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Abstract 

The hippocampal-entorhinal region supports memory for episodic details, such as temporal relations 

of sequential events, and mnemonic constructions combining experiences for inferential reasoning. 

However, it is unclear whether hippocampal event memories reflect temporal relations derived from 

mnemonic constructions, event order, or elapsing time, and whether these sequence representations 

generalize temporal relations across similar sequences. Here, participants mnemonically constructed 

times of events from multiple sequences using infrequent cues and their experience of passing time. 

After learning, event representations in the anterior hippocampus reflected temporal relations based 

on constructed times. Temporal relations were generalized across sequences, revealing distinct 

representational formats for events from the same or different sequences. Structural knowledge about 

time patterns, abstracted from different sequences, biased the construction of specific event times. 

These findings demonstrate that mnemonic construction and the generalization of relational 

knowledge combine in the hippocampus, consistent with the simulation of scenarios from episodic 

details and structural knowledge.

Introduction 

Our memories are not veridical records, but 

constructions of our past1. When constructing 

scenarios of the past or future, we often combine 

specific episodic details with general, semantic 

knowledge2–7. For example, we can infer the time 

when an event took place not only from episodic 

details but also from associative or contextual 

information and general knowledge8,9. To answer 

the question when you left for work yesterday, you 

may combine knowledge about usually departing 

from home around 8:30 a.m. with the specific 

sequence of events that unfolded – eating 

breakfast while listening to the 8 a.m. news and 

arriving at work a few minutes late for the 9 a.m. 

meeting despite good traffic conditions on your 

commute. You infer that you left later than usual, 

at around 8:40 a.m. Thus, constructive mnemonic 

processes allow you to estimate when this event 

occurred, even if a specific event time is not part 

of the original memory8,9. Event representations in 

the hippocampal-entorhinal region carry 

information about sequence relationships10,11, but 

whether this goes back to mnemonic construction 

is unclear. Next to its role in memory for specific 

sequences, the hippocampal-entorhinal region 

also generalizes across experiences via the 

abstraction of structural regularities and the 

recombination of information across 

episodes12,13, suggesting you may use knowledge 

about comparable mornings to recall your 

departure time. Here, we ask whether temporal 

event relations are generalized across sequences 
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that share a similar structure and address the 

question how mnemonic construction and 

generalization combine in the hippocampus and 

in participants’ memory for event times. 

In line with its well-established role in episodic 

memory, the hippocampal-entorhinal region is 

centrally involved in processing and remembering 

specific event sequences10. For instance, learning 

sequences recruits the hippocampus and 

entorhinal cortex14,15, and hippocampal activity 

increases at event boundaries delineating 

sequences16,17. Hippocampal multi-voxel patterns 

are sensitive to objects shown at learned 

sequence positions18, and recent work suggests 

that the hippocampus incorporates the duration 

of intervals between elements in sequence 

representations19,20. Further, pattern correlations 

in the hippocampus and entorhinal cortex relate to 

memory for temporal relations21–26. 

Hippocampal and entorhinal representations of 

events occurring in sequence reflect the temporal 

relations of these events. In one experiment, 

participants learned the spatial and temporal 

relationships of events encountered in sequence 

along a route through a virtual city21,27. After 

relative to before learning, pattern similarity in the 

anterior hippocampus and the anterior-lateral 

entorhinal cortex elicited by event images 

reflected the sequence relationships between 

pairs of events. Events closer in time elicited more 

similar activity patterns relative to events 

separated by longer intervals, resulting in negative 

correlations between pattern similarity and 

temporal distances21,27. Within the entorhinal 

cortex, this effect was specific to the anterior-

lateral subregion27, consistent with the 

involvement of this area in precise temporal 

memory recall28,29. Negative correlations between 

pattern similarity and distances are in line with 

sequence representations akin to cognitive maps 

of space – positions separated by low distances 

share similar representations, whereas positions 

with high distances between them are 

represented less similarly, i.e. pattern similarity 

scales with distance.  

However, whether event representations in the 

anterior hippocampus and anterior-lateral 

entorhinal cortex reflect temporal distances 

based on constructed event times is unclear. 

Alternatively, these representations of temporal 

structure could go back to the order of events. For 

example, successive events could be linked 

together, resulting in representations of sequence 

order, where temporal distances are defined 

based on the number of associative links between 

events30–32. Another possibility is that temporal 

structure representations arise through elapsing 

time more passively. For example, the firing of 

individual entorhinal neurons changes with 

varying time constants in rodents and non-human 

primates, allowing time to be decoded from 

population activity33,34. Slowly drifting activity 

patterns could be incorporated into event 

memories as temporal tags, providing a potential 

mechanism for temporal memory35. Here, we 

tested whether event representations reflect 

temporal relations based on mnemonically 

constructed event times, even when accounting 

for event order and objectively elapsing time. 

Mnemonic construction enables prospective 

cognition2,5,36. The hippocampal-entorhinal region 

integrates and recombines episodic details 

across experiences for future simulation, 

inferential reasoning and generalization5,12,13,37–40. 

Work in rodents and humans demonstrates that 

the hippocampus supports transitive inference, 

which requires inferring novel relations between 

stimulus pairs from knowledge about previously 

learned premise pairs41–43. Further, it combines 

separately learned associations, enabling 

inferences about shared associations44–50. Recent 

work suggests a central role for the entorhinal 

cortex in the abstraction of structural knowledge 

that is linked to sensory experience in the 

hippocampus12,51. Indeed, entorhinal activity 

patterns reflected structural similarities between 

choice options in a reinforcement learning task52. 

Furthermore, in an associative inference task, 

hippocampal activity patterns carried information 

about the shared internal structure of image triads 

such that the hippocampal representational 

geometry was generalized across triads53. Work in 

rodents suggests that hippocampal 

representations of events in a sequence 

generalize across comparable experiences in a 

different environment54. Applying abstract 

structural knowledge enables adaptive behavior 

through the generalization of relations to novel 

situations12,51. Whether representations of 

temporal relations of events in a sequence are 
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constructed such that they generalize across 

sequences with a similar structure is unclear. 

Knowledge about structural regularities and 

semantic associations closely interacts with 

episodic construction4,7,38. When estimating the 

size of studied images, participants’ 

reconstructions were systematically distorted 

towards category averages55,56. For relatively 

small fruits like strawberries, participants tended 

Figure 1. Experimental Design. A. Overview of the experiment. B. In the picture viewing tasks before and after 
learning, participants saw event images presented in the same random order and using identical stimulus 
timings. C. The day learning task took place in between the picture viewing tasks. Participants learned four 
sequences (virtual days) of five events each (Supplemental Figure 1) and inferred when events took place relative 
to a virtual clock. Left: The virtual clock ran hidden in the background for each sequence and was revealed only 
once in between successive events. These time cues varied across repetitions of a sequence, but events 
occurred at consistent points in virtual time. The duration of blank screen periods varied according to the interval 
between the indicated time and the event time. Thus, participants had to mentally construct event times by 
combining their experience of elapsing real time with the time cues. Top right: The hidden clock ran at a fixed 
speed relative to real time for a given sequence, but its speed varied between sequences (Supplemental Figure 
2). Bottom right: Different time metrics capture the temporal structure of the event sequences. Event relations 
can be quantified using temporal distances relative to the hidden clock (virtual time), sequence positions (order), 
and elapsed time in seconds (real time). While these metrics inevitably covary, they are partially dissociated by 
the clock speed manipulation. Virtual temporal distances can be quantified both within (solid lines) and across 
sequences (dotted lines). D, E. Participants' memory of the sequences was tested in two tasks. In the sorting 
task (D), participants sorted the scenes according to the four different sequences. In the timeline task (E), 
participants positioned the five event images of a given sequence next to a timeline to indicate constructed event 
times. B-E.The Sims 3 and screenshots of it are licensed property of Electronic Arts, Inc. 
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to overestimate the studied size, whereas they 

consistently underestimated sizes of large fruits 

like pineapples. This resulted in an overall bias 

towards the category mean of all fruits55. 

Consistent with the notion that learned event 

structures contribute to event cognition57–59, 

external and semantic details are used to furnish 

past and future scenarios when few episodic 

details are generated60,61. When estimating the 

times of events from a movie, which was 

terminated prematurely, participants 

underestimated when events took place for 

events close to the end of the presented section, 

possibly due to prior knowledge about the typical 

structure of movie plots62. These findings suggest 

that abstract knowledge about general patterns 

could systematically distort constructions of 

specific event times. If, as in the introductory 

example, you usually leave for work at 8:30 a.m., 

this may bias the estimate of your departure time 

on the day you arrived late towards this time. 

Here, we combine functional magnetic resonance 

imaging (fMRI) with a sequence learning task 

requiring the memory-based construction of the 

times of events forming different sequences. We 

show that event representations in the anterior 

hippocampus change through learning to reflect 

constructed event times rather than sequence 

order or passively elapsing time. Furthermore, the 

anterior hippocampus generalizes temporal 

relations across sequences, and structural 

knowledge about other sequences systematically 

biases the construction of specific event times. 

While within- and across-sequence relations are 

detected in anatomically overlapping regions of 

the hippocampus, the mode of representation 

differs depending on whether events belong to the 

same sequence or not. In contrast, the anterior-

lateral entorhinal cortex uses one shared 

representational format to map relationships of 

events from the same and from different 

sequences. 

Results 

We asked participants to learn four sequences 

that consisted of five unique event images each 

(Figure 1). Participants were instructed that each 

sequence depicted events taking place on a 

specific day in the life of a family. Their task was 

to infer the time of each event relative to the 

temporal reference frame of a virtual clock (Figure 

1C). Event images with minimal or no indication of 

time of day (Supplemental Figure 1) were 

randomly assigned to sequences and sequence 

positions for each participant. Thus it was 

impossible to infer specific event times or 

sequence memberships from the stimuli. The true 

virtual times of events were never revealed. 

Rather, the clock was running hidden from 

participants. It was uncovered only infrequently 

between event presentations to briefly show the 

current virtual time (Supplemental Figure 2, see 

Methods). Participants had to combine their 

experience of objectively elapsing time (real time) 

with the virtual time cues to construct event times. 

Importantly, we manipulated the speed of the 

hidden clock between sequences so that different 

amounts of virtual time passed in the same real 

time intervals. With this paradigm, we partially  

dissociated the virtual time of events from the 

event order and real time to test whether 

mnemonically constructed event times underlie 

participants’ memory for the temporal structure of 

the sequences. 

Successful construction of event times 

We assessed memory for the sequences using 

two behavioral tests administered at the end of 

the experimental session. First, participants 

sorted all event images according to sequence 

membership (Figure 1D). The high performance in 

this task (Figure 2A; 86.43%±16.82% 

mean±standard deviation of correct sorts) 

demonstrates accurate memory for which events 

belonged to the same sequence. The distribution 

of sorting errors did not differ from uniformity 

across sequence positions (χ2=2.55, p=0.635). 

Second, to probe constructed event times, we 

asked participants to position the events of a 

sequence on a timeline (Figure 1E). Remembered 

times were highly accurate (Figure 2B-D; 

0.91±0.47 mean±standard deviation of average 

absolute errors in virtual hours). The accuracy of 

constructed virtual times differed between 

sequences (F3,81=5.86, p<0.001), but not as a 

function of virtual clock speed (t27=-0.82, p=0.423, 

Supplemental Figure 3AB). We did not observe an 

across-subject relationship between the number 

of sorting errors and mean absolute errors in the 

timeline task (Supplemental Figure 3CD). To test 
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whether the constructed event times were driven 

by the virtual time of events, we regressed 

remembered times on virtual times with event 

order and real time as control predictors of no 

interest. We did so in a summary statistics 

approach based on multiple regression for each 

participant, combined with permutation tests, and 

using a linear mixed effects model (see Methods). 

The effect of virtual time on constructed event 

times was significant when controlling for 

variance accounted for by event order and real 

time  (Figure 2E; summary statistics: t27=10.62, 

p<0.001, d=1.95, 95% CI [1.38, 2.70]; mixed model: 

χ2(1)=115.95, p<0.001, Supplemental Figure 4AB, 

Supplemental Table 1). Together, these findings 

demonstrate that participants formed precise 

memories of the different sequences and 

accurately constructed event times. 

Figure 2. Participants learn the temporal structure of the sequences relative to the virtual clock. A. Plot shows 
the percentage of correctly sorted event images in the sorting task. B. Constructed event times were assessed 
in the timeline task. Responses are shown separately for the five events (color coded according to true virtual 
time) of each sequence (rows). Colored circles with gray outline show true event times. C, D. Mean absolute 
errors in constructed times (in virtual hours) are shown (C) averaged across events and sequences and (D) 
averaged separately for the five event positions. E. Z-values for the effects of different time metrics from 
participant-specific multiple regression analyses and permutation tests show that virtual time explained 
constructed event times with event order and real time in the model as control predictors. A-E. Circles are 
individual participant data; boxplots show median and upper/lower quartile along with whiskers extending to 
most extreme data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with 
error bars corresponds to mean±S.E.M.; distributions show probability density function of data points. *** 
p<0.001 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2021.04.23.440002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.440002
http://creativecommons.org/licenses/by-nc/4.0/


6 

Hippocampal representations of within-
sequence relations reflect constructed event 
times 

Before and after learning the event sequences, 

participants viewed the event images in random 

order while undergoing fMRI (Figure 1AB). We 

quantified changes in the similarity of multi-voxel 

patterns between pairs of events from before to 

after learning (Figure 3, see Methods). Using two 

approaches to model-based representational 

similarity analysis, we tested whether changes in 

pattern similarity could be explained by the 

temporal relationships between pairs of events. 

Temporal distances between events were 

measured in virtual time, real elapsing time in 

seconds and as differences in sequence order 

position (Figure 1C). In the summary statistics 

approach, we compared the fit of linear models 

predicting pattern similarity changes from 

temporal distances to shuffle distributions for 

each participant and assessed the resulting Z-

values on the group level using permutation-

based tests. Second, we fit linear mixed effects 

models to quantify whether sequence 

relationships explained pattern similarity 

changes. Rather than performing inferential 

statistics on one summary statistic per 

participant, mixed models estimate fixed effects 

and their interactions using all data points. We 

used temporal distance measures as fixed effects 

while capturing within-participant dependencies 

with random intercepts and random slopes (see 

Methods). The converging results of these 

analyses demonstrate that our findings do not 

depend on the specific statistical methods 

employed. We centered our analyses on the 

anterior hippocampus and the anterior-lateral 

entorhinal cortex (see Methods) based on our 

previous work implicating these regions in 

representing sequence relations21,27. 

We first tested whether pattern similarity changes 

in the anterior hippocampus (Figure 4A) could be 

explained by the virtual temporal distances 

between event pairs from the same sequence. 

Surprisingly, we observed a positive relationship 

between similarity changes and temporal 

distances in both the summary statistics (Figure 

4B; t27=3.07, p=0.006, d=0.56, 95% CI [0.18, 1.00]; 

α=0.025, corrected for separate tests of events of 

the same and different sequences) and the mixed 

model approach (Figure 4CD; χ2(1)=9.87, p=0.002, 

Supplemental Figure 4CD, Supplemental Table 2). 

This  effect was further characterized by higher 

pattern similarity for event pairs separated by 

longer temporal distances than for pairs 

separated by shorter intervals (Figure 4C, t27=2.48, 

p=0.020, d=0.64, 95% CI [0.08, 0.87]). In contrast 

to our previous work21, where we observed 

negative correlations of pattern similarity and 

temporal distances, participants learned multiple 

Figure 3. Representational Similarity Analysis Logic. 
We quantified the representational similarity of all 
event pairs before and after learning. Representational 
change was defined by subtracting pre-learning from 
post-learning pattern similarity (top row). Using two 
approaches to model-based representational 
similarity analysis (RSA, see Methods), we analyzed 
whether pattern similarity changes reflected the 
temporal structure of the sequences (bottom left). In 
the summary statistics approach (middle right), we 
regressed pattern similarity change on temporal 
distances between events using participant-specific 
linear models that were compared to null distributions 
obtained from shuffling similarity change against 
temporal distances. The resulting Z-values were used 
for permutation-based group-level statistics. In the 
mixed model approach (bottom right), we estimated 
the influence of temporal distances on pattern 
similarity change using fixed effects, with random 
effects accounting for within-subject dependencies. 
The statistical significance of fixed effects was 
assessed using likelihood ratio tests against reduced 
models excluding the fixed effect of interest. 
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sequences in this study. They might have formed 

strong associations of same-sequence events on 

top of inferring each event’s virtual time, 

potentially altering how temporal distances 

affected hippocampal pattern similarity (see 

Discussion). The effect of virtual temporal 

distances on pattern similarity changes remained 

significant when competing for variance with a 

control predictor accounting for comparisons of 

the first and last event of each sequence 

(Supplemental Figure 5A-C; summary statistics: 

t27=2.25, p=0.034, d=0.41, 95% CI [0.04, 0.82]; 

mixed model: χ2(1)=5.36, p=0.021, Supplemental 

Table 3). Thus, the relationship of hippocampal 

event representations and temporal distances is 

not exclusively driven by associations of the 

events marking the transitions between 

sequences.  

Having established that hippocampal pattern 

similarity changes relate to temporal distances, 

we next assessed whether this effect was driven 

by virtual event times beyond sequence order and 

real time. We thus included the two additional 

time metrics as control predictors in the model. 

Virtual temporal distances significantly predicted 

pattern similarity changes even when controlling 

for the effects of event order and real time in 

seconds (Figure 4D; summary statistics: t27=2.18, 

p=0.040, d=0.40, 95% CI [0.02, 0.81]; mixed model: 

χ2(1)=5.92, p=0.015, Supplemental Figure 4EF, 

Supplemental Table 4). Further, the residuals of 

linear models, in which hippocampal 

representational change was predicted from order 

and real time, were related to virtual temporal 

distances (Supplemental Figure 5D; t27=2.23, 

p=0.034, d=0.41, 95% CI [0.03, 0.82]), 

Figure 4. Sequence representations in anterior hippocampus reflect constructed event times. A. The anterior 
hippocampus region of interest is displayed on the MNI template with voxels outside the field of view shown in 
lighter shades of gray. Color code denotes probability of a voxel to be included in the mask based on participant-
specific ROIs (see Methods). B. The Z-values based on permutation tests of participant-specific linear models 
assessing the effect of virtual time on pattern similarity change for event pairs from the same sequence were 
significantly positive. C. To illustrate the effect shown in B, average pattern similarity change values are shown 
for same-sequence event pairs that are separated by low and high temporal distances based on a median split. 
D. Z-values show the relationship of the different time metrics to representational change based on participant-
specific multiple regression analyses. Virtual time predicts pattern similarity change with event order and real 
time in the model as control predictors of no interest. B-D. Circles are individual participant data; boxplots show 
median and upper/lower quartile along with whiskers extending to most extreme data point within 1.5 
interquartile ranges above/below the upper/lower quartile; black circle with error bars corresponds to 
mean±S.E.M.; distributions show probability density function of data points. ** p<0.01; * p<0.05 
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demonstrating that virtual time accounts for 

variance that the other time metrics fail to explain. 

Together, these data show that hippocampal 

representations of events from the same 

sequence changed to reflect mnemonically 

constructed event times. 

The hippocampus generalizes temporal 
relations across sequences 

We next tested whether similarity changes of 

hippocampal representations of events from 

different sequences mirrored generalized 

temporal distances. When comparing pairs of 

events belonging to different sequences, we 

observed a significant negative effect of virtual 

temporal distances on pattern similarity change 

(Figure 5A, summary statistics t27=-2.65, p=0.013, 

d=-0.49, 95% CI [-0.91, -0.10]; mixed model: 

χ2(1)=6.01, p=0.014, Supplemental Figure 4GH, 

Supplemental Table 5; α=0.025, corrected for 

separate tests of events of the same and different 

sequences). This indicates that hippocampal 

representations of events from different 

sequences changed systematically to reflect 

generalized temporal relations. Events occurring 

at similar times relative to the virtual clock, but in 

different sequences, were represented more 

similarly than those taking place at more different 

virtual times (Figure 5B, t27=-3.26, p=0.002, d=-

0.89, 95% CI [-1.03, -0.21]). Virtual time was a 

significant predictor of hippocampal pattern 

similarity change for events from different 

sequences when competing for variance with 

order and real time (Supplemental Figure 6A-C; 

summary statistics: t26=-2.62, p=0.015, d=-0.49, 

95% CI [-0.92, -0.10], mixed model: χ2(1)=4.48, 

p=0.034, Supplemental Table 6; one outlier 

excluded). The relationship of temporal distances 

and representational change differed significantly 

between events from the same or different 

sequences (Figure 5A, summary statistics: paired 

t-test t27=3.71, p=0.001, d=1.05, 95% CI [0.29, 

1.13]; mixed model: interaction of sequence 

Figure 5. The anterior hippocampus generalizes temporal relations across sequences. A. Z-values show results 
of participant-specific linear models quantifying the effect of virtual time for event pairs from the same sequence 
(blue, as in Figure 4B) and from different sequences (red). Temporal distance is negatively related to 
hippocampal representational change for event pairs from different sequences. See Supplemental Figure 4EF 
for mixed model analysis of across-sequence comparisons. The effect of virtual time differs for comparisons 
within the same sequence or between two different sequences. B. To illustrate the effect shown in A, average 
pattern similarity change values are shown for across--sequence event pairs that are separated by low and high 
temporal distances based on a median split. C. Multidimensional scaling results show low-dimensional 
embedding of the event sequences. Shapes indicate event order, color shows virtual times of events. The 
different lines connect the events belonging to the four sequences for illustration. *** p≤0.001; ** p<0.01; * p<0.05 
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membership with virtual time χ2(1)=14.37, 

p<0.001, Supplemental Figure 4IJ, Supplemental 

Table 7). Similar interactions of sequence 

membership with order (χ2(1)=9.98, p=0.002) and 

real time (χ2(1)=9.27, p=0.002) were observed, 

but, crucially, the interaction of sequence 

membership and virtual time remained significant 

when including interactions of sequence 

membership with order and real time in the model 

(χ2(1)=8.57, p=0.003, Supplemental Table 8). 

Thus, the way knowledge about virtual temporal 

relations was represented in the hippocampus 

depended on whether events belonged to the 

same sequence or not.  

To explore how event sequences may be arranged 

in a low-dimensional representational space to 

give rise to the effects described above, we 

generated a distance matrix from the mixed 

effects model fitted to hippocampal pattern 

similarity change and subjected it to non-metric 

multidimensional scaling (see Methods, 

Supplemental Figure 6D). The resulting 

configuration in two dimensions (Figure 5C), 

chosen for intuitive visualization, exhibited a c-

shaped pattern for each sequence. Similar 

representational geometries have previously been 

described in parietal cortex63–65. Events occurring 

at similar virtual times occupy similar locations, in 

line with high pattern similarity for events from 

different sequences that are separated by low 

temporal distances. Thus, the generalization 

across sequences results in a comparable 

configuration for each sequence. While the 

observed configuration resulted in stress values 

significantly lower than those obtained in a 

permutation test (see Methods; z=-3.5, p=0.001, 

Supplemental Figure 6E), the high 

representational distances between temporally 

close events from the same sequence are not 

perfectly captured by the c-shaped arrangement 

(Supplemental Figure 6FG). More than the two 

dimensions chosen for visualization would likely 

better capture the complex representational 

structure of the sequences. 

Sequence representations differ between 
hippocampus and entorhinal cortex 

In our second region of interest, the anterior-

lateral entorhinal cortex (Figure 6A), the effect of 

virtual time on representational change did not 

differ statistically between event pairs from the 

same or from different sequences (summary 

statistics: paired t-test t27=0.07, p=0.942). We thus 

collapsed across comparisons from the same and 

different sequences and observed a significant 

effect of virtual temporal distances on entorhinal 

pattern similarity change (Figure 6B; summary 

statistics: t27=-2.31, p=0.029, d=-0.42, 95% CI [-

0.84, -0.05]; mixed model: χ2(1)=4.39, p=0.036, 

Supplemental Figure 4KL, Supplemental Table 9; 

see Supplemental Figure 7A for separate analyses 

of events from the same and from different 

sequences). In line with our previous work27, 

Figure 6. The anterior-lateral entorhinal cortex uses a 
shared representational format for relations of events 
from the same and different sequences. A. The 
anterior-lateral entorhinal cortex region of interest is 
displayed on the MNI template with voxels outside the 
field of view shown in lighter shades of gray. Color 
code denotes probability of a voxel to be included 
based on participant-specific masks (see Methods). B. 
Z-values for participant-specific RSA model fits show a 
negative relationship between pattern similarity 
change and virtual temporal distances when collapsing 
across all event pairs. C. To illustrate the effect in B, 
raw pattern similarity change in the anterior-lateral 
entorhinal cortex was averaged for events separated 
by low and high temporal distances based on a median 
split. * p<0.05 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2021.04.23.440002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.440002
http://creativecommons.org/licenses/by-nc/4.0/


10 

events close together in time became more 

similar than those separated by longer temporal 

intervals (Figure 6C). The relationship of virtual 

temporal distances and entorhinal pattern 

similarity change was not statistically significant 

when competing for variance with distances 

based on order and real time (Supplemental 

Figure 7B-D; summary statistics: t27=-0.7, p=0.495, 

d=-0.13, 95% CI [-0.51, 0.25], mixed model: 

χ2(1)=1.18, p=0.278, Supplemental Table 10).  

We further corroborated that the temporal 

structure of the sequences was represented 

differently between the anterior-lateral entorhinal 

cortex and the anterior hippocampus (summary 

statistics: interaction between region and 

sequence membership in permutation-based 

repeated-measures ANOVA F1,27=7.76, p=0.010, 

η2=0.08, main effect of region F1,27=3.10, p=0.086, 

η2=0.02, main effect of sequence F1,27=7.41, 

p=0.012, η2=0.08; mixed model: three-way 

Figure 7. Overlapping representations of within- and across-sequence relations. A. Searchlight analysis results 
show a positive relationship between representational change and virtual temporal distances for event pairs from 
the same sequence in the bilateral anterior hippocampus. Statistical image is thresholded at puncorrected<0.01; 
voxels within black outline are significant after correction for multiple comparisons using small volume 
correction. B. In the peak cluster from the independent within-sequence searchlight analysis (A), representational 
change was negatively related to virtual temporal distances between events from different sequences. Circles 
show individual participant Z-values from summary statistics approach; boxplot shows median and upper/lower 
quartile along with whiskers extending to most extreme data point within 1.5 interquartile ranges above/below 
the upper/lower quartile; black circle with error bars corresponds to mean±S.E.M.; distribution shows probability 
density function of data points. C. Searchlight analysis results show negative relationship between 
representational change and temporal distances for different-sequence event pairs. Statistical image is 
thresholded at puncorrected <0.05. D. Within the anterior hippocampus, the effects for events from the same 
sequence and from two different sequences overlap. Visualization is based on statistical images thresholded at 
puncorrected <0.05 within small volume correction mask. E. Searchlight analysis results show a bilateral interaction 
effect in the anterior hippocampus that is defined by a differential relationship of virtual temporal distances and 
representational change for events from the same and different sequences. Statistical image is thresholded at 
puncorrected<0.01; voxels within black outline are significant after correction for multiple comparisons using small 
volume correction. A, C-E. Results are shown on the MNI template with voxels outside the field of view displayed 
in lighter shades of gray. See Supplemental Figure 9 for additional exploratory results. * p<0.05 
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interaction between virtual time, sequence 

membership and region of interest χ2(1)=6.31, 

p=0.012, Supplemental Table 11; see 

Supplemental Figure 8 for a comparison of the 

signal-to-noise ratio in these regions). Whereas 

the hippocampus employed two distinct 

representational formats for temporal relations 

depending on whether events belonged to the 

same sequence or not, we observed consistent 

negative correlations between representational 

change and temporal distances when collapsing 

across all event pairs, but no statistically 

significant difference between representations of 

temporal relations from the same or different 

sequences in the entorhinal cortex. 

Anatomical overlap between 
representations of within-sequence 
relations and across-sequence 
generalization 

We next asked whether representations of same-

sequence relations are distinct from or overlap 

with the across-sequence generalization of 

temporal relations. For this purpose and to 

complement our region-of-interest analyses 

described above, we performed a searchlight 

analysis that revealed significant effects of virtual 

temporal distances on representations of events 

from the same sequence in the bilateral anterior 

hippocampus (Figure 7A; peak voxel MNI x=-24, 

y=-13, z=-20; t=4.53, psvc=0.006, Supplemental 

Table 12). We used the same-sequence 

searchlight peak cluster to define a region of 

interest to test for the independent across-

sequence generalization effect (see Methods). 

Indeed, virtual temporal distances explained 

pattern similarity change for events from different 

sequences in these voxels (Figure 7B; summary 

statistics t27=-2.19, p=0.036, d=-0.40, 95% CI [-

0.81, -0.03]; mixed model: χ2(1)=4.13, p=0.042, 

Supplemental Figure 4MN, Supplemental Table 

13), demonstrating an overlap between 

representations of within-sequence relations and 

their generalization across sequences.  

Further, we conducted a searchlight analysis 

looking for negative correlations of temporal 

distances and pattern similarity change for events 

from different sequences. We detected clusters in 

anterior hippocampus that overlapped with the 

same-sequence searchlight effect (Figure 7CD), 

though this searchlight generalization effect did 

not survive corrections for multiple comparisons 

(peak voxel MNI x=-26, y=-19, z=-15, t=-3.96, 

psvc=0.071, Supplemental Table 14). Lastly, we 

directly searched for brain areas in which pattern 

similarity change differentially scaled with 

temporal distances depending on whether events 

were from the same or different sequences. The 

two largest clusters in our field of view were 

located in the left and right anterior hippocampus 

(Figure 7E, peak voxel MNI x=31, y=-16, z=-21; 

t=4.25, psvc=0.007, Supplemental Table 15). Taken 

together, these findings highlight that 

hippocampal representations carry information 

about the specific sequence in which events 

occur, and that these temporal relations are 

generalized across sequences. 

Generalized knowledge about other 
sequences biases event time construction 

Having established generalized hippocampal 

event representations, we explored whether 

knowledge about the general structure of event 

times in other sequences influenced the 

construction of individual event times. For each 

event, we quantified when it took place relative to 

the average virtual time of the events at the same 

sequence position in the other three sequences 

(Figure 8A; see Methods). We reasoned that the 

construction of a specific event time could be 

biased by knowledge about the general pattern of 

event times at that sequence position. Indeed, we 

observed positive relationships between the 

relative time of other events and signed errors in 

constructed event times as assessed in the 

timeline task (Figure 8BC, Supplemental Figure 

10A; summary statistics: t27=5.32, p<0.001, 

d=0.98, 95% CI [0.55, 1.48]; mixed model: 

χ2(1)=17.90, p<0.001, Supplemental Figure 4OP, 

Supplemental Table 16). This demonstrates that 

structural knowledge about the sequences biased 

the construction of event times. The constructed 

virtual time of an event tended to be 

overestimated when the events occupying the 

same sequence position in the other sequences 

took place late relative to the event in question, 

and vice versa when the other events occurred 

relatively early. In an independent group of 

participants66, we replicated this generalization 

bias (Figure 8D, Supplemental Figure 10B; 

summary statistics: t45=11.30, p<0.001, d=1.64, 
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95% CI [1.23, 2.13]; mixed model: χ2(1)= 53.74, 

p<0.001, Supplemental Figure 4QR, Supplemental 

Table 17), confirming the influence of generalized 

knowledge about the sequences on event time 

construction. One possibility is that structural 

knowledge about the sequences biases the 

construction of specific event times, in particular 

when uncertainty about the virtual time of events 

is high. Indeed, we observed a significant negative 

correlation between how strongly pattern 

similarity changes in the anterior hippocampus 

reflected temporal relations between same-

sequence events in the searchlight analysis and 

the strength of the behavioral generalization bias 

(Figure 8EF, Spearman r=-0.53, p=0.005; α=0.025 

corrected for two comparisons; correlation with 

across-sequence effect: Spearman r=-0.19, 

p=0.322), suggesting that the construction of 

event times was less biased by time patterns 

generalized across sequences in those 

participants with precise representations of 

within-sequence temporal relations. 

Figure 8. Structural knowledge biases construction of event times. A. The generalization bias quantifies the 
influence of structural knowledge on the construction of individual event times. For each event, the mean time 
of events at the same sequence position in the other sequences was calculated to test whether event times were 
biased towards the relative time of other events. B. The scatterplot illustrates the generalization bias for an 
example participant. Each circle corresponds to one event and the regression line highlights the relationship 
between the relative time of other events and the errors in constructed event times. The example participant was 
chosen to have a median-strength generalization bias. See Supplemental Figure 10 for the entire sample. 
Correlation coefficient is based on Pearson correlation. C. The relative time of events from other sequences 
predicted signed event time construction errors as measured in the timeline task. Positive values indicate that 
when other events took place late relative to a specific event, the time of that event was estimated to be later 
than when other events were relatively early. Circles show individual participant Z-values from participant-
specific linear models (B); boxplot shows median and upper/lower quartile along with whiskers extending to 
most extreme data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with 
error bars corresponds to mean±S.E.M.; distribution shows probability density function of data points. D. The 
generalization bias in event time construction through structural knowledge was replicated in an independent 
sample (n=46) based on Montijn et al.66. Data shown as in B. E. The behavioral generalization bias (regression 
coefficients from summary statistics approach) did not correlate significantly with the across-sequence 
generalization effect in the anterior hippocampus (searchlight peak voxel t-values). F. We observed a significant 
negative correlation between the same-sequence searchlight effect (peak voxel t-values) and the behavioral 
generalization bias (regression coefficients from summary statistics approach), suggesting that participants 
with strong hippocampal representations of the temporal relations between events from the same sequence 
were less biased by structural knowledge in their construction of event times. Statistics in E and F are based on 
Spearman correlation. 
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We further explored whether participants made 

systematic errors in the sorting task that might 

point towards generalization across sequences. 

Specifically, we searched for swap errors where 

participants interchanged events between 

sequences that occupied the same sequence 

position. Indeed, 57.5%±34.3% (mean±S.D) of 

sorting errors were swap errors and 12 of the 14 

participants who made sorting errors also made 

swap errors (Supplemental Figure 3EF, mean±S.D 

of 3.1±2.1 swap errors per participant with sorting 

errors). The proportion of swap errors in our 

sample was larger than expected from random 

sorting errors (z=5.07, p<0.001, Supplemental 

Figure 3G), indicating that participants 

systematically swapped events belonging to the 

same position between sequences. While we did 

not observe statistically significant relationships 

between swap errors and the generalization bias 

(Supplemental Figure 3HI), the prevalence of 

these errors is compatible with the view that 

participants generalized across events occupying 

the same sequence position. 

Discussion 

Our findings show that hippocampal event 

representations change through learning to 

reflect temporal relations based on mnemonically 

constructed event times. Converging region of 

interest and searchlight analyses demonstrate 

that, on the one hand, the hippocampus forms 

specific representations of temporal relations of 

the events in a sequence that mirror constructed 

event times beyond the effects of order and real 

time. On the other hand, temporal relations are 

generalized across sequences using a different 

representational format. In contrast, the similarity 

of event representations in the entorhinal cortex 

scaled with temporal distances irrespective of 

sequence membership. The behavioral data 

demonstrate that the construction of specific 

event times is biased by structural knowledge 

abstracted from different sequences. 

In our paradigm, participants mentally 

constructed the times of events relative to a 

hidden virtual clock. To do so, they needed to 

combine their experience of passing real time with 

infrequent cues about the current virtual time. 

Thus, real time was critical for the successful 

construction of event times, despite not being 

cued explicitly. Participants’ responses in a 

memory test and the similarity structure of 

hippocampal multi-voxel patterns were explained 

by virtual event times beyond the effects of real 

time and sequence order, showing that sequence 

representations reflect mnemonically 

constructed time. Recent work demonstrated the 

scaling of time cell representations to different 

real time intervals in the rodent hippocampus67. 

Temporal scaling of hippocampal representations 

could potentially underlie our observation that 

temporal distances in virtual time are related to 

the similarity of event representations even when 

accounting for the effects of real time and order. 

This finding highlights that the anterior 

hippocampus maps relational knowledge derived 

from mnemonic constructions. 

The hippocampus constructed an integrated 

representation that generalized temporal 

relations across sequences. Multi-voxel patterns 

of events taking place at similar virtual times, but 

in different sequences, were more similar than 

those of events occurring at different points in 

time. Thus, representations of events from 

different sequences changed systematically to 

reflect generalized temporal distances. 

Speculatively, this effect could be related to the 

observation that, in mice trained to run a number 

of laps on a maze to obtain rewards, lap-specific 

firing patterns in the hippocampus generalize 

across sequences of laps on geometrically 

distinct mazes54. While it is possible that the first 

and last events of the sequences are particularly 

important to sequence processing, our data show 

that virtual time explained representational 

changes when competing for variance with order 

and real time also for events from different 

sequences. This makes it unlikely that the 

hippocampal generalization effect was driven 

exclusively by events at the first or last sequence 

position. The generalization of temporal 

distances across sequences in the hippocampus 

is in line with the contribution of constructive 

mnemonic processes to flexible cognition via the 

recombination of elements across experiences 

and statistical learning13,40,43,46,48,49,68,69. More 

generally, it is consistent with the role of the 

hippocampus in forming cognitive maps of 

relational structures and in generalizing structural 

knowledge to novel situations12,38,51,53,57,70,71. 
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Structural knowledge and mnemonic construction 

are intertwined. In two independent samples, we 

show that general time patterns, abstracted from 

other sequences, bias the construction of specific 

event times. When events at the same sequence 

position, but in other sequences, took place 

relatively late to the time of an event, the time of 

that event was remembered to be later than when 

the other events occurred relatively early. This 

generalization bias shows that knowledge about 

events at structurally similar positions contributes 

to constructive memory for specific events. It is in 

line with biases resulting from the exploitation of 

environmental statistics when reconstructing 

stimulus sizes from memory55,56, when estimating 

brief time intervals72,73, or when discriminating the 

order of previously presented stimuli74. Likewise, 

prior knowledge can distort memories for short 

narratives75, spatial associations76 and temporal 

positions62. Consistent with the suggested role of 

grid cells in the representation of spatial structure, 

distortions in mnemonic reconstructions of 

spatial relations induced through boundary 

geometry follow predictions from models of grid-

cell functioning77. Further, recombining 

information across episodes for associative 

inference can induce false memories for 

contextual details68,78, illustrating that 

generalization impacts memory for specific 

associations. In line with the greater reproduction 

of episodic details by participants whose recall 

follows the temporal structure of an experience 

more closely79, these findings highlight that 

structural knowledge and mnemonic construction 

are interwoven. More broadly, abstract semantic 

or schematic knowledge may provide a scaffold 

for the recall of episodic details4,7,38,80,81. Our 

findings show that structural knowledge not only 

facilitates, but also biases constructive memory. 

The way temporal relations shaped hippocampal 

multi-voxel pattern similarity differed between 

pairs of events from the same and different 

sequences. We observed positive correlations 

between temporal distances and hippocampal 

representational change, which were 

characterized by relatively decreased pattern 

similarity for nearby compared to increased 

pattern similarity for more distant events from the 

same sequence. One possible explanation for the 

surprising direction of this effect could be that, 

compared to our previous work where 

participants encountered only one sequence21, 

participants relied more on associative encoding 

strategies when learning multiple sequences in 

the present experiment. Possibly, the need to link 

events belonging to the same sequence altered 

how pattern similarity changes relate to temporal 

distances for these same-sequence events. In line 

with this interpretation, prior work has shown that 

the relationship of hippocampal pattern similarity 

and temporal memory can depend on factors like 

the use of associative encoding strategies and the 

presence of event boundaries marking switches 

between sequences of images from the same 

category22,82,24. Successful recency discrimination 

was associated with more similar hippocampal 

representations during encoding when 

participants were encouraged to use associative 

strategies to encode the order of image 

sequences from two alternating visual 

categories22. A different study found more 

dissimilar hippocampal representations for 

stimuli whose order was later remembered 

correctly24. Thus, the formation of associations 

between same-sequence events could explain 

why correlations of pattern similarity change 

were, in contrast to our previous work21, positive. 

A second possible interpretation of this effect is 

based on observations that the hippocampus 

differentiates similar episodes47,83–86. 

Hippocampal differentiation could explain the 

relative decrease of pattern similarity for 

temporally close events from the same sequence. 

However, the generalization across sequences 

does not directly follow from a differentiation 

account. 

The hippocampus supports constructive memory 

and generalization in concert with a distributed 

network of brain regions. In addition to medial 

temporal lobe structures, the mental simulation of 

past and future episodic scenarios recruits a core 

network including medial prefrontal and 

retrosplenial cortex as well as lateral parietal and 

temporal areas39,87. Notably, this network overlaps 

with areas supporting the recombination of 

elements and generalization. For example, both 

the construction of novel experiences based on 

the combination of multiple elements88 and 

memory integration across episodes47 are 

supported by the medial prefrontal cortex and the 

hippocampus. In sequence processing, 

representational similarity is increased for items 
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occupying the same position in different 

sequences in parahippocampal, retrosplenial and 

medial prefrontal cortices as well as in the angular 

gyrus18,89. Likewise, sequence positions can be 

decoded from magnetoencephalographic 

responses elicited by visual stimuli presented in 

scrambled order90. In line with the suggestion that 

the posterior parietal cortex supports 

generalization by projecting stimuli onto a low-

dimensional manifold91, neural magnitude 

representations that generalize across task 

contexts have been observed using EEG63,92. While 

we did not observe effects outside the 

hippocampal-entorhinal region that survived 

corrections for multiple comparisons, we note 

that, based on our prior hypotheses, we opted for 

high-resolution coverage of the medial temporal 

lobe at the cost of reducing the field of view of our 

MR images. As the events in our task can be 

conceived of as being arranged along one or 

multiple, parallel mental number lines, future 

research could test how the parietal cortex 

encodes event relations to explore commonalities 

with and differences to the generalization of event 

times observed in the hippocampus. 

Our paradigm allows a highly-controlled read-out 

of representational change relative to a pre-

learning baseline scan. Events are shown in the 

same random order before and after learning, 

ruling out that prior associations or the temporal 

auto-correlation of the blood-oxygen-level-

dependent signal drives our effects. Future 

studies could extend the paradigm to investigate 

how hierarchically nested sequences are 

represented, for example by introducing higher-

order relations between sequences – akin to 

different days being grouped in weeks. The 

precise temporal dynamics of the generalized 

hippocampal event representation pose another 

intriguing question. Based on the report that the 

temporal organization of memory reactivation 

relative to the hippocampal theta phase reflects 

semantic relations between items93, a speculative 

hypothesis is that a theta phase code could also 

underlie memory for temporal relations of events 

from the same and different sequences.  

In conclusion, our findings show that the similarity 

of event representations in the hippocampus 

reflects relations between events that go back to 

mnemonically constructed event times, 

highlighting the impact of mnemonic construction 

on sequence memory beyond the effects of event 

order and real elapsing time. Temporal relations 

are generalized to events from different 

sequences, in line with hippocampal contributions 

to the abstraction of structural knowledge and the 

generalization across episodes. General time 

patterns abstracted from other sequences 

systematically influence the construction of 

specific event times, demonstrating that 

constructions of specific scenarios build on 

structural knowledge.  
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Methods 

Participants 

31 participants were recruited for this experiment. 

Participants gave written informed consent prior 

to participation. All proceedings were approved by 

the local ethics committee (CMO Regio Arnhem-

Nijmegen). One participant aborted the 

experiment due to feeling claustrophobic when 

entering the MR scanner. Two participants were 

excluded from further analysis due to bad 

memory performance and technical difficulties 

during data acquisition. Thus, the sample 

consisted of 28 participants (21 female, age: 

mean±standard deviation 23.04±3.21 years, range 

18-31 years). 

Procedure 

Overview 

The experiment consisted of four parts (Figure 

1A) and lasted approximately 2.5 hours in total. 

The first three parts were performed inside the MR 

scanner and comprised a learning task lasting 

around 50 minutes that was completed in 

between two blocks of a picture viewing task of 

around 25 minutes each. The tasks inside the 

scanner were presented on a rear-projection 

screen with a resolution of 800x600 pixels and 

implemented using Presentation (version 16.2, 

Neurobehavioral Systems). Subsequently, outside 

of the scanner, participants performed two short 

memory tasks in front of a computer screen, 

implemented with custom Matlab code. The tasks 

are described in more detail below. Data analysis 

was carried out using FSL (version 5.0.4)94 and R 

(version 3.6.1)95. 

Stimuli 

The stimuli (Supplemental Figure 1) used 

throughout the experiment were created within 

the life-simulation computer game The Sims 3 

(Electronic Arts) by taking screenshots. Each 

image featured a scene in the life of an affluent 

family. The main character, the family father, was 

visible in all scenes. In addition, the mother, son, 

daughter and family dog appeared in some of the 

images. All of the depicted events took place 

within the same family home, but showed 

activities in a number of different rooms. In an 

effort to design stimuli with minimal to no 

indication of day time, the house had constant 

artificial lighting, but no windows or clocks. The 

21 pictures used in this study were selected from 

an initial set of 35 pictures based on an 

independent sample rating them as the most 

ambiguous with regard to the time of day they 

could take place. One image served as a target 

image for the picture viewing tasks (see below), 

while the other 20 event images were randomly 

assigned to different times and days for every 

participant. 

Picture Viewing Tasks 

In the picture viewing tasks (Figure 1B), 

participants viewed a stream of the event images. 

Their task was to look at the images attentively 

and to respond via button press whenever a target 

picture, which showed the father feeding the 

family’s dog, was presented (pre-learning: 

95.71%±7.90% mean±standard deviation of 

percentage of hits; 881.34ms±131.43ms 

mean±standard deviation of average reaction 

times; post-learning: 95.71%±6.90% 

mean±standard deviation of percentage of hits; 

841.40ms±162.16ms mean±standard deviation 

of average reaction times). The task consisted of 

10 mini-blocks. In each mini-block, the target 

image and the 20 images, which would later make 

up the virtual days (see Day Learning Task), were 

shown in random order. Mini-blocks were 

separated by breaks of 15 s. Stimulus 

presentations lasted 2.5 s and were time-locked 

to fMRI volume acquisition onsets. Scene stimuli 

within a mini-block were separated by 2 or 3 

repetition times (TR), randomly assigned so that 

both stimulus onset asynchronies occurred 

equally often. 

For each participant, we generated a random 

stimulus order with the constraint that no scene 

was consistently presented at early or late 

positions across mini-blocks. Specifically, we 

compared sequence positions across mini-blocks 

between the images using a one-way ANOVA. We 

discarded randomizations where this ANOVA was 

statistically significant to exclude biases in 

presentation order. Crucially, the same, 

participant-specific random order of stimuli and 

inter-stimulus intervals was used in both the pre-

learning and the post-learning picture viewing 

task. Thus, any systematic differences in the 

representational similarity of event pairs between 
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the two picture viewing tasks do not go back to 

differences in the timing of stimulus 

presentations or the temporal auto-correlation of 

the BOLD-signal. Rather, we interpret such 

changes to be a consequence of the learning task. 

Day Learning Task 

In this task, 20 of the 21 scenes, which were 

shown in the picture viewing tasks, were 

presented repeatedly. This time, however, they 

were grouped into multiple sequences introduced 

to participants as “virtual days”. There were four 

different sequences, each comprising 5 events. 

Events from the same sequence were always 

shown in a specific order and with a specific time 

delay between them. Scenes were on screen for 

1.5 s. At the end of each sequence, an image of a 

moon was shown for 5 s, then the next sequence 

began. Every sequence was presented 7 times. 

There were 7 mini-blocks in this task. Within each 

of these, every sequence was presented once. At 

the end of a mini-block, a 30-s break followed, then 

the next block started. The order in which the 

sequences were presented differed randomly 

across the 7 mini-blocks. 

We instructed participants that the scenes 

depicted events from the life of a family and that 

the sequences of event images corresponded to 

different days in the family’s life. Participants 

were asked to memorize which events made up 

the different sequences (Figure 1C). We further 

instructed them to learn when during the 

respective sequence each event occurred. 

Specifically, we asked participants to learn event 

times relative to a virtual clock. This clock was 

running hidden from participants and event 

images were shown whenever the hidden clock 

reached the specific event time (Figure 1C, 

Supplemental Figure 2AB). The task was devised 

such that participants had to rely on their 

experience of passing real time and mnemonic 

construction to infer the times of events. 

Specifically, to give participants an indication of 

virtual time, the hidden clock was made visible 6 

times for every presentation of a sequence: once 

before the first event, once in between successive 

events, and once after the last event. Participants 

received no cues about elapsing real time, but had 

to use their experience of passing real time 

between virtual time cues to infer the event times 

relative to the hidden virtual clock. Importantly, the 

exposure of the hidden clock occurred at random 

times for each sequence presentation 

(Supplemental Figure 2CD), with the constraint 

that it could not be revealed closer than 2 s to a 

preceding or subsequent event. Thus, participants 

saw different time cues in each repetition of a 

sequence. For example, while a specific event 

always happened at the same virtual time, e.g. 

2:07 p.m., the virtual clock could be exposed at 

any time before the event, e.g. corresponding to 

1:32 p.m. in the first repetition of the sequence, 

and corresponding to 1:17 p.m. in the second 

repetition. Because true event times were never 

revealed, participants could not exclusively rely on 

associative learning to solve the task. Time cues 

were visible for 1.5 s, but displayed only the time 

at the start of exposure, i.e. the displayed time did 

not change within the duration of its presentation.  

In short, participants had to combine their 

experience-based estimates of passing time with 

the time cues provided by the exposures of the 

otherwise hidden clock to infer the time at which 

each event in each sequence took place. Crucially, 

we varied the speed of the hidden clock between 

sequences in an effort to partly dissociate real 

time (in seconds) from virtual time (in virtual 

hours). Thus, for two sequences more virtual time 

passed in a comparable amount of real elapsing 

time (Figure 1C, Supplemental Figure 2). 

Correlations between the linearly increasing time 

metrics are inevitably high (Pearson correlation of 

virtual time with order r=0.969 and virtual time 

with real time r=0.975). Still this manipulation 

allowed us to determine using multiple regression 

whether virtual time explained constructed event 

times when competing for variance with real 

elapsed time and event order and whether 

hippocampal pattern similarity changes related to 

temporal distances in virtual time beyond ordinal 

distances and real time distances. Regression 

models including collinear predictor variables do 

not result in biased parameter estimates96,97. 

Sorting Task 

The day sorting task (Figure 1D) was performed in 

front of a computer screen. The 20 event images 

from the day learning task were presented on the 

screen in a miniature version. They were arranged 

in a circle around a central area displaying 4 

rectangles. Participants were instructed to drag 
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and drop all events of the same sequence into the 

same rectangle with a computer mouse. 

Participants freely chose which rectangle 

corresponded to which sequence as the 

sequences were not identifiable by any label and 

were presented in differing orders across mini-

blocks during learning.  

Timeline Task 

In this task, participants saw a timeline ranging 

from 6 a.m. to midnight together with miniature 

versions of the five event images belonging to one 

sequence (Figure 1E). Participants were 

instructed to drag and drop the event images next 

to the timeline so that scene positions reflected 

the event times they had inferred in the day 

learning task. To facilitate precise alignment to 

the timeline, event images were shown with an 

outward pointing triangle on their left side, on 

which participants were instructed to base their 

responses. 

MRI Acquisition 

MRI data were recorded with a 3T Siemens Skyra 

scanner (Siemens, Erlangen, Germany). A high-

resolution 2D EPI sequence was used for 

functional scanning (TR=2270 ms, TE=24 ms, 40 

slices, distance factor 13%, flip angle 85°, field of 

view (FOV) 210x210x68 mm, voxel size 1.5 mm 

isotropic). The field of view (FOV) was aligned to 

fully cover the medial temporal lobe, parts of 

ventral frontal cortex and (if possible) calcarine 

sulcus. Functional images for the two picture 

viewing tasks and the learning task were acquired 

in three runs. In addition to these partial-volume 

acquisitions, 10 scans of a functional whole-brain 

sequence were also acquired to improve 

registration during preprocessing. The sequence 

settings were identical to the functional sequence 

above, but instead of 40 slices, 120 slices were 

acquired, leading to a longer TR (6804.1ms). A 

structural scan was acquired for each participant 

(TR = 2300 ms; TE = 315 ms; flip angle = 8°; in-

plane resolution = 256x256 mm; number of slices 

= 224, voxel resolution = 0.8x0.8x0.8 mm). Lastly, 

a gradient field map was acquired (for n = 21 

participants only due to time constraints), with a 

gradient echo sequence (TR = 1020 ms; TE1 = 10 

ms; TE2 = 12.46 ms; flip angle = 90°; volume 

resolution = 3.5x3.5x2 mm; FOV = 224x224 mm). 

ROI Definition 

Our previous work demonstrates representations 

reflecting the temporal relations of events from 

one sequence in the anterior hippocampus21 and 

the anterior-lateral entorhinal cortex27. More 

generally, these regions have been implicated in 

temporal coding and memory (for review, see10). 

Further, the hippocampus has been linked to 

inferential reasoning and generalization46,48,49,51,53. 

We thus focused our analyses on these regions. 

Region of interest (ROI) masks were based on 

participant-specific FreeSurfer segmentations 

(version 6.0.0-2), which yielded masks for the 

entire hippocampus and entorhinal cortex. These 

were co-registered to participants’ functional 

space. We defined anterior hippocampus using 

the Harvard-Oxford atlas mask (thresholded at 

50% probability), selecting all voxels anterior to 

MNI y=-21 based on Poppenk et al.98. The 

resulting anterior hippocampus mask was also 

co-registered to participants’ functional space 

and intersected with the participant-specific 

hippocampal mask from FreeSurfer. The mask for 

the anterior-lateral entorhinal cortex was based on 

Navarro Schröder et al.99. It was co-registered to 

participants’ functional space and intersected 

with the entorhinal cortex mask from FreeSurfer. 

Data Analysis 

Behavioral Data Analysis 

Sorting Task 

For analysis of the sorting task, we took the 

grouping of event images as provided by the 

participants and assigned them to the four 

sequences to ensure maximal overlap between 

actual and sorted sequence memberships. While 

the assignment of groupings to sequences is 

unambiguous when performance is, as in our 

sample, high, this procedure is potentially liberal 

at lower performance levels. We then calculated 

the percentage of correctly sorted event images 

for each participant, see the raincloud plot100 in 

Figure 2A. 

In an exploratory analysis, we searched for 

systematic errors in the sorting task. Specifically, 

we looked for swap errors where participants 

interchanged events occurring at the same 

position between two or more sequences. We 

used a χ2-test to assess whether the number of 
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swap errors deviated from uniformity across 

sequence positions. To test whether participants 

made more swap errors than expected from 

chance we ran a permutation test where we 

introduced sorting errors for randomly selected 

events. For each of 10 000 iterations, we 

generated a surrogate sample of sorting results 

with the number of randomly introduced sorting 

errors matching the number of errors made by the 

different participants in our sample. We then 

quantified the proportion of swap errors across 

this surrogate sample. This resulted in a 

distribution of the proportion of swap errors that 

would be expected from random sorting errors. 

We assessed how many permutations yielded 

proportions of swap errors larger or equal to the 

proportion of swap errors observed in the fMRI 

sample to compute a p-value and further 

quantified a z-value as the difference between the 

observed swap error proportion and the mean of 

the chance distribution divided by the standard 

deviation of the chance distribution. We tested 

whether the number of swap errors was related to 

absolute errors in the timeline task (see below) 

using Spearman’s correlation and a t-test for 

independent samples. 

Timeline Task 

We analyzed how well participants constructed 

the event times based on the day learning task. 

We quantified absolute errors across all events 

(Figure 2C) as well as separately for the five 

sequence positions (Figure 2D), the four 

sequences (Supplemental Figure 3A) and as a 

function of virtual clock speed (Supplemental 

Figure 3B). Using two approaches we tested 

whether virtual time drove participants’ responses 

rather than the sequence order or objectively 

elapsing time. For the summary statistics 

approach, we ran a multiple regression analysis 

for each participant with virtual time, sequence 

position (order), and real time since the first event 

of a day as predictors of responses in the timeline 

task. To test whether virtual time indeed explained 

participants’ responses even when competing for 

variance with order and real time, included in the 

model as control predictors of no interest, we 

compared the participant-specific t-values of the 

resulting regression coefficients against null 

distributions obtained from shuffling the 

remembered times against the predictors 10,000 

times. We converted the resulting p-values to Z-

values and tested these against zero using a 

permutation-based t-test (two-sided; α=0.05; 

10,000 random sign-flips, Figure 2E). As a 

measure of effect size, we report Cohen’s d with 

Hedges’ correction and its 95% confidence 

interval as computed using the effsize-

package101. 

Second, we addressed this question using linear 

mixed effects modeling. Here, we included the 

three z-scored time metrics as fixed effects. 

Starting from a maximal random effect 

structure102, we simplified the random effects 

structure to avoid convergence failures and 

singular fits. The final model included random 

intercepts and random slopes for virtual time for 

participants. The model results are visualized by 

dot plots showing the fixed effect parameters with 

their 95% confidence intervals (Supplemental 

Figure 4A) and marginal effects (Supplemental 

Figure 4B) estimated using the ggeffects 

package103. To assess the statistical significance 

(α=0.05) of virtual time above and beyond the 

effects of order and real time, we compared this 

full model to a nested model without the fixed 

effect of virtual time, but including order and real 

time, using a likelihood ratio test. Supplemental 

Table 1 provides an overview of the final model 

and the model comparison.  

To explore whether structural knowledge about 

general time patterns biases the construction of 

event times, we assessed errors in remembered 

event times. Specifically, when constructing the 

time of one specific event, participants could be 

biased in their response by the times of the events 

from other sequences at that sequence position. 

For each event, we quantified the average time of 

events in the other sequences at the same 

sequence position (Figure 8A). For example, for 

the fourth event of the first sequence, we 

calculated the average time of the fourth events 

of sequences two, three and four. We then asked 

whether the deviation between the average time 

of other events and an event’s true virtual time 

was systematically related to signed errors in 

constructed event times. A positive relationship 

between the relative time of other events and time 

construction errors indicates that, when other 

events at the same sequence position are 

relatively late, participants are biased to construct 

a later time for a given event than when the other 
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events took place relatively early. In the summary 

statistics approach, we ran a linear regression for 

each participant (Figure 8B, Supplemental Figure 

10A) and tested the resulting coefficients for 

statistical significance using the permutation-

based procedures described above (Figure 8C). 

The regression coefficients from this approach 

were used to test for a relationship between the 

behavioral generalization bias and the 

hippocampal searchlight effects (see below). 

Further, we analyzed these data using the linear 

mixed model approach (Supplemental Figure 

4OP, Supplemental Table 16).  

To replicate the results from this exploratory 

analysis, we conducted the same analysis in an 

independent group of participants. These 

participants (n=46) constituted the control groups 

of a behavioral experiment testing the effect of 

stress induction on temporal memory66. They 

underwent the same learning task as described 

above with the only difference being the duration 

of this learning phase (4 rather than 7 mini-blocks 

of training). The timeline task was administered 

on the day after learning. The procedures are 

described in detail in Montijn et al.66. The data 

from this independent sample are shown in Figure 

8D and Supplemental Figure 10B. 

MRI Preprocessing 

Preprocessing was performed using FSL FEAT 

(version 6.00). Functional scans from the picture 

viewing tasks and the whole-brain functional scan 

were submitted to motion correction and high-

pass filtering using FSL FEAT. For the two picture 

viewing tasks, data from each mini-block was 

preprocessed independently. For those 

participants with a field map scan, distortion 

correction was applied to the functional data sets. 

No spatial smoothing was performed. Functional 

images from the two picture viewing tasks were 

then registered to the preprocessed mean image 

of the whole-brain functional scan. The whole-

brain functional images were registered to the 

individual structural scans. The structural scans 

were in turn normalized to the MNI template (1-

mm resolution). Gray matter segmentation was 

done on the structural images, and the results 

were mapped back to the space of the whole-brain 

functional scan for later use in the analysis. 

Representational Similarity Analysis 

Representational similarity analysis (RSA)104 was 

first implemented separately for the pre- and post-

learning picture viewing task. It was carried out in 

ROIs co-registered to the whole-brain functional 

image and in searchlight analyses (see below). 

For the ROI analyses, preprocessed data were 

intersected with the participant-specific anterior 

hippocampus and anterolateral entorhinal cortex 

ROI masks as well as a brain mask obtained 

during preprocessing (only voxels within the brain 

mask in all mini-blocks were analyzed) and the 

gray matter mask. For each voxel within the ROI 

mask, motion parameters from FSL MCFLIRT 

were used as predictors in a general linear model 

(GLM) with the voxel time series as the dependent 

variable. The residuals of this GLM (i.e. data that 

could not be explained by motion) were taken to 

the next analysis step. As the presentation of 

images in the picture viewing tasks was locked to 

the onset of a new volume (see above), the 

second volume after image onset was selected 

for every trial, effectively covering the time 

between 2270 and 4540 ms after stimulus onset. 

Only data for the 20 event images that were 

shown in the learning task were analyzed; data for 

the target stimulus were discarded. The similarity 

between the multi-voxel activity pattern for every 

event image in every mini-block with the pattern of 

every other event in every other mini-block was 

quantified using Pearson correlation coefficients. 

Thus, comparisons of scenes from the same mini-

block were excluded. Next, we calculated mean, 

Fisher z-transformed correlation coefficients for 

every pair of events, yielding separate matrices of 

pattern similarity estimates for the pre- and the 

post-learning picture viewing tasks (Figure 3). 

In order to assess changes in representational 

similarity between the two picture viewing tasks, 

we quantified pattern similarity changes as the 

difference of the respective correlation 

coefficients for every pair of events between the 

post-learning picture viewing task and its pre-

learning baseline equivalent (Figure 3). Then, we 

analyzed how these difference values related to 

temporal relations between events, which we 

quantified using the absolute distances in virtual 

time (“virtual time”) between events (Figure 1C, 

bottom right). We further tested whether the 

effect of virtual time on anterior hippocampal 

pattern similarity change persisted when 
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including the absolute difference between 

sequence positions (“order”) and the interval in 

seconds between events (“real time”) as control 

predictors of no interest in the model. Time 

metrics were z-scored within each participant 

prior to analysis. We separately tested the effect 

of virtual time for event pairs from the same or 

different sequences and used a Bonferroni-

corrected α-level of 0.025 for these tests. To 

implement these tests, we employed two 

approaches to model-based RSA that are 

described in detail below. We used a summary 

statistics approach, which uses permutation-

based procedures on the subject-level as well as 

on the group-level, in line with recommendations 

for the analysis of multi-voxel patterns 105. We also 

implemented our statistical analyses using linear 

mixed effects models, which capture within-

subject dependencies using random effects while 

estimating the fixed of interest on all data points. 

Mixed effects models are well-suited to test more 

complex interactions. The fact that the results of 

the two analysis approaches converge 

demonstrates that our findings are robust to the 

specific statistical technique. We used an α-level 

of 0.05 for both approaches because they are not 

independent as they are implemented on the 

same data and test the same hypotheses.  

Summary Statistics Approach 

In the summary statistics approach, we used the 

different time metrics as predictors for pattern 

similarity change. We set up a GLM with the given 

variable from the day learning task as a predictor 

and the pairwise representational change values 

as the criterion for every participant. The t-values 

of the resulting model coefficients were then 

compared to a null distribution obtained from 

shuffling the dependent variable of the linear 

model (i.e. pattern similarity change) 10,000 

times. This approach to permutation-testing of 

regression coefficients controls Type I errors even 

under situations of collinear regressors106. 

Resulting p-values for each coefficient were 

transformed to a Z-score. The Z-scores were then 

used for group-level inferential statistics. 

Group-level statistics were carried out using 

permutation-based procedures. For t-tests, we 

compared the observed t-values against a 

surrogate distribution obtained from 10,000 

random sign-flips to non-parametrically test 

against 0 or to assess within-participant 

differences between conditions (two-sided tests; 

α=0.05 unless stated otherwise). We report 

Cohen’s d with Hedges’ correction and its 95% 

confidence interval as computed using the 

effsize-package for R. For paired tests, Cohen’s d 

was calculated using pooled standard deviations 

and confidence intervals are based on the non-

central t-distribution. Permutation-based 

repeated measures ANOVAs were carried out 

using the permuco-package107 and we report 

generalized η2 as effect sizes computed using the 

afex-package108. 

Linear Mixed Effects 

Second, we employed linear mixed models to 

assess how learned sequence relationships were 

reflected in pattern similarity change using the 

lme4 package109. Mixed models have the 

advantage of estimating fixed effects and their 

interactions using all data, rather than performing 

inferential statistics on just one value per 

participant. We used the different time metrics as 

the fixed effects of interest. Factorial predictors 

(region of interest: anterior hippocampus and 

anterior-lateral entorhinal cortex; sequence: same 

vs. different) were deviation-coded. Within-

subject dependencies were captured using 

random effects. Following the recommendation 

by Barr et al.102, we always first attempted to fit a 

model with a maximal random effects structure 

including random intercepts and random slopes 

for participants. If these models did not converge 

or resulted in singular fits, we reduced the random 

effects structure. We always kept random slopes 

for the fixed effect of interest in the model to avoid 

anti-conservativity when testing fixed effects or 

their interactions102,110. The mixed effects models 

were fitted using maximum likelihood estimation.  

We assessed the statistical significance of fixed 

effects of interest using likelihood ratio tests 

(α=0.05). Specifically, the model including the 

fixed effect of interest was compared against a 

nested, reduced model excluding this effect, but 

with the same random effects structure. 

Throughout the manuscript we report the results 

of these model comparisons (χ2-tests with one 

degree of freedom) and refer to supplemental 

tables for summaries of the final mixed model 

parameters. We visualize fixed effect estimates 

with their 95% confidence intervals as dot plots 
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and further illustrate effects using estimated 

marginal means103. 

Multidimensional Scaling  

We aimed to explore how hippocampal event 

representations of the different sequences could 

be embedded in a low-dimensional 

representational space to give rise to the positive 

and negative correlations of pattern similarity 

change and temporal distances for same-

sequence and different-sequence events, 

respectively. For each pair of events, we 

generated an expected similarity value 

(Supplemental Figure 6D) using the fixed effects 

of the mixed model fitted to hippocampal pattern 

similarity that captures the interaction between 

virtual temporal distances and sequence 

membership (c.f. Figure 5, Supplemental Figure 

4IJ, and Supplemental Table 7). Using the predict-

method implemented in the lme4-package109, we 

generated model-derived similarity values for all 

event pairs given their temporal distances and 

sequence membership. We chose this approach 

over the raw pattern similarity values to obtain 

less noisy estimates of the pairwise distances. 

Using the smacof-package111, the model-

predicted similarities were converted to distances 

and the resulting distance matrix (Supplemental 

Figure 6D) was subjected to non-metric 

multidimensional scaling using two dimensions. 

We chose two dimensions to be able to intuitively 

visualize the results. Because MDS is sensitive to 

starting values, we ran multidimensional scaling 

1000 times with random initial configurations and 

visualized the resulting configuration with the 

lowest stress value. Basing this analysis on the 

model-derived similarities assumes the same 

relationship of virtual temporal distances for all 

event pairs from different sequences, but we 

would like to note that not all solutions we 

observed, in particular those with higher stress 

values, resulted in parallel configurations for the 

four sequences.  

We tested the stress value of the resulting 

configuration against a surrogate distribution of 

stress values obtained from permuting the input 

distances on each of 1000 iterations. Using the 

mean and standard deviation of the resulting null 

distribution, we obtained a z-value as a test 

statistic and report the proportion of stress values 

in the null distribution that were equal to or 

smaller than the observed stress value 

(Supplemental Figure 6E). Additionally, we 

contrasted the distances between pairs of events 

in the resulting configuration between distances 

separated by high or low (median split) input 

distances using a t-test for independent samples 

(Supplemental Figure 6F). Using a Spearman 

correlation, we quantified the relationship of the 

input distances and the distances in the resulting 

configuration (Supplemental Figure 6G). 

Searchlight Analysis 

We further probed how temporal distances 

between events shaped representational change 

using searchlight analyses. Using the procedures 

described above, we calculated pattern similarity 

change values for search spheres with a radius of 

3 voxels around the center voxel. Search spheres 

were centered on all brain voxels within our field 

of view. Within a given search sphere, only gray 

matter voxels were analyzed. Search spheres not 

containing more than 25 gray matter voxels were 

discarded. For each search sphere, we 

implemented linear models to quantify the 

relationship between representational change 

and the learned temporal structure. Specifically, 

we assessed the relationship of pattern similarity 

change and absolute virtual temporal distances, 

separately for event pairs from the same 

sequences and from pairs from different 

sequences. In a third model, we included all event 

pairs and tested for an interaction effect of 

sequence membership (same or different) 

predictor and virtual temporal distances. The t-

values of the respective regressors of interest 

were stored at the center voxel of a given search 

sphere. 

The resulting t-maps were registered to MNI 

space for group level statistics and spatially 

smoothed (FWHM 3mm). Group level statistics 

were carried out using random sign flipping 

implemented with FSL Randomise and threshold-

free cluster enhancement. We corrected for 

multiple comparisons using a small volume 

correction mask including our a priori regions of 

interest, the anterior hippocampus and the 

anterior-lateral entorhinal cortex. Further, we used 

a liberal threshold of puncorrected<0.001 to explore 

the data for additional effects within our field of 

view. Exploratory searchlight results are shown in 

Supplemental Figure 9 and clusters with a 
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minimum extent of 30 voxels are listed in 

Supplemental Tables 12, 14 and 15. 

To test whether within- and across-sequence 

representations overlap, we defined an ROI based 

on the within-sequence searchlight analysis. 

Specifically, voxels belonging to the cluster 

around the peak voxel, thresholded at p<0.01 

uncorrected within our small volume correction 

mask, were included. The analysis of 

representational change was then carried out as 

described for the other ROIs above. The results 

observed using a threshold of p<0.001 were not 

statistically different from those obtained with a 

threshold of p<0.01 (t27=-0.95, p=0.338; test 

against 0 using the ROI resulting from the p<0.001 

threshold: t27=-1.98, p=0.056). 

Relationship to behavior 

We used the regression coefficients quantifying 

the strength of the behavioral generalization bias 

to test for an across-subject relationship with the 

RSA searchlight effects. For each participant, we 

extracted the t-value of the across-sequence and 

the within-sequence searchlight effects from the 

peak voxel in our a priori regions of interest. We 

chose this approach because the searchlight 

analyses provide greater spatial precision than 

anatomically defined region of interest masks. We 

used Spearman correlations to test for a 

relationship of the RSA searchlight effects and the 

behavioral generalization bias (α=0.025, corrected 

for two comparisons).
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Supplemental Figures 

Supplemental Figure 1 

Supplemental Figure 1. Overview of the event images used as stimuli. All scenes were devoid of windows to 
exclude diurnal cues, such as shadows or light color, and were selected so they would be plausible at any time 
of day. For each participant, event images were randomly allocated to sequences and event times. Event images 
were created using the life-simulation computer game The Sims 3 (Electronic Arts). The Sims 3 and screenshots 
of it are licensed property of Electronic Arts, Inc. 
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Supplemental Figure 2 

Supplemental Figure 2. Design of the day learning task. A. Each of the four virtual days consisted of a sequence 
of five events. Event sequences are shown in virtual time, i.e. relative to the hidden clock. Less virtual time passes 
within the bottom two sequences because clock speed was manipulated between sequences. B. Event 
sequences shown in real time relative to the first event. A comparable amount of real time (in seconds) elapses 
during each event sequence despite different amounts of virtual time passing. C, D. Sequences in virtual and real 
time as shown in (A) and (B), respectively, but separately for each of the seven repetitions of each sequence 
during the learning task. Black diamonds indicate the time cues shown to one randomly chosen example 
participant during the task. Time cues varied across repetitions and differed across participants. 
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Supplemental Figure 3 5 

Supplemental Figure 3. Memory performance. A. A permutation-based repeated measures ANOVA revealed a 
significant effect of sequence on mean absolute errors in the timeline task (F3,81=5.86, p<0.001, post hoc 
contrasts: sequence 1 vs. 2: t27=3.38, p=0.001, sequence 1 vs. 3: t27=-0.12, p=0.912, sequence 1 vs. 4: t27=2.59, 
p=0.013, sequence 2 vs. 3: t27=-2.92, p=0.001, sequence 2 vs. 4: t27=-1.15, p=0.271, sequence 3 vs. 4: t27=2.15, 
p=0.023). *p < Bonferroni-adjusted alpha-level of 0.008, corrected for 6 pairwise post hoc comparisons. B. Mean 
absolute timeline errors did not differ statistically between sequences with fast and slow clock speed (t27=-0.82, 
p=0.423). C. The number of errors in the sorting task did not correlate with the mean absolute error in the timeline 
task across participants (r=0.23, p=0.246). D. Mean absolute errors in the timeline task were not statistically 
different between participants who made one or more errors (red) or no errors in the sorting task (green) in the 
sorting task (t-test for independent samples, t26=-1.79, p=0.085). E. Histogram shows the number of swap errors 
for participants with (red) and without (green) errors in the sorting task. F. The distribution of swap errors over 
sequence positions did not deviate statistically from uniformity (𝝌2(1)=1.07, p=0.899). G. Histogram shows the 
null distribution of the proportion of swap errors expected under random sorting errors. The proportion of swap 
errors observed in our sample (red line) exceeded the 95th percentile of the null distribution (black line). H. The 
number of swap errors was not significantly correlated with the generalization bias (Spearman r=0.12, p=0.528). 
I. The generalization bias in the timeline task was not significantly different between participants who made one 
or more swap errors (red) or no swap errors (green) in the sorting task (t26=0.18, p=0.861).  A, B, D, H. Circles 
show individual participant values; boxplot shows median and upper/lower quartile along with whiskers 
extending to most extreme data point within 1.5 interquartile ranges above/below the upper/lower quartile; black 
circle with error bars corresponds to mean±S.E.M.; distribution shows probability density function of data points. 
C, H. Each circle shows data from one participant, grey line and shaded region indicate least squares line and 
confidence interval. 
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Supplemental Figure 4 

Supplemental Figure 4. Mixed model results. Dot plots show parameter estimates and 95% confidence intervals 
for fixed effects of mixed model analyses. Line plots show estimated marginal means. A, B. Remembered times 
in the time line task are predicted by virtual event times with order and real time in the model (c.f. Figure 2B). C, 
D. Temporal distances in virtual time explain representational change in the anterior hippocampus (aHPC) for 
same-sequence events (c.f. Figure 4B). E, F. Temporal distances in virtual time explain representational change 
in the aHPC for same-sequence events when competing for variance with temporal distances based on order 
and real time (c.f. Figure 4D). G, H. Temporal distances in virtual time explain representational change in the 
aHPC for different-sequence events (c.f. Figure 5A). I, J. There was a significant interaction of virtual temporal 
distances and sequence membership characterized by a differential relationship between temporal distances 
and aHPC representational change for event pairs from the same sequence or from different sequences (c.f. 
Figure 5A). K, L. Virtual temporal distances explain representational change in the anterior-lateral entorhinal 
cortex (alEC) when collapsing across all event pairs (c.f. Figure 6B). M, N. In the aHPC peak cluster of the same-
sequence searchlight analysis, virtual temporal distances were siginificantly related to representational change 
for events from different sequences (c.f. Figure 7B). O-R. The relative time of events from other sequences 
predicted signed event time construction errors as measured in the timeline task (c.f. Figure 8CD) in the main 
fMRI sample (O, P) and in the independent replication sample (Q, R).  
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Supplemental Figure 5 

  

Supplemental Figure 5. The relationship of virtual time and hippocampal pattern similarity change is not driven 
by the first and last event of a sequence. A. Z-values from the summary statistics approach show a significant 
positive effect of virtual time on pattern similarity change in the anterior hippcampus when competing for 
variance with a control predictor of no interest accounting for variance explained by whether pairs of events were 
made up from the first and last event of a sequence or not. B, C. Fixed effect estimate with 95% confidence 
intervals (B) and estimated marginal means (C) visualize the results of the corresponding mixed model. D. We 
implemented participant-specific regression analyses with order and real time distances as predictors of 
hippocampal pattern similarity change. The plot shows a significant effect of virtual temporal distances when 
tested on the residuals of these linear models. Thus, variance that cannot be explained by the other time metrics 
can be accounted for by virtual temporal distances. This analysis was conducted only using the summary 
statistics approach because the residuals of a mixed model are more difficult to interpret than those of 
participant-specific regression analyses using ordinary least squares. A, D. Circles show individual participant Z-
values from the summary statistics approach; boxplot shows median and upper/lower quartile along with 
whiskers extending to most extreme data point within 1.5 interquartile ranges above/below the upper/lower 
quartile; black circle with error bars corresponds to mean±S.E.M.; distribution shows probability density function 
of data points. * p<0.05 
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Supplemental Figure 6 

 10 

Supplemental Figure 6. Virtual time predicts hippocampal pattern similarity change for events from different 
sequences. A. Z-values show the relationship of the different time metrics to representational change in the 
anterior hippocampus based on participant-specific multiple regression analyses for pairs of events from 
different sequences. Circles show participant-specific Z-values from summary statistics approach; boxplot 
shows median and upper/lower quartile along with whiskers extending to most extreme data point within 1.5 
interquartile ranges above/below the upper/lower quartile; black circle with error bars corresponds to 
mean±S.E.M.; distribution shows probability density function of data points. B, C. Parameter estimates with 95% 
confidence intervals (B) and estimated marginal means (C) show the fixed effects of the three time metrics from 
the corresponding mixed model. * p<0.05 after exclusion of one outlier excluded based on the boxplot criterion. 
D. A linear mixed model capturing the interaction effect of virtual temporal distances and sequence membership 
(Figure 5, Supplemental Figure 4IJ) was fitted to hippocampal representational change. An event-by-event 
similarity matrix was derived from the fixed effects of this model. Similarities were converted distances and then 
used as input for multidimensional scaling (see Methods). E. The stress value observed in the MDS analysis (red 
line) was significantly smaller than the 5th percentile (black dashed line) of a surrogate distribution of stress 
values obtained from shuffling the dissimilarities before running MDS in each of 1000 iterations. F. Pairs of 
events separated by a large distance in the input distance matrix were separated by a larger Euclidean distance 
in the resulting MDS configuration (t188=9.35, p<0.001, d=1.35, 95% CI [1.03, 1.67]). *** p <0.001. G. There was a 
significant Spearman correlation of input distances and MDS configuration distances (r=0.46, p<0.001), but 
visual inspection reveals a non-linear relationship where very high distances are systematically underestimated 
in the MDS configuration. This is likely because the data were projected onto only two dimensions for 
visualization. More dimensions would be needed to improve the fit of the MDS configuration and the input 
distance matrix. Distances are shown as ranks because non-metric MDS was used (high ranks for high 
distances). 
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Supplemental Figure 7 

 
Supplemental Figure 7. Pattern similarity change in the anterior-lateral entorhinal cortex. A. Relationship of 
pattern similarity change and temporal distances between events from the same and different sequences in the 
anterior-lateral entorhinal cortex. There was no statistically significant difference between correlations of virtual 
temporal distances and representational change in the anterior-lateral entorhinal cortex depending on whether 
event pairs were from the same or different sequences. Entorhinal representational change was negatively 
related to temporal distances between events from the same sequence (summary statistics: t24=-3.54, p=0.002,  
d=-0.69, 95% CI [-1.17, -0.27]; α=0.025, corrected for separate tests of events of the same and different 
sequences; three outliers excluded based on the boxplot criterion). The relationship between entorhinal pattern 
similarity change for events from different sequences was not statistically different from zero (summary 
statistics: t27=-1.60, p=0.122, d=-0.29, 95% CI [-0.69, 0.08]; α=0.025, corrected for separate tests of events of the 
same and different sequences). ** p<0.01 after outlier exclusion. B. Z-values show the relationship of the 
different time metrics to representational change in the anterior-lateral entorhinal cortex based on participant-
specific multiple regression analyses. Analysis includes all pairs of events. C, D. Parameter estimates with 95% 
confidence intervals (C) and estimated marginal means (D) show the fixed effects of the three time metrics from 
the corresponding mixed model. A,B. Circles show participant-specific Z-values from summary statistics 
approach; boxplot shows median and upper/lower quartile along with whiskers extending to most extreme data 
point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with error bars 
corresponds to mean±S.E.M.; distribution shows probability density function of data points. 
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Supplemental Figure 8 

Supplemental Figure 8. Temporal signal-to-noise ratio in the anterior hippocampus and the anterior-lateral 
entorhinal cortex. The temporal signal-to-noise ratio was quantified as the mean unsmoothed signal over time 
divided by its standard deviation. It was calculated for each voxel and then averaged across voxels in a region of 
interest. The temporal signal-to-noise ratio was higher in the anterior hippocampus (aHPC) than in the anterior-
lateral entorhinal cortex (alEC, summary statistics: t27=12.43, p<0.001, d=1.99, 95% CI [1.65, 3.13]). Circles show 
individual participant values; boxplot shows median and upper/lower quartile along with whiskers extending to 
most extreme data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with 
error bars corresponds to mean±S.E.M.; distribution shows probability density function of data points.  *** 
p<0.001 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2021.04.23.440002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.440002
http://creativecommons.org/licenses/by-nc/4.0/


32 

Supplemental Figure 9 

Supplemental Figure 9. Exploratory searchlight results. A. For same-sequence event pairs, clusters of voxels in 
which pattern similarity change correlated positively with temporal distances were detected in the frontal pole, 
frontal medial cortex and left entorhinal cortex (see Supplemental Table 12). B. Pattern similarity change 
correlated negatively with temporal distances between events from different sequences in the cerebellum and 
lingual gyrus (see Supplemental Table 14). C. The interaction effect, defined as correlations of temporal 
distances and pattern similarity change depending on whether pairs of events belonged to the same sequence 
or not, was observed in the occipital pole, lingual gyrus, frontal pole, temporal fusiform cortex and the 
intracalcerine sulcus (see Supplemental Table 15). A-C. Statistical images are thresholded at p<0.01 uncorrected 
for display purposes. No clusters outside the hippocampal-entorhinal region survived corrections for multiple 
comparisons. 
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Supplemental Figure 10 

Supplemental Figure 10. Generalization bias in individual participants. A, B. Each panel shows the data from 

one participant. Each circle corresponds to one event. The x-axis indicates the average relative time of the events 
occupying the same sequence position in other sequences. The y-axis shows the signed error of constructed 
event times as measured in the timeline task. The regression line and its confidence interval are overlaid in red. 
Positive slopes of the regression line indicate that constructed event times are biased by the average time of 
events in the other sequences. Correlation coefficients are based on Pearson correlation. A shows data from the 
main sample; B from the replication sample. 
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Supplemental Tables 

Supplemental Table 1 

Mixed Model: Virtual time explains constructed times with order and real time in the model 

fixed effects      

term estimate SE t-value 95% CI 

intercept 14.010019 0.069962 200.25 13.868056 14.151981 

virtual time 3.069324 0.259967 11.81 2.558874 3.579774 

order 1.667630 0.430230 3.88 0.822785 2.512476 

real time -0.332261 0.473306 -0.70 -1.261696 0.597173 

random effects   

group term estimate 

participant intercept 0.221991 

participant virtual time (SD) 0.232089 

participant correlation random intercepts and random slopes 0.165592 

residual SD 1.324919 

model comparison       

model npar AIC LL χ2 df p 

reduced model 7 2053.90 -1019.95    

full model 8 1939.95 -961.98 115.95 1 4.88e-27 

model: memory_time~virtual_time_z+order_z+real_time_z+(1+virtual_time_z|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 

  465 
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Supplemental Table 2 

Mixed Model: Virtual time explains representational change for same-sequence events in the anterior 

hippocampus 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000326 0.000211 -1.54 -0.000740 0.000088 

virtual time 0.000751 0.000220 3.42 0.000307 0.001196 

random effects   

group term estimate 

participant intercept (SD) 0.000001 

participant virtual time 0.000257 

residual SD 0.006917 

model comparison       

model npar AIC LL χ2 df p 

reduced model 4 -7943.56 3975.78    

full model 5 -7951.43 3980.72 9.87 1 0.002 

model: ps_change~vir_time_diff+((1|sub_id)+(0+vir_time_diff|sub_id));  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 3 470 

Mixed Model: Virtual time explains representational change for same-sequence events in the anterior 

hippocampus when controlling for the effect of first-last event pairs 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000015 0.000421 -0.04 -0.000841 0.000810 

virtual time 0.000626 0.000264 2.37 0.000099 0.001152 

first-last pair 0.000357 0.000418 0.85 -0.000462 0.001176 

random effects   

group term estimate 

participant intercept (SD) 0.000001 

participant virtual time (SD) 0.000258 

residual SD 0.006914 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 -7946.81 3978.40    

full model 6 -7950.16 3981.08 5.36 1 0.021 

model: ps_change~vir_time_diff+first_last+((1|sub_id)+(0+vir_time_diff|sub_id));  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 4 

Mixed Model: Virtual time explains representational change for same-sequence events in the anterior 475 

hippocampus when including order and real time in the model 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000281 0.000219 -1.28 -0.000711 0.000149 

virtual time 0.001321 0.000541 2.44 0.000258 0.002383 

order 0.000012 0.000908 0.01 -0.001768 0.001793 

real time -0.000676 0.001019 -0.66 -0.002675 0.001323 

random effects   

group term estimate 

participant virtual time (SD) 0.000260 

residual SD 0.006913 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 -7946.84 3978.42    

full model 6 -7950.76 3981.38 5.92 1 0.015 

model: ps_change~vir_time_diff+order_diff+real_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 5 

Mixed Model: Virtual time explains representational change for different-sequence events in the 

anterior hippocampus 480 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000061 0.000110 -0.55 -0.000276 0.000155 

virtual time -0.000275 0.000110 -2.51 -0.000491 -0.000058 

random effects   

group term estimate 

participant virtual time (SD) 0.000000 

residual SD 0.007107 

model comparison       

model npar AIC LL χ2 df p 

reduced model 3 -29621.39 14813.69    

full model 4 -29625.40 14816.70 6.01 1 0.014 

model: ps_change~vir_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 6 

Mixed Model: Virtual time explains representational change for different-sequence events in the 

anterior hippocampus when including order and real time in the model 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000101 0.000112 -0.90 -0.000319 0.000118 

virtual time -0.000623 0.000294 -2.12 -0.001201 -0.000046 

order -0.000348 0.000478 -0.73 -0.001284 0.000589 

real time 0.000702 0.000529 1.33 -0.000334 0.001739 

random effects   

group term estimate 

participant virtual time (SD) 0.000000 

residual SD 0.007077 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 -28594.64 14302.32    

full model 6 -28597.12 14304.56 4.48 1 0.034 

model: ps_change~vir_time_diff+order_diff+real_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 7 

Mixed Model: The effect of virtual time differs between same-sequence and different-sequence events 

in the anterior hippocampus 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000193 0.000121 -1.60 -0.000430 0.000044 

virtual time 0.000238 0.000122 1.95 -0.000001 0.000478 

day -0.000133 0.000121 -1.10 -0.000370 0.000104 

interaction virtual time and day 0.000513 0.000127 4.05 0.000261 0.000765 

random effects   

group term estimate 

participant interaction virtual time and day (SD) 0.000176 

residual SD 0.007066 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 -37569.38 18789.69    

full model 6 -37581.75 18796.87 14.37 1 1.50e-04 

model: ps_change~vir_time_diff*same_day_dv+(0+vir_time_diff:same_day_dv|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 8 490 

Mixed Model: The effect of virtual time differs between same-sequence and different-sequence events 

in the anterior hippocampus when including interactions with other time metrics 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000190 0.000122 -1.55 -0.000428 0.000049 

virtual time 0.000237 0.000124 1.92 -0.000005 0.000480 

day -0.000130 0.000121 -1.07 -0.000368 0.000108 

interaction virtual time and day 0.000769 0.000262 2.93 0.000255 0.001283 

interaction order and day 0.000287 0.000418 0.69 -0.000533 0.001106 

interaction real time and day -0.000558 0.000464 -1.20 -0.001468 0.000351 

random effects   

group term estimate 

participant interaction virtual time and day (SD) 0.000176 

residual SD 0.007065 

model comparison       

model npar AIC LL χ2 df p 

reduced model 7 -37572.96 18793.48    

full model 8 -37579.53 18797.77 8.57 1 0.003 

model: 
ps_change~vir_time_diff*same_day_dv+order_diff:same_day_dv+real_time_diff:same_day_dv+(0+vir_time_dif
f:same_day_dv|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 9 

Mixed Model: Virtual time explains representational change in the anterior-lateral entorhinal cortex (all 495 

events) 

fixed effects      

term estimate SE t-value 95% CI 

intercept 0.000167 0.000202 0.83 -0.000229 0.000563 

virtual time -0.000424 0.000202 -2.09 -0.000820 -0.000027 

random effects   

group term estimate 

participant virtual time (SD) 0.000000 

residual SD 0.014734 

model comparison       

model npar AIC LL χ2 df p 

reduced model 3 -29767.39 14886.69    

full model 4 -29769.77 14888.89 4.39 1 0.036 

model: ps_change~vir_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 10 

Mixed Model: Virtual time does not explain representational change for different-sequence events in 

the anterior-lateral entorhinal cortex when including order and real time in the model 500 

fixed effects      

term estimate SE t-value 95% CI 

intercept 0.000167 0.000202 0.83 -0.000229 0.000563 

virtual time -0.000576 0.000531 -1.09 -0.001617 0.000464 

order -0.000712 0.000862 -0.83 -0.002402 0.000978 

real time 0.000862 0.000966 0.89 -0.001031 0.002754 

random effects   

group term estimate 

participant virtual time (SD) 0.000000 

residual SD 0.014733 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 -29767.41 14888.71    

full model 6 -29766.59 14889.30 1.18 1 0.278 

model: ps_change~vir_time_diff+order_diff+real_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 11 

Mixed Model: The effect of virtual time differentially depends on sequence membership in the anterior 

hippocampus and the anterior-lateral entorhinal cortex 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000193 0.000219 -0.89 -0.000622 0.000235 

virtual time 0.000238 0.000200 1.19 -0.000153 0.000630 

day -0.000133 0.000197 -0.67 -0.000520 0.000254 

ROI 0.000455 0.000279 1.63 -0.000093 0.001002 

virtual time * day 0.000513 0.000202 2.54 0.000117 0.000909 

virtual time * ROI -0.000810 0.000282 -2.87 -0.001363 -0.000257 

day * ROI 0.000261 0.000279 0.94 -0.000286 0.000808 

virtual time * day * ROI -0.000745 0.000294 -2.54 -0.001321 -0.000169 

random effects   

group term estimate 

participant intercept (SD) 0.000496 

participant corr. intercept, virtual time:day:ROI1 -1.000000 

participant corr. intercept, virtual time:day:ROI-1 -0.151340 

participant virtual time:day:ROI1 (SD) 0.000170 

participant corr. virtual time:day:ROI1, virtual time:day:ROI-1 0.151340 

participant virtual time:day:ROI-1 (SD) 0.000421 

residual SD 0.011540 

model comparison       

model npar AIC LL χ2 df p 

reduced model 14 -64699.87 32363.94    

full model 15 -64704.19 32367.09 6.31 1 0.012 

model: ps_change~vir_time_diff*same_day_dv*roi_dv+(1+vir_time_diff:same_day_dv:roi_dv|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 12 

Searchlight Analysis: Virtual time explains representational change for same-sequence events 

Searchlight results in a priori regions of interest, p-values corrected using small volume correction 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

left hippocampus 193 -24 -13 -20 -23.3  -13.1 -19.8  4.53 0.006  

right hippocampus 96 31 -16 -20 30.1  -16.7 -19.8  3.56 0.035  

left hippocampus 76 -27 -20 -15 -27.9  -19.5 -16.6  3.47 0.029  

Exploratory searchlight results, p-values uncorrected 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

frontal pole 399 50 44 16 48.3  41.6 19.2  3.96 0.0002 

frontal pole 173 53 41 -7 51.1  42.9 -4.45 4.56 0.0002 

left entorhinal cortex 119 -18 -16 -32 -21.2  -14.6 -31.2  3.45 0.0004 

inferior frontal gyrus 91 40 27 2 44.2  28   3.59 4.29 0.0002 

lingual gyrus 86 -17 -58 -15 -15.7  -56.9 -9.64 3.82 0.0002 

frontal medial cortex 49 7 35 -23 6.29 36.7 -24.1  4.28 0.0004 

x, y, z refer to MNI coordinates of minimum p-value in cluster, t denotes the most extreme t-value, COG: center 
of gravity 
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Supplemental Table 13 

Mixed Model: Virtual time explains representational change for different-sequence events in the peak 510 

cluster of the same-sequence searchlight analysis 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000097 0.000234 -0.41 -0.000557 0.000362 

virtual time -0.000478 0.000234 -2.04 -0.000939 -0.000018 

random effects   

group term estimate 

participant virtual time (SD) 0.000000 

residual SD 0.015162 

model comparison       

model npar AIC LL χ2 df p 

reduced model 3 -23257.87 11631.93    

full model 4 -23260.00 11634.00 4.13 1 0.042 

model: ps_change~vir_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 14 

Searchlight Analysis: Virtual time explains representational change for different-sequence events 

Exploratory searchlight results, p-values uncorrected 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

cerebellum 314 19 -68 -34 19.1  -66.3 -29.6  -5.37 0.0002 

cerebellum 104 -1 -68 -14 -1.86 -69.1 -14.3  -3.44 0.0002 

lingual gyrus 100 -1 -70 4 -2.68 -70.5 4.56 -3.73 0.0002 

x, y, z refer to MNI coordinates of minimum p-value in cluster, t denotes the most extreme t-value, COG: center 
of gravity 
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Supplemental Table 15 

Searchlight Analysis: Interaction of virtual time and sequence membership 

Searchlight results in a priori regions of interest, p-values corrected using small volume correction 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

left hippocampus 359 -26 -20 -15 -23.4  -15.5 -18.6  4.15 0.014  

right hippocampus 335 31 -16 -21 30.7  -15.1 -20.1  4.25 0.007  

Exploratory searchlight results, p-values uncorrected 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

occipital pole 103 17 -91 -8 17.7  -90.6 -6.62 4.08 0.0002 

lingual gyrus 102 -5 -73 5 -3.59 -70.4 5.01 3.72 0.0002 

frontal pole 96 43 43 18 45.4  43.4 19.7  4.31 0.0006 

frontal pole 45 35 43 17 37    43.2 18.5  3.81 0.0006 

temporal fusiform cortex 40 -25 -10 -45 -25.3  -10.3 -42.9  3.14 0.0004 

intracalcarine sulcus 33 -4 -77 11 -2.85 -75.8 11.5  3.56 0.0002 

x, y, z refer to MNI coordinates of minimum p-value in cluster, t denotes the most extreme t-value, COG: center 
of gravity 
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Supplemental Table 16 

Mixed Model: Behavioral generalization bias 520 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.352481 0.069962 -5.04 -0.494444 -0.210518 

relative time other events 0.337262 0.067360 5.01 0.200579 0.473945 

random effects   

group term estimate 

participant intercept 0.220016 

participant relative time other events (SD) -0.114173 

participant correlation random intercepts and random slopes 0.183681 

residual SD 1.331485 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 1958.57 -974.29    

full model 6 1942.67 -965.34 17.90 1 2.32e-05 

model: timeline_error~rel_time_other_events_z+(1+rel_time_other_events_z|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 17 

Mixed Model: Behavioral generalization bias (replication) 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.320564 0.089155 -3.60 -0.495488 -0.145640 

relative time other events 0.863631 0.091472 9.44 0.684152 1.043110 

random effects   

group term estimate 

participant relative time other events (SD) 0.000000 

residual SD 2.704218 

model comparison       

model npar AIC LL χ2 df p 

reduced model 3 4501.04 -2247.52    

full model 4 4449.30 -2220.65 53.74 1 2.29e-13 

model: timeline_error~rel_time_other_events_z+(0+rel_time_other_events_z|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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