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Abstract

The suffix array, describing the lexicographic order of suffixes of a given text, is the
central data structure in string algorithms, with dozens of applications in data compression,
bioinformatics, and information retrieval. The suffix array of a length-n text uses Θ(n log n)
bits, which is prohibitive in many applications. To address this, Grossi and Vitter [STOC
2000] and, independently, Ferragina and Manzini [FOCS 2000] introduced space-efficient
versions of the suffix array, known as the compressed suffix array (CSA) and the FM-index.
For a length-n text over an alphabet of size σ, these data structures use only O(n log σ)
bits. Immediately after their discovery, they almost completely replaced plain suffix arrays
in practical applications, and a race started to develop efficient construction procedures.
Yet, after more than 20 years, even for σ = 2, the fastest algorithm remains stuck at O(n)
time [Hon et al., FOCS 2003], which is slower by a Θ(log n) factor than the lower bound of
Ω(n/ log n) (following simply from the necessity to read the entire input).

We break this long-standing barrier with a new data structure that takes O(n log σ) bits,
answers suffix array queries in O(logε n) time, and can be constructed in O(n log σ/

√
log n)

time using O(n log σ) bits of space. Our solution matches the size and the query time of the
CSA and the FM-index but, unlike these two, admits a sublinear-time construction for small
alphabets. (For example, if σ = 2, then it can be built in O(n/

√
log n) time.) Our result is

based on several new insights into the recently developed notion of string synchronizing sets
[STOC 2019]. In particular, compared to their previous applications, we eliminate orthogonal
range queries, replacing them with new queries that we dub prefix rank and prefix selection
queries. As a further demonstration of our techniques, we present a new pattern-matching
index that simultaneously minimizes the construction time and the query time among all
known compact indexes (i.e., those using O(n log σ) bits).

1 Introduction

For a text T of length n, the suffix array SA[1 . . n] stores the permutation of {1, . . . , n} such
that SA[i] is the starting position of the ith lexicographically smallest suffix of T . The simplest
application of SA is as a text index : given any pattern P [1 . .m], the suffix array lets us find all
occurrences of P in T using only O(m log n) operations [47]. We simply perform a binary search
in SA, resulting in a range [b . . e) of suffixes of T having P as a prefix. Then, SA[b . . e) contains
the starting positions of all occurrences of P in T . The simplicity, space-efficiency, and elegance of
SA (often augmented with the LCP array [47, 38] storing the longest common prefixes of adjacent
suffixes) has led to its widespread use in applications that benefit from having the lexicographic
order of suffixes. As evidenced from the classical textbook of Gusfield [34], as well as more recent
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textbooks on string processing [45, 52, 59], this turns out to include a vast set of problem, ranging
from finding repetitions (MaximalRepeats, LongestRepeatedFactor, TandemRepeats)
and special subwords (MinimalAbsentWord, ShortestUniqueSubstring), to sequence com-
parisons (LongestCommonSubstring, MatchingStatistics, MaximalUniqueMatches)
and data compression (LZ77Factorization, CdawgCompression).1 There are even textbooks
dedicated entirely to suffix arrays and the closely related Burrows–Wheeler transform (BWT) [1].

With the increasing size of datasets that need processing, even suffix arrays, however, have
become expensive to use, particularly in applications where the input text is over a small alphabet
[0 . . σ). Such text requires ndlog σe bits, whereas the suffix array always uses ndlog ne bits of
space, regardless of σ. Depending on the application, the gap logn

log σ can be quite large, e.g., in
computational biology, where we usually have σ = 4, the gap is typically between 16 and 32.
This shortcoming was addressed by Grossi and Vitter [32, 33] and, independently, Ferragina and
Manzini [22, 23] at the turn of the millennium. They introduced space-efficient versions of the
suffix array, known as the compressed suffix array (CSA) and the FM-index. For a length-n
text over an alphabet of size σ, these data structures use O(n log σ) bits, and they can answer
SA queries (asking for SA[i] given i ∈ [1 . . n]) in O(logε n) time, where ε > 0 is an arbitrary
predefined constant. With such data structure, we can execute any algorithm that uses the
suffix array, but consuming less space and only incurring a factor of O(logε n) penalty in the
runtime.2 Shortly after their discovery, Sadakane [62] developed a space-efficient representation
of the LCP array and, eventually extended the compressed suffix array into a compressed suffix
tree (CST) [63]. This powerful structure can be plugged into an even larger set of algorithms [29].

Nowadays, CSAs and CSTs are widely used in practice. Modern string algorithms textbooks
focus on the use and applications of CSAs and related data structures [45], or even entirely
on the emerging notion of compressed data structures [52]. The FM-index occupies the central
role in some of the most commonly used bioinformatics tools, like Bowtie [42], BWA [43], and
Soap2 [44], and mature and highly engineered implementations of CSAs and CSTs are available
through the sdsl library3 of Gog et al. [30, 29]. Despite these developments in functionality and
practical adoption of CSAs, fast construction is the aspect of these structures that remained
beyond the reach of contemporary techniques. The original paper of Grossi and Vitter [32],
describes a method, that given a length-n text over alphabet Σ = [0 . . σ), constructs the CSA in
O(n log σ) time and using O(n log n) bits of working space. In 2003, a celebrated result of Hon
et al. [36] lowered the time complexity to O(n log log σ) and the space to the optimal O(n log σ)
bits. For the most challenging case of σ = 2, however, this algorithm still runs in Θ(n) time,
which is slower by a Θ(log n) factor than the lower bound of Ω(n/ log n), following simply from
the necessity to read the entire input. Recently, Belazzougui [4] and, independently, Munro
et al. [48], improved the time complexity of the CSA/CST construction to O(n) (while using
the optimal space of O(n log σ) bits), making it independent of the alphabet size σ. Despite
these advances, 18 years after the result of Hon et al. [36], the bound of Ω(n) still stands on the
construction of CSAs for the hardest case σ = 2. Given the versatile applications and the wide
adoption of compressed suffix array, we study the following problem:

Problem 1.1. Given a text over alphabet Σ = [0 . . σ) represented using O(n log σ) bits, can we
construct a compressed suffix array of T in o(n) time and using O(n log σ) bits of space?

Our Contribution We answer the question posed in Problem 1.1 affirmatively by describing a
new data structure that takes O(n log σ) bits, answers the SA queries in O(logε n) time, and

1We omit the formal definitions of these classical problems, and refer the reader to the cited textbooks.
2This is often acceptable: a slower algorithm remains usable, but insufficient memory can thwart it entirely.
3The latest version is available at https://github.com/simongog/sdsl-lite.
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can be constructed in O(n log σ/
√

log n) time using O(n log σ) bits of space. Thus, our solution
matches the size and the query time of the CSA and the FM-index but, unlike them, admits
a sublinear-time construction for small σ. For example, it can be built in O(n/

√
log n) = o(n)

time if σ = 2, which constitutes the first improvement since the 2003 result of Hon et al. [36].
Our data structure differs significantly from the CSA of Grossi and Vitter [32] and the

FM-index [22], which are based on the so-called Ψ function [32] and the Burrows–Wheeler trans-
form [13], respectively. Instead, we utilize the recently developed notion of string synchronizing
sets (SSS) [39]. The work defining SSS laid out its basic properties sufficient to construct BWT,
but it cannot be easily turned into a CSA, because it heavily relies on orthogonal range counting
queries [15], which are provably not capable of supporting SA queries fast enough: Pǎtraşcu [60]
showed a lower bound Ω( logn

log logn) on the query time of any structure using near-linear space.
By a novel analysis of string synchronizing sets, we side-step these obstacles and demonstrate

that general orthogonal range counting queries [16, 15] are in fact not needed at all. We show
that each of their uses can either be: (1) eliminated completely (see Proposition 3.9), or (2)
replaced with new queries that we dub prefix rank and prefix selection queries (see Section 2.1),
or (3) improved, utilizing the fact that the instances arising in our construction have properties
that permit a fast custom solution (see Proposition 3.11 applied in the proof of Proposition 3.12).

After presenting the CSA, we turn our attention to the closely related problem of text
indexing [55]. Using our new techniques, we show (see Theorem 5.21) how, given a length-n text
T stored using O(n log σ) bits, to construct in O(n log σ/

√
log n) time an index of size O(n log σ)

bits that, given the packed representation (i.e., using O(m log σ) bits) of any pattern P [1 . .m],
counts the occurrences of P in T in O(m/ logσ n+ logε n) time (where ε ∈ (0, 1) is an arbitrary
predefined constant). The best previous solutions using the compact space (i.e., O(n log σ) bits)
achieve O(n log σ/

√
log n)-time4 construction and O(m/ logσ n+ log n · logσ n)-time queries [49],

or O(n)-time construction and O(m/ logσ n + logεσ n)-time queries [50]. Thus, for the most
difficult case of σ = 2O(

√
logn), our construction subsumes both these indexes in both aspects.5

Related Work In recent years, there has also been progress in the query time of O(n log n)-bit
pattern matching indexes. The original O(m log n)-time pattern search via SA came already with
an O(m+log n)-time variant [47]. This was further reduced to O(m+log σ) by Cole et al. [19], and
to O(m+log log σ) by Fischer and Gawrychowski [24]. Finally, Navarro and Nekrich [56] achieved
O(m) time. If the pattern is given using O(m log σ) bits, Bille et al. [11] achieve O(m/ logσ n+
logm+ log log σ) time, which Navarro and Nekrich [56] improved to O(m/ logσ n+ 1).

Surprisingly, the size of some CSAs, CSTs, and compact indexes can be reduced below
ndlog σe bits for statistically compressible texts. For example, already the original FM-index [22]
takes only O(nHk(T )) + o(n log σ) bits, where Hk(T ) denotes the empirical kth-order entropy of
text [20]. Currently, the smallest indexes reach nHk(T ) + o(n(Hk(T ) + 1)) bits [3, 8]. Navarro
and Mäkinen [55], and Belazzougui and Navarro [7] survey the achievable trade-offs for such fully
compressed indexes, Chan et al. [14], and Mäkinen and Navarro [46] describe dynamic compressed
pattern-matching indexes maintaining a collection of texts supporting insertions and deletions.

Compressed indexes based on LZ77 [64] and run-length BWT [13] rapidly gain popularity.
The early indexes [6, 10, 12, 25, 26] support only pattern search and random-access operations.
Subsequent works generalized them to other dictionary compressors [17, 40, 57] and added
dynamism [28, 58]. Support for SA queries is a recent addition of Gagie et al. [27]. Navarro
surveys these indexes [54] and the intricate network of the underlying compressibility measures [53].
Interestingly, some of these pattern matching indexes can be constructed in compressed time.

4Although CSA lets us implement pattern counting queries, an index implementing pattern counting queries
does not let us implement SA queries; thus, although built in o(n) time, [49] cannot be used to answer SA queries.

5Note that logεσ n = Θ(logε
′
n) with ε′ = ε

2
holds if log σ = O(

√
logn).
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For example, the index of [28] can be constructed in O(z log3 n) from the LZ77 representation of
T (with z phrases), and then it locates pattern occurrences in O(m+ occ log n) time. On the
other hand, the only index supporting SA queries [27] is only constructible in Ω(n) time, but it
can be built in compressed space O(r log(n/r)) given the run-length BWT of T (with r runs).

2 Preliminaries

A string is a finite sequence of characters from a given alphabet. The length of a string S is
denoted |S|. For i ∈ [1 . . |S|],6 the ith character of S is denoted S[i]. A substring of S is a string
of the form S[i . . j) = S[i]S[i+ 1] · · ·S[j − 1] for some 1 ≤ i ≤ j ≤ |S|+ 1. Prefixes and suffixes
are of the form S[1 . . j) and S[i . . |S|], respectively. We use S to denote the reverse of S. We
denote the concatenation of two strings U and V by UV or U · V . Furthermore, Sk =

⊙k
i=1 S is

the concatenation of k copies of S; note that S0 = ε is the empty string. An integer p ∈ [1 . . |S|]
is a period of S if S[1 . . |S| − p] = S[1 + p . . |S|]; we denote the shortest period as per(S).

a
aababa
aababababaababa
aba
abaababa
abaababababaababa
ababa
ababaababa
abababaababa
ababababaababa
ba
baababa
baababababaababa
baba
babaababa
babaababababaababa
bababaababa
babababaababa
bbabaababababaababa

T [SA[i] . . n]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

i

19
14
5
17
12
3
15
10
8
6
18
13
4
16
11
2
9
7
1

SA[i]

Figure 1: A list of of all sorted suf-
fixes of T = bbabaababababaababa
along with the suffix array.

Throughout the paper, we consider a string (called the
text) T of length n ≥ 1 over an integer alphabet Σ = [0 . . σ),
where σ = nO(1). We use � to denote the order on Σ,
extended to the lexicographic order on Σ∗ (the set of strings
over Σ) so that U, V ∈ Σ∗ satisfy U � V if and only if either
U is a prefix of V , or U [1 . . i) = V [1 . . i) and U [i] ≺ V [i]
holds for some i ∈ [1 . .min(|U |, |V |)].

The suffix array SA[1 . . n] of T is a permutation of [1 . . n]
such that T [SA[1] . . n] ≺ T [SA[2] . . n] ≺ · · · ≺ T [SA[n] . . n],
i.e., SA[i] is the starting position of the lexicographically ith
suffix of T ; see Fig. 1. The inverse suffix array ISA[1 . . n]
is the inverse permutation of SA, i.e., ISA[j] = i holds if
and only if SA[i] = j. Intuitively, ISA[j] tells the rank of a
suffix T [j . . n] among suffixes of T . By lcp(U, V ) we denote
the length of the longest common prefix of U and V . For
j1, j2 ∈ [1 . . n], we let LCE(j1, j2) = lcp(T [j1 . .], T [j2 . .]).

We use the word RAM model of computation [35] with w-
bitmachine words, where w ≥ log n. In this model, strings are
typically represented as arrays, with each character occupying
a single memory cell. A single character, however, only needs
dlog σe bits, which might be much less than w. We can
therefore store (the packed representation of) a text T ∈ [0 . . σ)n using O

(⌈n log σ
w

⌉)
memory cells.

2.1 (Prefix) Rank and Selection Queries

Let us recall the (ordinary) rank and selection queries on a string S ∈ Σn.

Rank query rankS,a(j): Given a ∈ Σ and j ∈ [1 . . n], compute |{i ∈ [1 . . j] : S[i] = a}|.
Selection query selectS,a(r): Given a ∈ Σ and r ∈ [1 . . rankS,a(n)], find the rth smallest element

of {i ∈ [1 . . n] : S[i] = a}.

Theorem 2.1 (Rank and selection queries in bitvectors [37, 18, 51, 2]). For every string
S ∈ {0, 1}∗, there exists a data structure of O(|S|) bits answering rank and selection queries in
O(1) time. Moreover, given the packed representations of m strings of total length n, the data
structures for all these strings can be constructed in O(m+ n/ log n) time.

6For i, j ∈ Z, denote [i . . j] = {k∈Z : i ≤ k ≤ j}, [i . . j) = {k∈Z : i ≤ k < j}, and (i . . j] = {k∈Z : i < k ≤ j}.
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Next, we provide a generalization of rank and selection queries specific to sequences of strings
(strings whose characters are strings themselves). Let W ∈ (Σ∗)m be a sequence of m strings.

Prefix rank query rankW,X(j): Given X ∈ Σ∗ and j ∈ [1 . .m], compute |{i ∈ [1 . . j] :
X is a prefix of W [i]}|.

Prefix selection query selectW,X(r): Given X ∈ Σ∗ and r ∈ [1 . . rankW,X(m)], find the rth
smallest element of {i ∈ [1 . .m] : X is a prefix of W [i]}.

The following result, proved in Appendix A by building on the results of Belazzougui and
Puglisi [9], provides an efficient implementation of prefix rank and selection queries. Note that
we require W to consists of same-length strings over an integer alphabet.

Theorem 2.2. For all integers m, b, σ ∈ Z≥1 satisfying m ≥ σb ≥ 2, every constant ε ∈ (0, 1),
and every string W ∈ ([0 . . σ)b)≤m, there exists a data structure of size O(m) answering prefix
rank and selection queries in O(logεm) time. Moreover, it can be constructed in O(m

√
logm)

time using O(m) working space given the packed representation of W and the parameter ε.

2.2 String Synchronizing Sets

Definition 2.3 (τ -synchronizing set [39]). Let T ∈ Σn be a string and let τ ∈ [1 . . bn2 c] be a
parameter. A set S ⊆ [1 . . n − 2τ + 1] is called a τ -synchronizing set of T if it satisfies the
following consistency and density conditions:

1. If T [i . . i+2τ) = T [j . . j+2τ), then i ∈ S holds if and only if j ∈ S (for i, j ∈ [1 . . n−2τ+1]),
2. S ∩ [i . . i+ τ) = ∅ if and only if per(T [i . . i+ 3τ − 2]) ≤ 1

3τ (for i ∈ [1 . . n− 3τ + 2]).

In most applications, we want to minimize |S|. Note, however, that the density condition
imposes a lower bound |S| = Ω(nτ ) for strings of length n ≥ 3τ − 1 that do not contain substrings
of length 3τ − 1 which are periodic with period ≤ 1

3τ . Thus, we cannot hope to achieve an upper
bound improving in the worst case upon the following one.

Theorem 2.4 ([39, Theorem 8.10]). For any string T of length n and parameter τ ∈ [1 . . bn2 c],
there exists a τ -synchronizing set S of size |S| = O

(
n
τ

)
. Moreover, if T ∈ [0 . . σ)n, where

σ = nO(1), such S can be (deterministically) constructed in O(n) time.

Note, that when τ = ω(1) ∩O(logσ n) and T ∈ [0 . . σ)n is given in the packed representation,
the first part of the above result opens the possibility of an algorithm running in O(nτ ) = o(n) time.
In [39], it was shown that this lower bound is achievable (the upper bound τ = O(logσ n) follows
from the fact that every algorithm needs to at least read the input, which takes O(n/ logσ n)
time; thus, for larger τ , the algorithm cannot run in O(nτ ) time).

Theorem 2.5 ([39, Theorem 8.11]). For every constant µ < 1
5 , given the packed representation

of a text T ∈ [0 . . σ)n and a positive integer τ ≤ µ logσ n, one can (deterministically) construct
in O(nτ ) time a τ -synchronizing set of size O(nτ ).

3 ISA Queries

In this section, we provide an index answering ISA queries only. However, the infrastructure
developed for this index is defined so that it can be re-used in Sections 4 and 5, where we focus
on SA queries and pattern matching queries, respectively. For now, our goal is to pre-process
the packed representation of a text T ∈ [0 . . σ)n in O(n log σ/

√
log n) time and O(n/ logσ n)

space so that, given j ∈ [1 . . n], one can compute ISA[j] in O(logε n) time. Note that the plain
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representation of ISA[1 . . n] can be constructed in O(n) time and space, which satisfies the
announced complexity guarantees if σ = nΩ(1). Hence, we hereafter assume σ < n1/6.

Let τ = µ logσ n, where µ is any positive constant smaller than 1
6 (such µ exists by σ < n1/6).

We fix a τ -synchronizing set S of T obtained using Theorem 2.5 and use the following notation:

• n′ := |S| = O(n/τ) is the size of S;
• succS(i) := min{j ∈ S ∪ {n− 2τ + 2} : j ≥ i} for any i ∈ [1 . . n− 2τ + 1];
• R := {i ∈ [1 . . n− 3τ + 2] : per(T [i . . i+ 3τ − 2]) ≤ 1

3τ};
• D := {Di : i ∈ [1 . . n− 3τ + 2] \ R}, where Di := T [i . . succS(i) + 2τ),
• F := {T [i . . i+ 3τ − 2] : i ∈ R}.
The set D ∪ F plays a very important role in our indexes. Observe that any sufficiently long

suffix of T has a prefix in either D or F . On the other hand, [39, Lemma 6.1] shows that D
is prefix-free, i.e., no string X ∈ D is a prefix of another X ′ ∈ D. Moreover, by the density
condition of S, no string in D is a prefix of any string X ∈ F . Thus, the set D ∪ F is prefix-free
and, consequently, all suffixes in the SA of T can be partitioned into blocks according to their
prefix from D ∪ F . Letting X ∈ D ∪ F for any j ∈ [1 . . n] be the prefix of T [j . . n], we define
pos(j) = {j′ ∈ [1 . . n] : LCET (j, j′) ≥ |X| and T [j′ . . n] � T [j . . n]}, and denote δ(j) := |pos(j)|.

Organization The section is organized as follows. Our description is split into four parts. First
(Section 3.1), we describe the data structures, called collectively the index “core”, that enable
efficiently checking if j ∈ R, and to compute the prefix X ∈ D∪F as well as the endpoints of the
corresponding block SA(b . . e]. The structure and query algorithm to compute δ(j) (and thus
ISA[j] = b + δ(j)) is different depending on whether X ∈ D (i.e., j ∈ [1 . . n] \ R; we call such
positions nonperiodic) or X ∈ F (i.e., j ∈ R, and such positions are called periodic), and the
structures used for the two cases are described in the next two parts (Sections 3.2 and 3.3). All
ingredients are finally put together in Section 3.4.

3.1 The Index Core

We use the following definitions. Let B[1 . . n] be a bitvector defined so that B[i] = 1 holds if
and only if i ∈ S. Define ISA3τ−1 to be a mapping from X ∈ [0 . . σ)≤3τ−1 := {ε} ∪ [0 . . σ) ∪
. . . ∪ [0 . . σ)3τ−1 to the pair of integers (b, e) such that b = |{i ∈ [1 . . n] : T [i . . n] ≺ X}| and
e − b = |{i ∈ [1 . . n] : X is a prefix of T [i . . n]}|. Note, that if b 6= e, these conditions are
equivalent to SA(b . . e] containing the starting positions of all suffixes of T that have X a prefix.
When accessing ISA3τ−1, the strings X ∈ [0 . . σ)≤3τ−1 are injectively converted to small integers
as follows. For any X ∈ [0 . . σ)≤3τ−1, we first append 6τ−2|X| zeros and |X| cs (where c = σ−1)
to X, and then we interpret the resulting string as a base-σ representation of an integer in
[0 . . σ6τ ). We denote it int(X). It is easy to check that X 6= X ′ implies int(X) 6= int(X ′).

The index core, denoted CISA(T, S), consists of three components. First, we store the packed
representation of T using O(n/ logσ n) space. Second, we store the bitvector B augmented to
answer O(1)-time rank and selection queries (Theorem 2.1). The bitvector takes O(n) bits, i.e.,
O(n/ log n) space. Finally, we store the lookup table ISA3τ−1. By int(X) ∈ [0 . . σ6τ ) (where
X ∈ [0 . . σ)≤3τ−1), we can store the mapping ISA3τ−1 in O(σ6τ ) = O(n6µ) = O(n/ log n) space.

Lemma 3.1. Given CISA(T,S), for any j ∈ [1 . . n] we can in O(1) time determine if j ∈ R,
compute the prefix X ∈ D ∪ F of T [j . . n], and integers b, e such that SA(b . . e] contains the
starting indexes of all suffixes of T prefixed with X.

Proof. By the density condition, we have j ∈ R if and only if succS(j) − j ≥ τ . Thus, given
the position j ∈ [1 . . n], we first obtain x = rankB,1(j − 1). The position s = selectB,1(x+ 1) is
then equal to succS(j). If it holds s− j ≥ τ , then we have j ∈ R and X = T [j . . j + 3τ − 1) ∈

6



F . Otherwise, we have j ∈ [1 . . n] \ R and X = T [j . . s + 2τ) ∈ D. Finally, we obtain
ISA3τ−1[int(X)] = (b, e). It is easy to see that all operations, including the computation of
int(X) from the packed representation of X, take O(1) time.

Proposition 3.2. Given the packed representation of T ∈ [0 . . σ)n and the array containing
elements of S, we can construct CISA(T, S) in O(n/ logσ n) time.

Proof. Given S, we easily initialize the bitvector B in O(n/ logσ n) time; this time also suffices
to augment B using Theorem 2.1.

To compute ISA3τ−1, we first compute for every X ∈ [0 . . σ)` (where ` = 3τ−1), its frequency
fX := |{i ∈ [1 . . n] : X is a prefix of T [i . . n]}|. Using the simple generalization of the algorithm
described in [39, Section 6.1.2], this takes O(n/ logσ n) time (note that the algorithm requires
`σ2`+1 = O(n/ logσ n), which is satisfied here, since 2` + 1 < 6µ logσ n and µ < 1

6). From the
frequencies of X ∈ [0 . . σ)3τ−1 we then compute the values of fX for all X ∈ [0 . . σ)<3τ−1 by
observing that unless X is a nonempty suffix of T , it holds fX =

∑
c∈[0. .σ) fXc, i.e., the frequency

of each string shorter than 3τ −1 is obtained in O(σ) time. If X is a nonempty suffix of T (which
we can check in O(1) time), we additionally add one to the count. Since each string contributes
exactly once to the frequency of another string, over all X ∈ [0 . . σ)<3τ−1, this takes O(σ3τ−1) =
O(n/ logσ n) time. Once fX is computed for all X ∈ [0 . . σ)≤3τ−1, we compute ISA3τ−1 as follows.
Denote Σ = [0 . . σ). Assume that ISA3τ−1[int(X)] = (b, e) holds for some X ∈ [0 . . σ)<3τ−1.
Then, for any c ∈ Σ, it holds ISA3τ−1[int(Xc)] = (e− x− fXc, e− x), where x =

∑
c′∈Σ,c′>c fXc′ ,

e.g., for σ = 2, ISA3τ−1[int(X0)] = (e− fX1 − fX0, e− fX1). We thus compute ISA3τ−1[int(X)]
by initializing ISA3τ−1[int(ε)] = (0, n), and then enumerating all X ∈ [0 . . σ)≤3τ−1 in the order
of nondecreasing length (and, in case of ties, in the reverse lexicographical order). During the
enumeration of strings of the form Xc, where c ∈ Σ, we maintain the sum x =

∑
c′∈Σ,c′>c fXc′ .

Then, using the above formula, the value of ISA3τ−1[int(Xc)] can be obtained in O(1) time.
Over all X, the computation of ISA3τ−1[int(X)] thus takes O(σ3τ−1) = O(n/ logσ n) time.

3.2 The Nonperiodic Positions

In this section, we describe a data structure to compute the value ISA[j] for any j ∈ [1 . . n] \ R.
The main idea of the data structure is as follows. Let X ∈ D be the prefix of T [j . . n].

By consistency of S, the offset of the first position from S in every suffix prefixed with X is
δtext = |X| − 2τ . Thus, the order of these suffixes is the same as the order of corresponding
suffixes starting at positions of S. Hence, it suffices to sort only those suffixes, and then computing
δ(j) reduces to counting the number of positions in S that occur earlier in the sorted order than
the position corresponding to j, and are followed by X(δtext . . |X|] and preceded with X[1 . . δtext]
in the text. We show how to implement that query using Theorem 2.2.

We use the following definitions. Let (st)t∈[1. .n′] be the sequence containing the elements of S
in sorted order, i.e., if i < j then si < sj . Let (s′t)t∈[1. .n′] be the sequence containing elements of
S sorted according to the lexicographical order of the corresponding suffixes, i.e., if i < j then
T [s′i . . n] ≺ T [s′j . . n]. Let ISAS[1 . . n′] be an array storing a permutation of [1 . . n′] such that
ISAS[j] = i holds if and only if sj = s′i. Finally, let W [1 . . n′] be a sequence of length-3τ strings
such that W [i] = Xi, where Xi = T∞[s′i − τ . . s′i + 2τ).

Lemma 3.3. Let j ∈ [1 . . n] \ R. Let X = Dj ∈ D be the prefix of T [j . . n] and y be an integer
in [1 . . n′] such that s′y = j + |X| − 2τ . Then, δ(j) = rankW,X(y).

Proof. Denote δtext = |X| − 2τ and s = j + δtext. By definition of D, we have s ∈ S. By
the consistency of S, there exists a bijection (given by the mapping j′ 7→ j′ + δtext) between
positions j′ ∈ [1 . . n] such that T [j′ . . n] � T [j . . n] and Dj′ = Dj , and positions s′ ∈ S such that
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T∞[s′ − δtext . . s
′ + 2τ) = X and T [s′ . . n] � T [s . . n]. Thus, letting y ∈ [1 . . n′] be such that

s′y = s, we obtain that δ(j) = |{i ∈ [1 . . y] : T∞[s′i − δtext . . s
′
i + 2τ) = X}|. Since we defined

W [i] = Xi, where Xi = T∞[s′i − τ . . s′i + 2τ), we conclude that δ(j) = rankW,X(y).

Proposition 3.4. For every constant ε ∈ (0, 1), given CISA(T,S), we can in O(n log σ/
√

log n)
time and using O(n/ logσ n) working space augment it into a data structure of size O(n/ logσ n)
that, given j ∈ [1 . . n] \ R, returns ISA[j] in O(logε n) time.

Proof. The data structure, in addition to CISA(T, S), contains three components. First, we store
the array ISAS[1 . . n′] in plain form, using n′ = O(n/ logσ n) words of space. Second, we store a
lookup table of size O(nδ), for some δ < 1, that given the packed representation of any string
X ∈ [0 . . σ)∗ of length |X| = O(logσ n), allows us to compute the packed representation of X in
O(1) time. Third, and final, we store the data structure of Theorem 2.2 for the sequence W .
Due to n′ = O(n/ logσ n) and σ3τ = o(n/ log n), this requires O(n/ logσ n) space.

Using CISA(T, S) and the above two components, given j ∈ [1 . . n] \ R, we compute ISA[j] as
follows. First, using Lemma 3.1, in O(1) time we compute X = Dj and integers b, e such that
SA(b . . e] contains the starting positions of all suffixes of T starting with X. To compute y we
first obtain x = rankB,1(j − 1) in O(1) time and and then let y = ISAS[x+ 1]. By Lemma 3.3,
it remains to determine δ(j) = rankW,X(y). Using the data structure from Theorem 2.2 for the
prefix rank query, computing ISA[j] = b+ δ(j) takes O(logε n) time.

The data structure is constructed as follows. We first construct the array ISAS. We start
by creating the sequence (st)t∈[1. .n′] using select queries on B. This takes O(n/ logσ n) time.
Then, given (st)t∈[1. .n′], and the packed representation of T , by [39, Theorem 4.3], we compute
the sequence (s′t)t∈[1. .n′] in O(n/ logσ n) time. Given (s′t)t∈[1. .n′], we then easily obtain the array
ISAS: simply scan the sequence (s′t)t∈[1. .n′] and for each i ∈ [1 . . n′], let j = rankB,1(s′i) and
note that then sj = s′i and hence we can set ISAS[j] = i. Next, we initialize the lookup table
used to reverse short strings. In the RAM model, such array is easily initialized in O(nδ) time.
The sequence W [1 . . n′] is then easily obtained from (s′t)t∈[1. .n′] using the above lookup table in
O(n/ logσ n) time. We then process W using Theorem 2.2, which takes O(n log σ/

√
log n) time

and O(n/ logσ n) space.

3.3 The Periodic Positions

In this section, we describe a data structure to compute the value ISA[j] for any j ∈ R.

Preliminaries We start by introducing the definitions that will allow us to express the properties
utilized in our data structures. For X ∈ F , we define the Lyndon root of X as L-root(X) =
min{X[t . . t + p) : t ∈ [1 . . p]}, where p = per(X). Then, for any j ∈ R, we let L-root(j) =
L-root(T [j . . j + 3τ − 1)). We define H = {L-root(X) : X ∈ F}, and for any H ∈ H, we denote
RH = {j ∈ R : L-root(j) = H}. Next, we define the L-decomposition. For any j ∈ R, let
ej = min{j′ ≥ j : j′ 6∈ R}+ 3τ − 2. By [39, Fact 3.2], for j ∈ R, T [j . . ej) is the longest prefix
of T [j . . n] having period |L-root(j)|. Thus, for every j ∈ R, we can write T [j . . ej) = H ′HkH ′′,
where H = L-root(j), and H ′ (resp. H ′′) is a proper suffix (resp. prefix) of H. Note that
L-decomposition is unique, since otherwise it would contradict the synchronization property
of primitive strings [21, Lemma 1.11]. Hence, we denote L-head(j) = |H ′|, L-exp(j) = k, and
L-tail(j) = |H ′′|. For everyH ∈ H and s ∈ [0 . . |H|), we denote Rs,H = {j ∈ RH : L-head(j) = s}.
For j ∈ R, we let type(j) = +1 if ej ≤ n and T [ej ] � T [ej − p] (where p = |L-root(j)|), and
type(j) = −1 otherwise. We denote R− = {j ∈ R : type(j) = −1} and R+ = R \ R−. We also let
R−H = R− ∩ RH and R−s,H = R− ∩ Rs,H , where H ∈ H and s ∈ [0 . . |H|).
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The following lemma proves that the set of positions Rs,H occupies a contiguous block in the
SA of T and describes the structure of such block.

Lemma 3.5. If j ∈ Rs,H then for any j′ ∈ [1 . . n], LCET (j, j′) ≥ 3τ − 1 if and only if j′ ∈ Rs,H .
Moreover, if j′ ∈ Rs,H , then:

1. If type(j) = −1 and type(j′) = +1, then T [j . . n] ≺ T [j′ . . n].
2. If type(j) = type(j′) = −1 and ej − j < ej′ − j′, then T [j . . n] ≺ T [j′ . . n].
3. If type(j) = type(j′) = +1 and ej − j > ej′ − j′, then T [j . . n] ≺ T [j′ . . n].

Proof. Let j′ ∈ [1 . . n] be such that LCET (j, j′) ≥ 3τ − 1. Then, by definition, L-root(j′) =
L-root(T [j′ . . j′+ 3τ − 1)) = L-root(T [j . . j+ 3τ − 1)) = L-root(j). To show that L-head(j′) = s,
note that by |H| ≤ τ , the string H ′H2 (where H ′ is a length-s suffix of H) is a prefix of
T [j . . j + 3τ − 1) = T [j′ . . j′ + 3τ − 1). On the other hand, L-head(j′) = s′ implies that Ĥ ′H2

(where Ĥ ′ is a length-s′ suffix of H) is a prefix of T [j′ . . j′+3τ −1). Thus, by the synchronization
property of primitive strings applied to the two copies of H, we have s′ = s, and consequently,
j′ ∈ Rs,H .

For the converse implication, assume j, j′ ∈ Rs,H . This implies that both T [j . . ej) and
T [j′ . . ej′) are prefixes of H ′H∞ (where H ′ is as above). Thus, by ej − j, ej′ − j′ ≥ 3τ − 1, we
obtain LCET (j, j′) ≥ 3τ − 1.

1. Let S = H ′H∞, where H ′ is a length-s suffix of H. We will prove T [j . . n] ≺ S ≺ T [j′ . . n],
which implies the claim. First, we note that type(j) = −1 implies that either ej = n + 1, or
ej ≤ n and T [ej ] ≺ T [ej − |H|]. In the first case, T [j . . ej) = T [j . . n] is a proper prefix of S
and hence T [j . . n] ≺ S. In the second case, letting ` = ej − j, we have T [j . . j + `) = S[1 . . `]
and T [j + `] ≺ T [j + `− |H|] = S[1 + `− |H|] = S[1 + `]. Consequently, T [j . . n] ≺ S. To show
S ≺ T [j′ . . n] we observe that type(j′) = +1 implies ej′ ≤ n. Thus, letting `′ = ej′ − j′, we have
S[1 . . `′] = T [j′ . . j′ + `′) and S[1 + `′] = S[1 + `′ − |H|] = T [j′ + `′ − |H|] ≺ T [j′ + `′]. Hence,
we obtain S ≺ T [j′ . . n].

2. Similarly as above, we consider two cases for ej . If ej = n+ 1, then by ej − j < ej′ − j′,
T [j . . ej) = T [j . . n] is a proper prefix of T [j′ . . ej′) and hence T [j . . n] ≺ T [j′ . . ej′) � T [j′ . . n].
If ej ≤ n, then letting ` = ej − j, we have T [j . . j + `) = T [j′ . . j′ + `) and by ej − j < ej′ − j′,
T [j + `] ≺ T [j + `− |H|] = T [j′ + `− |H|] = T [j′ + `]. Consequently, T [j . . n] ≺ T [j′ . . n].

3. By type(j′) = +1 we have ej′ ≤ n. Thus, letting `′ = ej′ − j′, by ej − j > ej′ − j′, we
have T [j . . j + `′) = T [j′ . . j′ + `′) and T [j + `′] = T [j + `′ − |H|] = T [j′ + `′ − |H|] ≺ T [j′ + `′].
Consequently, T [j . . n] ≺ T [j′ . . n].

The key to the efficient computation of δ(j) is processing of the elements of R in blocks.
The starting positions of these blocks are defined as R′ := {j ∈ R : j − 1 /∈ R}. We also let
R′− = R− ∩ R′ and R′−H = R′ ∩ R−H for H ∈ H. The next lemma justifies our strategy.

Lemma 3.6. If j ∈ R\R′, then L-root(j−1) = L-root(j), ej−1 = ej, and type(j−1) = type(j).

Proof. Denote p = per(T [j−1 . . j−1+3τ−1)) and p′ = per(T [j . . j+3τ−1)). By j − 1, j ∈ R we
have p, p′ ≤ τ

3 . Consider S = T [j . . j+ τ). The string S has both periods p and p′. If p 6= p′, then
by the weak periodicity lemma, S has a period p′′ = gcd(p, p′) < p′. Since p′′ | p′ we obtain that
T [j . . j+p′) is not primitive, which contradicts per(T [j . . j+3τ−1)) = p′. Thus, p = p′. Then, by
p ≤ τ

3 , we have T [j−1 . . j−1+p) = T [j−1+p . . j−1+2p). Consequently, {T [j−1+t . . j−1+t+p) :
t ∈ [0 . . p)} = {T [j+t . . j+t+p) : t ∈ [0 . . p)}, and hence L-root(j − 1) = L-root(j).

By [39, Fact 3.2], T [j − 1 . . ej−1) (resp. T [j . . ej)) is the longest substring starting at position
j − 1 (resp. j) with period p (resp. p′). Equivalently, ej−1 = j−1+p + LCE(j−1, j−1+p)
and ej = j+p′ + LCE(j, j+p′). Thus, by p = p′ and T [j−1] = T [j−1+p], we have ej−1 =
j−1+p+ LCE(j−1, j−1+p) = j+p+ LCE(j, j+p) = j+p′ + LCE(j, j+p′) = ej .

The third claim follows from the definition of type and equalities ej−1 = ej and p = p′.
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Next, we develop a component computing the basic values characterizing periodic positions.

Proposition 3.7. In O(n/ logσ n) time, we can augment CISA(T, S) into a data structure that,
given any j ∈ R, returns L-root(j), L-head(j), L-exp(j), L-tail(j), and type(j) in O(1) time.

Proof. We use the following definitions. Let L denote the mapping from [0 . . σ)3τ−1 to N2 such
that for any X ∈ [0 . . σ)3τ−1 satisfying per(X) ≤ 1

3τ , L maps X to a pair (s, p), where p = per(X)
and s ∈ [0 . . p) is such that X[1+s . . 1+s+p) = min{X[t . . t+ p) : t ∈ [1 . . p]}.

We now define the data structure. In addition to CISA(T,S), the data structure contains
the lookup table L. When accessing L, strings X ∈ [0 . . σ)3τ−1 are converted to integers int(X).
Thus, the mapping L needs O(σ6τ ) = O(n/ logσ n) space.

Using CISA(T, S) and L, we implement the queries as follows. Given j ∈ R, we first compute
x ∈ [0 . . σ6τ ) such that x = int(T [j . . j + 3τ − 1)). Given the packed encoding of text T ,
such x is obtained in O(1) time. We then look up (s, p) = L[x], and in O(1) time obtain
L-root(j) = T [j+s . . j+s+p) and L-head(j) = s. Next, we compute L-exp(j) and L-tail(j). For
this we recall that by [39, Section 6.1.2], it holds ej = succS(j) + 2τ − 1. The value succS(j)
is computed using rank and select query on the bitvector B from CISA(T,S), as explained
in Lemma 3.1. Thus, in O(1) time we obtain ej , and consequently L-exp(j) = b ej−j−sp c and
L-tail(j) = (ej − j − s) mod p. Finally, to test if type(j) = +1, we check whether ej ≤ n, and if
so, whether T [ej ] � T [ej − p].

To construct the data structure, we observe that, given X ∈ [0 . . σ)3τ−1, we can check in
O(τ2) time if per(X) ≤ 1

3τ , and if so, determine the value L[int(X)] = (s, p). To compute per(X),
we try all ` ∈ [1 . . b τ3c] until we find that ` is a period of X, or that there is no such `. Assuming
p := per(X) ≤ 1

3τ , finding s ∈ [0 . . p) satisfyingX[1+s . . 1+s+p) = min{X[t . . t+p) : t ∈ [1 . . p]}
also takes O(τ2) time. Initializing L takes O(σ6τ ) = O(n/ logσ n). Over all X ∈ [0 . . σ)3τ−1, we
spend O(σ3τ−1τ2) = O(n1/2 log2 n) = O(n/ logσ n) time.

We focus on computing δ(j) for j ∈ R−. The elements of R+ are processed symmetrically
(the details are provided in the proof of Proposition 3.13). For any H ∈ H, s ∈ [0 . . |H|), and
j ∈ R−s,H , we define posa(j) = {j′ ∈ R−s,H : L-exp(j′) ≤ L-exp(j)} and poss(j) = {j′ ∈ R−s,H :
L-exp(j′) = L-exp(j) and T [j′ . . n] � T [j . . n]}. For any j ∈ R−, we denote δa(j) = |posa(j)|
and δs(j) = |poss(j)|.

Lemma 3.8. For any j ∈ R−, it holds δ(j) = δa(j)− δs(j).

Proof. We will prove that posa(j) is a disjoint union of pos(j) and poss(j). This implies
δ(j) + δs(j) = δa(j), and consequently, the equality in the claim.

By Lemma 3.5, letting j ∈ R−s,H , we have pos(j) = {j′ ∈ R−s,H : T [j′ . . n] � T [j . . n]},
and moreover, if j′ ∈ pos(j), then ej′ − j′ ≤ ej − j. In particular, L-exp(j′) = b ej′−j

′−s
|H| c ≤

b ej−j−s|H| c = L-exp(j). Hence, pos(j) ⊆ posa(j). On the other hand, clearly poss(j) ⊆ posa(j) and
poss(j)∩pos(j) = ∅. Thus, to obtain the claim, it suffices to show that posa(j)\poss(j) ⊆ pos(j).

Let j′ ∈ posa(j) \ poss(j). Consider two cases. If L-exp(j′) = L-exp(j), then by definition of
poss(j), it must hold T [j′ . . n] � T [j . . n]. Thus, we have j′ ∈ pos(j). Let us therefore assume
L-exp(j′) < L-exp(j). Then, ej′− j′ = s+L-exp(j′) · |H|+L-tail(j′) < s+L-exp(j′) · |H|+ |H| ≤
s+ L-exp(j) · |H| ≤ s+ L-exp(j) · |H|+ L-tail(j) = ej − j. By Item 2 of Lemma 3.5, this implies
T [j′ . . n] ≺ T [j . . n], and consequently, j′ ∈ pos(j).

Computing δa(j) We now describe a data structure that allows computing δa(j) for j ∈ R−.

Proposition 3.9. In O(n/ logσ n) time, we can augment the structure of Proposition 3.7 so that
δa(j) can be computed in O(1) time given j ∈ R−.
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Proof. We use the following definitions. Let E[1 . . n] be a bitvector such that for every i ∈ [1 . . n],
it holds E[i] = 0 if and only if SA[i] ∈ [1 . . n] \ R−, or i < n and the positions j = SA[i] and
j′ = SA[i+1] satisfy j, j′ ∈ R−s,H and L-exp(j) = L-exp(j′) for some H ∈ H and s ∈ [0 . . |H|). For
any H ∈ H and s ∈ [0 . . |H|), let E−s,H denote the block of E corresponding to suffixes starting
in R−s,H , i.e., E

−
s,H = E(b . . e], where (b . . e] ⊆ [1 . . n] is such that R−s,H = {SA[i] : i ∈ (b . . e]}

(such (b . . e] exists by Item 1 of Lemma 3.5). We define Q : [0 . . σ)3τ−1 → [1 . . n] as the
mapping such that for every X ∈ F , if we let H = L-root(X) and s ∈ [0 . . |H|) be such that
X[1+s . . 1+s+|H|) = H, then assuming R−s,H 6= ∅, Q maps X to min{L-exp(j) : j ∈ R−s,H}.
Finally, let unary(x) := 0x1 denote the unary encoding of an integer x ≥ 0, and let unary+(x)
be unary(x) with the first symbol removed (in particular, unary+(0) is the empty string). If
(ai)i∈[1. .k] is a sequence of non-negative integers, we define unary((ai)i∈[1. .k]) :=

⊙k
i=1 unary(ai),

where
⊙

denotes concatenation. Analogously, unary+((ai)i∈[1. .k]) :=
⊙k

i=1 unary+(ai). The
definitions of unary and unary+ are naturally extended to infinite sequences (ai)i∈[1. .∞).

The data structure, in addition to the data structure from Proposition 3.7, contains two
components. First, we store the bitvector E augmented using Theorem 2.1, which takes O(n) bits,
i.e., O(n/ log n) space. Second, we store the mapping Q. Assuming, similarly as in Section 3.1,
that when accessing Q, strings X ∈ [0 . . σ)3τ−1 are converted to integers int(X), the mapping Q
needs O(σ6τ ) = O(n/ logσ n) space.

Using the above data structures, given j ∈ R−, we compute δa(j) as follows. First, using
Lemma 3.1, in O(1) time we compute a prefix X ∈ F of T [j . . n] and integers b, e such that
SA(b . . e] contains the starting positions of all suffixes of T starting with X. Equivalently, by
Lemma 3.5, SA(b . . e] contains all positions from Rs,H , where H = L-root(j) and s = L-head(j).
Next, using Proposition 3.7, we compute in O(1) time the value k = L-exp(j). Finally, we retrieve
kmin = Q[int(X)]. Observe now that by Lemma 3.5, all positions in R−s,H occur in SA(b . . e]
before R+

s,H . Furthermore, by Item 2 in Lemma 3.5, the L-exponents in the SA(b . . e] range
corresponding to R−s,H are nondecreasing. It is easy to see that [kmin . . k] ⊆ {L-exp(j′) : j′ ∈ R−s,H}
(for k′ ∈ (kmin . . k], we can take j′ = j+ (k− k′)|H|). Thus, by the definition of E, we can finally
return δa(j) = selectE,1(rankE,1(b) + (k − kmin) + 1)− b in O(1) time.

The data structure is constructed as follows. Let α < 1 be a positive constant. We first show
an algorithm that, given the data structure from Proposition 3.7 and the set of positions R′−H
(where H ∈ H) as input, computes all bitvectors E−0,H , . . . , E

−
|H|−1,H in O(|R′−H |+ |R

−
H |/ log n+nα)

time. For any s ∈ [0 . . |H|) and k ≥ 0, denote es,k,H = |{j′ ∈ R−s,H : L-exp(j′) = k}|. We start
by observing that by Item 2 in Lemma 3.5, E−s,H = unary+((es,k,H)k∈[0. .∞)). The values es,k,H
can be efficiently determined based on the following observation. First, note that if j ∈ R′−H ,
then [j . . ej − 3τ + 2) ⊆ R−H , and j − 1, ej − 3τ + 2 6∈ R, i.e., the block of positions in R−H
is maximal. By Lemma 3.6, for any j′ ∈ [j . . ej − 3τ + 2), it holds ej′ = ej . Thus, for any
j′ ∈ [j . . ej − 3τ + 2), we have L-exp(j′) = b e−j

′

|H| c and L-head(j′) = (e − j′) mod |H|, where
e = ej − L-tail(j). With this in mind, for any j ∈ R′−H , we let Ij = (3τ − 2− t . . s+ k|H|], where
s = L-head(j), k = L-exp(j), and t = L-tail(j). By the above discussion, for any s ∈ [0 . . |H|)
and k ≥ 0, we have es,k,H = |{j ∈ R′−H : s+ k|H| ∈ Ij}|. The algorithm consists of three steps:

1. First, we compute the string unary((e0,k,H)kmax
k=0 ), where kmax = max{L-exp(j′) : j′ ∈

R−H}. We start by computing kmax. For this we observe that kmax = max{L-exp(j′) :
j′ ∈ R′−H }. Thus, using Proposition 3.7, we can compute kmax in O(|R′−H |) time. To
compute unary((e0,k,H)k∈[0. .kmax]), we generate the sequence of “events” from R′−H , sort
them, and then output unary((e0,k,H)k∈[0. .kmax]) left-to-right. More precisely, let m =
|R′−H |, and let (pi, vi)i∈[0. .2m] be a sequence containing the multiset {(0, 0), (kmax + 1, 0)} ∪
{(dmin Ij/|H|e,+1) : j ∈ R′−H } ∪ {(bmax Ij/|H|c + 1,−1) : j ∈ R′−H } such that for any
i ∈ [1 . . 2m], it holds pi−1 ≤ pi. To compute the sequence (pi, vi)i∈[0. .2m], we observe that,
given j ∈ R′−H , we can compute Ij in O(1) time using Proposition 3.7. Thus, in O(m) time
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we can generate all pairs in the above multiset. We then sort the pairs by the first element.
Using d1/αe-round radix sort, this takes O(m+ nα) time. Consequently, we can compute
(pi, vi)i∈[0. .2m] in O(|R′−H | + nα) time. Given the sequence (pi, vi)i∈[0. .2m], we compute
unary((e0,k,H)k∈[0. .kmax]) as follows. First, we initialize the output bitvector to the empty
string and set v = 0. We then iterate through i = 1, . . . , 2m. For every i, we first append
pi−pi−1 copies of the string unary(v) to the output string. We then add vi to v. To efficiently
append multiple copies of unary(v) to the output, we first precompute (inO(log2 n) = O(nα)
time) the prefix of length log n of the string unary(x)∞ for every x ∈ [0 . . log n). This way,
we can append unary(v)` to the output in O(1 + (v + 1)`/ log n) time. Consequently, the
construction of unary((e0,k,H)k∈[0. .kmax]) takes O(|R′−H |+ |unary((e0,k,H)k∈[0. .kmax])|/ log n+
nα) = O(|R′−H |+ |E

−
0,H |/ log n+ nα) = O(|R′−H |+ |R

−
H |/ log n+ nα) time. To show the first

upper bound, observe that kmax ≤ |E−0,H |+O(τ/|H|). Thus, |unary((e0,k,H)k∈[0. .kmax])| =
|unary+((e0,k,H)k∈[0. .∞))|+kmax + 1 = |E−0,H |+kmax + 1 ≤ 2|E−0,H |+O(log n). The second
upper bound follows by observing that |E−0,H |+ · · ·+ |E

−
|H|−1,H | = |R

−
H |.

2. The second step of the algorithm is to compute the strings unary((es,k,H)k∈[0. .kmax]) for s ∈
[1 . . |H|). For any s ∈ [1 . . |H|), let (q

(s)
i , p

(s)
i , v

(s)
i )i∈[0. .ms] denote the sequence containing

all the elements (q, p, v) of the multiset {(q, 0, 0) : q ∈ [1 . . |H|)} ∪ {(q, kmax + 1, 0) :
q ∈ [1 . . |H|)} ∪ {(min Ij mod |H|, bmin Ij/|H|c,+1) : j ∈ R′−H } ∪ {((max Ij + 1) mod
|H|, b(max Ij + 1)/|H|c,−1) : j ∈ R′−H } that satisfy q = s, and for any i ∈ [1 . .ms], it
holds p(s)

i−1 ≤ p
(s)
i (note that the elements of this multiset satisfying q = 0 are not included

in any sequence). To compute the sequences (q
(s)
i , p

(s)
i , v

(s)
i )i∈[0. .ms] for all s ∈ [1 . . |H|),

we first enumerate all triples in the above multiset. Using Proposition 3.7, this takes
O(m) time. We then sort the triples lexicographically. Using d1/αe-round radix sort,
this takes O(m + nα) time. This yields all sequences concatenated together. It is easy
to discard unused elements, and to detect boundaries between lists with a single scan.
Consequently, we can construct all sequences in O(|R′−H | + nα) time. Given the above
sequences, we can compute the strings unary((es,k,H)k∈[0. .kmax]) for s ∈ [1 . . |H|) as follows.
The algorithm computes the strings in the order of increasing s. More precisely, given
the string U := unary((es−1,k,H)k∈[0. .kmax]) and the sequence (q

(s)
i , p

(s)
i , v

(s)
i )i∈[0. .ms] (where

s ∈ [1 . . |H|)), we compute the string unary((es,k,H)k∈[0. .kmax]) in O(ms + |U |/ log n) time
as follows. First, we initialize the output bitvector to the empty string, and set v = 0 and
y = 0. We then iterate through i = 1, . . . ,ms. For every i, we first check if p(s)

i > p
(s)
i−1.

If yes, we perform the following three steps. First, find the position y′ of the p(s)
i th 1-bit

in U . Second, append the substring U(y . . y′] to the output, except we first prepend it
with v zeros (if v ≥ 0) or discard its first −v bits (if v < 0). Finally, we set y = y′

and v = 0. Then (regardless of whether p(s)
i > p

(s)
i−1), we add v

(s)
i to v. To efficiently

compute y′ we observe that the arguments of the consecutive select queries are increasing.
We can thus precompute in O(nα) time a lookup table such that the computation of y′

takes O(1 + (y′ − y)/ log n) time (these lookup tables can be shared among algorithms for
different s). Note that for any s ∈ [0 . . |H|), we have kmax ≤ |E−s,H | + O(τ/|H|). Thus,
|U | ≤ 2|E−s−1,H |+O(log n), and hence the algorithm runs in O(ms + |E−s−1,H |/ log n) time.
Consequently, by m0 + · · ·+m|H|−1 ≤ 2|R′−H |+ 2|H| and |E−0,H |+ · · ·+ |E

−
|H|−1,H | = |R

−
H |,

over all s ∈ [1 . . |H|), we spend O(|R′−H |+ |R
−
H |/ log n+ nα) time.

3. The third and final step of the algorithm is to convert the string unary((es,k,H)k∈[0. .kmax])
into unary+((es,k,H)k∈[0. .kmax]) = E−s,H for every s ∈ [0 . . |H|). Let us fix some s ∈ [0 . . |H|).
Observe that to implement the conversion, it suffices to remove the first bit, as well as
every bit following a 1-bit in unary((es,k,H)k∈[0. .kmax]). In the RAM model, such local
operation is easy implemented in O(1 + |unary((es,k,H)k∈[0. .kmax])|/ log n) time after a
O(nα)-time preprocessing (we do the preprocessing once for all s ∈ [0 . . |H|)). As observed
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above, |unary((es,k,H)k∈[0. .kmax])| ≤ 2|E−s,H | + O(log n). Thus, the total time to perform
the conversion for all s is O(|R−H |/ log n+ nα).

Using the above algorithm, we construct E as follows. We start by computing the set
{(int(L-root(j)), j)}j∈R− . By the consistency condition (see also [39, Section 6.1.2]), i ∈ R′

implies that either i − 1 ∈ S or i = 1. Thus, using the select queries on the bitvector B
(stored as part of CISA(T,S)), Lemma 3.1, and Proposition 3.7, we can enumerate the above
set of pairs in O(1 + |S|) = O(n/ logσ n) time. Using d1/αe-round radix sort we then sort in
O(|R′−|+ nα) = O(n/ logσ n+ nα) time the set of pairs by the first coordinate. This yields the
representation of sets R′−H for all H ∈ H. For each H ∈ H, we then use the above algorithm to
compute bitvectors E−0,H , . . . , E

−
|H|−1,H inO(|R′−H |+|R

−
H |/ log n+nα) time. ByH ⊆ [0 . . σ)≤τ , over

all H, this takes O(|R′−|+ |R−|/ log n+nα+µ) time (recall that τ = µ log n). Choosing α < 1−µ
results in O(|S|+n/ log n) = O(n/ logσ n) total time. When bitvectors E−s,H are computed for all
H ∈ H and s ∈ [0 . . |H|), we initialize E to the string 0n in O(n/ log n) time, and then “paste” all
the non-empty bitvectors E−s,H into their correct positions. GivenH ∈ H and s ∈ [0 . . |H|), we first
compute in O(log n) time the corresponding string X ∈ F , and then compute the position to paste
E−s,H using Lemma 3.1. Over all H ∈ H and s ∈ [0 . . |H|), this takes O(nµ log2 n+ n/ log n) =
O(n/ logσ n) time. Thus, altogether, constructing E and augmenting it using Theorem 2.1 takes
O(n/ logσ n) time. It remains to initialize the lookup table Q. For this, we observe that if i is
the position of the leftmost 0-bit in unary((es,k,H)k∈[0. .kmax]), then min{L-exp(j) : j ∈ R−s,H} =
i− 1. Given the packed representation of unary((es,k,H)k∈[0. .kmax]), the position i can be easily
found in O(1 + |unary((es,k,H)k∈[0. .kmax])|/ log n) time. Thus, accounting for the computation
of X ∈ F corresponding to the choice of H ∈ H and s ∈ [0 . . |H|), we can initialize Q in
O(n/ log n+ nµ log2 n) = O(n/ logσ n) time.

Computing δs(j) We now describe the data structure to compute δs(j) for any position j ∈ R−.
We use the following definition. For any position j ∈ R, we define efull

j = ej − L-tail(j).

Lemma 3.10. Assume i, j ∈ R−H and let ` = ei − i − 3τ + 2. Then |poss(j) ∩ [i . . i + `)| ≤ 1.
Moreover, |poss(j)∩ [i . . i+ `)| = 1 if and only if T [efull

i . . n] � T [efull
j . . n] and efull

i − i ≥ efull
j − j.

Proof. By Lemma 3.6, we have [i . . i+ `) ⊆ R−H with ei+δ = ei for every δ ∈ [0 . . `). Moreover,
by the uniqueness of L-decomposition, L-tail(i + δ) = L-tail(i). Together, these imply that
efull
i+δ = efull

i , and consequently efull
i+δ − (i+ δ) = efull

i − i− δ. It remains to observe that, letting
j ∈ R−s,H , for j

′ ∈ poss(j) it holds efull
j′ − j′ = s+ L-exp(j′) · |H| = s+ L-exp(j) · |H| = efull

j − j.
Thus, i + δ ∈ poss(j) implies efull

i+δ − (i + δ) = efull
i − (i + δ) = efull

j − j, or equivalently,
δ = (efull

i − i)− (efull
j − j), and therefore, |poss(j) ∩ [i . . i+ `)| ≤ 1.

For the second part, assume first that i+ δ ∈ poss(j) holds for some δ ∈ [0 . . `). Then, as
noted above, we have efull

j − j = efull
i − (i+ δ) ≤ efull

i − i. Moreover, letting j ∈ R−s,H , by definition
of poss(j), we have i+ δ ∈ R−s,H , L-exp(j) = L-exp(i+ δ), and T [i+δ . . n] � T [j . . n]. Therefore,
we obtain that T [i+δ . . efull

i+δ) = T [i+δ . . efull
i ) = T [j . . efull

j ) = H ′Hk (where k = L-exp(j) and H ′

is the length-s prefix of H), and consequently, T [efull
i . . n] � T [efull

j . . n]. To show the converse
implication, assume T [efull

i . . n] � T [efull
j . . n] and efull

i − i ≥ efull
j −j. Let δ = (efull

i − i)−(efull
j −j).

We will prove that δ ∈ [0 . . `) and i+ δ ∈ poss(j). Clearly δ ≥ 0. To show δ < `, we first prove
ei − efull

i ≥ ej − efull
j . Suppose that q = ei − efull

i < ej − efull
j . By i ∈ R−H , we then either have

efull
i +q = n+1, or efull

i +q ≤ n and T [efull
i +q] ≺ T [efull

i +q−|H|] = T [efull
j +q−|H|] = T [efull

j +q],
both of which contradict T [efull

i . . n] � T [efull
j . . n]. Thus, ei − efull

i ≥ ej − efull
j . This implies,

ei−(i+δ) = (efull
i −(i+δ))+(ei−efull

i ) = (efull
j −j)+(ei−efull

i ) ≥ (efull
j −j)+(ej−efull

j ) = ej−j ≥
3τ − 1, or equivalently δ ≤ ei− i− 3τ + 1 < `. To show i+ δ ∈ poss(j), it remains to observe that
efull
i+δ− (i+ δ) = efull

i − (i+ δ) = efull
j − j and i+ δ, j ∈ R−H imply T [i+ δ . . efull

i ) = T [j . . efull
j ). This

in particular gives, letting j ∈ Rs,H , that i+ δ ∈ Rs,H and L-exp(i+ δ) = L-exp(j). Moreover,
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combining it with T [efull
i . . n] � T [efull

j . . n] yields T [i+ δ . . n] � T [j . . n]. Finally, by Lemma 3.6,
type(i+ δ) = type(i) = −1. Therefore, i+ δ ∈ poss(j).

Before presenting how to compute δs(j), we first need to prove the following auxiliary result.
Let A[1 . .m] be an array of nonnegative integers. We define the following queries on A:

Range counting query rcountA(v, j): Given an integer v ≥ 0 and a position j ∈ [1 . .m],
return |{i ∈ [1 . . j] : A[i] ≥ v}|.

Range selection query rselectA(v, r): Given integers v ≥ 0 and r ∈ [1 . . rcountA(v,m)], return
the position of the rth smallest element of {i ∈ [1 . .m] : A[i] ≥ v}.

The currently fastest general-purpose data structure for range counting/selection queries is
described in [15, Theorem 2.3, Theorem 3.3]. The instances in our construction, however, satisfy
an additional property, namely, that the sum

∑m
i=1A[i] is bounded. This lets us obtain a solution

with faster query and smaller construction time.

Proposition 3.11. An array A[1. .m′] of m′ ∈ [2. .m] nonnegative integers satisfying
∑m′

i=1A[i] =
O(m logm) can be preprocessed in O(m) time so that that range counting and selection queries
can be answered in O(log logm) time and O(1) time, respectively.

Proof. Denote h = blogmc. For any k ≥ 0, by Pk[1 . .mk], where mk = rcountA(kh,m), we
denote the array defined by Pk[i] = rselectA(kh, i). Let v ≥ 0. We define a bitvector Mv[1 . .mk],
where k = b vhc as follows. For any i ∈ [1 . .mk], Mv[i] = 1 holds if and only if A[Pk[i]] ≥ v. For
any k ≥ 0, we define the concatenation M ′k = MkhMkh+1 · · ·M(k+1)h−1. Let kmax = max{k ≥
0 : mk > 0}. Since all elements of A are nonnegative, and

∑m′

i=1A[i] ∈ O(m logm), we obtain
maxi∈[1. .m′]A[i] ∈ O(m logm), and consequently, kmax = b 1

h maxi∈[1. .m′]A[i]c ∈ O(m).
The data structure consists of two components. First, for k ∈ [0 . . kmax], we store a plain

representation of the sequence Pk[1 . .mk] using O(mk) space. Each array is augmented with a
static predecessor data structure. We use [24, Proposition 7], and hence achieve linear space
and O(log logm) query time. Each i ∈ [1 . .m′] occurs in dA[i]+1

h e arrays. Thus,
∑

k≥0mk =∑m′

i=1d
A[i]+1
h e ≤ 2m′+

∑m′

i=1b
A[i]
h c ≤ 2m′+ 1

h

∑m′

i=1A[i] ∈ O(m) and hence we can store the arrays
Pk (including the associated predecessor data structures) using O((kmax +1)+

∑
k≥0mk) ⊆ O(m)

space, so that we can access each array in O(1) time. Second, for every k ∈ [0 . . kmax], we store
the plain representation of bitvector M ′k, augmented using Theorem 2.1. By |M ′k| = h · mk,
the total length of bitvectors M ′k is

∑
k≥0 |M ′k| = h

∑
k≥0mk ∈ O(m logm). All bitvectors M ′k

can thus be stored in O((kmax + 1) + 1
logm

∑
k≥0 |M ′k|) ⊆ O(m) words of space, so that we can

access each in O(1) time. For a bitvector of length t, the augmentation of Theorem 2.1 adds
only O(logm+ t) bits of space, and hence does not increase the space usage.

Using the above two components, we answer range counting/selection queries on A as follows.
To compute rcountA(v, j), we observe that if j′ = max{i ∈ [1 . .mk] : Pk[i] ≤ j}, where k = b vhc,
then rcountA(v, j) = rankMv ,1(j′). Computing j′ using the predecessor data structure takes
O(log logm) time, and then rankMv ,1(j′) is computed using the rank support data structure of
the bitvector M ′k as rankM ′k,1(j′+ (v−kh)mk)− rankM ′k,1((v−kh)mk) in O(1) time. To compute
rselectA(v, s), we observe that letting again k = b vhc, it holds rselectA(v, s) = Pk[selectMv ,1(s)].
The value selectMv ,1(s) is computed using the select support data structure of the bitvector M ′k
as selectM ′k,1(rankM ′k,1((v − kh)mk) + s)− (v − kh)mk in O(1) time.

The data structure is constructed as follows. We start by initializing P0[i] = i for i ∈ [1 . .m′].
For k ∈ [1 . . kmax], the array Pk is computed by iterating over Pk−1 and including only elements
Pk−1[i] satisfying A[Pk−1[i]] ≥ kh. By

∑
k≥0mk ∈ O(m), this takes O(m) time in total. We

then augment all arrays Pk with the predecessor data structures. Since the arrays are sorted,
using [24, Proposition 7], the construction altogether again takes O(m) time. We then construct
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bitvectors M ′k in the order of increasing k ∈ [0 . . kmax]. To build M ′k we first scan Pk and check
if there exists i ∈ [1 . .mk] such that A[Pk[i]] < (k + 1)h.

1. If there is no such i, we set M ′k := 1hmk in O(1 + 1
logmhmk) = O(mk) time.

2. Otherwise, we scan again Pk[1 . .mk] and prepare h lists L0, L1, . . . , Lh−1 such that Ly
contains all i ∈ [1 . .mk] satisfying A[Pk[i]] = kh + y. Construction of all lists takes
O(mk + h) time. The bitvector M ′k is then obtained as the concatenation of bitvectors
Mkh,Mkh+1, . . . ,M(k+1)h−1 computed in this order. We first initialize Mkh := 1mk in
O(1 + mk

logm) time. The bitvector Mkh+y for y > 0 is obtained by first copying the bitvector
Mkh+y−1 in O(1 + mk

logm) time, and then setting Mkh+y[i] = 0 for every position i stored
in Ly−1. The total length of all lists Ly is bounded by mk. Thus, the construction of M ′k
takes O(h+mk + 1

logmhmk) ⊆ O(h+mk) time.

To bound the total time spent constructing bitvectors M ′k, we consider two cases:

• k ≤ m
h : The total time spent in the construction of bitvectors M ′k for such k is bounded by

the sum
∑bm/hc

k=0 O(h+mk) ⊆ O(m+
∑

k≥0mk) ⊆ O(m).
• k > m

h : Let k
′ = bmh c+ 1. Note that for any t, it holds mt+1 ≤ mt. Moreover, whenever

Case 2 above happens for some t, it holds mt+1 < mt. Thus, Case 2 above can happen
for k > m

h only mk′ times. Since for every i ∈ [1 . .mk′ ] we have A[Pk′ [i]] ≥ m, by∑
i∈[1. .m′]A[i] ∈ O(m logm) it holds mk′ ∈ O(logm). The total time spend computing M ′k

for k > m
h is thus bounded by O(mk′(h + mk′) +

∑
k≥k′mk) ⊆ O(log2m +

∑
k≥0mk) ⊆

O(m).

The total length of bitvectors M ′k for k ∈ [0 . . kmax], is
∑

k∈[0. .kmax] hmk ∈ O(hm). Thus,
augmenting them all using Theorem 2.1 takes O((kmax + 1) + 1

logmhm) ⊆ O(m) time.

Proposition 3.12. In O(n/ logσ n) time, we can augment the structure from Proposition 3.7 so
that δs(j) can be computed in O(log log n) time given j ∈ R−.

Proof. The main idea of the data structure is as follows. We group all i ∈ R′− by L-root(i) and
then sort by T [efull

i . . n] all positions within each group. Then, by Lemma 3.10, to compute
δs(j) given j ∈ R−H , it suffices to count all i ∈ R′−H that satisfy T [efull

i . . n] � T [efull
j . . n] and

efull
i − i ≥ efull

j − j. The condition T [efull
i . . n] � T [efull

j . . n] is ensured by considering only i ∈ R′−H
that are later in the sorted order than j′ ∈ R′−H satisfying j ∈ [j′ . . ej′ − 3τ + 2), since for such j′

we have T [efull
j′ . . n] = T [efull

j . . n]. Counting the elements that simultaneously satisfy also the
second condition can then be reduced to a range counting query.

We use the following definitions. Let BR′ [1 . . n] be a bitvector defined such that BR′ [i] = 1
holds if and only if i ∈ R′. Let (ri)i∈[1. .|R′−|] be a sequence containing all elements of R′− in sorted
order, i.e, for any i, i′ ∈ [1 . . |R′−|], i < i′ implies ri < ri′ . Let (r′i)i∈[1. .|R′−|] also be a sequence
containing all elements k ∈ R′−, but sorted first according to L-root(k) and in case of ties, by
T [efull

k . . n]. Formally, for any i, i′ ∈ [1 . . |R′−|], i < i′ implies that L-root(r′i) ≺ L-root(r′i′), or
L-root(r′i) = L-root(r′i′) and T [efull

k . . n] ≺ T [efull
k′ . . n], where k = r′i and k

′ = r′i′ . Based on (r′i)
we define the sequence of integers (`i)i∈[1. .|R′−|] as `i = efull

k − k, where k = r′i. We define the
array A[1 . . |R′−|] by A[i] = `i. In addition, let M [1 . . |R′−|] be a mapping of (ri) to (r′i), i.e., M
contains a permutation of [1 . . |R′−|] such that M [i] = i′ holds if and only if ri = r′i′ . Finally, let
C be a lookup table, mapping H ∈ H to the value

∑
H′∈H:H′�H |R

′−
H′ |.

The data structure, in addition to the data structure from Proposition 3.7, contains four
components. First, we store the bitvector BR′ augmented using Theorem 2.1 to answer O(1)-time
rank queries. The augmented bitvector takes O(n/ log n) words of space. Second, we store the
array M in plain form using O(1 + |R′−|) = O(n/ logσ n) space. Third, we store the lookup table
C. Assuming, similarly as in Section 3.1, that when accessing C, strings H are converted to
integers as int(H), C can be stored using O(σ6τ ) = O(n/ logσ n) space. Finally, we store the
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array A[1 . . |R′−|] augmented with a range counting data structure from Proposition 3.11. The
augmented array needs O(1 + |R′−|) = O(n/ logσ n) space. To see that the sum of elements of A
is O(n), we note that if j ∈ R′, then by [39, Fact 3.2], it holds per(T [j . . ej)) ≤ 1

3τ , ej−j ≥ 3τ−1,
and the substring T [j . . ej) cannot be extended in T in either left of right without changing its
shortest period. Thus, by [41, Fact 2.2.4], if j, j′ ∈ R′ and j 6= j′, then the fragments T [j . . ej)
and T [j′ . . ej′) do not overlap by more than 2

3τ symbols. Thus, each position of T belongs to at
most two intervals in the collection {[j . . ej) : j ∈ R′}, and consequently,

∑|R′−|
i=1 `i ≤ 2n.

Using the data structure from Proposition 3.7 and the above four components, we answer
δs(j) queries as follows. Given j ∈ R−, we first compute H = L-root(j), s = L-head(j), and
k = L-exp(j). By Proposition 3.7, this takes O(1) time. This lets us deduce efull

j = j + s+ k|H|.
Then, we compute i ∈ [1 . . |R′−|] satisfying j ∈ [ri . . eri − 3τ + 2), i.e., j is in the maximal block
of positions from R− starting at position ri. Using BR′ we obtain i = rankBR′ ,1(j) in O(1) time.
Observe now that, letting j′ = ri, by efull

j′ = efull
j , we have T [efull

j′ . . n] = T [efull
j . . n]. Therefore,

letting x = M [i] and x′ = C[int(H)], by Lemma 3.10 we have δs(j) = |{i′ ∈ (x . . x′] : `i′ ≥
efull
j − j}| = rcountA(efull

j − j, x′)− rcountA(efull
j − j, x), which we compute in O(log log n) time

using the data structure from Proposition 3.11.
The data structure is constructed as follows. We start by computing BR′ . As seen in the

proof of Proposition 3.9, we can enumerate R′, and thereby compute BR′ , in O(|S|+ n/ log n) =
O(n/ logσ n) time. Augmenting BR′ with Theorem 2.1 takes O(n/ log n) time. Since for any
j ∈ R, we can in O(1) compute L-root(j), ej , s = L-head(j), and k = L-exp(j), in O(1 + |S|) =
O(n/ logσ n) time we can also enumerate all j ∈ R′−. The key challenge is computing the
sequence (r′i). Assume that we have computed the array ISAS[1 . . n′], as defined in Section 3.2.
As explained in Proposition 3.4, we can construct it from CISA(T, S) in O(n/ logσ n) time. Next,
for each j ∈ R′−, letting H = L-root(j) and jS = rankB,1(ej−2τ +1) (recall that ej−2τ +1 ∈ S),
we form a tuple (int(H), ej − efull

j , ISAS[jS], j). As observed in Proposition 3.9, X ≺ X ′ holds if
and only if int(X) < int(X ′). Let j, j′ ∈ R′−H . Note that since both T [efull

j . . ej) and T [efull
j′ . . ej′)

are prefixes of H, by definition of R−, ej − efull
j < ej′ − efull

j′ implies T [efull
j . . n] ≺ T [efull

j′ . . n].
If ej − efull

j = ej′ − efull
j′ , then T [ej − 2τ + 1 . . efull

j ) = T [ej′ − 2τ + 1 . . efull
j′ ), and consequently,

T [efull
j . . n] ≺ T [efull

j′ . . n] holds if and only if ISAS[jS] < ISAS[j′S]. We have thus shown that
sorting the tuples lexicographically yields a sequence (r′i) on the fourth coordinate. Given j ∈ R′−,
we can compute the corresponding tuple in O(1) time. Thus, since all its elements are integers
in the range [1 . . n], using LSD radix-sort, we can compute (r′i) in O(n/ logσ n) time. With a
single scan of (r′i) (and the help of rank queries on BR′) we can then compute tables C and
M in O(n/ logσ n) time. Finally, from (r′i) we construct in O(n/ logσ n) time the sequence
(`i)i∈[1. .|R′−|], and then build the array A[1 . . |R′−|] and augment it with a range counting data
structure. Using Proposition 3.11, by |R′−| = O(n/ logσ n) and

∑|R′−|
i=1 A[i] = O(n), this takes

O(n/ logσ n) time.

Summary By combining all above results, we obtain the following data structure computing
ISA[j] for periodic positions.

Proposition 3.13. In O(n/ logσ n) time, we can augment CISA(T,S) so that ISA[j] can be
computed in O(log log n) time given j ∈ R.

Proof. The data structure is a composition of four data structures. First, we store the two data
structures presented in Propositions 3.9 and 3.12. These structures are designed to compute
values δa(j) and δs(j) for j ∈ R−. To handle j ∈ R+ we store their symmetric versions
adapted according to Lemma 3.5 (more precisely, if j ∈ R+

s,H , the data structures compute
δa(j) = |posa(j)| and δs(j) = |poss(j)|, where posa(j) = {j′ ∈ R+

s,H : L-exp(j′) ≤ L-exp(j)} and
poss(j) = {j′ ∈ R+

s,H : L-exp(j) = L-exp(j) and T [j′ . . n] ≺ T [j . . n]}). All four data structures
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take O(n/ logσ n) space. All structures are built on top of the structure from Proposition 3.7,
but it suffices to only keep its single copy (in particular, we keep a single copy of CISA(T, S)).

Using the above data structures, given j ∈ R, we compute ISA[j] as follows. First, using
Lemma 3.1, in O(1) time we compute integers b, e such that SA(b . . e] contains the starting
positions of all suffixes of T starting with the prefix of T [j . . n] from the set F . Then, using
Proposition 3.7 we determine type(j). Depending on whether j ∈ R− or j ∈ R+ we use either
a combination of Propositions 3.9 and 3.12 or their symmetric counterparts, to compute δa(j)
and δs(j) in O(1) and O(log logn) time, respectively. If j ∈ R−, then by Lemma 3.8 we have
δ(j) = δa(j)−δs(j). Otherwise, by the counterpart of Lemma 3.8, δ(j) = (e− b)− (δa(j)−δs(j)).
Finally, we return ISA[j] = b+ δ(j) as the answer. In total, the query takes O(log log n) time.

The data structure is constructed as follows. First, given CISA(T,S) we construct the data
structure from Proposition 3.7. This takes O(n/ logσ n) time. We then augment it into the two
data structures to compute δa(j) and δs(j) for j ∈ R−. Using Propositions 3.9 and 3.12, this
takes O(n/ logσ n). Finally, we analogously construct the two data structures to compute δa(j)
and δs(j) for j ∈ R+.

3.4 The Final Data Structure

Theorem 3.14. Given a constant ε ∈ (0, 1) and the packed representation of a text T ∈ [0 . . σ)n

with 2 ≤ σ < n1/6, we can construct in O(n log σ/
√

log n) time and O(n/ logσ n) working space a
data structure of size O(n/ logσ n) that, given any j ∈ [1 . . n], returns ISA[j] in O(logε n) time.

Proof. The data structure is a composition of the data structures from Proposition 3.4 and
Proposition 3.13. Both data structures take O(n/ logσ n) space. Each of the two structures is
built on top of the index core CISA(T, S), but it suffices to store a single copy of CISA(T, S).

Given j ∈ [1 . . n], we use Lemma 3.1 to check in O(1) time if j ∈ R. Depending on whether
j ∈ R or not, we use Proposition 3.4 or Proposition 3.13 to compute ISA[j] in O(logε n) or
O(log log n) time (respectively).

The data structure is constructed as follows. First, using Theorem 2.5, from a packed
representation of T , we construct a τ -synchronizing set S of size O(n/τ) in O(n/τ) = O(n/ logσ n)
time. The set S is returned as an array taking O(n/ logσ n) space. Using this array and the packed
representation of T , we construct CISA(T, S) in O(n/ logσ n) time using Proposition 3.2. Finally,
using Propositions 3.4 and 3.13, we augment CISA(T,S) in O(n log σ/

√
log n) and O(n/ logσ n)

time (respectively) and using O(n/ logσ n) working space into structures to compute ISA[j].

4 SA Queries

In this section, we describe the index answering the SA queries. More precisely, we show how,
given the packed representation of T ∈ [0 . . σ)n with 2 ≤ σ < n1/6, in O(n log σ/

√
log n) time

and using O(n/ logσ n) working space construct a data structure of size O(n/ logσ n) that, given
i ∈ [1 . . n], returns SA[i] in O(logε n) time. Note, that we can assume σ < n1/6, since for larger
σ, the construction in [5, Theorem 9] already gives a construction in O(n) = O(n log σ/

√
log n)

time.
As in Section 3, we let τ = µ log n, where µ is any positive constant smaller than 1

6 , and we
let S be any τ -synchronizing set satisfying n′ := |S| = O(n/τ). We again exploit the fact that the
set D ∪ F is prefix-free, and all suffixes in the SA of T can be partitioned into blocks, according
to their prefix from D ∪ F , except rather than computing the value δ(j) (see Section 3) given
the position j ∈ [1 . . n] in text, and then returning ISA[j] = b+ δ(j) (where SA(b . . e] contains
the starting positions of all suffixes of T prefixed with the string X ∈ D ∪ F that is a prefix of
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T [j . . n]), we instead, given index i ∈ [1 . . n], first determine the range SA(b . . e] corresponding
to some X ∈ D ∪ F and containing index i, and then find j ∈ [1 . . n] such that δ(j) = i− b.

Organization The section is organized as follows. Our description is split into four parts. First
(Section 4.1), we describe the data structures, called collectively the index “core”, that enable
efficiently checking if SA[i] ∈ R, and to compute the prefix X ∈ D ∪ F as well as the endpoints
of the corresponding block SA(b . . e]. The structure and query algorithm to compute j such that
δ(j) = i− b (and thus SA[i] = j) is, similarly as in Section 3, different depending on whether
X ∈ D (i.e., SA[i] ∈ [1 . . n] \ R) or X ∈ F (i.e., SA[i] ∈ R), and the structures used for the two
cases are described in the next two parts (Sections 4.2 and 4.3). All ingredients are finally put
together in Section 4.4.

4.1 The Index Core

We use the following definitions. Let B′[0 . . n] be a bitvector defined so that B′[0] = 1 and for
any i ∈ [1 . . n], B′[i] = 1 holds if and only if i = n, or i < n and XSA[i] 6= XSA[i+1], where for any
j ∈ [1 . . n], Xj denotes the prefix of T [j . . n] satisfying Xj ∈ D ∪ F . Next, define SAD∪F [1 . . t]
(where t = |D∪F|) to be an array storing the lexicographically sorted strings from D∪F . Finally,
let F [1 . . t] denote a bitvector such that F [i] = 1 if and only if SAD∪F [i] ∈ F .

The index core, denoted CSA(T,S), consists of five components. First, we store the packed
representation of T using O(n/ logσ n) space. Second, we store the bitvectors B (as defined
in Section 3.1) and B′ augmented using Theorem 2.1 for rank and selection queries. The two
bitvectors take O(n/ log n) space. Third, we store the array SAD∪F . Every string X ∈ D ∪ F is
encoded as int(X) (see Section 3.1) using 6τ log σ = O(log n) bits. This implicitly encodes the
length of the string and ensures that all strings are encoded using the same number of bits. By
D∪F ⊆ [0 . . σ)≤3τ , we have t = O(n1/2), and hence the array SAD∪F needsO(n1/2) = O(n/ log n)
space. Fourth and final, we store the bitvector F in plain form using dt/ log ne words of space.

Lemma 4.1. Given CSA(T,S), for any i ∈ [1 . . n] we can in O(1) time determine if SA[i] ∈ R,
compute the prefix X ∈ D ∪ F of T [SA[i] . . n], and integers b, e such that SA(b . . e] contains the
starting indexes of all suffixes of T prefixed with X.

Proof. Given the position i ∈ [1 . . n], we first compute y = rankB′,1(i−1). Then, using SAD∪F [y],
we obtain the string X that is a prefix of T [SA[i] . . n] and X ∈ D ∪ F . We then compute
b = selectB′,1(y) and e = selectB′,1(y+ 1). Finally, to determine if SA[i] ∈ R, we check if F [y] = 1.
All operations, including the decoding of X from int(X), take O(1) time.

Proposition 4.2. Given the packed representation of T ∈ [0 . . σ)n and the array containing
elements of S, we can construct CSA(T, S) in O(n/ logσ n) time.

Proof. Given S, we easily initialize the bitvector B in O(|S| + n/ log n) = O(n/ logσ n) time.
Augmenting B using Theorem 2.1 takes O(n/ log n) time.

To initialize the remaining three components of CSA(T,S), we first compute the frequency
fX = |{i ∈ [1 . . n] : X is a prefix of T [i . . n]}| for every X ∈ [0 . . σ)≤3τ−1. Using the algorithm
presented in Proposition 3.2, this takes O(n/ logσ n) time. Next, we compute a lookup table
that for every X ∈ [0 . . σ)2τ tells whether T [j . . j + 2τ) = X implies j ∈ S (by consistency of
S this does not depend on j). Given the array containing the positions in S and the packed
representation of T , this takes O(σ2τ + |S|) = O(n/ logσ n) time. To compute SAD∪F , B′, and
F , we first initialize the bitvector B′ in O(n/ log n) time to 10n. We then simulate a preorder
traversal of the trie of [0 . . σ)3τ−1. For each visited node with label X satisfying |X| ≥ 2τ , we
check if the length-2τ suffix of X is in the lookup table.
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• If the suffix is in the lookup table, we check if fX > 0. If so we report that X ∈ D. We
then (regardless of whether fX > 0) skip the traversal of the current subtree.

• Otherwise (i.e., if the length-2τ suffix is not in the lookup table), we descend into the
subtree rooted in the current node.

Whenever during the traversal we reach a node at depth 3τ − 1, we check if its frequency is
positive. If so, we report that X ∈ F . During the above algorithm, we maintain the number
k, and the total frequency f of the strings X ∈ D ∪ F reported so far. For every reported
string X, we increment k, set SAD∪F [k] = int(X), increment f by fX , set B′[f ] = 1, and finally,
set F [k] to 1 if X ∈ F . Since the labels of nodes visited during the preorder traversal are
lexicographically sorted, the strings in D ∪ F are reported in correct order. The traversal takes
O(σ3τ ) = O(n3µ) = O(n/ log n) time. Finally, we use Theorem 2.1 to augment bitvector B′ in
O(n/ log n) time.

4.2 The Nonperiodic Positions

In this section, we describe a data structure to compute the value SA[i] for any i ∈ [1 . . n] such
that SA[i] ∈ [1 . . n] \ R.

The main idea of the data structure is as follows. Let X ∈ D be the prefix of T [SA[i] . . n].
As observed in Section 3.2, the offset of the first position from S in every suffix prefixed with
X is δtext = |X| − 2τ and the order of these suffixes is the same as the order of corresponding
suffixes starting at positions of S. Thus, if we sort only the suffixes starting at positions in S,
then computing j such that δ(j) = i− b (where b is defined as in Lemma 4.1) reduces to selecting
the (i− b)th position in S in the above order that is followed by X(δtext . . |X|] and preceded with
X[1 . . δtext] in the text. Similarly as in Section 3.1, we implement that query using Theorem 2.2.

We use the following definitions. Let SAS[1 . . n′] be an array storing a permutation of [1 . . n′]
such that SAS[i] = j holds if and only if sj = s′i, where (st)t∈[1. .n′] and (s′t)t∈[1. .n′] are the
sequences defined as in Section 3.2.

Proposition 4.3. Given a constant ε ∈ (0, 1) and CSA(T, S), we can in O(n log σ/
√

log n) time
and using O(n/ logσ n) working space augment it into a data structure of size O(n/ logσ n) that,
given i ∈ [1 . . n] such that SA[i] ∈ [1 . . n] \ R, returns SA[i] in O(logε n) time.

Proof. The data structure, in addition to CSA(T, S), contains three components. First, we store
the array SAS[1 . . n′] in plain form, using n′ = O(n/ logσ n) words of space. Second, we store a
lookup table of size O(nδ), for some δ < 1, that given the packed representation of any string
X ∈ [0 . . σ)∗ of length |X| = O(logσ n), allows us to compute the packed representation of X
in O(1) time (see also Proposition 3.4). Third and final, we store the sequence W (defined as
in Section 3.2) augmented with a component of Theorem 2.2. Due to n′ = O(n/ logσ n) and
σ3τ = o(n/ log n), this requires O(n/ logσ n) space.

Using CSA(T, S) and the above two components, given i ∈ [1 . . n] such that SA[i] ∈ [1 . . n]\R,
we compute SA[i] as follows. First, using Lemma 4.1, in O(1) time we compute X = DSA[i] and
integers b, e such that SA(b . . e] contains the starting positions of all suffixes of T starting with
X. We then compute the position y ∈ [1 . . n′] of the (i− b)th string in W [1 . . n′] having X as a
prefix, i.e., y = selectW,X(i− b). For this, we use a prefix selection query of Theorem 2.2. Finally,
we compute j′ = selectB,1(SAD∪F [y]) and return SA[i] = j′ − δtext, where δtext = |X| − 2τ .
Altogether, computing SA[i] thus takes O(logε n) time.

The data structure is constructed as follows. We first construct the array SAS. We start by
computing the sequence (s′t)t∈[1. .n′]. In Proposition 3.4 we have shown how to achieve this in
O(n/ logσ n), given the packed representation of T , and bitvector B augmented with O(1)-time
select queries (which are part of CSA(T,S)). We then easily obtain the array SAS: simply scan
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the sequence (s′t)t∈[1. .n′] and for each i ∈ [1 . . n′], let j = rankB,1(s′i) and note that then sj = s′i
and hence we can set SAS[i] = j. Next, in O(nδ) time we initialize the lookup table used to
reverse short strings (see also Proposition 3.4). Finally, we construct the sequence W and the
component of Theorem 2.2. In the proof of Proposition 3.4, we have shown how to achieve this
in O(n log σ/

√
log n) time and O(n/ logσ n) working space, given the sequence (s′t)t∈[1. .n′] and

the packed representation of T .

4.3 The Periodic Positions

In this section, we describe a data structure to compute the value SA[i] for any i ∈ [1 . . n] such
that SA[i] ∈ R.

Preliminaries We start the description of the data structure, by first showing the component to
compute the basic values characterizing periodic positions.

Proposition 4.4. In O(n/ logσ n) time, we can augment CSA(T,S) into a data structure that,
given any i ∈ [1 . . n] such that SA[i] ∈ R, returns L-root(SA[i]) and L-head(SA[i]) in O(1) time.

Proof. In addition to CSA(T,S), the data structure contains the lookup table L (as defined in
Proposition 3.7) in plain form, using O(σ3τ−1) = O(n/ logσ n) space.

Using CSA(T, S) and table L, we implement the queries as follows. Given i ∈ [1 . . n] such that
SA[i] ∈ R, we first compute the prefix X of T [SA[i] . . n] of length 3τ − 1 and x ∈ [0 . . σ6τ ) such
that x = int(X). Using Lemma 4.1, such X and x can be obtained in O(1) time. We then look up
(s, p) = L[x], and in O(1) time obtain L-root(SA[i]) = X[1+s . . 1+s+p) and L-head(SA[i]) = s.

The construction algorithm for the table L is the same as presented in Proposition 3.7.

The main idea in the algorithm to query SA[i] for i ∈ [1 . . n] satisfying SA[i] ∈ R is as follows.
Let X ∈ F be the prefix of T [SA[i] . . n]. Suppose that we know the range SA(b . . e] containing
the starting positions of all suffixes of T prefixed with X. We then observe that, given b and i,
we have i− b = δa(SA[i])− δs(SA[i]). The outline of the query is to first compute L-exp(SA[i])
and δa(SA[i]). This gives us δs(SA[i]) = b + δa(SA[i]) − i, which, along with L-exp(SA[i]), is
then used to compute SA[i].

Computing L-exp(SA[i]) and δs(SA[i]) We now describe the first step during the computation
of SA[i] for i ∈ [1 . . n] satisfying SA[i] ∈ R.

Proposition 4.5. In O(n/ logσ n) time, we can augment the structure of Proposition 4.4 so that,
given any i ∈ [1 . . n] such that SA[i] ∈ R, we can check if type(SA[i]) = −1, and if so, return
L-exp(SA[i]) and δs(SA[i]), all in O(1) time.

Proof. The data structure, in addition to the data structure from Proposition 4.4, contains two
components. First, we store the bitvector E (as defined in Proposition 3.9), augmented using
Theorem 2.1 for rank and selection queries. It takes O(n/ log n) space. Second, we store the
mapping Q, as defined in Proposition 3.9. It needs O(σ6τ ) = O(n/ logσ n) space.

Using the above data structures, given i ∈ [1 . . n] such that SA[i] ∈ R, we implement the
queries as follows. To check if type(SA[i]) = −1, we first compute integers b, e such that SA(b . . e]
contains the starting positions of all suffixes of T starting the prefix X ∈ F of T [SA[i] . . n].
Using Lemma 4.1, this takes O(1) time. By Lemma 3.5 we then have type(SA[i]) = −1 if and
only if E[i . . e] contains a bit with value 1. This can be checked in O(1) time by checking if
rankE,1(e) > rankE,1(i− 1). Let us assume type(SA[i]) = −1. To compute L-exp(SA[i]), we first
compute X (as defined above). Using Proposition 4.4, this takes O(1) time. We then in O(1)
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retrieve kmin = Q[int(X)], and then compute L-exp(SA[i]) = kmin + (rankE,1(i− 1)− rankE,1(b)).
Then, δa(SA[i]) can be computed in O(1) time as δa(SA[i]) = selectE,1(rankE,1(i− 1) + 1)− b.
Finally, we then obtain δs(SA[i]) = b+ δa(SA[i])− i.

The data structure is constructed as follows. We first compute the sequence (st)t∈[1. .n′]

containing the elements of S in sorted order (see Section 3.2). It can be obtained in O(1 + |S|) =
O(n/ logσ n) time using select queries on the bitvector B. We then combine Propositions 3.2, 3.7
and 3.9 to construct the data structure from Proposition 3.9 in O(n/ logσ n) time. This gives
us bitvector E and the lookup table Q. We then discard all remaining components of the data
structure from Proposition 3.9.

Computing SA[i] We now describe the data structure to complete the computation of SA[i] for
any i ∈ [1 . . n] such that SA[i] ∈ R−.

Proposition 4.6. In O(n/ logσ n) time, we can augment the structure of Proposition 4.4 so
that, given any i ∈ [1 . . n] such that SA[i] ∈ R−, along with L-exp(SA[i]) and δs(SA[i]), we can
compute SA[i] in O(log log n) time.

Proof. The main idea of the data structure is as follows. Similarly as in Proposition 3.12, we
group all j ∈ R′− by L-root(j), and then sort by T [efull

j . . n] all positions within each group.
Then, by Lemma 3.10, to compute SA[i], given L-head(SA[i]), L-root(SA[i]) (which can both
computed in O(1) time using Proposition 4.4) along with L-exp(SA[i]) and δs(SA[i]), it suffices
to first select the element j ∈ R′−H (where H = L-root(SA[i])) for which it holds efull

j − j ≥
L-head(SA[i]) + L-exp(SA[i])|L-root(SA[i])|, and which is simultaneously the (δs(SA[i]) + 1)th
largest element of R′−H according to the string T [efull

j . . n]. The position j′ ∈ [j . . ej − 3τ + 2)
satisfying L-exp(j′) = L-exp(SA[i]) and L-head(j′) = L-head(SA[i]) must then satisfy SA[i] = j′.
To compute position j we use a data structure for range counting/selection. The position j′ is
then easily obtained.

We use the following definitions. By M−1[1 . . |R′−|] we denote a mapping from (r′t) to (rt)
(where (r′t)t∈[1. .|R′−|] and (rt)t∈[1. .|R′−|] are sequences defined as in Proposition 3.12), i.e., M−1

contains a permutation of [1 . . |R′−|] such that M−1[i′] = i holds if and only if ri = r′i′ .
The data structure, in addition to the data structure from Proposition 4.4, contains four

components. First, we store the bitvector BR′ (as defined in Proposition 3.12) augmented
using Theorem 2.1; it takes O(n/ log n) space. Second, we store the array M−1 in plain form
using O(1 + |R′−|) = O(n/ logσ n) space. Third, we store the lookup table C, as defined in
Proposition 3.12. It can be stored using O(σ6τ ) = O(n/ logσ n) space. Finally, we store the
data structure answering range counting/selection queries on the array A[1 . . |R′−|] (as defined
in Proposition 3.12). Using Proposition 3.11, the structure needs O(1 + |R′−|) = O(n/ logσ n)
space.

Using the data structure from Proposition 4.4 and the above four components, given i ∈ [1 . . n]
such that SA[i] ∈ R−, along with L-exp(SA[i]) and δs(SA[i]), we compute SA[i] as follows. First,
we compute H = L-root(SA[i]) and L-head(SA[i]) in O(1) time using Proposition 4.4. This lets
us deduce that efull

SA[i]−SA[i] = `, where ` = L-head(SA[i]) + L-exp(SA[i])|H|. Let x = C[int(X)],
where X ∈ F is the prefix of T [SA[i] . . n] (we can compute X in O(1) time using Proposition 4.2).
Next, we compute δ = rcountA(`, x). Using the structure from Proposition 3.11, this takes
O(log logn) time. Let q = δ − δs(SA[i]). We then compute the position p ∈ [1 . . |R′−|] of
the qth leftmost element in A that it greater or equal than `. Using Proposition 3.11, we
compute p = rselectA(`, q) in O(1) time. Next, we compute in O(1) time p′ = M−1[p] and
j = selectBR′ ,1(p′). By Lemma 3.10, we now have that j ∈ R′−H , and SA[i] is one of the positions
in the block [j . . ej − 3τ + 2) ⊆ R−H . In any such block there is at most one element with
a given value of L-exp and L-head. Thus, to compute SA[i], we first in O(1) time compute

21



ej = selectB,1(rankB,1(j) + 1) + 2τ − 1. We then in O(1) time compute s = L-head(j) using
the lookup table L (which is a part of the data structure from Proposition 4.4). This lets us
determine efull

j = ej−((ej−j−s) mod |H|). Consequently, we have SA[i] = efull
j −L-head(SA[i])−

L-exp(SA[i])|H|. In total, the query takes O(log log n) time.
The data structure is constructed as follows. We first compute the sequence (st)t∈[1. .n′]

containing the elements of S in sorted order (see Section 3.2). It can be obtained in O(1 + |S|) =
O(n/ logσ n) time using select queries on the bitvector B. We then combine Propositions 3.2,
3.7 and 3.12 to construct the data structure from Proposition 3.12 in O(n/ logσ n) time. This
gives us bitvector BR′ , the arrays C and M , and the sequence (`t)t∈[1. .|R′−|]. We discard all
remaining components of the data structure from Proposition 3.12. Given M , we can compute
M−1 in O(|R′−|) = O(n/ logσ n) time, since these two arrays are inverses of each other. We
use the sequence (`t) to construct the array A[1 . . |R′−|]. Finally, we augment A with the data
structure for range counting/selection queries. Using Proposition 3.11, by |R′−| = O(n/ logσ n)
and

∑|R′−|
i=1 A[i] = O(n), this takes O(n/ logσ n) time.

Summary By combining all above results, we obtain the following data structure for compute
SA[i] for periodic positions.

Proposition 4.7. In O(n/ logσ n) time, we can augment CSA(T,S) so that, given i ∈ [1 . . n]
such that SA[i] ∈ R, we can compute SA[i] in O(log log n) time.

Proof. The data structure is a composition of four data structures. First, we store the two data
structures presented in Propositions 4.5 and 4.6. These structures are designed to compute SA[i]
for i ∈ [1 . . n] such that SA[i] ∈ R−. To handle the case SA[i] ∈ R+ we store their symmetric
versions adapted according to Lemma 3.5 (see also Proposition 3.13). All four data structures
take O(n/ logσ n) space. All structures are built on top of the structure from Proposition 4.4,
but it suffices to only keep its single copy (in particular, we keep a single copy of CSA(T, S)).

Using the above data structures, given i ∈ [1 . . n], we compute SA[i] as follows. First, using
Proposition 4.5, in O(1) time we compute type(SA[i]). Depending on whether SA[i] ∈ R−

or SA[i] ∈ R+, we use either a combination of Propositions 4.5 and 4.6 or their symmetric
counterparts, to first compute L-exp(SA[i]) and δs(SA[i]) in O(1) time, and then SA[i] in
O(log log n) time.

The data structure is constructed as follows. First, given CSA(T,S) we construct the data
structure from Proposition 4.4. This takes O(n/ logσ n) time. We then augment it into the two
data structures to compute SA[i] for i ∈ [1 . . n] satisfying SA[i] ∈ R−. Using Propositions 4.5
and 4.6, this takes O(n/ logσ n) time. Finally, we analogously construct the two data structures
to compute SA[i] for i ∈ [1 . . n] satisfying SA[i] ∈ R+.

4.4 The Final Data Structure

Theorem 4.8. Given a constant ε ∈ (0, 1) and the packed representation of a text T ∈ [0 . . σ)n

with 2 ≤ σ < n1/6, we can construct in O(n log σ/
√

log n) time and O(n/ logσ n) working space
a data structure of size O(n/ logσ n) that, given any i ∈ [1 . . n], returns the value of SA[i] in
O(logε n) time.

Proof. The data structure is a composition of the data structures from Proposition 4.3 and
Proposition 4.7. Both data structures take O(n/ logσ n) space. Each of the two structures is
built on top of the index core CSA(T, S), but it suffices to store a single copy of CSA(T, S).

Given i ∈ [1 . . n], we use Lemma 4.1 to check in O(1) time if SA[i] ∈ R. Depending on
whether SA[i] ∈ R or not, we use Proposition 4.3 or Proposition 4.7 to compute SA[i] in O(logε n)
or O(log log n) time (respectively).
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The data structure is constructed as follows. First, using Theorem 2.5, from a packed repre-
sentation of T , we construct a τ -synchronizing set S of size O(n/τ) in O(n/τ) = O(n/ logσ n)
time. The set S is returned as an array taking O(n/ logσ n) space. Using this array and the
packed representation of T , we then construct CSA(T,S) in O(n/ logσ n) time using Proposi-
tion 4.2. Finally, using Propositions 4.3 and 4.7, we augment CSA(T,S) in O(n log σ/

√
log n)

and O(n/ logσ n) time (respectively) and using O(n/ logσ n) working space into structures to
compute SA[i].

5 Pattern Matching Queries

For strings P and T , we define Occ(P, T ) = {j ∈ [1 . . |T |−|P |+1] : T [j . . j+|P |) = P},
RangeBeg(P, T ) = |{i ∈ [1 . . |T |] : T [i . . |T |] ≺ P}|, and RangeEnd(P, T ) = RangeBeg(P, T ) +
|Occ(P, T )|. If SA is the suffix array of T , it then holds (RangeBeg(P, T ) . .RangeEnd(P, T )] =
{i ∈ [1 . . |T |] : P is a prefix of T [SA[i] . . |T |]}. In this section we show how, given a constant
ε ∈ (0, 1) and the packed representation of a text T ∈ [0 . . σ)n with 2 ≤ σ < n1/6, to construct
in O(n log σ/

√
log n) time and O(n/ logσ n) working space a data structure of size O(n/ logσ n)

that, given the packed representation of a pattern P ∈ [0 . . σ)m, returns RangeBeg(P, T ) and
RangeEnd(P, T ) in O(m/ logσ n+ logε n) time.

As in Section 3, we let τ = µ logσ n, where µ is any positive constant smaller than 1
6 and

let S be any τ -synchronizing set of T satisfying n′ = |S| = O(n/ logσ n). Recall that the set of
strings D ∪ F ⊆ [0 . . σ)≤3τ−1 is prefix-free. Thus, for any string P , there exists at most one
string X ∈ D ∪ F that is a prefix of P .

Definition 5.1. A string P ∈ [0 . . σ)m satisfying m ≥ 3τ − 1 is said to have nonperiodic prefix
(resp. periodic prefix ) if there exists X ∈ D (resp. X ∈ F) that is a prefix of P .

Organization The section is organized as follows. Our description is split into four parts.
First (Section 5.1), we describe the data structures, called collectively the index “core”, that
enable efficiently handling short patterns (m < 3τ−1), or (if m ≥ 3τ−1) check whether there
exists a prefix X ∈ D ∪ F of P , and if so, return such X as well as the information whether
X ∈ D or X ∈ F . The data structure and query algorithm to compute RangeBeg(P, T ) and
RangeEnd(P, T ) is different depending on whether X ∈ D or X ∈ F , and the structures used
for the two cases are described in the next two parts (Sections 5.2 and 5.3). All ingredients are
finally put together in Section 5.4.

5.1 The Index Core

We use the following definitions. Let PD∪F be a mapping from [0 . . σ)3τ−1 to [0 . . σ)≤3τ−1×{0, 1}
such that for any Y ∈ [0 . . σ)3τ−1, if there exists X ∈ D ∪ F that is a prefix of Y , then PD∪F
maps Y to (X, d) and d = 1 holds if and only if X ∈ D. If there is no such X, then PD∪F maps
Y to (ε, 0).

The index core, denoted Ccount(T, S), consists of four components. First, we store the packed
representation of T using O(n/ logσ n) space. Second, we store the bitvector B (as defined in
Section 3.1) augmented using Theorem 2.1 for rank and selection queries. The bitvector takes
O(n/ log n) space. Third, we store the lookup table ISA3τ−1 (as defined in Section 3.1). When
accessing ISA3τ−1, the strings Y ∈ [0 . . σ)≤3τ−1 are converted to int(Y ). By int(Y ) ∈ [0 . . σ6τ ),
we can store the table using O(σ6τ ) = O(n/ logσ n) space. Fourth and final, we store the lookup
table PD∪F . Similarly as for ISA3τ−1, we can store it using O(σ6τ ) = O(n/ logσ n) space.
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Lemma 5.2. Given Ccount(T,S) and a packed representation of P ∈ [0 . . σ)m, we can in O(1)
time compute the pair (RangeBeg(P, T ),RangeEnd(P, T )) if m < 3τ − 1, or m ≥ 3τ − 1 and no
element of D ∪ F is a prefix of P . Otherwise, the algorithm returns the prefix X ∈ D ∪ F of P ,
along with information whether X ∈ D.

Proof. If m < 3τ − 1, then in O(1) time we compute the value p = int(P ) and return the pair
(RangeBeg(P, T ),RangeEnd(P, T )) = ISA3τ−1[p] as output. If m ≥ 3τ − 1, we first compute
in O(1) time the value p′ = int(P [1 . . 3τ − 1]), and then obtain (X, d) = PD∪F [p′]. If X 6= ε
then we return X and d indicates whether D ∈ D. Otherwise (i.e., if X = ε) we return
(RangeBeg(P, T ),RangeEnd(P, T )) = ISA3τ−1[p′].

Proposition 5.3. Given the packed representation of T ∈ [0 . . σ)n and the array containing
elements of S, we can construct Ccount(T, S) in O(n/ logσ n) time.

Proof. Given S, we easily initialize the bitvector B in O(|S| + n/ log n) = O(n/ logσ n) time.
Augmenting B using Theorem 2.1 takes O(n/ log n) time.

The lookup table ISA3τ−1 is initialized in O(n/ logσ n) time as described in Proposition 3.2.
To compute PD∪F , we observe that in the proof of Proposition 4.2, we have shown how in
O(n/ logσ n) time to enumerate all X ∈ D ∪ F , along with the information whether X ∈ D
for every X. We first initialize the array PD∪F to (ε, 0) for every Y ∈ [0 . . σ)3τ−1. We then
perform the enumeration of D ∪ F as in Proposition 4.2. Whenever X ∈ D, we generate all
X ′ ∈ X · [0 . . σ)3τ−1−|X| and for each X ′ we set PD∪F [int(X ′)] = (int(X), 1). If X ∈ F , we set
PD∪F [int(X)] = (int(X), 0). Since the set D∪F is prefix-free, we never set the same string twice,
and hence the whole procedure takes O(σ6τ ) = O(n/ logσ n) time.

Before we present how to compute the pair (RangeBeg(P, T ),RangeEnd(P, T )), we first prove
the following auxiliary result.

Proposition 5.4. Given a packed representation of T ∈ [0 . . σ)n, and an array A[1 . . q] of
q = O(n/ logσ n) positions in T such that for any 1 ≤ i < j ≤ q, it holds T [A[i] . . n] ≺ T [A[j] . . n],
we can in O(n(log log n)2/ logσ n) time and O(n/ logσ n) working space construct a data structure
of size O(n/ logσ n) that, given the packed representation of any P ∈ [0 . . σ)m, returns in
O(m/ logσ n + log log n) time a pair of integers (bpre, epre) satisfying bpre = |{i ∈ [1 . . q] :
T [A[i] . . n] ≺ P}| and (bpre . . epre] = {i ∈ [1 . . q] : P is a prefix of T [A[i] . . n]}.

Proof. The basic idea is to construct the compacted trie of strings in {T [A[i] . . n]}i∈[1. .q] converted
into strings over the alphabet of metasymbols (of Θ(logσ n) original symbols each). Each node v
is augmented with two values lrank(v) and rrank(v) containing respectively the exclusive rank
of the leftmost and the rank of the rightmost leaf in the subtree rooted in v. During query,
we find the longest prefix of P present in the trie. We then use the predecessor data structure
to compute the rank of P and the range of children corresponding to strings prefixed with P .
Finally, using lrank and rrank values we deduce the output pair (bpre, epre). The main challenge
lies in ensuring that using a trie of metasymbols is equivalent to using the trie of strings over the
original alphabet.

We use the following definitions. First, we introduce the mapping of strings over [0 . . σ) into
strings over metasymbols. Let κ = 3τ − 1. For any string S ∈ [0 . . σ)∗ of length ` ≥ 0, we define
mstr(S) as a string of length `′ = d `+1

κ e > 0 over alphabet [0 . . σ6τ ) such that for any i ∈ [1 . . `′]
it holds mstr(S)[i] = int(S((i−1) · κ . .min(`, i · κ)]), where int(·) is defined as in Section 3.1.
Note that if ` is a multiple of κ, then the last symbol of mstr(S) is int(ε) = 0. We then define the
complementary mapping mstr′. For any X ∈ [0 . . σ)≤3τ , we first let int′(X) denote an integer
constructed by appending 6τ−2|X| cs (where c = σ−1) and |X| zeros to X, and then interpreting
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the resulting string as a base-σ representation of a number in [0 . . σ6τ ). For S ∈ [0 . . σ)∗ of length
` ≥ 0, we define mstr′(S) as a string of length `′ = d `+1

κ e > 0 over alphabet [0 . . σ6τ ) such that
mstr′(S)[1 . . `′) = mstr(S)[1 . . `′) and mstr′(S)[`′] = int′(S((`′ − 1) · κ . .min(`, `′ · κ)]). Observe,
that

• For any set of strings S ⊆ [0 . . σ)∗, the set {mstr(X) : X ∈ S} is prefix-free.
• For any strings X,Y ∈ [0 . . σ)∗, X ≺ Y holds if and only if mstr(X) ≺ mstr(Y ).
• A string P ∈ [0 . . σ)∗ is a prefix of X ∈ [0 . . σ)∗ if and only if mstr(P ) � mstr(X) ≺

mstr′(P ).

Let C denote the compacted trie (i.e., a trie, in which unary paths have been compacted into
single edges labeled by the substrings of the input strings) of the set {mstr(T [A[i] . . n])}i∈[1. .q].
For any node v of C, we define lrank(v) = |{i ∈ [1 . . q] : mstr(T [A[i] . . n]) ≺ Smin

v }| and
rrank(v) = |{i ∈ [1 . . q] : mstr(T [A[i] . . n]) � Smax

v }|, where Smin
v (resp. Smax

v ) denotes the string
(over alphabet [0 . . σ6τ )) corresponding to the leftmost (resp. rightmost) leaf in the subtree rooted
at v.

The data structure consists of two components. First, we store the packed representation of
T using O(n/ logσ n) space. Second, we store the trie C (with the label of each edge encoded
as a pointer to the substring of T ). Each node v of C stores the precomputed values lrank(v)
and rrank(v). In addition, each node v stores a deterministic dictionary that, given a symbol
c ∈ [0 . . σ6τ ), returns the pointer to the child v′ of v for which the label of the edge from v to
v′ starts with c, or tells that no such child exists. We use the dictionary from [61, Theorem 3]
and hence achieve linear space and O(1) query time. Each node v also stores a predecessor data
structure that, given any c ∈ [0 . . σ6τ ), computes the number of children v′ of v for which the
label of the edge from v to v′ starts with a symbol c′ satisfying c′ < c. Using the data structure
from [24, Proposition 7], we achieve linear space and O(log log n) query time.

Using T and C, given the packed representation of P ∈ [0 . . σ)m, we compute the output pair
(bpre, epre) as follows. First, note that, given the packed representation of P and T , we can in
O(1) time access any symbol of mstr(P ), mstr′(P ), and mstr(T [i . . n]) for any i ∈ [1 . . n]. Denote
m̂ = |mstr(P )|. We start by computing the length ` of the longest prefix of mstr(P )[1 . . m̂) that
is represented in C. This takes O(|mstr(P )|) = O(1 + m/ logσ n) time. We then consider two
cases:

• If mstr(P )[1 . . `] ends in the middle of an edge in C, then let v be the deeper endpoint of
that edge, and c be the next unmatched symbol on the edge. If mstr′(P )[`+ 1] ≤ c, then
we return (bpre, epre) = (lrank(v), lrank(v)). If mstr(P )[`+ 1] ≤ c < mstr′(P )[`+ 1], then
we return (bpre, epre) = (lrank(v), rrank(v)). Finally, if c < mstr(P )[`+ 1], then we return
(bpre, epre) = (rrank(v), rrank(v)).

• If mstr(P )[1 . . `] ends in the explicit node v of C, let v1, . . . , vk denote the sequence of
children of v ordered by the first symbol of the edge from v, and let ci denote the first symbol
of edge connecting v and vi. To streamline the formulae, we define rrank(v0) = lrank(v1)
and lrank(vk+1) = rrank(vk). Using the predecessor data structure of v, we compute in
O(log logn) time the values x = |{i ∈ [1 . . k] : ci < mstr(P )[`+ 1]}| and y = |{i ∈ [1 . . k] :
ci < mstr′(P )[`+ 1]}|. We then return (bpre, epre) = (lrank(vx+1), rrank(vy)).

Altogether, the query algorithms runs in O(m/ logσ n+ log log n) time.
The data structure is constructed as follows. We start by building a data structure that sup-

ports LCE queries for suffixes of T . Using [39, Theorem 5.4], the construction takes O(n/ logσ n)
time, and the resulting data structure answers queries in O(1) time. Denote the length of the
longest common prefix between suffixes T [i . . n] and T [j . . n] as LCE(i, j). Observe that for any
i, j ∈ [1 . . n] such that i 6= j, the longest common prefix of mstr(T [i . . n]) and mstr(T [j . . n]) has
length bLCE(i,j)

κ c, which can be computed in O(1) time. We construct C by inserting elements of
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{mstr(T [A[i] . . n])}i∈[1. .q] in the order given by A. We maintain a stack containing the internal
nodes on the rightmost path, with the deepest node on top. When inserting each string, we first
determine the depth at which that string branches from the rightmost path using LCE queries on
T . We then update the rightmost path of the trie. Adding each string first removes some elements
from the stack, and then adds at most one new element. Since the total number of elements
pushed on stack is O(q), the construction of C takes O(q) time. With the single traversal of C,
we then precompute in O(q) time the values lrank(v) and rrank(v) for every node v. Finally,
we augment every node with the dictionary and the predecessor data structure. Using [61,
Theorem 3], the linear-space dictionary for every node v with k = O(σ6τ ) children can be
deterministically constructed in O(k(log log k)2) time. Over all nodes, this takes O(q(log log q)2)
time. Note, that by µ < 1

6 , it holds O(k(log log k)2) = O(n/ logσ n) for every node v. Thus,
the working space never exceeds O(n/ logσ n). To construct the predecessor data structures,
note that the keys in every node are sorted. Thus, using [24, Proposition 7], over all nodes
of C, the construction takes O(q) time. After the initialization of the LCE data structure in
O(n/ logσ n) time, the construction of C takes O(q(log log q)2) time. By q = O(n/ logσ n), this
is O(n(log log n)2/ logσ n).

5.2 The Nonperiodic Prefix

The main idea of the data structure is as follows. Let P = XY ∈ [0 . . σ)m, where X ∈ D.
By consistency of S, the offset of the first position from S in every suffix prefixed with P is
δ = |X| − 2τ . Thus, the order of these suffixes is the same as the order of corresponding suffixes
starting at positions of S. Hence, it suffices to sort only those suffixes, and then computing
(RangeBeg(P, T ),RangeEnd(P, T )) can be achieved by first finding the range (epre . . epre] of
suffixes starting in S that are prefixed with X(δ . . |X|] · Y = P (δ . .m], and then counting the
suffixes in the range that are preceded with X[1 . . δ] in the text. We formalize this as follows,
using the sequence W [1 . . n′] defined in Section 3.2.

Lemma 5.5. Let P =XY ∈ [0 . . σ)m, where X ∈ D. Denote δ = |X| − 2τ . Assume that
ISA3τ−1[int(X)] = (b, ·), and let (bpre, epre) be a pair of integers such that bpre = |{i ∈ [1 . . n′] :
T [s′i . . n] ≺ P (δ . .m]}| and (bpre . . epre] = {i ∈ [1 . . n′] : P (δ . .m] is a prefix of T [s′i . . n]}. Then,
it holds (RangeBeg(P, T ),RangeEnd(P, T )) = (b+ rankW,X(bpre), b+ rankW,X(epre)).

Proof. By the consistency of S, there exists a bijection (given by the mapping j 7→ j+ δ) between
Occ(P, T ), and positions s ∈ S satisfying T∞[s − δ . . s − δ + m) = P , or equivalently, s ∈ S
satisfying: (1) T∞[s . . s− δ +m) = P (δ . .m], and (2) T∞[s− δ . . s+ 2τ) = X. By definition of
the sequence (s′t)t∈[1. .n′] (see Section 3.2) and the pair (bpre, epre), all positions s ∈ S satisfying
the first condition are in {s′bpre+1, . . . , s

′
epre}. Since W [j] = Xj , where Xj = T∞[s′j − τ . . s′j + 2τ),

for any j ∈ (bpre . . epre], the position s′j additionally satisfies the second condition if and only if X
is a prefix of W [j]. Thus, |Occ(P, T )| = rankW,X(epre)− rankW,X(bpre) follows from the definition
of prefix rank queries. Adding all suffixes of T having X ′ ∈ D ∪ F satisfying X ′ ≺ X as a prefix
furthermore yields (RangeBeg(P, T ),RangeEnd(P, T )) = (b+ rankW,X(bpre), b+ rankW,X(epre)),
where ISA3τ−1[int(X)] = (b, ·). Note, that since by Proposition 5.4 the range (bpre . . epre] is
well defined even if epre − bpre = 0, the range (RangeBeg(P, T ) . .RangeEnd(P, T )] is computed
correctly even if |Occ(P, T )| = 0.

Proposition 5.6. Given a constant ε ∈ (0, 1) and Ccount(T,S), we can in O(n log σ/
√

log n)
time and in O(n/ logσ n) working space augment it into a data structure of size O(n/ logσ n)
that, given the packed representation of P ∈ [0 . . σ)m having a nonperiodic prefix, returns the pair
(RangeBeg(P, T ),RangeEnd(P, T )) in O(m/ logσ n+ logε n) time.
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Proof. We use the following definitions. Let D denote the data structure from Proposition 5.4 for
the array A[1 . . n′] defined by A[i] = s′i (where (s′t)t∈[1. .n′] is a sequence as defined in Section 3.2).

The data structure, in addition to Ccount(T, S), consists of three components. First, we store
a lookup table of size O(nδ), for some δ < 1, that given the packed representation of any string
X ∈ [0 . . σ)∗ of length |X| = O(logσ n), allows us to compute the packed representation of X
in O(1) time (see also Proposition 3.4). Second, we store the sequence W augmented with the
component of Theorem 2.2, which needs O(n/ logσ n) space. Second, we store the data structure
D. By n′ = O(n/ logσ n) and Proposition 5.4, D needs O(n/ logσ n) space.

Using Ccount(T,S) and the above two components, given a packed P ∈ [0 . . σ)m, we com-
pute (RangeBeg(P, T ),RangeEnd(P, T )) as follows. First, using Lemma 5.2, in O(1) time we
compute the prefix X ∈ D of P . Let δ = |X| − 2τ . Using Proposition 5.4, we then com-
pute in O(m/ logσ n + log logn) time the pair of integers (bpre, epre) for the pattern P ′ :=
P (δ . .m], as defined in Lemma 5.5. Next, letting ISA3τ−1[int(X)] = (b, ·), we compute
(RangeBeg(P, T ),RangeEnd(P, T )) = (b+ rankW,X(bpre), b+ rankW,X(epre)), with the two prefix
rank queries implemented using Theorem 2.2, in O(logε n) time each. Altogether, the query time
is O(m/ logσ n+ logε n).

The data structure is constructed as follows. First, in O(nδ) time we initialize the lookup
table used to reverse short strings (see also Proposition 3.4). Next, we compute the sequence
(st)t∈[1. .n′] containing the elements of S in sorted order (see Section 3.2). It can be obtained
in O(1 + |S|) = O(n/ logσ n) time using select queries on the bitvector B (which is part of
Ccount(T,S)). We then combine Propositions 3.2 and 3.4 (recall that the packed representation
of T is a component of Ccount(T,S)) to construct the data structure from Proposition 3.4
in O(n log σ/

√
log n) time and using O(n/ logσ n) working space. This gives us the sequence

W preprocessed using Theorem 2.2. During the construction, we also compute (and keep)
the sequence (s′t)t∈[1. .n′]. We discard all remaining components of the data structure from
Proposition 3.4. We then initialize A[i] = s′i for i ∈ [1 . . n′] and use Proposition 5.4 to construct
D in O(n(log log n)2/ logσ n) time and using O(n/ logσ n) working space. We then discard
the sequence A. The overall runtime is O(n log σ/

√
log n). The working space never exceed

O(n/ logσ n) words.

5.3 The Periodic Prefix

Preliminaries Consider a string P ∈ [0 . . σ)m having a periodic prefix, i.e., satisfying m ≥ 3τ −1
and P [1 . . 3τ−1] ∈ F (see Definition 5.1). Let H = L-root(P [1 . . 3τ−1]). We define e(P ) =
max{i ∈ [1 . .m] : P [1 . . i] has period |H|} + 1. Thus, we can write P [1 . . e(P )) = H ′HkH ′′,
where H ′ (resp. H ′′) is a proper suffix (resp. prefix) of H. By e(P ) ≥ 3τ and |H| ≤ τ , such
decomposition is unique (see also Section 3.3). The integers L-head(P ) = |H ′|, L-exp(P ) = k,
and L-tail(P ) = |H ′′| are called the L-head, the L-exponent, and the L-tail of P , respectively.
We denote efull(P ) = e(P ) − L-tail(P ). We define type(P ) = +1 if e(P ) ≤ m and P [e(P )] �
P [e(P )− p] (where p = |L-root(P [1 . . 3τ−1])|), and type(P ) = −1 otherwise.

Lemma 5.7. Let P ∈ [0 . . σ)m be a string with a periodic prefix. Denote s = L-head(P ) and
H = L-root(P ). For any j ∈ [1 . . n], lcp(T [j . . n], P ) ≥ 3τ − 1 holds if and only if j ∈ Rs,H .

Proof. Let j ∈ [1 . . n] be such that lcp(T [j . . n], P ) ≥ 3τ − 1. Then, by definition, L-root(j) =
L-root(T [j . . j + 3τ − 1)) = L-root(P [1 . . 3τ − 1]) = L-root(P ). To show that L-head(j) = s,
note that by |H| ≤ τ , the string H ′H2 (where H ′ is a length-s suffix of H) is a prefix of
P [1 . . 3τ − 1] = T [j . . j + 3τ − 1). On the other hand, L-head(j) = s′ implies that Ĥ ′H2 (where
Ĥ ′ is a length-s′ suffix of H) is a prefix of T [j . . j + 3τ − 1). Thus, by the synchronization
property of primitive strings applied to the two copies of H, we have s′ = s, and hence, j ∈ Rs,H .
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For the converse implication, assume j ∈ Rs,H . This implies that both P [1 . . e(P )) and
T [j . . ej) are prefixes of H ′H∞ (where H ′ is as above). Thus, by ej − j, e(P )− 1 ≥ 3τ − 1, we
obtain lcp(T [j . . n], P ) ≥ 3τ − 1.

Lemma 5.8. Let P ∈ [0 . . σ)m be a string with a periodic prefix. Let j ∈ Rs,H , where s =
L-head(P ) and H = L-root(P ). Then:

1. If type(j) 6= type(P ), then T [j . . n] 6= P , and P ≺ T [j . . n] iff type(P ) < type(j).
2. If type(j) = type(P ) = −1 and ej − j 6= e(P )− 1, then T [j . . n] ≺ P iff ej − j < e(P )− 1.
3. If type(j) = type(P ) = +1 and ej − j 6= e(P )− 1, then T [j . . n] � P iff ej − j < e(P )− 1.

Proof. 1. Let S = H ′H∞, where H ′ is a length-s suffix of H. In the proof of Lemma 3.5,
it is shown that type(j) = −1 implies T [j . . n] ≺ S, and type(j) = +1 implies S ≺ T [j . . n].
We prove an analogous fact for P . We first note that type(P ) = −1 implies that either
e(P ) = m + 1, or e(P ) ≤ m and P [e(P )] ≺ P [e(P ) − |H|]. In the first case, P [1 . . e(P )) = P
is a proper prefix of S and hence P ≺ S. In the second case, letting ` = e(P ) − 1, we have
P [1 . . `] = S[1 . . `] and P [1+`] ≺ P [1+`−|H|] = S[1+`−|H|] = S[1+`]. Consequently, P ≺ S.
If type(P ) = +1 holds, then e(P ) ≤ m. Thus, letting `′ = e(P )− 1, we have S[1 . . `′] = P [1 . . `′]
and S[1 + `′] = S[1 + `′−|H|] = P [1 + `′−|H|] ≺ P [1 + `′]. Hence, we obtain S ≺ P . Combining
the above, we either have type(j) = −1 and type(P ) = +1 (in which case T [j . . n] ≺ S ≺ P ), or
type(j) = +1 and type(P ) = −1 (in which case P ≺ S ≺ T [j . . n]), establishing the claim.

2. Assume ej − j < e(P )− 1. If ej = n+ 1, then by ej − j < e(P )− 1, T [j . . ej) = T [j . . n]
is a proper prefix of P [1 . . e(P )), and hence T [j . . n] ≺ P [1 . . e(P )) � P . If ej ≤ n, then
letting ` = ej − j, we have T [j . . j + `) = P [1 . . `] and by ej − j < e(P ) − 1, T [j + `] ≺
T [j + ` − |H|] = P [1 + ` − |H|] = P [1 + `]. Consequently, T [j . . n] ≺ P . Assume now
e(P )− 1 < ej − j. If e(P ) = m+ 1, then P [1 . . e(P )) = P is proper prefix of T [j . . ej), and hence
P ≺ T [j . . ej) � T [j . . n]. If e(P ) ≤ m, then letting ` = e(P )− 1, we have P [1 . . `] = T [j . . j + `)
and by e(P )−1 < ej−j, P [1+`] ≺ P [1+`−|H|] = T [j+`−|H|] = T [j+`]. Thus, P ≺ T [j . . n].

3. Assume ej − j < e(P )− 1. By type(j) = +1, we have ej ≤ n. Thus, letting ` = ej − j, by
ej− j < e(P )−1, we have P [1 . . `] = T [j . . j+ `) and P [1+ `] = P [1+ `−|H|] = T [j+ `−|H|] ≺
T [j+ `]. Consequently, P ≺ T [j . . n]. Assume now ej − j > e(P )− 1. By type(P ) = +1, we have
e(P ) ≤ m. Thus, letting `′ = e(P )− 1, by ej − j > e(P )− 1, we have T [j . . j + `′) = P [1 . . `′]
and T [j + `′] = T [j + `′ − |H|] = P [1 + `′ − |H|] ≺ P [1 + `′]. Consequently, T [j . . n] ≺ P .

Proposition 5.9. In O(n/ logσ n) time, we can augment Ccount(T, S) into a data structure that,
given the packed representation of P ∈ [0 . . σ)m with a periodic prefix, returns L-root(P [1 . . 3τ−1]),
L-head(P ), L-exp(P ), L-tail(P ), and type(P ) in O(1 +m/ logσ n) time.

Proof. In addition to Ccount(T, S), the data structure contains the lookup table L (as defined in
Proposition 3.7) in plain form, using O(σ3τ−1) = O(n/ logσ n) space.

Using Ccount(T, S) and L, we implement the queries as follows. We first compute x ∈ [0 . . σ6τ )
such that x = int(P [1 . . 3τ−1]). Given the packed encoding of P , such x is obtained in O(1) time.
We then look up (s, p) = L[x], and in O(1) time obtain L-root(P [1 . . 3τ−1]) = P [1+s . . 1+s+p)
and L-head(P ) = s. Next, we compute L-exp(P ) and L-tail(P ). For this, we first determine the
length ` of the longest common prefix of P and P (p . .m]. Using the packed representation of
P , we can do this in O(1 +m/ logσ n) time (see, e.g., [39, Proposition 2.3]). Consequently, we
obtain e(P ) = 1 + p+ `, L-exp(P ) = b e(P )−1−s

p c, and L-tail(P ) = (e(P )− 1− s) mod p. Finally,
to test if type(P ) = +1, we check whether e(P ) ≤ m, and if so, whether P [e(P )] � P [e(P )− p].

The data structure is constructed as follows. We first compute the sequence (st)t∈[1. .n′]

containing the elements of S in sorted order (see Section 3.2). It can be obtained in O(1 + |S|) =
O(n/ logσ n) time using select queries on the bitvector B (which is part of Ccount(T,S)). We
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then combine Propositions 3.2 and 3.7 (recall that the packed representation of T is a component
of Ccount(T, S)) to construct the data structure from Proposition 3.7 in O(n/ logσ n) time. This
gives us the table L. We then discard all remaining components of the data structure from
Proposition 3.7.

5.3.1 Computing |Occ(P, T )|

Let P ∈ [0 . . σ)m be a string with a periodic prefix. Denote s = L-head(P ) and H =
L-root(P [1 . . 3τ−1]). We define Occa(P, T ) = {j ∈ Rs,H ∩ Occ(P, T ) : L-exp(j) > L-exp(P )}
and Occs(P, T ) = {j ∈ Rs,H ∩Occ(P, T ) : L-exp(j) = L-exp(P )}.

Lemma 5.10. For any P ∈ [0 . . σ)m having a periodic prefix, the set Occ(P, T ) is a disjoint
union of Occa(P, T ) and Occs(P, T ).

Proof. By definition, Occa(P, T ) ∩ Occs(P, T ) = ∅ and Occa(P, T ) ∪ Occs(P, T ) ⊆ Occ(P, T ).
Thus, it suffices to show Occ(P, T ) ⊆ Occa(P, T ) ∪ Occs(P, T ). Assume j ∈ Occ(P, T ). This
implies T [j . . j+3τ−1) = P [1 . . 3τ−1] and hence L-root(j) = L-root(P [1 . . 3τ−1]). Let s =
L-head(P ) and H = L-root(P [1 . . 3τ−1]). By definition of L-head(P ) and |H| ≤ τ , the string
H ′H2 (where H ′ is a length-s suffix of H) is a prefix of P [1 . . 3τ−1]. Consequently, H ′H2

is a prefix of T [j . . n]. Thus, by the synchronization property of primitive strings, we have
L-head(j) = s (see Lemma 3.5 for a similar argument), and consequently, j ∈ Rs,H . Let
k = L-exp(P ). By definition of L-exp(P ), the string H ′Hk is a prefix of P . Thus, H ′Hk is also
a prefix of T [j . . n]. Since L-root(j) = H and L-head(j) = |H ′|, we thus have that L-exp(j) ≥ k.
Therefore, j ∈ Occa(P, T ) ∪Occs(P, T ).

By the above lemma, if P ∈ [0 . . σ)m has a periodic prefix, then Occ(P, T ) ⊆ R. We focus on
computing sizes of sets Occa−(P, T ) := Occa(P, T ) ∩ R− and Occs−(P, T ) := Occs(P, T ) ∩ R−.
The sizes of the sets Occa+(P, T ) := Occa(P, T ) ∩ R+ and Occs+(P, T ) := Occs(P, T ) ∩ R+ are
computed analogously.

Computing |Occa−(P, T )| We now describe a data structure, that computes |Occa−(P, T )| for
any pattern P ∈ [0 . . σ)m with a periodic prefix.

Lemma 5.11. Let P ∈ [0 . . σ)m be a string with a periodic prefix. Denote s = L-head(P ) and
H = L-root(P [1 . . 3τ−1]). If e(P ) ≤ m, then it holds Occa−(P, T ) = ∅. Otherwise, it holds
Occa−(P, T ) = {j ∈ R−s,H : L-exp(j) > L-exp(P )}.

Proof. Let e(P ) ≤ m. Denote k = L-exp(P ). Suppose Occa−(P, T ) 6= ∅, and let j ∈ Occa−(P, T ).
By definition, s+ k|H| ≤ e(P )− 1 < s+ (k + 1)|H| and P [e(P )] 6= P [e(P )− |H|]. On the other
hand, by j ∈ Rs,H and L-exp(j) > k, the string H ′Hk+1 (where H ′ is a length-s suffix of H) is a
prefix of T [j . . n]. Thus, we have T [j+e(P )−1] = T [j+e(P )−1−|H|] = P [e(P )−|H|] 6= P [e(P )].
This implies j 6∈ Occ(P, T ), contradicting j ∈ Occa−(P, T ). Thus, Occa−(P, T ) = ∅.

Let e(P ) > m. The inclusion Occa−(P, T ) ⊆ {j ∈ R−s,H : L-exp(j) > L-exp(P )} follows by
definition. To show the opposite inclusion, let j ∈ R−s,H be such that L-exp(j) > L-exp(P ).
Denote k = L-exp(P ). Then, P = H ′HkH ′′, where |H ′| = s, and H ′ (resp. H ′′) is a suffix
(resp. prefix) of H. Thus, P is a prefix of H ′Hk+1. The latter string, on the other hand, is by
L-exp(j) ≥ k + 1 and j ∈ Rs,H , a prefix of T [j . . n]. Thus, j ∈ Occ(P, T ). By j ∈ R−s,H and
L-exp(j) > L-exp(P ), we therefore also have j ∈ Occa−(P, T ).

Proposition 5.12. In O(n/ logσ n) time, we can augment the data structure from Proposition 5.9
so that, given the packed representation of P ∈ [0 . . σ)m having a periodic prefix, we can compute
|Occa−(P, T )| in O(1 +m/ logσ n) time.
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Proof. The data structure, in addition to the structure from Proposition 5.9, contains two
components: the bitvector E, and the mapping Q, as defined in Proposition 3.9. The bitvector
E is augmented using Theorem 2.1 for rank and selection queries. As shown in Proposition 3.9,
both structures need O(n/ logσ n) space.

Using the structure from Proposition 5.9 and the above three components, we answer the
queries as follows. First, using the data structure from Proposition 5.9, we compute s = L-head(P ),
H = L-root(P [1 . . 3τ−1]), k = L-exp(P ), and t = L-tail(P ) in O(1+m/ logσ n) time. This lets us
determine e(P ) = 1+s+k|H|+t. If e(P ) ≤ m, then by Lemma 5.11, we return |Occa−(P, T )| = 0.
Otherwise, using the array ISA3τ−1 (stored as a part of data structure from Proposition 5.9), we
compute in O(1) time a pair of integers b, e such that SA(b . . e] contains the starting positions of all
suffixes of T prefixed with P [1 . . 3τ−1]. Equivalently, by Lemma 3.5 (see also the implementation
of queries in Proposition 3.9), SA(b . . e] contains all positions from Rs,H . Our goal now is to
determine the subrange of SA(b . . e] containing all positions in {j ∈ R−s,H : L-exp(j) > L-exp(P )}
(these positions form a subrange by Lemma 3.5). For that, we first compute d = rankE,1(e)−
rankE,1(b) in O(1) time. If d = 0, then R−s,H = ∅, and hence we return |Occa−(P, T )| = 0.
Otherwise, we retrieve kmin = Q[int(H)] in O(1) time. Then, letting kmax = kmin + d − 1, we
have kmin ≤ kmax and [kmin . . kmax] = {L-exp(j) : j ∈ R−s,H} (see the proof of Proposition 3.9).
If k ≥ kmax, by Lemma 5.11, we return |Occa−(P, T )| = 0. Otherwise, we have two cases.
Let p = rankE,1(b). If k < kmin, then we return |Occa−(P, T )| = |R−s,H | = selectE,1(p + d) − b.
Otherwise (i.e., k ≥ kmin), we return |Occa−(P, T )| = selectE,1(p+d)− selectE,1(p+k−kmin +1).
In total, the query takes O(1 +m/ logσ n) time.

The data structure is constructed as follows. We first compute the sequence (st)t∈[1. .n′]

containing the elements of S in sorted order (see Section 3.2). It can be obtained in O(1 + |S|) =
O(n/ logσ n) time using select queries on the bitvector B (which is part of Ccount(T,S)). We
then in O(n/ logσ n) time construct CISA(T,S) using Proposition 3.2 (recall that the packed
representation of T is a component of Ccount(T,S)). We then use Propositions 3.7 and 3.9 to
augment in O(n/ logσ n) time the structure CISA(T, S) into a data structure from Proposition 3.9.
This gives us bitvector E (augmented for rank and selection queries) and table Q. We then discard
all remaining components of the data structures from Proposition 3.2 and Proposition 3.9.

Computing |Occs−(P, T )| We now describe a data structure, that computes |Occs−(P, T )| for
any P ∈ [0 . . σ)m with a periodic prefix.

Lemma 5.13. Let P∈[0 . . σ)m be a string with a periodic prefix. Denote H=L-root(P [1 . . 3τ−1]).
Assume i ∈ R−H and let ` = ei − i − 3τ + 2. Then, |Occs−(P, T ) ∩ [i . . i + `)| ≤ 1. Moreover,
|Occs−(P, T ) ∩ [i . . i+ `)| = 1 holds if and only if P [efull(P ) . .m] is a prefix of T [efull

i . . n] and
efull
i − i ≥ efull(P )− 1.

Proof. As observed in the proof of Lemma 3.10, [i . . i+ `) ⊆ R−H , and for any δ ∈ [0 . . `), it holds
ei+δ = ei, L-tail(i+ δ) = L-tail(i), and consequently, efull

i+δ = efull
i and efull

i+δ − (i+ δ) = efull
i − i− δ.

Moreover, by definition of Occs−(P, T ), letting L-head(P ) = s, for any j ∈ Occs−(P, T ) it holds
efull
j − j = s + L-exp(j) · |H| = s + L-exp(P ) · |H| = efull(P ) − 1. Thus, i + δ ∈ Occs−(P, T )
implies efull

i+δ − (i+ δ) = efull
i − (i+ δ) = efull(P )− 1, or equivalently, δ = (efull

i − i)− (efull(P )− 1),
and therefore, |Occs−(P, T ) ∩ [i . . i+ `)| ≤ 1.

For the second part, assume first that i+δ ∈ Occs−(P, T ) holds for some δ ∈ [0 . . `). Then, as
noted above, we have efull(P )− 1 = efull

i − (i+ δ) ≤ efull
i − i. Moreover, letting L-head(P ) = s, by

definition of Occs−(P, T ), we have i+δ ∈ R−s,H , L-exp(P ) = L-exp(i+δ), and T [i+δ . . i+δ+m) =
P . Therefore, we obtain that T [i+δ . . efull

i+δ) = T [i+δ . . efull
i ) = P [1 . . efull(P )) = H ′Hk (where

k = L-exp(P ) and H ′ is the length-s prefix of H), and consequently, P [efull(P ) . .m] is a prefix of
T [efull

i . . n]. To show the converse implication, assume that P [efull(P ) . .m] is a prefix of T [efull
i . . n]
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and efull
i − i ≥ efull(P )− 1. Let δ = (efull

i − i)− (efull(P )− 1). We will prove that δ ∈ [0 . . `) and
i + δ ∈ Occs−(P, T ). Clearly δ ≥ 0. To show δ < `, we first prove ei − efull

i ≥ e(P ) − efull(P ).
Suppose that q = ei− efull

i < e(P )− efull(P ). By i ∈ R−H , we then either have efull
i + q = n+ 1, or

efull
i + q ≤ n and T [efull

i + q] 6= T [efull
i + q− |H|] = P [efull(P ) + q− |H|] = P [efull(P ) + q], both of

which contradict that P [efull(P ) . .m] is a prefix of T [efull
i . . n]. Thus, ei − efull

i ≥ e(P )− efull(P ).
This implies, ei − (i + δ) = (efull

i − (i + δ)) + (ei − efull
i ) = (efull(P ) − 1) + (ei − efull

i ) ≥
(efull(P )− 1) + (e(P )− efull(P )) = e(P )− 1 ≥ 3τ − 1, or equivalently δ ≤ ei − i− 3τ + 1 < `. To
show i+ δ ∈ Occs−(P, T ), it remains to observe that efull

i+δ − (i+ δ) = efull
i − (i+ δ) = efull(P )− 1

and L-root(i + δ) = L-root(P [1 . . 3τ−1]) = H imply T [i + δ . . efull
i ) = P [1 . . efull(P )). This in

particular gives, letting L-head(P ) = s, that i+δ ∈ Rs,H and L-exp(i+δ) = L-exp(P ). Moreover,
combining it with P [efull(P ) . .m] being a prefix of T [efull

i . . n] yields T [i+ δ . . i+ δ +m) = P .
Finally, by Lemma 3.6, type(i+ δ) = type(i) = −1. Therefore, i+ δ ∈ Occs−(P, T ).

Proposition 5.14. Given the data structure from Proposition 5.9, in O(n(log log n)2/ logσ n)
time and O(n/ logσ n) working space we can augment it into a data structure of size O(n/ logσ n)
that, given the packed representation of P ∈ [0 . . σ)m having a periodic prefix, returns |Occs−(P, T )|
in O(m/ logσ n+ log log n) time.

Proof. Let q = |R′−| and let (r′i)i∈[1. .q] be the sequence containing all positions j ∈ R′− sorted
first by L-root(j), and in case of ties, by T [efull

j . . n] (see also the proof of Proposition 3.12).
Recall that H = {L-root(X) : X ∈ F}. For any string H ∈ H, let pow(H) = H∞[1 . . |H|d τ

|H|e].
This function satisfies the following properties:

• The set {pow(H) : H ∈ H} is prefix-free.
• For any X,Y ∈ H, X ≺ Y implies pow(X) ≺ pow(Y ).

For a proof, consider X,Y ∈ H such that X ≺ Y . By [41, Fact 9.1.6], it holds X � pow(X) ≺
X∞ ≺ Y � pow(Y ). Since |Y | < τ ≤ |pow(X)|, the set {pow(X),pow(Y )} is prefix-free.

Next, we define an array A[1 . . q] so that, for any i ∈ [1 . . q], A[i] = efull
j − |pow(Hi)|, where

j = r′i and Hi = L-root(r′i). Observe that T [A[i] . . n] = pow(Hi) · T [efull
j . . n]. Together with

the properties of the pow function and with the definition of (r′i)i∈[1. .q], this implies that the
positions in A are sorted according to the lexicographic order of the corresponding suffixes of T ,
i.e., i < i′ implies T [A[i] . . n] ≺ T [A[i′] . . n]. Let D denote the data structure of Proposition 5.4
for the array A[1 . . q] (it is well defined due to q = O(n/ logσ n)). Finally, let (`i)i∈[1. .q] be a
sequence of integers defined by `i = efull

j − j, where j = r′i (see also the proof of Proposition 3.12).
We define the array A′[1 . . q] by A′[i] = `i.

The data structure, in addition to the structure from Proposition 5.9, contains two compo-
nents. First, we store the data structure D, which needs O(n/ logσ n) space by Proposition 5.4.
Second, we store a data structure supporting range counting/selection queries on A′. Using
Proposition 3.11, the structure needs O(1 + q) = O(n/ logσ n) space.

We answer the queries as follows. First, using the data structure from Proposition 5.9, we
compute s = L-head(P ), H = L-root(P [1 . . 3τ−1]), and k = L-exp(P ) in O(1 +m/ logσ n) time.
This lets us determine efull(P ) = 1+s+k|H| and P ′ := P [efull(P )− |pow(H)| . .m]. Then, using
Proposition 5.4, we compute in O(m/ logσ n+ log logn) time a range (bpre . . epre] = {i ∈ [1 . . q] :
P ′ is a prefix of T [A[i] . . n]}. Observe that the set {r′i : i ∈ (bpre . . epre]} consists of all positions
j ∈ R′−H such that P [efull(P ) . .m] is a prefix of T [efull

j . . n]. Thus, by Lemma 5.13, we have
|Occs−(P, T )| = |{i ∈ (bpre . . epre] : `i ≥ efull(P ) − 1}|, which we compute in O(log log n) time
using the range counting structure as rcountA′(efull(P )− 1, epre)− rcountA′(e

full(P )− 1, bpre).
The data structure is constructed as follows. First, as in Proposition 5.12, we construct

in O(n/ logσ n) time the sequence (st)t∈[1. .n′] containing the elements of S in sorted order (see
Section 3.2), and then use it to compute CISA(T, S) via Proposition 3.2. We then in O(n/ logσ n)
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time augment it into a data structure from Proposition 3.7. Using that data structure, we
construct in O(n/ logσ n) time the sequences (r′i)i∈[1. .q] and (`i)i∈[1. .q], as explained in the proof
of Proposition 3.12. Using Proposition 3.7, we can now compute A[i] for any i ∈ [1 . . q] in
O(1) time. We then discard CISA(T,S) and the structure from Proposition 3.7. Next, in
O(n(log logn)2/ logσ n) time and O(n/ logσ n) working space, we construct the data structure D
using Proposition 5.4. Finally, we construct the array A′ and augment it with the range counting
data structure. Using Proposition 3.11, by q = O(n/ logσ n) and

∑q
i=1A

′[i] = O(n), this takes
O(n/ logσ n) time.

Summary By combining all above results, we obtain the following data structure to compute
|Occ(P, T )| for patterns P having a periodic prefix.

Proposition 5.15. Given the structure Ccount(T,S), we can in O(n(log log n)2/ logσ n) time
and in O(n/ logσ n) working space augment it into a data structure of size O(n/ logσ n) that,
given the packed representation of P ∈ [0 . . σ)m having a periodic prefix, returns |Occ(P, T )| in
O(m/ logσ n+ log log n) time.

Proof. The data structure is a composition of four data structures. First, we store the two data
structures presented in Propositions 5.12 and 5.14. These structures are designed to compute
|Occa−(P, T )| and |Occs−(P, T )|. To compute |Occa+(P, T )| and |Occs+(P, T )|, we store their
symmetric versions. All four data structures take O(n/ logσ n) space. All structures are built on
top of the structure from Proposition 5.9, but it suffices to only keep its single copy (in particular,
we keep a single copy of Ccount(T, S)).

Using the above data structures, given a packed representation of P ∈ [0 . . σ)m such that
m ≥ 3τ − 1 and P [1 . . 3τ−1] ∈ F , we compute |Occ(P, T )| = |Occa−(P, T )| + |Occs−(P, T )| +
|Occa+(P, T )| + |Occs+(P, T )| using the data structures from Propositions 5.12 and 5.14 and
their symmetric counterparts. The total time is O(m/ logσ n+ log log n).

The data structure is constructed as follows. First, given Ccount(T, S) we construct the data
structure from Proposition 5.9. This takes O(n/ logσ n) time. We then augment it into the two
data structures to compute |Occa−(P, T )| and |Occs−(P, T )|. Using Propositions 5.12 and 5.14,
this takes O(n/ logσ n) and O(n(log logn)2/ logσ n) time (respectively) and O(n/ logσ n) working
space. Finally, we analogously construct the two data structures to compute |Occa−(P, T )| and
|Occs+(P, T )|. The total time is O(n(log logn)2/ logσ n), and the working space never exceeds
the optimal O(n/ logσ n) words.

5.3.2 Computing RangeBeg(P, T ) and RangeEnd(P, T )

Let P ∈ [0 . . σ)m be a string with a periodic prefix. We now show how to extend the above data
structure computing |Occ(P, T )| to instead return (RangeBeg(P, T ),RangeEnd(P, T )).

Let pos(P, T ) = {j ∈ [1 . . n] : lcp(T [j . . n], P ) ≥ 3τ −1 and T [j . . n] ≺ P}. Denote δ(P, T ) =
|pos(P, T )|. Let SA(b . . e] be the range containing the starting positions of all suffixes of T
having X = P [1 . . 3τ−1] as a prefix. Since D ∪ F is prefix-free, we have b ≤ RangeBeg(P, T ) ≤
RangeEnd(P, T ) ≤ e, and it is easy to see that RangeBeg(P, T ) = b+ δ(P, T ). Thus, since the
pair (b, e), is easy to compute, the value |Occ(P, T )| can be obtained using Proposition 5.15, and
it holds RangeEnd(P, T ) = RangeBeg(P, T ) + |Occ(P, T )|, the difficulty in obtaining the pair
(RangeBeg(P, T ),RangeEnd(P, T )) lies in computing δ(P, T ).

We focus on computing δ(P, T ) for P satisfying type(P ) = −1 (the structure for P satisfying
type(P ) = +1 is symmetric; see the proof of Proposition 5.20). Denote s = L-head(P ) and
H = L-root(P [1 . . 3τ−1]). We define posa(P, T ) = {j ∈ R−s,H : L-exp(j) ≤ L-exp(P )} and
poss(P, T ) = {j ∈ R−s,H : L-exp(j) = L-exp(P ) and T [j . . n] � P}. We denote δa(P, T ) =
|posa(P, T )| and δs(P, T ) = |poss(P, T )|.
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Lemma 5.16. For any pattern P ∈ [0 . . σ)m that has a periodic prefix and satisfies type(P ) = −1,
it holds δ(P, T ) = δa(P, T )− δs(P, T ).

Proof. We will prove that posa(P, T ) is a disjoint union of pos(P, T ) and poss(P, T ). This implies
δ(P, T ) + δs(P, T ) = δa(P, T ), and consequently, the equality in the claim.

By Lemmas 5.7 and 5.8, letting j ∈ R−s,H , we have pos(P, T ) = {j ∈ R−s,H : T [j . . n] ≺ P},
and moreover, if j ∈ pos(P, T ), then ej − j ≤ e(P ) − 1. In particular, L-exp(j) = b ej−j−s|H| c ≤
b e(P )−1−s

|H| c = L-exp(P ). Hence, pos(P, T ) ⊆ posa(P, T ). On the other hand, clearly poss(P, T ) ⊆
posa(P, T ) and poss(P, T ) ∩ pos(P, T ) = ∅. Thus, to obtain the claim, it suffices to show that
posa(P, T ) \ poss(P, T ) ⊆ pos(P, T ).

Let j ∈ posa(P, T ) \ poss(P, T ). Consider two cases. If L-exp(j) = L-exp(P ), then by
definition of poss(P, T ), it must hold T [j . . n] ≺ P . Thus, we have j ∈ pos(P, T ). Let us
therefore assume L-exp(j) < L-exp(P ). Then, ej − j = s + L-exp(j) · |H| + L-tail(j) < s +
L-exp(j) · |H|+ |H| ≤ s+ L-exp(P ) · |H| ≤ s+ L-exp(P ) · |H|+ L-tail(P ) = e(P )− 1. By Item 2
of Lemma 5.8, this implies T [j . . n] ≺ P , and consequently, j ∈ pos(P, T ).

Computing δa(P, T ) We now describe a data structure that given any P ∈ [0 . . σ)m that has a
periodic prefix and satisfies type(P ) = −1, allows computing δa(P, T ).

Proposition 5.17. Given the data structure from Proposition 5.12 and the packed representation
of P ∈ [0 . . σ)m having a periodic prefix and satisfying type(P ) = −1, we can in O(1 +m/ logσ n)
time compute δa(P, T ).

Proof. First, using the data structure from Proposition 5.9 (which is stored as a part of structure
from Proposition 5.12), we compute H = L-root(P ) and k = L-exp(P ) in O(1 +m/ logσ n) time.
Then, using the array ISA3τ−1 (stored as a part of data structure from Proposition 5.9), we
compute in O(1) time a pair of integers b, e such that SA(b . . e] contains the starting positions
of all suffixes of T prefixed with P [1 . . 3τ−1]. Equivalently, by Lemma 5.7, SA(b . . e] contains
all positions from Rs,H , where s = L-head(P ). Our goal now is to determine the subrange of
SA(b . . e] containing all positions in {j ∈ R−s,H : L-exp(j) ≤ L-exp(P )} (these positions form
a subrange by Lemma 3.5). For that, we first compute d = rankE,1(e) − rankE,1(b) in O(1)
time. If d = 0, then R−s,H = ∅, and hence we return δa(P, T ) = 0. Otherwise, we retrieve
kmin = Q[int(H)] in O(1) time. Then, letting kmax = kmin + d − 1, we have kmin ≤ kmax

and [kmin . . kmax] = {L-exp(j) : j ∈ R−s,H} (see the proof of Proposition 3.9). If k < kmin, we
return δa(P, T ) = 0. Otherwise, we have two cases. Let p = rankE,1(b). If k ≥ kmax, then
we return δa(P, T ) = |R−s,H | = selectE,1(p + d) − b. Otherwise (i.e., k < kmax), we return
δa(P, T ) = selectE,1(p+ k − kmin + 1)− b. In total, the query takes O(1 +m/ logσ n) time.

Computing δs(P, T ) We now describe a data structure that given any P ∈ [0 . . σ)m that has a
periodic prefix and satisfies type(P ) = −1, allows computing δs(P, T ).

Lemma 5.18. Let P ∈ [0 . . σ)m be a pattern that has a periodic prefix and satisfies type(P ) = −1.
Denote H = L-root(P [1 . . 3τ−1]). Assume i ∈ R−H and let ` = ei − i− 3τ + 2. Then, we have
|poss(P, T ) ∩ [i . . i + `)| ≤ 1. Moreover, |poss(P, T ) ∩ [i . . i + `)| = 1 holds if and only if
T [efull

i . . n] � P [efull(P ) . .m] and efull
i − i ≥ efull(P )− 1.

Proof. In the proof of Lemma 5.13, it is shown that [i . . i + `) ⊆ R−H , and for any δ ∈ [0 . . `),
it holds efull

i+δ − (i + δ) = efull
i − i − δ. By definition of poss(P, T ), letting s = L-head(P ), for

any j ∈ poss(P, T ) it holds efull
j − j = s + L-exp(j) · |H| = s + L-exp(P ) · |H| = efull(P ) − 1.

Thus, i + δ ∈ poss(P, T ) implies efull
i+δ − (i + δ) = efull

i − (i + δ) = efull(P ) − 1, or equivalently,
δ = (efull

i − i)− (efull(P )− 1), and therefore, |poss(P, T ) ∩ [i . . i+ `)| ≤ 1.

33



For the second part, assume first that i+ δ ∈ poss(P, T ) holds for some δ ∈ [0 . . `). Then, as
noted above, we have efull(P )− 1 = efull

i − (i+ δ) ≤ efull
i − i. Moreover, letting L-head(P ) = s,

by definition of poss(P, T ), we have i+ δ ∈ R−s,H , L-exp(P ) = L-exp(i+ δ), and T [i+δ . . n] � P .
Therefore, we obtain that T [i+δ . . efull

i+δ) = T [i+δ . . efull
i ) = P [1 . . efull(P )) = H ′Hk (where k =

L-exp(P ) and H ′ is the length-s prefix of H), and consequently, T [efull
i . . n] � P [efull(P ) . .m]. To

show the converse implication, assume that T [efull
i . . n] � P [efull(P ) . .m] and efull

i −i ≥ efull(P )−1.
Let δ = (efull

i − i) − (efull(P ) − 1). We will prove that δ ∈ [0 . . `) and i + δ ∈ poss(P, T ).
Clearly δ ≥ 0. To show δ < `, we first prove ei − efull

i ≥ e(P ) − efull(P ). Suppose that
q = ei − efull

i < e(P ) − efull(P ). By i ∈ R−H , we then either have efull
i + q = n + 1, or

efull
i + q ≤ n and T [efull

i + q] ≺ T [efull
i + q − |H|] = P [efull(P ) + q − |H|] = P [efull(P ) + q],

both of which contradict T [efull
i . . n] � P [efull(P ) . .m]. Thus, ei − efull

i ≥ e(P ) − efull(P ).
This implies, ei − (i + δ) = (efull

i − (i + δ)) + (ei − efull
i ) = (efull(P ) − 1) + (ei − efull

i ) ≥
(efull(P )− 1) + (e(P )− efull(P )) = e(P )− 1 ≥ 3τ − 1, or equivalently δ ≤ ei − i− 3τ + 1 < `. To
show i+ δ ∈ poss(P, T ), it remains to observe that efull

i+δ − (i+ δ) = efull
i − (i+ δ) = efull(P )− 1

and L-root(i + δ) = L-root(P [1 . . 3τ−1]) = H imply T [i + δ . . efull
i ) = P [1 . . efull(P )). This in

particular gives, letting L-head(P ) = s, that i+δ ∈ Rs,H and L-exp(i+δ) = L-exp(P ). Moreover,
combining it with T [efull

i . . n] � P [efull(P ) . .m] yields T [i+ δ . . n] � P . Finally, by Lemma 3.6,
type(i+ δ) = type(i) = −1. Therefore, i+ δ ∈ poss(P, T ).

Proposition 5.19. Given the data structure from Proposition 5.9, in O(n(log log n)2/ logσ n)
time and O(n/ logσ n) working space we can augment it into a data structure of size O(n/ logσ n)
that, given the packed representation of P ∈ [0 . . σ)m having a periodic prefix and satisfying
type(P ) = −1, returns δs(P, T ) in O(m/ logσ n+ log log n) time.

Proof. The data structure, in addition to the structure from Proposition 5.9, contains three
components. First, we store the data structure D (as defined in Proposition 5.14), which needs
O(n/ logσ n) space by Proposition 5.4. Second, we store a data structure supporting range
counting/selection queries on A′ (as defined in Proposition 5.14). Using Proposition 3.11, the
structure needs O(1 + q) = O(n/ logσ n) space. Third, and final, we store a lookup table C, as
defined in Proposition 3.12. As shown in Proposition 3.12, C needs O(n/ logσ n) space.

We answer the queries as follows. First, using the data structure from Proposition 5.9, we
compute s = L-head(P ), H = L-root(P [1 . . 3τ−1]), and k = L-exp(P ) in O(1 + m/ logσ n)
time. This lets us determine efull(P ) = 1+s+k|H| and P ′ := P [efull(P )− |pow(H)| . .m]. Then,
using Proposition 5.4, we compute in O(m/ logσ n + log logn) time a value x = |{i ∈ [1 . . q] :
T [A[i] . . n] ≺ P ′}| (where A and q are defined as in Proposition 5.14). Then, letting x′ =
C[int(H)], by definition of A and properties of function pow (see the proof of Proposition 5.14),
the set {r′i : i ∈ (x . . x′]} (where r′i is defined as in the proof of Proposition 5.14) consists
of all positions j ∈ R′−H satisfying T [efull

j . . n] � P [efull(P ) . .m]. Thus, by Lemma 5.18, it
holds δs(P, T ) = |poss(P, T )| = |{i ∈ (x . . x′] : `i ≥ efull(P ) − 1}| (where `i is defined as in
Proposition 5.14), which we compute in O(log log n) time using the range counting structure as
rcountA′(e

full(P )− 1, x′)− rcountA′(e
full(P )− 1, x).

The data structure is constructed as follows. First, as in Proposition 5.12, we construct
in O(n/ logσ n) time the sequence (st)t∈[1. .n′] containing the elements of S in sorted order (see
Section 3.2), and then use it to compute CISA(T, S) via Proposition 3.2. We then in O(n/ logσ n)
time augment it into a data structure from Proposition 3.7. Using that data structure, we
construct in O(n/ logσ n) time the lookup table C, as explained in the proof of Proposition 3.12.
The data structure D and the structure supporting range counting/selection queries on A′ are
constructed in O(n(log logn)2/ logσ n) time and O(n/ logσ n) working space as explained in the
proof of Proposition 5.14.
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Summary By combining the above results, we obtain the following data structure to compute
(RangeBeg(P, T ),RangeEnd(P, T )) for patterns with periodic prefixes.

Proposition 5.20. Given the structure Ccount(T,S), we can in O(n(log log n)2/ logσ n) time
and in O(n/ logσ n) working space augment it into a data structure of size O(n/ logσ n) that,
given the packed representation of P ∈ [0 . . σ)m having a periodic prefix, returns the pair
(RangeBeg(P, T ),RangeEnd(P, T )) in O(m/ logσ n+ log log n) time.

Proof. The data structure is a composition of five data structures. First, we store the two data
structures presented in Propositions 5.17 and 5.19. These structures are designed to compute
values δa(P, T ) and δs(P, T ) for P satisfying type(P ) = −1. To handle type(P ) = +1, we
store their symmetric versions adapted according to Lemma 5.8 (more precisely, if type(P ) =
+1, the data structures compute δa(P, T ) = |posa(P, T )| and δs(P, T ) = |poss(P, T )|, where
posa(P, T ) = {j ∈ R+

s,H : L-exp(j) ≤ L-exp(P )} and poss(P, T ) = {j ∈ R+
s,H : L-exp(j) =

L-exp(j) and T [j . . n] ≺ P}). All four data structures take O(n/ logσ n) space. All structures
are built on top of the structure from Proposition 5.9, but it suffices to only keep its single
copy (in particular, we keep a single copy of Ccount(T, S)). Finally, we store a data structure to
compute |Occ(P, T )| from Proposition 5.15. It also needs O(n/ logσ n) space.

Using the above data structures, given the packed representation of P ∈ [0 . . σ)m having a
periodic prefix, we compute (RangeBeg(P, T ),RangeEnd(P, T )) as follows. First, using Propo-
sition 5.15 in O(m/ logσ n + log logn) time we compute |Occ(P, T )|. Next, using Lemma 5.2,
in O(1) time we compute integers b, e such that SA(b . . e] contains the starting positions of
all suffixes of T starting with P [1 . . 3τ − 1]. Then, in O(1 + m/ logσ n) time using Proposi-
tion 5.9 we determine type(P ). Depending on whether type(P ) = −1 or type(P ) = +1, we use
either a combination of Propositions 5.17 and 5.19 or their symmetric counterparts, to compute
δa(P, T ) and δs(P, T ) in O(1 + m/ logσ n) and O(m/ logσ n + log logn) time, respectively. If
type(P ) = −1, then by Lemma 5.16 we have δ(P, T ) = δa(P, T ) − δs(P, T ). Otherwise, by
the counterpart of Lemma 5.16, δ(P, T ) = (e − b) − (δa(P, T ) − δs(P, T )). Finally, we return
(RangeBeg(P, T ),RangeEnd(P, T )) = (b+ δ(P, T ), b+ δ(P, T ) + |Occ(P, T )|) as the answer. In
total, the query takes O(m/ logσ n+ log log n) time.

The data structure is constructed as follows. First, given Ccount(T,S), we construct the
data structure from Proposition 5.9. This takes O(n/ logσ n) time. We then augment it
into the two data structures to compute δa(P, T ) and δs(P, T ) for P satisfying type(P ) =
−1. Using Propositions 5.17 and 5.19, this takes O(n/ logσ n) and O(n(log log n)2/ logσ n)
time (respectively), and O(n/ logσ n) working space. We analogously construct the two data
structures to compute δa(P, T ) and δs(P, T ) for P satisfying type(P ) = +1. Finally, using
Proposition 5.15, we construct the structure to compute |Occ(P, T )| in O(n(log log n)2/ logσ n)
time and O(n/ logσ n) working space.

5.4 The Final Data Structure

Theorem 5.21. Given a constant ε ∈ (0, 1) and the packed representation of a text T ∈ [0 . . σ)n

with 2 ≤ σ < n1/6, we can construct in O(n log σ/
√

log n) time and O(n/ logσ n) working space a
data structure of size O(n/ logσ n) that, given the packed representation of P ∈ [0 . . σ)m, returns
the pair (RangeBeg(P, T ),RangeEnd(P, T )) in O(m/ logσ n+ logε n) time.

Proof. The data structure is a composition of the data structures from Proposition 5.6 and
Proposition 5.20. Both data structures take O(n/ logσ n) space. Each of the two structures is
built on top of the index core Ccount(T, S), but it suffices to store a single copy of Ccount(T, S).

Given the packed encoding of P ∈ [0 . . σ)m, we compute (RangeBeg(P, T ),RangeEnd(P, T ))
as follows. If m < 3τ − 1, or m ≥ 3τ − 1 and no element of D ∪ F is a prefix of P , we
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compute (RangeBeg(P, T ),RangeEnd(P, T )) in O(1) time from Ccount(T,S) using Lemma 5.2.
If m ≥ 3τ − 1 and P is prefixed with some X ∈ D, then we use Proposition 5.6 to compute
(RangeBeg(P, T ),RangeEnd(P, T )) in O(m/ logσ n+logε n) time. Otherwise (i.e., P [1 . . 3τ−1] ∈
F) we use Proposition 5.20 to return the answer in O(m/ logσ n+ log log n) time.

The data structure is constructed as follows. First, using Theorem 2.5, from a packed
representation of T , we construct a τ -synchronizing set S of size O(n/τ) in O(n/τ) = O(n/ logσ n)
time. The set S is returned as an array taking O(n/ logσ n) space. Using this array and the packed
representation of T , we then construct Ccount(T,S) in O(n/ logσ n) time using Proposition 5.3.
Finally, using Propositions 5.6 and 5.20, we augment Ccount(T,S) in O(n log σ/

√
log n) and

O(n(log logn)2/ logσ n) time (respectively) and using O(n/ logσ n) working space into structures
to compute (RangeBeg(P, T ),RangeEnd(P, T )).

A Proof of Theorem 2.2

We start with an implementation of rank and selection queries for larger alphabets.

Lemma A.1 (Belazzougui and Puglisi [9]). For all integers N ≥ n ≥ σ ≥ 2 and every string S ∈
[0 . . σ)≤n there exists a data structure of O(n log σ) bits that answers rank queries in O(log logN)
time and selection queries in O(1) time. Moreover, given a table precomputed in O(N) time
(shareable across all instances with common parameter N) and the packed representation of S, the
data structure can be constructed in O(σ + n log σ/

√
logN) time using O(n log σ) bits of space.

Proof. If log2 σ ≥ logN , we use the data structure of [9, Lemma C.2], which occupies O(n log σ)
bits, answers rank queries in O(log log n) time and selection queries in O(1) time, and can be
constructed in O(n) time using O(n log σ) bits of space.7 Otherwise, we use the data structure
of [9, Lemma C.3], which occupies O(n log σ) bits, answers rank queries in O(log logN) time
and selection queries in O(1) time, and can be constructed in O(σ + n log2 σ/ logN) time using
O(n log σ) bits of space.

The following proposition, instantiated with h = dlogε/2me, immediately yields Theorem 2.2.

Proposition A.2. For all integers h,m, b, σ ∈ Z≥1 satisfying h ≥ 2 and m ≥ σb ≥ 2, and every
string W ∈ ([0 . . σ)b)≤m, there exists a data structure of size O(m logh(hb)) that answers prefix
rank queries in O(h log logm logh(hb)) time and prefix selection queries in O(h logh(hb)) time.
Moreover, it can be constructed in O(m

√
logm logh(hb)) time using O(m logh(hb)) space given

the packed representation of W and the parameter h.

Proof. The data structure consists in the wavelet tree of W and, when h ≤ b, an instance
constructed recursively for an auxiliary string W̃ .

Wavelet tree Let Σ = [0 . . σ) so that the alphabet of W is Σb. The wavelet tree of W [31]
is the trie of Σb with each internal node vX (representing a string X ∈ Σ≤b−1) associated
to a string BX [1 . . rankW,X(|W |)] ∈ Σ∗ such that BX [r] = W [selectW,X(r)][|X| + 1] for r ∈
[1 . . rankW,X(|W |)]. The strings BX are augmented with the component of Lemma A.1 for N = m.

7The statement of [9, Lemma C.2] does not bound the space consumption of the construction algorithm.
Nevertheless, it is straightforward to implement the underlying construction procedure in O(n log σ) bits of
working space. The original algorithm scans the input sequence S from left to right and, for each a ∈ Σ, builds an
array Pa[1 . . na] such that na = rankS,a(|S|) and Pa[r] = selectS,a(r) for r ∈ [1 . . na]. The array Pa[1 . . na] is then
converted to the Elias–Fano representation: an array Aa[1 . . na] with Aa[r] = Pa[r] mod σ for r ∈ [1 . . na] and a
bit vector Va = unary((bPa[r]/σc − bPa[r− 1]/σc)r∈[1. .na]), where we assume Pa[0] = 0 to streamline the formula.
To achieve O(n log σ) bits of working space, instead of storing Pa explicitly, we convert Pa to the Elias–Fano
representation on the fly as subsequent positions are appended to Pa.
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Recursive instance We shall define W̃ as a string of length |W | over the alphabet Σ̃b̃, where
b̃ := bb/hc and Σ̃ := [0 . . σh). We shall define identify Σ̃ with Σh, treating each string in Σh as
the h-digit base-σ representation of an integer in Σ̃. For every string X ∈ Σ∗, define X̃ ∈ Σ̃∗ so
that |X̃| = b|X|/hc and X̃[i] = X(h(i− 1) . . hi] for i ∈ [1 . . |X̃|]. Moreover, we set W̃ [1 . . |W |]
so that W̃ [j] = W̃ [j] for j ∈ [1 . . |W |]. Note that the recursive application of Proposition A.2 to
W̃ is possible because 2 ≤ σ̃b̃ ≤ σb ≤ m and b̃ ≥ 1 hold when h ≤ b.

Data structure size It is easy to see that, for a fixed length d ∈ [0 . . b), the strings BX for
X ∈ Σd are of total length m. Across all X ∈ Σ≤b−1, this sums up to mb, so the raw strings
BX occupy O(mb log σ) = O(m logm) bits. The augmentation of BX using Lemma A.1 adds
O((σ + |BX |) log σ) extra bits, which sums up to O((σb + mb) log σ) = O(m logm) bits, i.e.,
O(m) machine words. The recursion depth is O(logh(hb)), so the overall size is O(m logh(hb)).

Answering queries To handle any query concerning X ∈ Σ≤b, we compute auxiliary strings X̃
and X ′ := X[1 . . |X|−(|X| mod h)] (obtained by expanding the letters in X̃ into length-h strings).

Answering a prefix rank query rankW,X(j), we traverse the path from vX′ to vX , maintaining
a value r such that r = rankW,Y (j) holds while the algorithm visits vY . We initialize r := j =
rankW,ε(j) if X ′ = ε and r := rankW̃ ,X̃(j) (computed recursively) otherwise; this is valid due to
rankW̃ ,X̃(j) = rankW,X′(j). Upon entering a node vY a from its parent vY , we set r := rankBY ,a(r)
since rankW,Y a(j) = rankBY ,a(rankW,Y (j)); see [31]. When reaching vX , we return r = rankW,X(j).
The running time is O(h log logm) per recursive level, for a total of O(h log logm · logh(hb)).

Answering a prefix selection query selectW,X(r), we traverse the path from vX to vX′ , main-
taining a value q such that selectW,Y (q) = selectW,X(r) holds while the algorithm visits vY . We
initialize q := r and, upon entering a node vY from its child vY a, we set q := selectBY ,a(q) since
selectW,Y a(r) = selectW,Y (selectBY ,a(r)); see [31]. When reaching vX′ , we return q = selectW,ε(q)
if X ′ = ε and selectW̃ ,X̃(q) otherwise; this is valid due to selectW̃ ,X̃(q) = selectW,X′(q). The
running time is O(h) per recursive level, for a total of O(h · logh(hb)).

Construction algorithm If log σ ≥
√

logm, we use the original wavelet tree construction algo-
rithm [31], which takes O(mb) = O(m

√
logm) time and O(m) space. Otherwise, we apply the

bit-parallel algorithm of [51, 2], which has been adapted to large alphabets in [39, Lemma 6.4].
This procedure takes O(mb log σ/

√
logm + mb log2 σ/ logm) = O(m

√
logm) time and O(m)

space. Building the data structure of Lemma A.1 for BX takes O(σ + |BX | log σ/
√

logm) time
and O(σ+ |BX | log σ/ logm) space, which sums up to O(m

√
logm) time and O(m) space across

X ∈ Σ≤b−1. Precomputing the table shared by all instances of Lemma A.1 takes O(m) time and
space. Considering all levels of recursion, we get a multiplicative overhead of O(logh(hb)).
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