprisingly well captured by medium complexity, i.e. tier T1. Notably, for the 2D
case, even T0 does best. However, the differences in MAEarr are generally rather small. Finally, the worse
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Figure 4. Training error as a function of feature complexity, measured by Nop +Nfk , for different tiers.

Table 4. 1D and 2D descriptors resulting from feature spaces with complexity T0, T1, and T r
2 together with the number of operations,

Nop, and the number of basic features, Nfk , considered in the descriptors.

Ti 1D Nop Nfk

T0 Ẽ2g,es 1 1

T1 (Ẽ2g,es + Ẽ2g,1di)
3 4 2

T r
2 (Ē2f,1di) ·

√∣∣̄r2s − d̄22di
∣∣ 6 3

Ti 2D Nop Nfk

T0 d̃22di Eg,bi 2 2

T1 (Ẽ2g,es + Ẽ2g,2di)
3 exp(∆Eg,es +∆Eg,1di) 9 3

T r
2 d̃22di ·

(
∆̄E2g,at + Ē2g,bi

)2
Em,es · 3

√
|rs − d2di| 11 5

performance of T A
1 as compared to T1, indicates that the higher moments accounting for non-linearities turn

out to be an essential ingredient in feature construction.
From the previous analysis, it becomes apparent that, rather independently of the tier used (or the feature

space, see below), the increase in descriptor complexity improves the fit. To quantify this qualitative
observation, we define a practical measure for the complexity as the sum of two terms, namely, the total
number of operations in a descriptor, Nop, and the number of primary features, Nfk . While the former
captures the algebraic complexity, the latter accounts for the amount of physical information in the
descriptor. In figure 4, the training errors are plotted versus this complexity measure. Interestingly, the curves
of the three tiers approximately follow a common line. This uncovers a general dependency of the fitting
error on the total complexity where the different tiers cover different regions of complexity.

Table 4 summarizes the 1D and 2D descriptors found for the tiers T0, T1, and T r
2 , along with the

complexity measures for each of them.

6.2.2. Influence of primary features
We now study how the adoption of different feature spaces influences the obtained descriptors. To better
emphasize the mere effect of the feature space on the results, we limit this analysis to the low-complexity tier
T A
1 defined in the previous section. The left panels of figure 5 show the RMSE and the MAEarr for the

training data versus descriptor dimension Ω for predicting lattice constants for the three feature spaces
Xa,1−3. The dotted and dashed horizontal lines indicate the errors of Vegard’s law and the averaged binary
lattice constant (equation (7)), respectively. Depending on the composition only, the former is totally blind
to effects of atomic arrangement. The latter captures them to some extent, thus exhibiting a somewhat
smaller error. For all three feature spaces, the increase in dimension Ω, naturally, lowers the training error,
which is most distinctive for Xa,1. Except for the 1D descriptor of Xa,1 (D1D = 1/ 3

√
rp), all models outperform
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Figure 5. Average training errors of different feature spaces X for learning the lattice constant (left) and the energy of mixing
(right). The top panels show the RMSE versus descriptor dimensionΩ, the bottom panels the MAEarr. Black dotted lines: error of
interpolation between pristine materials (Vegard’s law), black dashed lines: error of interpolation between binary materials.

Vegard’s law as well as the simple averaging procedure. Including pair quantities in the feature spaces,
reduces the RMSE drastically. Adding also the tetrahedral features, by contrast, has a negligible effect on the
training error, though the descriptors emerging from Xa,3 are not identical to those from Xa,2 but contain
also the tetrahedral feature dtet .

The MAEarr, in the lower panel, also shows an overall decrease with higher Ω, but exhibits a shallow
minimum at Ω= 3 for Xa,2 and Xa,3. Even descriptors from the pure atomic feature space (Xa,1) can
outperform Vegard’s law. This is the case for Ω⩾ 3 where the descriptors include nearest-neighbor
differences in the fashion of equation (10). The best result is achieved by combined atomic and pair features
(Xa,2) for all descriptor dimensions considered. Surprisingly, Xa,3, though doing well in the training error, is
performing worse in the MAEarr. This is presumably due to the rigidity of the tetrahedra, departing
considerably from the actual physical situation in the solid. To sum up, optimal feature spaces for predicting
lattice constants of the considered data, should be based on a combination of atomic and pair features, and
the tetrahedra-based features can be discarded here safely.

The right part of figure 5 shows RMSE and MAEarr for learning Emix. As expected, also in this case the
fitting error decreases with increasing Ω for all XE,i. Also expected, the 1D and 2D descriptors based on XE,1

exhibit a larger RMSE than the ones from XE,2 and XE,3, while considering more complex descriptors
(Ω⩾ 3) does not improve the RMSE anymore,i.e. all three features spaces have similar error. Adding
tetrahedral features, overall slightly increases the RMSE as compared to XE,2, except for Ω= 1 where XE,2 and
XE,3 give the same descriptor. One would expect that offering more features cannot increase the error, and
just the solution from the smaller feature space would be found. While this is true for solving the ℓ0 problem
in an exact manner, for the approximation by LASSO+ ℓ0 this does not need to be the case [39].

Finally, we have a look at the related MAEarr (lower panel). In short, also for the energy of mixing,
next-neighbor differences play an important role, where descriptors from XE,2 generally perform best. Like
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Figure 6. Training (left), test (middle), and hold-out (right) errors vs descriptor dimensionΩ for the different model selection
strategies for predicting the lattice constant a. The top (bottom) plots refer to feature space complexity T1 (T r

2 ). The left and
middle plots stem from errors from 50 L(10%)OCV runs with fixed descriptor components. In the box plots, filled circles
indicate the average errors, the borders of the boxes mark the 25th and the 75th percentile, and the middle line indicates the
median. Whiskers mark the region between the 1st and the 99th percentile, and crosses indicate the minimum and the maximum
of the distribution. The results for Vegard’s law are independent of the dimension and all have a RMSE of about 0.07 Å.

for the RMSE, addition of tetrahedral features never leads to an improvement, most likely because the local
environment in the real data often differs markedly from the regular tetrahedral shape. In contrast, the most
basic atomic features are performing quite well.

6.3. Model selection strategies
Now we apply the different model selection strategies described in section 5, to the prediction of lattice
constants, employing LASSO+ ℓ0 and the feature spaces T1 and T r

2 . The results depicted in figure 6,
comprise the distribution of training (left), test (middle) and hold-out errors (right). The error distributions
for training and test data result from 50 CV runs where the descriptors obtained by the three strategies were
kept fixed.

For all three strategies, the training errors do not show significant spread. S tr
CV exhibits slightly smaller

values compared to the other two. For T r
2 , S test

CV is very similar as well, for T1 and some descriptor dimensions
Ω it is markedly worse, however. The test errors have a narrow distribution at smaller matrix size (T1, top
panel) and a wide distribution at larger matrix size (T r

2 , bottom panel). This is to be expected for increasing
model complexity [37]. S test

CV here performs better or similar to the other strategies, as expected, though no
large difference between the strategies is apparent. Generally, S tr

CV yields the smallest hold-out errors and S test
CV

tends to yield the largest. The results for learning Emix exhibit the analogous trends.

6.4. LASSO versus SISSO
As described in section 2.2, SISSO has been proven to overcome the issue of strongly correlated features in
LASSO+ ℓ0 [11], besides being able to deal with much larger feature matrices D. Hence, it is interesting to
compare these two feature selection methods for identifying optimal descriptors. To do so, we first compare
the pre-selected subspaces and then the resulting 5D descriptors, applying the strategy Sall. As a measure of
(linear) correlations between features, we use

∣∣ρi,j∣∣, the absolute value of the Pearson correlation coefficient.
The symmetric matrix

∣∣ρi,j∣∣ is visualized in figure 7 in terms of a correlogram. Here, pairwise correlations of
the pre-selected subspaces are shown for predicting the lattice constant, with LASSO in the lower-left triangle
and SISSO in the upper-right one. (Note that the subset obtained with SISSO (LASSO) contains 29 (30)
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Figure 7. Left: correlogram of the preselected subsets for learning lattice parameters with feature space complexity T r
2 obtained

from LASSO (lower triangle) and SISSO (upper triangle). The color code indicates the absolute Pearson correlation between 0
(red) and 1 (yellow). Right: absolute Pearson correlation averaged over pre-selected subsets versus feature space complexity for
predicting a (left) and Emix (right). The triangles indicate the cases analyzed in the left panel.

Table 5. Components of the 5D descriptors for predicting a with feature space complexity T r
2 , obtained by applying an exhaustive ℓ0

search on the subsets from LASSO or SISSO, respectively. The components are sorted by their absolute Pearson correlation with a in
decreasing order.

Component 1 2 3 4 5

LASSO
ā2bi√
d1di

ā2bi
aes

3

√∣∣̄r2p − d̄22di
∣∣ d̄32di · 3

√∣∣∣̃r2d − d̃32di

∣∣∣ d̃32di
3
√

r̃2s+r̃3s

SISSO
ā2bi√
r̄2p+ā2bi

Z̃3

r̄2p+r̄3p
r̄2d ·

√
ã3bi ã2bi · (d̃21di − ã3bi)

3 P̃3

r̃2s+r̃3d

features. Such a difference may occur when certain features are repeatedly selected to different subsets in
SISSO.) The feature space complexity here is T r

2 . It is a challenging case for LASSO where indeed many highly
correlated candidate features dominate its subspace. By contrast, most of the features selected by SISSO are
less correlated (predominance of the red color). The small yellow triangles inside the upper-right triangle
correspond to the bunch-like subspaces which, by construction of SISSO, contain highly correlated features.

In the right panel of the figure, the mean absolute correlations
∣∣ρi,j∣∣ are compared for feature spaces of

different complexity, for both predicting a and Emix. Clearly, in all cases the overall correlation is significantly
higher for subsets obtained with LASSO compared to SISSO. Moreover, at increasing matrix size, it increases
for LASSO and decreases for SISSO. For the more difficult learning task of predicting Emix, the overall
correlation is lower compared to the simpler task of learning a when using LASSO, while for SISSO it is the
opposite. As a general—and expected—conclusion, SISSO selects subsets with less redundancy, in particular
for large and highly correlated feature spaces. This is a prerequisite for the following ℓ0 step to select
low-correlated descriptors.

For learning the lattice parameter at complexity level T r
2 , table 5 lists the components of the 5D

descriptors obtained when applying the ℓ0 step to either the LASSO or the SISSO subspace. Figure 8 shows
their correlations in the upper left panel. Since the preselected subspace offers only four low correlated pairs
(see lower triangle in the left panel of figure 7), all possible 5D descriptors from the LASSO subspace
inevitably contain at least one highly correlated feature pair. In fact, components 1 and 2 are particularly
highly correlated (|ρ1,2|= 0.999) and also appear to have a similar algebraic form (see table 5). Also the
correlations between components 1 and 3 as well as 2 and 3 are very high (|ρ1,3|= 0.935 and |ρ2,3|= 0.929,
respectively), however, they seem to carry different information. This can be seen in the bottom panel of the
figure where the correlations are displayed for the training data and the hold-out set, exhibiting a larger
spread (see middle panel). The right panel shows the correlations between components 1 and 4
(|ρ2,3|= 0.816). By contrast to the LASSO descriptor, the 5D descriptor from SISSO does not contain highly
correlated components.

The upper right panel of the figure compares the mean correlation of the 5D descriptors, obtained by the

two methods. For LASSO, increasing feature-space complexity rises
∣∣ρi,j∣∣ in case of Emix and slightly drops in
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Figure 8. Comparison of 5D descriptors obtained by LASSO and SISSO. Top left: correlogram of their components for learning a
with feature-space complexity T r

2 (lower triangle: LASSO+ ℓ0, upper triangle: SISSO+ ℓ0). Top right: average Pearson
correlation versus feature-space complexity for predicting a and Emix. The triangles indicate the cases analyzed in the left panel.
Bottom: correlations between different components of the solution obtained by LASSO+ ℓ0 on T r

2 for predicting a. These pairs
give examples of high, medium, and low correlation.

case of a. For SISSO, we observe a decrease in both cases, and the values are always lower than the LASSO
counterparts.

It is also interesting to compare the predictive power of the descriptors obtained from LASSO and SISSO.
This is shown in figure 9, displaying the fitting and hold-out errors for the two learning tasks. Thereby,
feature spaces with complexity T1 and T r

2 are considered. While the fitting errors do not differ much between
LASSO and SISSO for both learning tasks, the hold-out errors for learning the lattice parameter (left panel)
indicate that for larger Ω, the SISSO descriptors may be overfitted. Additionally, results for T2 are shown
obtained from SISSO only (LASSO being limited due to its high demands in terms of memory). This further
reduces the fitting errors but enhances overfitting for Ω⩾ 3. In contrast, for learning Emix, there is no
evidence of overfitting, even for Ω= 5. Also in this case, the higher complexity of feature space (T2) reduces
the fitting error without leading to overfitting.

Overall, in the studied cases, the descriptors from LASSO and SISSO are very similar with respect to
predictive power. As expected, descriptors from SISSO benefit from less redundant components and can
handle big feature matrices.

6.5. Optimal descriptors
There is always some degree of arbitrariness as there are plenty of ways to construct candidate features. This
also holds for model parameters like the descriptor dimension Ω. One would, for example, select a small
value of Ω if simplicity is the main goal, at the expense of accuracy. Moreover, when feature complexity
increases, the selection methods yield more and more competing models of virtually the same predictive
power—which itself can be defined in different ways. Thus, in table 6, we present some exemplary
descriptors for both a and Emix, based on the previous analyses. For a, we have selected the 3D descriptor on
the very simple complexity level T0 and the 2D descriptor on the rather complex T2; for Emix, the 4D
descriptor on T0 and the 2D descriptor on T2. All of these were identified by SISSO using the strategy Sall.
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Figure 9. Fitting and hold-out errors of descriptors up toΩ= 5 from LASSO (L) and SISSO (S) for various levels of feature-space
complexity for predicting a (upper panels) and Emix (lower panels).

Table 6. Components of the descriptors for predicting a and Emix on complexity levels T0 and T2. The parenthesis indicate components
that, when exchanged by each other, are virtually indistinguishable in performance.

Target Complexity Descriptor components

a T0 abi ã2bi(d̃
2
2di) ã3bi

T2
√

ā2es+ā2bi
3
√

r̄2p+d̄21di

3
√
|̃r2d−d̃32di|
(rd+r̃3d)

3

Emix T0 Z̄3 P̃2 Ẽ2g,bi ã3bi (d̃
3
2di)

T2 1
Ef,1di+Ẽ2g,at

· 1√
Ef,1di+Eg,at

(Eg,1di + Eg,bi)
2 ·

√∣∣̄r3s − d̄32di
∣∣

Table 7. Performance of the optimal descriptors for predicting a and Emix. RMSE and MAE averaged over training and test sets of CV;
MAE and maximum absolute error (maxAE) on the hold-out set; and MAEarr. The mean absolute percentage error (MAPE) is shown in
training and hold-out sets for learning a. Lenghts are in units of mÅ and energies in meV/atom.

Target Complexity Ω Nfk Nop

Training Test Hold-out

RMSE MAE MAPE RMSE MAE MAE MAPE maxAE MAEarr

a T0 3 1 4 38 26 0.26 41 28 29 0.28 93 9
T2 2 6 18 29 19 0.19 30 20 21 0.21 133 9

Emix T0 4 4 7 64 51 — 64 51 46 — 130 11
T2 2 6 15 40 30 — 40 31 35 — 99 10

The corresponding error analysis is presented in table 7. Figure 10 visualizes the performance of the obtained
models, and figure 11 shows in more detail the performance of the 2D descriptor on T2 for Emix.

We start with the 3D descriptor for a on complexity level T0. It is favorable because it only contains the
binary bulk lattice constant abi and takes a simple form in the style of a polynomial expansion and thus
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Figure 10. Predictions by the optimal descriptors versus calculated values. Results for learning of a are shown on the left, for Emix

on the right. In the two left plots, feature space complexity T0 was used, in the two right ones complexity T2.

Figure 11. Top: target properties, Emix, and predictions by the optimal 2D descriptor on complexity T2 for all structures. Samples
within a composition are connected by grey lines. Bottom: same as top panel, but in a narrow range of 30 structures. Here, the
capturing of arrangement effects by the model can be seen more clearly.
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effectively augments a pure interpolation between the binary materials. We note that the three components
are not redundant as they do not exhibit a high pairwise correlation (maximum

∣∣ρi,j∣∣= 0.49).
The alternative descriptor presented for this task, the 2D descriptor on T2, has much higher

informational (NF = 6) and algebraic (Nop = 18) complexity as the former (NF = 1 and Nop = 4). It uses all
basic properties of length dimension from our pool of basic properties {fk}, except rs. The increased
complexity results in an improved predictive performance on the expense of a simple, intuitive
interpretation. Note also here that the two components are hardly correlated (|ρ1,2|= 0.14). As can be seen
from figure 10, both presented descriptors for a have good predictive power without any outliers. So, apart
from the fact that the descriptor obtained from complexity T2 exhibits slightly smaller errors, it appears
sufficient to stay with that from T0.

Ẽ2g,bi and ã3bi appear as the third and fourth component for learning Emix. As the lattice constant and the
band gap of the binary materials are sensitive to the local atomic environments, the descriptor can, up to
some extent, capture the effects of atomic arrangements. It additionally includes the very simple features Z
and P. Also in this case, the components are not highly correlated (maximum

∣∣ρi,j∣∣= 0.38).
Also like above, the higher algebraic and informational complexity of T2 improves the predictive

performance. The descriptor depends on band-gap and formation energies, the atomic radius rs, and the
dimer distance d2di, and these components are almost uncorrelated (|ρ1,2|= 0.13). The larger dispersion in
the right panels of figure 10 demonstrates that the learning of Emix is more difficult than that of a, requiring
higher descriptor complexity.

7. Conclusions

We have advanced and applied methods based on compressed sensing that allow one to identify
low-dimensional models for predicting materials properties from a potentially huge pool of candidate
features. The feature spaces were constructed to contain averages over building blocks of the supercell for
being applicable to disordered materials. Moreover, we have derived model selection strategies based on CV
to improve the generalizability of the models as compared to approaches that solely use training errors for
model selection.

We have evaluated this methodology for predicting the ab initio lattice constants and energies of mixing
of a dataset of group-IV ternary zincblende compounds. For extracting a low-dimensional subset of the most
relevant features, we have applied LASSO+ ℓ0 [8, 9] and SISSO [11]. Our analysis yields that atomic, bulk,
and dimer properties are essential features for this dataset while tetrahedral properties can be discarded. We
further found that next-neighbor differences of atomic features and, alternatively, pair features are able to
capture arrangement-specific effects of the materials. We have also found a trade-off between larger
descriptor dimension and the complexity of the considered features with respect to the algebraic operations.
Comparing the feature-selection methods, we confirmed that SISSO reduces correlations between the
descriptor components and allows for going beyond the limitations on feature-space size that LASSO+ ℓ0
suffers from. Although the differences to a simple one-shot strategy [8] are small for the dataset under
consideration, our strategy that minimizes the average training error on CV (strategy S tr

CV) was able to
improve descriptor generalizability in terms of hold-out error. We emphasize that the differences between the
strategies are small here presumably due to the homogeneity of the dataset. It would thus be desirable to test
them in future research on more diverse datasets, for example comprising materials differing in space group
or with a larger variety of elements.
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