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Abstract

Quite recently a teaching model, called “No-Clash Teaching” or simply “NC-Teaching”, had been
suggested that is provably optimal in the following strong sense. First, it satisfies Goldman and Matthias’
collusion-freeness condition. Second, the NC-teaching dimension (= NCTD) is smaller than or equal to
the teaching dimension with respect to any other collusion-free teaching model. It has also been shown
that any concept class which has NC-teaching dimension d and is defined over a domain of size n can have
at most 2d

(

n

d

)

concepts. The main results in this paper are as follows. First, we characterize the maximum
concept classes of NC-teaching dimension 1 as classes which are induced by tournaments (= complete
oriented graphs) in a very natural way. Second, we show that there exists a family (Cn)n≥1 of concept
classes such that the well known recursive teaching dimension (= RTD) of Cn grows logarithmically in
n = |Cn| while, for every n ≥ 1, the NC-teaching dimension of Cn equals 1. Since the recursive teaching
dimension of a finite concept class C is generally bounded log |C|, the family (Cn)n≥1 separates RTD
from NCTD in the most striking way. The proof of existence of the family (Cn)n≥1 makes use of the
probabilistic method and random tournaments. Third, we improve the afore-mentioned upper bound
2d
(

n

d

)

by a factor of order
√
d. The verification of the superior bound makes use of Johnson graphs and

maximum subgraphs not containing large narrow cliques.

1 Introduction

Learning from examples that were carefully chosen by a teacher (e.g. a human expert) presents an alternative
to the commonly used model of learning from randomly chosen examples. A model of teaching should be
sufficiently restrictive to rule out collusion between the learner and the teacher. For instance, the teacher
should not be allowed to encode a direct representation of the target concept (such as a Boolean formula or
a neural network) within the chosen sequence of examples. [7] suggested to consider a learner-teacher pair
as collusion-free if it satisfies the following condition: if the learner is in favor of concept C after having
seen the labeled teaching set T chosen by the teacher, the learner should again be in favor of C after having
seen a superset S of T as long as the label assignment in S still coincides with the label assignment induced
by C. In other words: the learners guess C for the target concept should not be altered when the data give
even more support to C than the original labeled teaching set T is giving. Most existing abstract models of
teaching are collusion-free in this sense. Quite recently, [10] introduced a new model, called no-clash teaching
or simply NC-teaching, that is collusion-free and furthermore optimal in the following strong sense:
For any model M , let M-TD(C) denote the corresponding teaching dimension of concept class C (= smallest
number that upper-bounds the size of any of the employed teaching sets provided that learner and teacher
interact as prescribed by model M). Then NCTD(C) ≤ M-TD(C) holds for any model M that satisfies
Goldman and Mathias’ collusion-freeness criterion.

In this paper, we pursue the following questions:

• What is the maximum size of a concept class which has NC-dimension d and is defined over a domain
of size n?

• How do the classes of maximum size look like?
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• How does the NC-model of teaching relate to well known model of recursive teaching?

Before we outline the structure of this paper, we put the first two of these questions into a more general
context.

1.1 Bounds of the Sauer-Shelah Type

A well-known lemma of Sauer [14] and Shelah [15] states that a concept class of VC-dimension d can induce
at most

Φd(m) =
d
∑

i=0

(

m

d

)

distinct binary label patterns on m ≥ d instances (taken from the underlying domain). This implies that
a concept class of VC-dimension d that is defined over a domain of size n contains at most Φd(n) distinct
concepts. More results of the Sauer-Shelah type are known in the literature. Here we focus on results that are
related to teaching. Consider, for instance, the model of recursive teaching (introduced by [18]). As shown
by [13], Φd(n) also upper-bounds the size of any concept class which has recursive teaching dimension d and
is defined over a domain of size n. As shown by [10], 2d

(

n
d

)

upper-bounds the size of any concept class of
NC-teaching dimension d that is defined over a domain of size n. While the upper bound Φd(n) is tight if
d equals the VC-dimension or the recursive teaching dimension, the corresponding bound 2d

(

n
d

)

in case of
d = NCTD(C) is tight only for d = 1 (as we will show in this paper).

1.2 Maximum Concept Classes

Concept classes of VC-dimension d inducing Φd(m) distinct binary label patterns on any sequence of m
distinct instances are called “maximum classes” (a notion that dates back to early work of [17]). The
theoretical study of maximum classes had been fruitful for several reasons:

• Although there is a wide variety of maximum classes, they have much structure in common. This
structure can be uncovered by exploiting the general definition of a maximum class (which abstracts
away the peculiarities of specific maximum classes).

• The investigation of maximum classes and their structural properties often leads to problems with a
combinatorial flavor that may be considered interesting in their own right.

• The validity of conjectures, believed to hold for arbitrary concept classes (like, for instance, the Sample-
Compression conjecture of [16]) can be tested by showing their validity for maximum classes (as it has
been done successfully by [5] and [1]).

Given the teaching-related bounds of the Sauer-Shelah type, it is a natural idea to define and examine
maximum classes in that context too. Here we are particularly interested in “NC-maximum classes”, i.e.,
concept classes of maximum size among the ones having NC-dimension d and being defined over a domain
of size n.

1.3 Structure of the Paper

In Section 2, we call into mind the definition of various teaching models and the corresponding teaching
dimensions. Section 3 contains the results which are related to tournaments. We first define two concept
classes, the class C1[G] of size n and the class C2[G] of size 2n, both of which are induced by a tournament G
with n vertices. Then we show the following results:

• A concept class over domain [n] is an NC-maximum class of NC-dimension 1 if and only if there exists
a tournament G with n vertices such that C = C2[G].

• For every tournament G, the the class C1[G] has NC-teaching dimension 1.
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• There is a strictly positive probability for the event that a random tournament G induces a class C1[G]
whose recursive teaching dimension is at least log(n)−O(log log(n)).

The last two results establish an RTD-NCTD ratio of order logn. This is particularly remarkable since
RTD(C) is upper-bounded by log |C| for every finite concept class C. In Section 4, one finds the results which
are related to Johnson-graphs. It is shown that a concept class which has NC-dimension d and is defined

over a domain of size n contains at most
(

2
√

2
d+1 − 2

d+1

)

·2d
(

n
d

)

concepts. This improves the best previously

known upper bound, 2d
(

n
d

)

, by a factor of order
√
d. It also shows that the size of an NC-maximum class of

NC-dimension d ≥ 2 is strictly smaller than 2d
(

n
d

)

. The key lemma behind this result is Lemma 4.6, which
relates the NC-teaching sets for a concept class C to subgraphs of a Johnson graph which do not contain
large narrow cliques. The final Section 5 mentions some open problems.

2 Definitions, Notations and Facts

As usual a concept over domain X is a function from X to {0, 1} or, equivalently, a subset of X . A set whose
elements are concepts over domain X is referred to as a concept class over X . The elements of X are called
instances. The powerset of X is denoted by P(X ). The set of all subsets of size d of X is denoted by Pd(X ).
we refer to elements of Pd(X ) as d-subsets of X .

Definition 2.1 (Teaching Models [6, 18, 10]). Let C be a concept class over X .

1. A teaching set for C ∈ C is a subset D ⊆ X which distinguishes C from any other concept in C, i.e.,
for every C′ ∈ C \ {C}, there exists some x ∈ D such that C(x) 6= C′(x). The size of the smallest
teaching set for C ∈ C is denoted by TD(C, C). The teaching dimension of C in the Goldman-Kearns
model of teaching is then given by

TD(C) = max
C∈C

|T (C, C)| .

A related quantity is
TDmin(C) = min

C∈C
|T (C, C)| .

2. Let T : C → P(X ) be a mapping that assigns to every concept in C a set of instances. T is called
admissable for C in the NC-model1 of teaching, or simply an NC-teacher for C, if, for every C 6= C′ ∈ C,
there exists x ∈ T (C) ∪ T (C′) such that C(x) 6= C′(c). The teaching dimension of C in the NC-model
of teaching is given by

NCTD(C) = min{max
C∈C

|T (C)| : T is an NC-teacher for C} .

3. Let Cmin ⊆ C be the easiest-to-teach concepts in C, i.e.,

Cmin = {C ∈ C : TD(C, C) = TDmin(C)} .

The recursive teaching dimension of C is then given by

RTD(C) =
{

TDmin(C) if C = Cmin

max{TDmin(C),RTD(C \ Cmin)} otherwise
.

In all three models, the set T (C) is referred to as the teaching set for C. The order of T is defined as the
size of the largest of T ’s teaching sets, i.e., order(T ) = maxC∈C |T (C)|.

Some remarks are in place here:

1NC = No-Clash.
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1. It was shown in [3] that
RTD(C) = max

C′⊆C
TDmin(C′) . (1)

2. The set T (C) in Definition 2.1 is an unlabeled set of instances. Intuitively, one should think of the learner
as receiving the correctly labeled teaching set, i.e.,the learner receives T (C) plus the corresponding C-
labels where C is the concept that is to be taught.

3. We say that two concepts C and C′ clash (with respect to T : C → P(X )) if they agree on T (C)∪T (C′),
i.e, if they assign the same 0, 1-label to all instances in T (C) ∪ T (C′). NC-teachers for C are teachers
who avoid clashes between any pair of distinct concepts from C.

As already observed by [10]), NC-Teachers can be normalized:

• We may assume without loss of generality that |T (C)| = d for every C ∈ C where d denotes the order
of T .

This will be henceforth assumed. Let n = |X | and 0 ≤ d ≤ n. An NC-teacher T for C of order d then assigns
to every concept C ∈ C a set taken from Pd(X ). Clearly |Pd(X )| =

(

n
d

)

and, for each fixed set S ∈ Pd(X ),
there can be at most 2d distinct concepts in C with NC-teaching set S. For this simple reason, the following
holds:

Theorem 2.2 ([10]). Any concept class which has NC-teaching dimension d and is defined over a domain
of size n contains at most 2d

(

n
d

)

concepts.

An NC-maximum class (with respect to parameters n and d) is a concept class of largest size among all
classes having NC-dimension d and being defined over a domain X of size n, say X = [n]. The size of such a
class will be denoted by MNC(n, d) throughout this paper. According to Theorem 2.2, MNC(n, d) ≤ 2d

(

n
d

)

.
We will see in the course of this paper that this upper bound on MNC(n, d) is tight only for d = 1 and, for
d ≥ 2, it can be improved (at least) by a factor of order

√
d.

3 Results on Concept Classes Induced by Tournaments

The following notion will play a central role in this section:

Definition 3.1 (concept class induced by a tournament). Let G = ([n], E) be a tournament with n players,
i.e., G is a directed graph obtained from the complete graph with vertices 1, . . . , n by giving every edge {i, j}
an orientation (either (i, j) or (j, i)).2 The concept classes C1[G] and C2[G] are given by

C1[G] = {C1, . . . , Cn} and C2[G] = {C1, . . . , Cn} ∪ {C1, . . . , Cn}

where, for j = 1, . . . , n, we set

Cj = {i ∈ [n] : (i, j) ∈ E} and Cj = [n] \ Cj . (2)

We will refer to C1[G] (resp. to C2[G]) as the first (resp. the second) concept class induced by G.

Intuitively, we may think of Cj as consisting of all i who have won against j in the tournament G. Note
that j ∈ Cj .

Example 3.2. Consider the tournament Gn with vertices 1, . . . , n and, with edges (i, j) for all 1 ≤ i < j ≤ n
(i.e., edges are always directed from smaller to larger numbers). Let C2

n = C2[Gn] denote the second concept
class induced by Gn. Then the concepts in C2

n are Cj = {1, . . . , j − 1} and Cj = {j, . . . , n} for j = 1, . . . , n.
In other words, C2

n contains all left half-intervals over domain [n] (including ∅ but excluding [n]) and all right
half-intervals (including [n] but excluding ∅).

2Intuitively, edge (i, j) represents the event that j has lost against i in the tournament.
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We will show in Section 3.1 that a concept class C over [n] is an NC-maximum class of NC-teaching
dimension 1 if and only if there exists some tournament G with n players such that C = C2[G]. In Section 3.2,
we show that there exists a family (Cn)n≥1 of concept classes such that RTD(Cn) grows logarithmically with
n = |Cn| while NCTD(Cn) = 1 for all n ≥ 1. This is proven by the probabilistic method which deals here
with the concept class C1(Gn) for a random tournament Gn with n players.

3.1 NC-Maximum Classes of Dimension 1

Here is the main result of this section:

Theorem 3.3. A concept class C over [n] is an NC-maximum class of NC-teaching dimension 1 if and only
if C = C2[G] for some tournament G with n players.

Proof. Suppose first that C = C2[G] for some tournament G = ([n], E). Then C2[G] contains the 2n concepts
that are given by (2). Consider the mapping T : C2[G] → P1([n]) that assigns {j} to the concepts Cj and
Cj for j = 1, . . . , n. T avoids clashes between any pair of distinct concepts, which can be seen as follows:

• Since j /∈ Cj and j ∈ Cj holds for every j ∈ [n], there is no clash between Cj and Cj .

Assume now that i and j are two arbitrary but distinct indices from [n]. The following observations show
that neither Ci and Cj nor Ci and Cj agree on {i, j}:

• If Cj agrees with Ci on {i}, then i /∈ Cj . It follows that (i, j) /∈ E. Thus (j, i) ∈ E so that j ∈ Ci,
which means that Ci disagrees with Cj on {j}. Hence there is no clash between Ci and Cj .

• By symmetry, it follows that there is no clash between Ci and Cj .

• If Cj agrees with Ci on {i}, then i ∈ Cj so that (i, j) ∈ E. It follows that (j, i) /∈ E so that j /∈ Ci.
Thus j ∈ Ci, which means that Ci disagrees with Cj on {j}. Hence there is no clash between Ci and
Cj .

The above discussion shows that T avoids clashes and is therefore an NC-teacher for C2[G]. Since all teaching
sets are of size 1, we get NCTD(C2[G]) = 1. In view of Theorem 2.2, the class C2[G] with 2n = 21

(

n
1

)

concepts
is an NC-maximum class.
Suppose now that C is an NC-maximum class of NC-teaching dimension 1 over [n]. The first part of the
proof in combination with Theorem 2.2 implies that |C| = 2n. Let T : C → P1([n]) be an NC-teacher for C.
It follows that each set {j} ∈ P1([n]) is assigned to exactly two concepts. Moreover these two concepts must
disagree on {j}. We denote the concept with NC-teaching set {j} that contains j (resp. does not contain j)
by Cj (resp. by Cj). Fix two indices i 6= j and consider the following assertions:

1. Cj disagrees with Ci on {i}.

2. Cj agrees with Ci on {i}.

3. Ci disagrees with Cj on {j}.

4. Ci agrees with Cj on {j}.

5. Cj disagrees with Ci on {i}.

6. Cj agrees with Ci on {i}.

7. Ci disagrees with Cj on {j}.

8. Ci agrees with Cj on {j}.

Since the assignment of NC-teaching sets to concepts avoids clashes, it is easily seen that the following holds:

5



• Any assertion is an immediate logical consequence of the preceding one.

• The first assertion is an immediate logical consequence of the last one.

It follows that these eight assertions are equivalent. An inspection of the second and the fifth assertion
reveals that Cj = [n] \ Cj . Consider now the directed graph G = ([n], E) with

E = {(i, j) : Cj agrees with Ci on {i}} .

An inspection of the second and the seventh assertion reveals that exactly one of the edges (i, j) and (j, i)
belongs to E. It follows that G is a tournament. Moreover, the above definition of E makes sure that, for
every j ∈ [n], Cj = {i ∈ [n] : (i, j) ∈ E}. We may therefore conclude that C = C2[G].

The following result, which shows that the general inequality MNC(n, d) ≤ 2d
(

n
d

)

holds with equality for
d = 1, is a direct consequence of Theorem 3.3:

Corollary 3.4. For all n ≥ 1: MNC(n, 1) = 2n.

Here is another direct consequence of Theorem 3.3:

Corollary 3.5. For n ≥ 1 and every tournament G with n players: NCTD(C1[G]) = 1.

Proof. Since C1[G] ⊆ C2[G], a simple monotonicity argument shows that NCTD(C1[G]) ≤ NCTD[C2[G].
Clearly NCTD(C1[G]) ≥ 1. Theorem 3.3 implies that NCTD(C2[G]) = 1. Thus NCTD(C1[G]) = 1.

3.2 Classes with NCTD 1 and Logarithmic RTD

In this section, we make use of the following version of the Chernoff bound:

Lemma 3.6 ([2, 9]). Let X1, . . . , Xm be a sequence of m independent Bernoulli trials, each with probability p
of success. Let Z = X1 + . . .+Xm be the random variable that counts the totel number of successes (so that
E[S] = pm). Then, for 0 ≤ γ ≤ 1, the following holds:

Pr[Z < (1− γ)pm] ≤ exp

(−pmγ2

2

)

. (3)

Here is the main result of this section:

Theorem 3.7. For all sufficiently large n, there exists a concept class C of size n which satisfies RTD(C) ≥
TDmin(C) ≥ ⌊log(n)− 2 log log(2n)⌋ − 4 and NCTD(C) = 1.

Proof. We know from Corollary 3.5 that, for every tournament G with n players, the concept class C1[G]
(which is of size n) has NC-dimension 1. We know already from (1) that RTD is lower-bounded by TDmin.
The proof of the theorem can therefore be accomplished by showing that, for all sufficiently large n, there
exists a tournament G with n players such that TDmin(C1[G]) ≥ ⌊log(n) − 2 log log(2n)⌋ − 4. For this
purpose, we make use of the probabilistic method. Details follow.
Suppose that Ĝ = ([n], Ê) is a random tournament, i.e., for every 1 ≤ i < j ≤ n, we decide by means of a
fair coin whether (i, j) or (j, i) is included into Ê. Consider the class C1[Ĝ] (the first concept class induced
by Ĝ). Let k ≥ 1 be a parameter whose precise definition (as a function in n) is postponed to a later stage.
For every set S ⊆ [n] of size k and every b : S → {0, 1}, let ZS,b be the random variable which counts how

many concepts C ∈ C1[Ĝ] satisfy
∀s ∈ S : C(s) = b(s) . (4)

Each concept Ci with i ∈ [n] \ S satisfies Condition (4) with a probability of exactly 2−k. Therefore

E[ZS,b] ≥ 2−k · (n− k) .
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An application of (3) with p = 2−k, γ = 1/2 and m = n− k yields that, for every fixed choice of S and b, we
have

Pr[ZS,b < 2−(k+1)(n− k)] ≤ exp

(−2−k(n− k)

8

)

= exp
(

2−(k+3)(n− k)
)

.

As there are
(

n
k

)

2k possible choices for (S, b), an application of the union bound yields

Pr[∃(S, b) : ZS,b < 2−(k+1)(n− k)] ≤
(

n

k

)

2k · exp
(

−2−(k+3)(n− k)
)

.

We now set k′ = log(n)− 2 log log(2n)− 4 and k = ⌊k′⌋.
Claim 3.8. For all sufficiently large n, we have

2−(k+1)(n− k) ≥ 2 and

(

n

k

)

2k · exp
(

−2−(k+3)(n− k)
)

< 1 .

Proof of the Claim: For almost all n, we have n − k ≥ n/2. It therefore suffices to show that, for all
sufficiently large n, we have

2−(k+2)n ≥ 2 and

(

n

k

)

2k · exp
(

−2−(k+4)n
)

< 1 .

The first inequality is valid because k ≤ k′ < log(n) − 3. After replacing
(

n
k

)

by nk and taking the
logarithm on both hand-sides, we obtain the following sufficient condition for the second inequality:

k log(2n)− 2−(k+4)n < 0 .

By the above choice of k, we have

k log(2n) ≤ k′ log(2n) < log2(2n) and 2−(k+4)n ≥ 2−(k′+4)n ≥ log2(2n) ,

which completes the proof of the claim.

It follows that there is a strictly positive probability for the event that, for each pair (S, b), at least 2 concepts
from C1[G] satisfy condition (4). Since S ranges over all subsets of [n] of size n and b ranges over all bit
patterns from {0, 1}k, we can draw the following conclusion: there exists a tournament G with n players
such that none of the concepts in C := C1[G] can be uniquely specified by k (or less) labeled examples. This
clearly implies that TDmin(C) ≥ k.

With a little extra-effort, one can show that only an asymptotically vanishing fraction of tournaments
induces concept classes whose TDmin is upper bounded by ⌊log(n)− 2 log log(2n)⌋ − 5. Hence almost all of
these classes are hard to teach in the RTD-model. More precisely, the following holds:

Corollary 3.9. Let τn denote the fraction of tournaments G = ([n], E) such that TDmin(C1[G]) ≤ ⌊log(n)−
2 log log(2n)⌋ − 5. Then, for all sufficiently large n, we have that

τn ≤ 1

(2n)log(2n)
. (5)

Proof. We use the probabilistic method thereby proceeding almost as in the proof of Theorem 3.7. In the
sequel, we stress the differences to that proof:

• We set k′ = log(n)− 2 log log(2n)− 5 and k = ⌊k′⌋.

7



• We have to show that3

2−(k+2)n ≥ 2 and

(

n

k

)

2k · exp
(

−2−(k+4)n
)

<
1

(2n)log(2n)
(6)

holds for all sufficiently large n.

The first inequality is immediate from the choice of k. As for the second inequality4, it suffices to show that

k log(2n)− 2−(k+4)n < log

(

1

(2n)log(2n)

)

= − log2(2n) .

By the above choice of k, we have

k log(2n) ≤ k′ log(2n) < log2(2n) and 2−(k+4)n ≥ 2−(k′+4)n ≥ 2 log2(2n) ,

which completes the proof of (6). From these findings, it is easy to deduce (5).5

4 No-Clash Teaching Sets and their Relation to Johnson Graphs

In Section 4.1, we call into mind the definition of Johnson graphs (and related notions) along with some
facts (all of which are well known and also easy to verify). In Section 4.2, the tools from Section 4.1 are used
to improve the upper bound 2d

(

n
d

)

on MNC(n, d) by a factor of order
√
d.

4.1 Johnson Graphs and their Subgraphs

Definition 4.1 (Johnson graph). Let J(n, k) denote the graph with vertex set Pk([n]) and an edge between
A,B ∈ Pk([n]) iff |A ∩ B| = k − 1. The graphs J(n, k) with 1 ≤ k ≤ n are called Johnson graphs6. A
clique K ⊆ Pk(n) in J(n, k) is said to be wide if the sets in K have a common intersection of size k − 1.
Analogously, K is said to be narrow if the union of all sets in K has size k + 1.

Warning: The distinction between wide and narrow cliques would be blured if we represented the N =
(

n
k

)

vertices simply by numbers 1, . . . , N . In what follows, the representation of the N vertices by k-subsets
of [n] is quite essential.

Note that J(n, 1) is isomorphic to the complete graph Kn. The vertices {1}, . . . , {n} of J(n, 1) form a
wide clique. J(n, 2) is isomorphic to the line graph L(Kn). J(k, k) is a graph with a single vertex [k] (and no
edges). J(k+1, k) is isomorphic to Kk+1. The k+1 vertices of J(k+1, k) form a narrow clique. Cliques of
size 2 in J(n, k) are wide and narrow. Cliques of size 3 or more cannot be wide and narrow at the same time.
A clique of size 3 is also called triangle in the sequel. Here are some more of the known (and easy-to-check)
facts concerning Johnson graphs:

Lemma 4.2. 1. Distinct sets in Pk([n]) with a common intersection of size k − 1 (resp. a union of size
k + 1) must necessarily form a clique.

2. Any clique in J(n, k) is wide or narrow.

3. The mapping A 7→ [n] \A is a graph isomorphism between J(n, k) and J(n, n− k). This isomorphism
transforms narrow cliques into wide cliques, and vice versa.

For any F ⊆ Pk(n), we denote by 〈F〉 the subgraph of J(n, k) induced by F . We denote the subgraph
relation by “≤” (e.g., 〈F〉 ≤ J(n, k)). The following observation is rather obvious:

3Compare with Claim 3.8.
4Compare with the proof of Claim 3.8.
5Compare with the end of the proof of Theorem 3.7.
6named after the former American mathematician Selmer M. Johnson
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Lemma 4.3. 1. A graph with edge set F ⊆ P2([n]) contains a triangle iff 〈F〉 ≤ J(n, 2) contains a
narrow triangle.

2. A graph with edge set F ⊆ P2([n]) contains a vertex of degree c or more iff 〈F〉 ≤ J(n, 2) contains a
wide clique of size c.

We now fix some notation. The size of the largest F ⊆ Pk(n) such that 〈F〉 ≤ J(n, k) does not contain a

narrow (t+1)-clique is denoted byHt(n, k). Moreover, we set ht(n, k) =
(

n
k

)−1 ·Ht(n, k). For any F ⊆ Pk([n])
and I ⊆ [n], we define

F+I = {J ∈ F|J ⊆ I} .

Note that any (narrow or wide) clique in F+I would be a clique of the same type and size within F . Hence,
if 〈F〉 does not contain a narrow (t + 1)-clique, then the same holds for F+I . Given these notations and
observations, the following holds:

Lemma 4.4. For all 1 ≤ t ≤ k ≤ n− 2:

h(k, k) = 1 and ht(n, k) ≤ ht(n− 1, k) ≤ ht(k + 1, k) =
t

k + 1
. (7)

Proof. J(k, k) is a graph consisting of a single isolated vertex and J(k+1, k) is a narrow clique of size k+1.
Hence Ht(k, k) = 1 and Ht(k + 1, k) = t, which implies that ht(k, k) = 1 and ht(k + 1, k) = t

k+1 . The proof

can now be accomplished by showing that ht(n, k) ≤ ht(n− 1, k).7 Fix a family F ⊆ Pk([n]) of size Ht(n, k)
such that 〈F〉 ≤ J(n, k) does not contain a narrow (t + 1)-clique.. There are k · Ht(n, k) occurrences of
elements from [n] within the sets of F . By the pigeon-hole principle, there exists an i ∈ [n] that occurs in at
most k

n ·Ht(n, k) sets of F . Set I = [n] \ {i}. It follows that

Ht(n− 1, k) ≥ |F+I | ≥
(

1− k

n

)

Ht(n, k) .

Hence

ht(n, k) ≤
n

n− k

(

n

k

)−1(
n− 1

k

)

ht(n− 1, k) = ht(n− 1, k) .

We briefly note that the proof of the h(n, k) ≤ h(n− 1, k) made use only of the fact that the feature of
avoiding a narrow (t+1)-clique is inherited from F to F+I . Hence the same monotonicity is valid whenever
this kind of inheritance is granted.

The parameter h2(n, 2) can be determined exactly:

Remark 4.5. For every n ≥ 2, we have h2(n, 2) ≤ n
2(n−1) . Moreover, this holds with equality if n is even.

Proof. According to Mantel’s theorem ([11]) — in a more general form known as Turan’s theorem ([12]) —
any triangle-free graph has at most n2/4 edges. For even n, this bound is tight because the complete bipartite
graph Kn/2,n/2 is triangle free and has n2/4 edges. In combination with Lemma 4.3, we may conclude that

H2(n, 2) ≤ n2/4, and this holds with equality if n is even. Hence h2(n, 2) ≤
(

n
2

)−1 · n2

4 = n
2(n−1) , again with

equality if n is even.

7This inequality is, in principle, known from [8]. The proof in [8] is written in Hungarian and it is formulated for hereditary
properties of hypergraphs: if we view F ⊆ Pk(n) as a set of k-uniform hyperedges, then not containing t+1 hyperedges whose
union is of size k+1 will become a hereditary hypergraph property. In our application of this result, it is however more intuitive
to view the elements of F as vertices of the Johnson graph. In order to make this paper more self-contained, we therefore
included the short proof for ht(n, k) ≤ ht(n− 1, k), which uses a simple averaging argument.
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4.2 New Bounds on the Size of NC-Maximum Classes

Let C be a concept class over [n] such that NCTD(C) = d, as witnessed by an NC-teacher T : C → Pd(n). Let
F = {T (C) : C ∈ C} ⊆ Pd(n) be the family of all teaching sets assigned by T to the concepts of C. For every
F ∈ F , let 1 ≤ m(F ) ≤ 2d denote the number of concepts C ∈ C with T (C) = F . Clearly |C| =∑F∈F m(F ).
For every 2 ≤ t ≤ d, we define

Ft =

{

F ∈ F : m(F ) >
2d+1

t+ 1

}

. (8)

We view the sets in Ft as vertices in the Johnson graph J(n, d) so that 〈Ft〉 denotes the subgraph of J(n, d)
induced by Ft. With these notations, the following holds:

Lemma 4.6. The graph 〈Ft〉 ≤ J(n, d) does not contain a narrow (t+ 1)-clique.

Proof. Assume for contradiction that 〈Ft〉 does contain a narrow (t+1)-clique K, say K = {F1, . . . , Ft+1} ⊆
Ft. Set D = F1 ∪ . . . ∪ Ft+1 ⊆ [n]. The definition of a narrow clique in J(n, d) implies hat |D| = d + 1.
From the definition of Ft, we may infer that m(F1) + . . . + m(Ft+1) > 2d+1. Thus C contains more than
2d+1 concepts C whose teaching set T (C) belongs to K. By the pidgeon-hole principle, there must be
two distinct concepts C1 and C2 such that T (C1), T (C2) ∈ K and C1 and C2 coincide on D. But, since
T (C1) ∪ T (C2) ⊆ D, this means that C1 and C2 clash with respect to T . We arrived at a contradiction.

We are now finally in the position to prove the (previously announced) improved upper bound on
MNC(n, d):

Theorem 4.7. For 2 ≤ t ≤ d ≤ n, the following holds:

MNC(n, d) ≤ Ht(n, d)2
d +

((

n

d

)

−Ht(n, d)

)

2d+1

t+ 1
=

(

ht(n, d) + (1− ht(n, d))
2

t + 1

)

· 2d
(

n

d

)

.

Moreover, for t = ⌊
√

2(d+ 1)⌋, one gets

MNC(n, d) ≤
(

2

√

2

d+ 1
− 2

d+ 1

)

· 2d
(

n

d

)

. (9)

Proof. Let C be an NC-maximum class for parameters n and d. Then |C| = MNC(n, d). Consider an NC-
teacher T : C → Pd(n) for C. Let F = {T (C) : C ∈ C} and let Ft ⊆ F be as defined in (8). Lemma 4.6
implies that Ft ⊆ Pd(n) is of size at most Ht(n, d). The size of C can therefore be bounded as follows:

|C| =
∑

F∈F

m(F ) =
∑

F∈Ft

m(F ) +
∑

F /∈Ft

m(F ) ≤ Ht(n, d)2
d +

((

n

d

)

−Ht(n, d)

)

2d+1

t+ 1
.

From this and ht(n, d) =
(

n
d

)−1 ·Ht(n, d), we immediately obtain

|C| ≤
(

ht(n, d) + (1− ht(n, d))
2

t + 1

)

· 2d
(

n

d

)

.

According to Lemma 4.4, we have ht(n, d) ≤ t
d+1 . Moreover, we may set t = ⌊

√

2(d+ 1)⌋ and can then
proceed as follows:

ht(n, d) + (1− ht(n, d))
2

t+ 1
≤ t

d+ 1
+

(

1− t

d+ 1

)

2

t+ 1
≤ 2

√

2

d+ 1
− 2

d+ 1
.

Putting everything together, we obtain (9).
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A simple computation shows that

2

√

2

d+ 1
− 2

d+ 1
≤ 1

with equality for d = 1 only. Hence the following holds:

Corollary 4.8. For 2 ≤ d ≤ n, we have that MNC(n, d) < 2d
(

n
d

)

.

For d = 2, the upper bound on MNC(n, d) from Theorem 4.7 can be slightly improved:

Corollary 4.9. For every n ≥ 2, the following holds:

MNC(n, 2) ≤
(5n− 4)n

3
≈ 5n2

3
.

Proof. We know from Theorem 4.7 that

MNC(n, 2) ≤
(

h2(n, 2) + (1− h2(n, 2))
2

3

)

· 4
(

n

2

)

.

We know from Remark 4.5 that h2(n, 2) ≤ n
2(n−1) . The assertion of the corollary now follows from a

straightforward calculation.

Similar slight improvements of the bound in Theorem 4.7 are possible for other small values of d.

5 Open Problems

According to Theorem 3.7, there exists a family (Cn)n≥1 of concept classes such that RTD(Cn) grows loga-
rithmically with n = |Cn| while NCTD(Cn) = 1 for all n ≥ 1. The existence proof is based on the probabilistic
method and therefore non-constructive. The best RTD-NCTD ratio, known so far for a concrete class, is
the ratio for the class of parity functions in n Boolean variables (a class of size 2n). It is shown in [4], that
the RTD of the parity class equals n while the NCTD of this class is bounded by n/4.

Open Problem 1: Find a concrete class which establishes a large RTD-NCTD ratio (ideally a ratio of
order log |C|).

Theorem 3.3 characterizes NC-maximum classes of NC-dimension 1 as classes of the form C2[G] for some
tournament G. Hence the structure of NC-maximum classes of dimension 1 is now perfectly known, whereas
the structure of NC-maximum classes of higher dimension is still unknown.

Open Problem 2: Find structural properties which are shared by all NC-maximum classes of NC-dimension
d ≥ 2.

An obstacle for solving the second open problem is that we do not even know the size MNC(n, d) of
NC-maximum classes having NC-dimension d ≥ 2 and being defined over a domain of size n. While we can
conclude from Theorem 3.3 that MNC(n, 1) = 2n, the quantity MNC(n, d) with d ≥ 2 is still unknown to us
(although Theorem 4.7 makes a first step towards finding non-trivial bounds on MNC(n, d) for d ≥ 2).

Open Problem 3: Find better (upper and lower) bounds on MNC(n, d) respectively, if possible, determine
MNC(n, d) exactly.

Acknowledgements. I want to thank Stasys Jukna for drawing my attention to narrow cliques in Johnson
graphs and for many fruitful and inspiring discussions.
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