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Abstract
Some years ago a teaching model, called “No-Clash Teaching” or simply “NC-Teaching”, had been
suggested that is provably optimal in the following strong sense. First, it satisfies Goldman and
Matthias’ collusion-freeness condition. Second, the NC-teaching dimension (= NCTD) is smaller
than or equal to the teaching dimension with respect to any other collusion-free teaching model.
Specifically the NCTD is upper-bounded by the recursive teaching dimension (= RTD). This raised
the question about the largest possible gap between the NCTD and the RTD. The main results
in this paper are as follows. First, we show that there exists a family (C)n≥1 of concept classes
such that the RTD of C grows logarithmically in n = |Cn| while, for every n ≥ 1, the NCTD
of C equals 1. Since the RTD of a finite concept class C is generally bounded by log |C|, the
family (Cn)n≥1 separates RTD from NCTD in the most striking way. Our first proof of existence
of the family (Cn)n≥1 makes use of the probabilistic method and random tournaments. But we
also present a concrete family of concept classes (leading to a slightly smaller lower bound on
RTD(Cn)) which makes use of so-called quadratic-residue tournaments. Second, we characterize
the maximum concept classes of NCTD 1 as classes which are induced by tournaments in a very
natural way. Third, we improve the previously best upper bound on the size of a maximum class of
NCTD d by a factor of order

√
d. The verification of the new upper bound makes use of Johnson

graphs and maximum subgraphs not containing large narrow cliques. The connections between
tournaments, Johnson graphs and NC-Teaching revealed here were not known before and might be
considered interesting in their own right.
Keywords: no-clash teaching, recursive teaching, tournaments, maximum classes, Johnson graphs

1. Introduction

Learning from examples that were carefully chosen by a teacher (e.g. a human expert) presents an
alternative to the commonly used model of learning from randomly chosen examples. A model of
teaching should be sufficiently restrictive to rule out collusion between the learner and the teacher.
For instance, the teacher should not be able to encode a direct representation of the target concept
(such as a Boolean formula or a neural network) within the chosen sequence of examples. Goldman
and Mathias (1996) suggested to consider a learner-teacher pair as collusion-free if it satisfies the
following condition: if the learner is in favor of concept C after having seen the labeled teaching
set T chosen by the teacher, the learner should again be in favor of C after having seen a superset S
of T as long as the label assignment in S still coincides with the label assignment induced by C.
In other words: the learners guess C for the target concept should not be altered when the data
give even more support to C than the original labeled teaching set T is giving. Most existing
abstract models of teaching are collusion-free in this sense. Kirkpatrick et al. (2019a) introduced a
new model, called no-clash teaching or simply NC-teaching, that is collusion-free and furthermore
optimal in the following strong sense:
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For any model M , let M-TD(C) denote the corresponding teaching dimension of concept class C
(= smallest number that upper-bounds the size of any of the employed teaching sets provided that
learner and teacher interact as prescribed by modelM ). Then NCTD(C) ≤ M-TD(C) holds for any
model M that satisfies Goldman and Mathias’ collusion-freeness criterion. Specifically the NCTD
is upper-bounded by the RTD. This raised the question about the largest possible gap between the
NCTD and the RTD. The largest gap that was known prior to this work results from the class of
parity functions in n Boolean variables: as shown by Falat et al. (2023), the RTD of the parity class
equals n while the NCTD of this class is bounded by n/4.

The main results in this paper are as follows:

• We show non-constructively (making use of the probabilistic method and random tourna-
ments) that there exists a family (Cn)n≥1 of concept classes such that the RTD of Cn grows
logarithmically in n = |Cn| while, for every n ≥ 1, the NCTD of Cn equals 1. Since the RTD
of a finite concept class C is generally bounded by log |C|, the family (Cn)n≥1 separates RTD
from NCTD in the most striking way. See Section 3 for details.

• We present a concrete family of concept classes that leads to a slightly smaller lower bound
on RTD(Cn) while the NCTD of Cn still equals 1. The construction of this family is based on
so-called quadratic-residue tournaments. See Section 4 for details.

• We characterize the maximum concept classes of NCTD 1 as classes which are induced by
tournaments in a very natural way. See Section 5.1 for details.

• We improve the best previously known upper bound on the size of maximum classes of
NCTD d by a factor of order

√
d. The verification of the new upper bound makes use of John-

son graphs and maximum subgraphs not containing large narrow cliques. See Section 5.2 and
the appendix for details.

Section 2 calls to mind the definition of the teaching models and teaching dimensions that we will
later deal with. All other formal definitions are given on the way right before they are actually
needed.

2. Teaching Models

As usual a concept over domain X is a function from X to {0, 1} or, equivalently, a subset of X .
The powerset ofX is denoted byP(X ). The set of all subsets of size d ofX is denoted byPd(X ). A
set C ⊆ P(X ) whose elements are concepts over domain X is referred to as a concept class over X .
The elements of X are called instances. A (labeled) sample is a pair (S, b) such that S ⊆ X and
b : S → {0, 1}. The sample (S, b) is realizable by C if there exists a concept C ∈ C which satisfies

∀s ∈ S : C(s) = b(s) . (1)

We will refer to a sample (S, b) with |S| = k as a k-sample.

General Assumption: Throughout the paper, the domain X is assumed to be finite.

By the following definitions, we call to mind some of the most popular teaching models:
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Definition 1 (Basic Teaching Model (Shinohara and Miyano, 1991; Goldman and Kearns, 1995))
Let C be a concept class over X . A teaching set for C ∈ C is a subset D ⊆ X which distin-

guishes C from any other concept in C, i.e., for every C ′ ∈ C \ {C}, there exists some x ∈ D such
that C(x) 6= C ′(x). The size of the smallest teaching set for C ∈ C is denoted by TD(C, C). The
teaching dimension of C in the basic model of teaching is then given by

TD(C) = max
C∈C
|T (C, C)| .

A related quantity is
TDmin(C) = min

C∈C
|T (C, C)| .

Note that the set D ⊆ X in this definition is an unlabeled teaching set. In the teacher-learner
interaction, the learner would get to know the corresponding labeled teaching set. However we do
not need to bother the reader with the teacher-learner interaction in order to define TD(C, C) and
TD(C). An analogous remark applies to the two teaching models that we describe next.

Definition 2 (NC-Teaching Model (Kirkpatrick et al., 2019a)) Let T : C → P(X ) be a map-
ping that assigns to every concept in C a set of instances. T is called admissible for C in the
NC-model1 of teaching, or simply an NC-teacher for C if, for every C 6= C ′ ∈ C, there exists
x ∈ T (C) ∪ T (C ′) such that C(x) 6= C ′(x). The teaching dimension of C in the NC-model of
teaching is given by

NCTD(C) = min{max
C∈C
|T (C)| : T is an NC-teacher for C} .

We say that two concepts C and C ′ clash (with respect to T : C → P(X )) if they agree on
T (C)∪T (C ′), i.e, if they assign the same 0, 1-label to each instance in T (C)∪T (C ′). NC-teachers
for C are teachers who avoid clashes between any pair of distinct concepts from C.

Definition 3 (R-Teaching Model (Zilles et al., 2011)) Let Cmin ⊆ C be the easiest-to-teach con-
cepts in C, i.e.,

Cmin = {C ∈ C : TD(C, C) = TDmin(C)} .

The recursive teaching dimension of C is then given by

RTD(C) =

{
TDmin(C) if C = Cmin

max{TDmin(C),RTD(C \ Cmin)} otherwise
.

It was shown by Doliwa et al. (2014) that

RTD(C) = max
C′⊆C

TDmin(C′) ≥ TDmin(C) .

We will refer to RTD(C)
NCTD(C) as the RTD-NCTD ratio of the concept class C. Because the RTD is lower-

bounded by TDmin, any lower bound on TDmin(C)
NCTD(C) is also a lower bound on the RTD-NCTD ratio

of C.
Some remarks are in order here:

1. NC = No-Clash.
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• Modelling a teacher T as a mapping C 7→ T (C) ⊆ X reflects that we think of T as to
assigning helpful examples to a given concept. This does not necessarily imply that T knows
a representation of C in a specific class of representations (like, for instance, knowing the
architecture and the weight parameters of a neural network which represents C).

• The NC-model of teaching is of obvious importance because, as explained earlier already,
NCTD(C) lower-bounds M-TD(C) for any model M that satisfies Goldman and Mathias’
collusion-freeness condition.

• The R-model of teaching can be considered important for various reasons, including the fol-
lowing ones. First, the parameter RTD(C) is related to the size of some specific compression
schemes for C. Second, teaching concepts of a finite class C in the R-model is equivalent
to teaching concepts of C in the so-called preference-based model (where the teacher and
the learner share a preference relation and the learner’s guess for the concept C is the most
preferred concept in C among all concepts that are consistent with T (C)) We cannot go into
further detail here, but the interested reader is referred to (Doliwa et al., 2014; Darnstädt et al.,
2013; Gao et al., 2017).

3. Existence of Concept Classes with Large RTD-NCTD Ratio

In this section, we use the probabilistic method and random tournaments for showing that the NC-
Teaching Model is much more powerful than the R-Teaching Model. While the application of the
probabilistic method will be simple and (more or less) straightforward, the main innovation should
be seen in bringing concept classes induced by tournaments into play. It turns out that these classes
are trivial-to teach in the NC-Teaching Model and, up to an asymptotically vanishing fraction, hard-
to-teach in the R-Teaching Model.

Recall from graph theory that a tournament or order n is a complete oriented graph with n
vertices. The following notion will play a central role in this and the subsequent section:

Definition 4 (Concept Class Induced by a Tournament) Let G = ([n], E) be a tournament of
order n. We define C(G) = {C1, . . . , Cn} where, for i = 1, . . . , n, we set

Ci = {j ∈ [n] : (i, j) ∈ E} . (2)

We will refer to C(G) as the the concept class induced by G.

Intuitively, we may think of Ci as consisting of all players j who have lost against player i in the
tournament G.

Example 1 Consider the tournament Gn with vertices 1, . . . , n and with edges (i, j) for all 1 ≤
i < j ≤ n (i.e., edges are always directed from smaller to larger numbers). Then the concepts
in C(Gn) are Ci = {i + 1, . . . , n} for i = 1, . . . , n. In other words, C(Gn) contains all right
half-intervals over domain [n] (including Cn = ∅ but excluding [n]).

If G is a tournament of order 1, then C(G) = {∅} and NCTD(C(G)) = 0. For tournaments of
order at least 2, we have the following result:
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Lemma 5 Suppose that G is a tournament of order at least 2. Then NCTD(C(G)) = 1.

Proof A concept class C(G) induced by a tournament G = ([n], E) with n ≥ 2 contains at least
two distinct concepts. Hence NCTD(C(G)) ≥ 1.
Consider the mapping T : C(G)→ P1([n]) given by T (Ci) = {i} for i = 1, . . . , n. LetCi 6= Cj be
two distinct concepts from C(G). The either (i, j) ∈ E or (j, i) ∈ E. In the former case, Ci(j) = 1
and Cj(j) = 0 while, in the latter case, Cj(i) = 1 and Ci(i) = 0. Thus T avoids clashes between
any pair of distinct concepts. It follows that NCTD(C(G)) ≤ 1.

Theorem 6 For all sufficiently large n, there exists a tournament G of order n such that

TDmin(C(G)) ≥ blog(n)− 2 log log(2n)c − 2 .

Proof We make use of the probabilistic method. Suppose that Ĝ = ([n], Ê) is a random tourna-
ment, i.e., for every 1 ≤ i < j ≤ n, we decide by means of a fair coin whether (i, j) or (j, i) is
included into Ê. Consider the class C := {C1, . . . , Cn} with Ci as defined in (2) but with Ê at the
place of E. Let k ≥ 1 be a parameter whose precise definition (as a function in n) is postponed to
a later stage. For every k-sample (S, b), let ES,b be the event that (S, b) is not realizable by C, i.e.,
none of the concepts C ∈ C satisfies condition (1). Each concept Ci with i ∈ [n] \ S satisfies (1)
with a probability of exactly 2−k (and these n− k events are statistically independent). Therefore

Pr(ES,b) ≤ (1− 2−k)n−k < exp(−2−k(n− k)) ≤ exp(−2−(k+1)n) .

Here the last inequality is valid because we may assume that n − k ≥ n/2. As there are
(
n
k

)
2k

possible choices for (S, b), an application of the union bound yields

Pr

⋃
S,b

ES,b

 <

(
n

k

)
2k exp(−2−(k+1)n) .

We now set
k′ = log(n)− 2 log log(2n)− 1 and k = bk′c .

Claim 1: For all sufficiently large n, we have(
n

k

)
2k · exp(−2−(k+1)n)) < 1 .

Proof of the Claim: After replacing
(
n
k

)
by nk and taking the logarithm on both hand-sides, we

obtain the following sufficient condition:

k log(2n)− 2−(k+1)n < 0 .

By the above choice of k, we have

k log(2n) ≤ k′ log(2n) < log2(2n) and 2−(k+1)n ≥ 2−(k
′+1)n ≥ log2(2n) ,

which completes the proof of the claim.
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It follows that there is a strictly positive probability for the event that every k-sample (S, b) can be
realized by at least one concept from C. This implies that every (k − 1)-sample can be realized
by at least two concepts from C. We may therefore draw the following conclusion: there exists a
tournament G of order n such that none of the concepts in C can be uniquely specified by k − 1 (or
less) labeled examples. This clearly implies that TDmin(C) ≥ k − 1.

Here is an immediate consequence of Lemma 5 and Theorem 6:

Corollary 7 There exists a family (Cn)n≥1 of concept classes such that, for all sufficiently large n,
the RTD-NCTD ratio of Cn is lower bounded by blog(n)− 2 log log(2n)c − 2.

With little extra-effort, one can show that only an asymptotically vanishing fraction of tourna-
ments induces concept classes whose TDmin is upper bounded by blog(n) − 2 log log(2n)c − 3.
Hence almost all of these classes are hard to teach in the RTD-model. More precisely, the following
holds:

Corollary 8 Let τn denote the fraction of tournaments G = ([n], E) such that TDmin(C(G)) ≤
blog(n)− 2 log log(2n)c − 3. Then, for all sufficiently large n, we have that

τn ≤
1

(2n)log(2n)
. (3)

Proof We use the probabilistic method thereby proceeding almost as in the proof of Theorem 6. In
the sequel, we stress the differences to that proof:

• We set k′ = log(n)− 2 log log(2n)− 2 and k = bk′c.

• We have to show that2 (
n

k

)
2k · exp

(
−2−(k+1)n

)
<

1

(2n)log(2n)
(4)

holds for all sufficiently large n.

It suffices3 to show that

k log(2n)− 2−(k+1)n < log

(
1

(2n)log(2n)

)
= − log2(2n) .

By the above choice of k, we have

k log(2n) ≤ k′ log(2n) < log2(2n) and 2−(k+1)n ≥ 2−(k
′+1)n ≥ 2 log2(2n) ,

which completes the proof of (4). From these findings, it is easy to deduce (3).4

2. Compare with Claim 1.
3. Compare with the proof of Claim 1.
4. Compare with the end of the proof of Theorem 6.
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4. Construction of Concept Classes with a Large RTD-NCTD Ratio

In this section, we construct a concrete family of concept classes Cn such that TDmin(Cn) grows
logarithmically in n whereas NCTD(Cn) = 1 for every n ≥ 1. It turns out that a suitable choice
for Cn is the concept class induced by a tournament of order n, provided that the latter has the “strong
Sk-property”. The definition of the (weak and strong) Sk-property will be given in Section 4.1. In
Section 4.2, we show that so-called QR-tournaments (of sufficiently large order) have the strong
Sk-property. In Section 4.3, we argue that the concept classes induced by QR-tournaments have the
desired properties.

4.1. Tournaments with the Sk-Property

The Sk-property of a tournament will be considered here in a weak and in a strong form:

Definition 9 (Weak Sk-Property) A tournament G = (V,E) is said to have the weak Sk-property
if the following holds: for any choice of k distinct vertices a1, . . . , ak ∈ V , there exists a vertex
x ∈ V such that (x, aj) ∈ E for j = 1, . . . , k.

Definition 10 (Strong Sk-Property) A tournament G = (V,E) is said to have the strong Sk-
property if the following holds: for any choice of k distinct vertices a1, . . . , ak ∈ V and any choice
of b1, . . . , bk ∈ {±1}k, there exists a vertex x ∈ V such that the following holds:

∀j = 1, . . . , k :

{
(x, aj) ∈ E if bj = +1
(aj , x) ∈ E if bj = −1

. (5)

Let f(k) (resp. F (k)) be the smallest number n ≥ k + 1 such that there exists a tournament
of order n which has the weak (resp. the strong) Sk-property. The following is known about the
function f(k):

2k−1(k + 2)− 1 ≤ f(k) ≤ min

{
n :

(
n

k

)
(1− 2−k)n−k < 1

}
≤ (1 + o(1)) ln(2)k22k .

The lower bound was shown by Szekeres and Szekeres (1965) and the upper bound was shown
by Erdös (1963). The latter is an easy application of the probabilistic method. Note that the gap
between the lower and the upper bound is of order k. Clearly f(k) ≤ F (k) so that each lower
bound on f(k) is a lower bound on F (k) too. Moreover, an obvious application of the probabilistic
method yields an upper bound on F (k) that differs from the above upper bound on f(k) only by
inserting an additional factor 2k in front of

(
n
k

)
.5 Hence we get

2k−1(k + 2)− 1 ≤ F (k) ≤ min

{
n : 2k

(
n

k

)
(1− 2−k)n−k < 1

}
≤ (1 + o(1)) ln(2)k22k .

4.2. Construction of Tournaments with the Sk-Property

As outlined in Section 4.1, the probabilistic method yields good upper bounds on f(k) or F (k),
however without providing us with a concrete tournament which satisfies this bound. As far as
the function f(k) is concerned, Graham and Spencer (1971) have filled this gap. They defined and
analyzed a tournament that is is based on the quadratic residues and non-residues in a prime fieldFp.
It became known under the name quadratic-residue tournament (or briefly QR-tournament):

5. This factor accounts for the possible choices of b1, . . . , bk.
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Definition 11 (QR-Tournament) Let p be a prime such that p ≡ 3 (mod 4). The QR-tournament
of order p is the tournament (V,E) given by

V = {0, 1, . . . , p− 1} and E = {(x, y) ∈ V × V : x− y is a quadratic residue modulo p}

Let χ : Fp → {−1, 0, 1} be the function

χ(x) =


+1 if x 6= 0 is a quadratic residue modulo p
−1 if x 6= 0 is a quadratic non-residue modulo p

0 if x = 0
.

In the sequel, p always denotes a prime that is congruent to 3 modulo 4 (so that−1 is a quadratic
non-residue). Note that the graph (V,E) in Definition 11 is indeed a tournament because χ(y−x) =
−χ(x− y) so that exactly one of the edges (x, y) and (y, x) is included in E. Graham and Spencer
have shown the following result:

Theorem 12 ((Graham and Spencer, 1971)) The QR-tournament of order p has the weak Sk-
property provided that p > k222k−2.

As we show now, the same construction works for the strong Sk-property:

Theorem 13 The QR-tournament of order p has the strong Sk-property provided that p > k222k−2.

Proof The following proof builds on Graham and Spencer’s proof for the (weaker) statement with
the weak (instead of the strong) Sk-property. But we will have to deal with the variables b1, . . . , bk ∈
{±1} that occur only in the definition of the strong Sk-property.
Consider first the case k = 1. A tournament has the strong S1-property iff no vertex has in- or
outdegree p−1. Every QR-tournament has this property because every vertex has in- and outdegree
p−1
2 < p− 1.

The remainder of the proof is devoted to the case k ≥ 2. Let G = (V,E) be the QR-tournament of
order p. Let a1, . . . , ak ∈ V be k distinct vertices and let b1, . . . , bk ∈ {±1}. SetA = {a1, . . . , ak},
a = (a1, . . . , ak), b = (b1, . . . , bk) and consider the auxiliary functions

g(a, b) =
∑

x∈V \A

k∏
j=1

[1 + bjχ(x− aj)] and h(a, b) =

p−1∑
x=0

k∏
j=1

[1 + bjχ(x− aj)] .

An inspection of g(a, b) reveals that there exists an x ∈ V which satisfies (5) if and only if g(a, b) >
0. It suffices therefore to show that g(a, b) > 0. To this end, we decompose g(a, b) according to

g(a, b) = p+ (h(a, b)− p)− (h(a, b)− g(a, b)) .

In order to show that g(a, b) > 0, it suffices to show that

|h(a, b)− p| ≤ √p · ((k − 2)2k−1 + 1) and h(a, b)− g(a, b) ≤ 2k (6)

because p − √p((k − 2)2k−1 + 1) − 2k > 0 provided that p > k222k−2, as an easy calculation
shows.6

6. This calculation makes use of the case-assumption k ≥ 2.
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We still have to verify (6). In order to get |h(a, b) − p| ≤ √p((k − 2)2k−1 + 1), we apply the
distributive law and rewrite h(a, b) as follows:

h(a, b) =

p−1∑
x=0

1 +

p−1∑
x=0

k∑
j=1

bjχ(x− aj) +

k∑
r=2

Sr (7)

where

Sr =

p−1∑
x=0

∑
1≤j1<...<jr≤k

r∏
i=1

bjiχ(x− aji) =
∑

1≤j1<...<jr≤k

(
r∏

i=1

bji

)
p−1∑
x=0

r∏
i=1

χ(x− aji) . (8)

Since
∑p−1

x=0 1 = p and

p−1∑
x=0

k∑
j=1

bjχ(x− aj) =
k∑

j=1

bj

p−1∑
x=0

χ(x− aj)︸ ︷︷ ︸
=0

= 0,

we can bring (7) in the form

h(a, b)− p =

k∑
r=2

Sr .

Burgess (1962) has shown that ∣∣∣∣∣
p−1∑
x=0

r∏
i=1

χ(x− aji)

∣∣∣∣∣ ≤ (r − 1)
√
p

holds for every fixed choice of 1 ≤ j1 < . . . < jr ≤ k. In combination with (8), it follows that

|h(a, b)− p| =

∣∣∣∣∣
k∑

r=2

Sr

∣∣∣∣∣ ≤ √p ·
k∑

r=2

(
k

r

)
(r − 1) .

A straightforward calculation shows that
∑k

r=2

(
k
r

)
(r − 1) = (k − 2)2k−1 + 1. We may therefore

conclude that the first inequality in (6) is valid. We finally have to show that h(a, b)− g(a, b) ≤ 2k.
Note first that

h(a, b)− g(a, b) =

k∑
i=1

k∏
j=1

[1 + bjχ(ai − aj)] .

We call
∏k

j=1[1+bjχ(ai−aj)] the contribution of i to h(a, b)−g(a, b). Set Ib = {i ∈ {0, 1, . . . , p−
1} : bi = b} for b = ±1. The following observations are rather obvious:

• Every i makes a contribution of either 0 or 2k−1.

• If i makes a non-zero contribution, then χ(ai − aj) = bj for every j 6= i.

• For each b ∈ {±1}, at most one i ∈ Ib makes a non-zero contribution.7

These observations imply that h(a, b)− g(a, b) ≤ 2k, which concludes the proof of the theorem.

7. If two distinct i, i′ ∈ Ib made a non-zero contribution, then we would get χ(ai − ai′) = b = χ(ai′ − ai), which is
in contradiction to χ(ai′ − ai) = −χ(ai − ai′).
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4.3. Implications on Teaching

We first observe the following:

Corollary 14 For every tournament G with the strong Sk-property: TDmin(C(G)) ≥ k.

Proof An inspection of Definition 10 reveals that C(G) has the strong Sk-property iff every set
A ⊆ V of size k is shattered by C(G). This clearly implies that TDmin(C(G)) ≥ k.

Our main observation is that the quadratic-residue tournament of order p induces a concept class
whose TDmin grows logarithmically with p:

Theorem 15 Let p be a prime that is congruent to 3 modulo 4. Let Gp be the quadratic-residue
tournament of order p. Then

TDmin(C(Gp)) ≥
⌊

1

2
log(p)− log log(p)

⌋
. (9)

Proof According to Theorem 13, the tournament Gp has the strong Sk-property provided that

k222k−2 < p , (10)

In this case, we may conclude that TDmin(Gp) ≥ k. A straightforward calculation shows that (10)
holds whenever k ≤ 1

2 log(p)−log log(p). Setting k equal to the right hand-side in (9), the corollary
follows.

The following result is an immediate consequence of Theorem 15:

Corollary 16 There exists a family (Cp) of concept classes, with p ranging over all primes being
congruent to 3 modulo 4, such that, for all sufficiently large p, the RTD-NCTD ratio of Cp is lower
bounded by

⌊
1
2 log(p)− log log(p)

⌋
.

5. NC-Maximum Classes

The following bound of the Sauer-Shelah type is well known:

Theorem 17 ((Kirkpatrick et al., 2019a)) Any concept class which has NCTD d and is defined
over a domain of size n contains at most 2d

(
n
d

)
concepts.

An NC-maximum class (with respect to parameters n and d) is a concept class of largest size
among all classes having NCTD d and being defined over a domain X of size n. The size of
such a class will be denoted by MNC(n, d) in what follows. From Theorem 17, we conclude that
MNC(n, d) ≤ 2d

(
n
d

)
. We will see in the course of this section that this upper bound on MNC(n, d)

is tight only for d = 1 and, for d ≥ 2, it can be improved (at least) by a factor of order
√
d.

Moreover, we will characterize the NC-maximum classes with respect to parameters n and d = 1.

10
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5.1. NC-Maximum Classes of NCTD 1

Let G = ([n], E) be a tournament of order n and let C(G) = {C1, . . . , Cn}, with Ci as defined
in (2), be the concept class induced by G. We now extend the class C(G) by setting C′(G) =
{C1, . . . , Cn, C̄1, . . . , C̄n}where C̄i = [n]\Ci for i = 1, . . . , n. Lemma 5 can now be strengthened
as follows:

Theorem 18 Suppose that G is a tournament. Then NCTD(C′(G)) = 1.

Proof Let G = ([n], E) be a tournament of order n ≥ 1. The concept class C′(G) contains at least
two distinct concepts (e.g., the concepts ∅ and {1} if n = 1). Hence NCTD(C′(G)) ≥ 1.
Consider the mapping T : C′(G) → P1([n]) given by T (Ci) = T (C̄i) = {i} for i = 1, . . . , n. It
was shown in the proof of Lemma 5 that T avoids clashes between Ci and Cj for all i 6= j in the
range from 1 to n. For reasons of symmetry, T avoids also the clashes between C̄i and C̄j . Since
Ci(i) = 0 and C̄i(i) = 1, T avoids clashes between Ci and C̄i for all i = 1, . . . , n. Consider now
two indices i 6= j in the range from 1 to n and the concept Ci and C̄j . Then either (i, j) ∈ E or
(j, i) ∈ E. In the former case, Ci(i) = 0 and C̄j(i) = 1 while, in the latter case Ci(j) = 0 and
C̄j(j) = 1. This brief discussion shows that T avoids clashes between any pair of distinct concepts.
It follows that NCTD(C′(G)) ≤ 1.

Theorem 19 A concept class C over domain [n] is an NC-maximum class of NCTD 1 if and only if
C = C′[G] for some tournament G of order n.

Proof The if-direction is an immediate consequence of Theorems 17 and 18, and the fact that
|C′(G)| = 2n = 21 ·

(
n
1

)
. We may therefore focus on the only-if direction.

Suppose that C is an NC-maximum class of NCTD 1 over [n]. The first part of the proof in com-
bination with Theorem 17 implies that |C| = 2n. Let T : C → P1([n]) be an NC-teacher for C.
It follows that each set {i} ∈ P1([n]) is assigned to exactly two concepts.8 Moreover these two
concepts must disagree on {i}. We denote the concept with NC-teaching set {i} that contains i
(resp. does not contain i) by C̄i (resp. by Ci). Fix two indices i 6= j and consider the following
assertions:

1. Ci disagrees with Cj on {j}.

2. Ci agrees with C̄j on {j}.

3. C̄j disagrees with Ci on {i}.

4. C̄j agrees with C̄i on {i}.

5. C̄i disagrees with C̄j on {j}.

6. C̄i agrees with Cj on {j}.

7. Cj disagrees with C̄i on {i}.

8. Cj agrees with Ci on {i}.

8. Assigning {i} to three or more concepts would result in a clash.

11



TOURNAMENTS, JOHNSON GRAPHS AND NC-TEACHING

Since the assignment of NC-teaching sets to concepts avoids clashes, it is easily seen that the fol-
lowing holds:

• Any assertion is an immediate logical consequence of the preceding one.

• The first assertion is an immediate logical consequence of the last one.

It follows that these eight assertions are equivalent. An inspection of the second and the fifth asser-
tion reveals that C̄i = [n] \ Ci. Consider now the directed graph G = ([n], E) with

E = {(i, j) : Ci agrees with C̄j on {j}} .

An inspection of the second and the seventh assertion reveals that exactly one of the edges (i, j)
and (j, i) belongs to E. It follows that G is a tournament. Moreover, the above definition of E
makes sure that, for every i ∈ [n], Ci = {j ∈ [n] : (i, j) ∈ E}. We may therefore conclude that
C = C′[G].

5.2. NC-Maximum Classes of Higher NCTD

Here we only state the main results and give a rough idea. The proofs, based on a new relation
between NC-teaching and Johnson graphs, will be given in the appendix.

Theorem 20 For 2 ≤ d ≤ n, the following holds:

MNC(n, d) ≤

(
2

√
2

d+ 1
− 2

d+ 1

)
· 2d
(
n

d

)
< 2d

(
n

d

)
.

Note that the upper bound on MNC(n, d) in this theorem improves on the previously best bound,
2d
(
n
d

)
, by a factor of order

√
d.

Let C be a concept class that has NCTD d and is defined over a domain of size n. The proof in
the appendix will make use of the following:

• An NC-teacher T assigning sets of size at most d to each concept in C can be normalized so
as to assign only sets of size precisely d. Then T is formally a mapping from C to Pd(X ).

• For any F ∈ Pd(X ), let m(F ) denote the number of concepts C ∈ C such that T (C) = F .
Then |C| =

∑
F∈Pd(X )m(F ) and 0 ≤ m(F ) ≤ 2d for every F ∈ Pd(X ).9

• The upper bound 2d
(
n
d

)
on |C| could be tight only, if we had m(F ) = 2d for every F ∈

Pd(X ).

• The theory of Johnson graphs can be used for showing the following “key result”: for any t in
the range from 2 to d, the number of F ∈ Pd(X ) such that m(F ) > 2d+1

t+1 is at most t
d+1

(
n
d

)
.

This result will be the main building block in the proof of Theorem 20.

For d = 2, the upper bound on MNC(n, d) from Theorem 20 can be slightly improved:

Theorem 21 For every n ≥ 2, the following holds:

MNC(n, 2) ≤ (5n− 4)n

3
≈ 5n2

3
.

Similar slight improvements are possible for other small values of d.

9. Assigning F to more than 2d concepts would result in a clash.
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6. Open Problems

Theorem 19 characterizes NC-maximum classes of NCTD 1 as classes of the form C′[G] for some
tournamentG. Hence the structure of NC-maximum classes of dimension 1 is now perfectly known,
whereas the structure of NC-maximum classes of higher dimension is still unknown.

Open Problem 1: Find structural properties which are shared by all NC-maximum classes of NCTD
d ≥ 2.

An obstacle for solving the first open problem is that we do not even know the size MNC(n, d)
of NC-maximum classes having NCTD d ≥ 2 and being defined over a domain of size n. While
we can conclude from Theorem 19 that MNC(n, 1) = 2n, the quantity MNC(n, d) with d ≥ 2 is
still unknown to us (although Theorem 20 makes a first step towards finding non-trivial bounds on
MNC(n, d) for d ≥ 2).

Open Problem 2: Find better (upper and lower) bounds on MNC(n, d) respectively, if possible,
determine MNC(n, d) exactly.

As usual, VCD(C) denotes the VC-dimension (Vapnik and Chervonenkis, 1971) of C. A prob-
lem that has been open for quite a while (Simon and Zilles, 2015) is the following one:

Open Problem 3: Is there a universal constant c > 0 such that, for each finite concept class C, we
have that RTD(C) ≤ c ·VCD(C)?

The corresponding problem with NCTD as the place of RTD is open as well. Only the following
is known so far:

• As shown by Hu et al. (2017), RTD(C) = O
(
VCD(C)2

)
.

• As shown by Chen et al. (2016), there exists a class C such that RTD(C) ≥ 5
3 ·VCD(C).

• It has been shown quite recently by Chalopin et al. (2022) that each maximum10 class C has
an unlabelled compression scheme of order VCD(C). As already observed by Kirkpatrick
et al. (2019b); Falat et al. (2023), this implies that NCTD(C) ≤ VCD(C) is true for every
maximum class C.

As yet, no concept class is known whose NCTD exceeds its VCD.
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Appendix A. No-Clash Teaching Sets and their Relation to Johnson Graphs

In Section A.1, we call to mind the definition of Johnson graphs (and related notions) along with
some facts (all of which are well known and also easy to verify). In Section A.2, the tools from
Section A.1 are used to improve the upper bound 2d

(
n
d

)
on MNC(n, d) by a factor of order

√
d.

A.1. Johnson Graphs and their Subgraphs

Definition 22 (Johnson graph) Let J(n, k) denote the graph with vertex set Pk([n]) and an edge
between A,B ∈ Pk([n]) iff |A ∩ B| = k − 1. The graphs J(n, k) with 1 ≤ k ≤ n are called
Johnson graphs (named after the former American mathematician Selmer M. Johnson). A clique
K ⊆ Pk(n) in J(n, k) is said to be wide if the sets in K have a common intersection of size k − 1.
Analogously, K is said to be narrow if the union of all sets in K has size k + 1.

Warning: The distinction between wide and narrow cliques would be blured if we represented the
N =

(
n
k

)
vertices simply by numbers 1, . . . , N . In what follows, the representation of the N

vertices by k-subsets of [n] is essential.

Note that J(n, 1) is isomorphic to the complete graphKn. The vertices {1}, . . . , {n} of J(n, 1)
form a wide clique. J(n, 2) is isomorphic to the line graph L(Kn). J(k, k) is a graph with a single
vertex [k] (and no edges). J(k + 1, k) is isomorphic to Kk+1. The k + 1 vertices of J(k + 1, k)
form a narrow clique. Cliques of size 2 in J(n, k) are wide and narrow. Cliques of size 3 or more
cannot be wide and narrow at the same time. A clique of size 3 is also called triangle in the sequel.
Here are some more of the known (and easy-to-check) facts concerning Johnson graphs:

Lemma 23

1. Distinct sets in Pk([n]) with a common intersection of size k− 1 (resp. a union of size k+ 1)
must necessarily form a clique.
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2. Any clique in J(n, k) is wide or narrow.

3. The mapping A 7→ [n] \ A is a graph isomorphism between J(n, k) and J(n, n − k). This
isomorphism transforms narrow cliques into wide cliques, and vice versa.

For any F ⊆ Pk(n), we denote by 〈F〉 the subgraph of J(n, k) induced by F . We denote the
subgraph relation by “≤” (e.g., 〈F〉 ≤ J(n, k)). The following observation is rather obvious:

Lemma 24

1. A graph with edge set F ⊆ P2([n]) contains a triangle iff 〈F〉 ≤ J(n, 2) contains a narrow
triangle.

2. A graph with edge set F ⊆ P2([n]) contains a vertex of degree c or more iff 〈F〉 ≤ J(n, 2)
contains a wide clique of size c.

We now fix some notation. The size of the largest F ⊆ Pk(n) such that 〈F〉 ≤ J(n, k)
does not contain a narrow (t + 1)-clique is denoted by Ht(n, k). Moreover, we set ht(n, k) =(
n
k

)−1 ·Ht(n, k). For any F ⊆ Pk([n]) and I ⊆ [n], we define

F+I = {J ∈ F|J ⊆ I} .

Note that any (narrow or wide) clique in F+I would be a clique of the same type and size within F .
Hence, if 〈F〉 does not contain a narrow (t + 1)-clique, then the same holds for F+I . Given these
notations and observations, the following holds:

Lemma 25 For all 1 ≤ t ≤ k ≤ n− 2:

ht(k, k) = 1 and ht(n, k) ≤ ht(n− 1, k) ≤ ht(k + 1, k) =
t

k + 1
.

Proof J(k, k) is a graph consisting of a single isolated vertex and J(k + 1, k) is a narrow clique
of size k + 1. Hence Ht(k, k) = 1 and Ht(k + 1, k) = t, which implies that ht(k, k) = 1 and
ht(k+1, k) = t

k+1 . The proof can now be accomplished by showing that ht(n, k) ≤ ht(n−1, k).11

Fix a family F ⊆ Pk([n]) of size Ht(n, k) such that 〈F〉 ≤ J(n, k) does not contain a narrow
(t + 1)-clique.. There are k · Ht(n, k) occurrences of elements from [n] within the sets of F . By
the pigeon-hole principle, there exists an i ∈ [n] that occurs in at most k

n ·Ht(n, k) sets of F . Set
I = [n] \ {i}. It follows that

Ht(n− 1, k) ≥ |F+I | ≥
(

1− k

n

)
Ht(n, k) .

Hence

ht(n, k) ≤ n

n− k

(
n

k

)−1(n− 1

k

)
ht(n− 1, k) = ht(n− 1, k) .

11. This inequality is, in principle, known from (Katona et al., 1964). The proof in (Katona et al., 1964) is written
in Hungarian and it is formulated for hereditary properties of hypergraphs: if we view F ⊆ Pk(n) as a set of k-
uniform hyperedges, then not containing t + 1 hyperedges whose union is of size k + 1 will become a hereditary
hypergraph property. In our application of this result, it is however more intuitive to view the elements of F as
vertices of the Johnson graph. In order to make this paper more self-contained, we therefore included the short proof
for ht(n, k) ≤ ht(n− 1, k), which uses a simple averaging argument.
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We briefly note that the proof of the h(n, k) ≤ h(n − 1, k) made use only of the fact that the
feature of avoiding a narrow (t+1)-clique is inherited fromF toF+I . Hence the same monotonicity
is valid whenever this kind of inheritance is granted.
The parameter h2(n, 2) can be determined exactly:

Remark 26 For every n ≥ 2, we have h2(n, 2) ≤ n
2(n−1) . Moreover, this holds with equality if n

is even.

Proof According to Mantel’s theorem ((Mantel, 1907)) — in a more general form known as Turan’s
theorem ((Pál Turán, 1941)) — any triangle-free graph with n vertices has at most n2/4 edges. For
even n, this bound is tight because the complete bipartite graph Kn/2,n/2 is triangle-free and has
n2/4 edges. In combination with Lemma 24, we may conclude that H2(n, 2) ≤ n2/4, and this
holds with equality if n is even. Hence h2(n, 2) ≤

(
n
2

)−1 · n2

4 = n
2(n−1) , again with equality if n is

even.

A.2. New Bounds on the Size of NC-Maximum Classes

Let C be a concept class over [n] such that NCTD(C) = d, as witnessed by an NC-teacher T : C →
Pd(n). Let F = {T (C) : C ∈ C} ⊆ Pd(n) be the family of all teaching sets assigned by T to the
concepts of C. For every F ∈ F , let 1 ≤ m(F ) ≤ 2d denote the number of concepts C ∈ C with
T (C) = F . Clearly |C| =

∑
F∈F m(F ). For every 2 ≤ t ≤ d, we define

Ft =

{
F ∈ F : m(F ) >

2d+1

t+ 1

}
. (11)

We view the sets in Ft as vertices in the Johnson graph J(n, d) so that 〈Ft〉 denotes the subgraph
of J(n, d) induced by Ft. With these notations, the following holds:

Lemma 27 The graph 〈Ft〉 ≤ J(n, d) does not contain a narrow (t+ 1)-clique.

Proof Assume for contradiction that 〈Ft〉 does contain a narrow (t + 1)-clique K, say K =
{F1, . . . , Ft+1} ⊆ Ft. Set D = F1 ∪ . . .∪Ft+1 ⊆ [n]. The definition of a narrow clique in J(n, d)
implies hat |D| = d+1. From the definition ofFt, we may infer thatm(F1)+. . .+m(Ft+1) > 2d+1.
Thus C contains more than 2d+1 concepts C whose NC-teaching set T (C) belongs to K. By the
pigeon-hole principle, there must be two distinct concepts C1 and C2 such that T (C1), T (C2) ∈ K
and C1 and C2 coincide on D. But, since T (C1) ∪ T (C2) ⊆ D, this means that C1 and C2 clash
with respect to T . We arrived at a contradiction.

Here is an immediate consequence of Lemmas 25 and 27:

|Ft| ≤ Ht(n, d) =

(
n

d

)
ht(n, d) ≤ t

d+ 1

(
n

d

)
. (12)

This upper bound on |Ft| is what we called the “key result” in Section 5.2.
We are now in the position to verify Theorem 20 from Section 5.2, which is covered by the

following result:
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Theorem 28 For 2 ≤ t ≤ d ≤ n, the following holds:

MNC(n, d) ≤
(
ht(n, d) + (1− ht(n, d))

2

t+ 1

)
· 2d
(
n

d

)
.

Moreover, for t = b
√

2(d+ 1)c, one gets

MNC(n, d) ≤

(
2

√
2

d+ 1
− 2

d+ 1

)
· 2d
(
n

d

)
< 2d

(
n

d

)
. (13)

Proof Let C be an NC-maximum class for parameters n and d. Then |C| = MNC(n, d). Consider
an NC-teacher T : C → Pd(n) for C. Let F = {T (C) : C ∈ C} and let Ft ⊆ F be as defined
in (11). The size of C can be bounded as follows:

|C| =
∑
F∈F

m(F ) =
∑
F∈Ft

m(F ) +
∑
F /∈Ft

m(F ) ≤ |Ft| · 2d +

((
n

d

)
− |Ft|)

)
· 2d+1

t+ 1
.

The right hand-side is made larger when we replace |Ft| by its upper bound
(
n
d

)
ht(n, d) from (12).

Plugging in this upper bound, we obtain

|C| ≤
(
ht(n, d) + (1− ht(n, d))

2

t+ 1

)
· 2d
(
n

d

)
.

According to Lemma 25, we have ht(n, d) ≤ t
d+1 . Moreover, we may set t = b

√
2(d+ 1)c and

can then proceed as follows:

ht(n, d) + (1− ht(n, d))
2

t+ 1
≤ t

d+ 1
+

(
1− t

d+ 1

)
2

t+ 1
≤ 2

√
2

d+ 1
− 2

d+ 1
.

Finally observe that

2

√
2

d+ 1
− 2

d+ 1
≤ 1

with equality for d = 1 only. Putting everything together, we obtain (13).

The following corollary is a reformulation of Theorem 21 in Section 5.2:

Corollary 29 For every n ≥ 2, the following holds:

MNC(n, 2) ≤ (5n− 4)n

3
≈ 5n2

3
.

Proof We know from Theorem 28 that

MNC(n, 2) ≤
(
h2(n, 2) + (1− h2(n, 2))

2

3

)
· 4
(
n

2

)
.

We know from Remark 26 that h2(n, 2) ≤ n
2(n−1) . The assertion of the corollary now follows from

a straightforward calculation.

Similar slight improvements of the bound in Theorem 28 are possible for other small values of d.
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