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Figure 1. We introduce a new volumetric 3D scene reconstruction method for real-time novel view synthesis and temporal interpola-
tion of non-rigidly deforming objects (left). It is trained on monocularized sequences, i.e. fixed single monocular frames per time-frame
sampled from multi-view recordings (right). Our method enables fast optimization at a high visual accuracy in a just few minutes.

Abstract

3D reconstruction and novel view synthesis of dynamic
scenes from collections of single views recently gained in-
creased attention. Existing work shows impressive results
for synthetic setups and forward-facing real-world data,
but is severely limited in the training speed and angular
range for generating novel views. This paper addresses
these limitations and proposes a new method for full 360°
novel view synthesis of non-rigidly deforming scenes. At the
core of our method are: 1) An efficient deformation module
that decouples the processing of spatial and temporal in-
formation for acceleration at training and inference time;
and 2) A static module representing the canonical scene
as a fast hash-encoded neural radiance field. We evalu-
ate the proposed approach on the established synthetic D-
NeRF benchmark, that enables efficient reconstruction from
a single monocular view per time-frame randomly sam-
pled from a full hemisphere. We refer to this form of in-
puts as monocularized data. To prove its practicality for
real-world scenarios, we recorded twelve challenging se-
quences with human actors by sampling single frames from

a synchronized multi-view rig. In both cases, our method
is trained significantly faster than previous methods (min-
utes instead of days) while achieving higher visual accu-
racy for generated novel views. Our source code and data
is available at our project page https://graphics.tu-
bs.de/publications/kappel2022fast.

1. Introduction

The faithful reconstruction and rendering of non-rigidly
deforming objects from a set of image or video captures
is a longstanding challenge for a wide range of practi-
cal applications (e.g. creating virtual avatars for immer-
sive AR/VR applications and movie production). Re-
cent approaches build upon the success of neural radiance
fields (NeRFs) [23], enhancing scene representation with an
additional multilayer perceptron (MLP) that models tempo-
ral deformations in the recordings [33, 45, 30, 29]. Sim-
ilar to static NeRF methods, these non-rigid extensions
achieve an unprecedented visual quality for novel view syn-
thesis. However, existing real-world datasets mostly com-
prise forward-facing scenes recorded by a moving monocu-
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lar camera or multi-view camera grid, making it impossible
to fully explore the reconstructed objects from the full an-
gular range. Moreover, these methods also inherit the long
training and inference times of NeRF, which even worsen
due to the additional temporal dimension.

The D-NeRF approach by Pumarola et al. [33], on the
other hand, provided a synthetic 360° inward-facing dataset,
where position of a monocular camera is randomly resam-
pled from a hemisphere for every time-frame. As this setup
operates on a single monocular view at a time, but its prac-
tical implementation technically requires multiple synchro-
nized cameras, we refer to it as monocularized data. In
contrast to continuous camera trajectories (e.g. videos cap-
tured by a smartphone), this setup facilitates full 360° novel
view synthesis at a high visual fidelity including complex
motion, as the rapidly changing viewing angles for tempo-
rally coherent frames largely resolve the problem of occlu-
sion and depth ambiguity. Despite criticism on its purely
synthetic nature, the D-NeRF dataset was widely accepted
by the community and is now frequently used as a bench-
mark for new approaches. The monocularization setup was
already adapted for forward facing scenes recorded by a
stereo camera setup, where the training images are alter-
natingly sampled from the left and right camera [29, 30].
However, the applicability to fast real-world full object re-
construction remains under-explored.

In response to the above-mentioned challenges, this pa-
per introduces MoNeRF, i.e., a new approach for 3D re-
construction and novel view synthesis of dynamic scenes
from monocularized data; see Fig. 1. Our approach is gen-
eral and works for arbitrary non-rigid objects. It takes a
collection of monocular input images and foreground seg-
mentation masks to reconstruct the depicted scene using a
4D deformation vector field that transforms spatiotemporal
samples into a static, canonical radiance field representa-
tion. Our core finding is that a factorization between tem-
poral and spatial domain results in an increased accuracy
and allows for efficient training acceleration. Therefore, we
propose a fast deformation component that estimates the de-
formation vector field by splitting temporal and spatial in-
formation into individual MLPs. Furthermore, we adapt the
fast hash-encoding proposed by InstantNGP [24] for repre-
senting the scene in a canonical space, making our model
several magnitudes faster than previous approaches.

To demonstrate the practical adaptability of monocular-
ized data to real-world inward-facing scene reconstruction,
we record a new multi-view dataset consisting of twelve
challenging sequences with human performances, and keep
one image per time stamp. We show that, despite the drastic
reduction in the number of inputs (and thus the compute and
memory requirements of full multi-view systems [17]), our
approach still enables visually appealing novel view synthe-
sis. On both synthetic an real data, it yields a superior qual-

ity according to several metrics and converges in less than
seven minutes, i.e., multiple magnitudes faster than other
methods [33, 45]. Our dataset and code will be released for
research purposes. In summary, our main contributions are:

• The first method for spatiotemporal novel view synthe-
sis from monocularized sequences on the basis of In-
stantNPG [24], which is trained in under seven minutes
and achieves real-time framerates during inference.

• A neural factorization-based deformation module
splitting spatial and temporal information in two MLPs
to improve the visual quality and accelerate training.

• A real monocularized dataset with twelve sequences of
humans wearing different (including loose) garments
and facial performances, enabling evaluation of fast
360° novel view synthesis on real dynamic scenes.

2. Related Work

NeRF [23] inspired a multitude of follow up works, that
adapt and extend it (as well as differentiable volume render-
ing) for a variety of rendering tasks. Prominent extensions
propose improvements for antialiasing [1], unstructured in-
the-wild data [21, 35] and unbounded scenes [54]. Our
method is mainly concerned with the fast non-rigid scene
reconstruction [29, 33, 18, 45]. In the following, we briefly
review previous work on acceleration and temporal exten-
sions for NeRF. An extensive discussion of neural rendering
techniques can be found in the report by Tewari et al. [44].
Dynamic Scene Reconstruction and Rendering. Tra-
ditional non-rigid reconstructing approaches apply dense
structure from motion [10, 28, 41, 46, 16], shape-from-
template [36, 26, 40, 14, 13], RGB-D inputs [42, 2] or even
differentiable physics simulation [5] to jointly infer infor-
mation about scene appearance and deformation. Due to the
high visual quality and flexibility of NeRF, a large branch
of methods focuses on extensions for non-rigidly deform-
ing scenes. Some methods add the temporal dimension by
modeling the scene as a 4D radiance field, and include reg-
ularizers such as motion consistency [6, 18], foreground-
background decomposition [8, 49] and explicit depth pri-
ors [50] to resolve motion and depth ambiguities. Another
family of methods model dynamic deformations as a 4D
deformation vector field into a static (canonical) scene rep-
resentation. Previous work further applied explicit rigidity
estimation with explicit vector field divergence losses [45],
per-frame appearance and deformation latent codes [29] and
hyperplane slicing [30] to improve stability. Our method
adopts the split of deformation field and canonical space,
but focuses on the fast reconstruction of full hemisphere
(inward-facing scenes). Thus, it is most closely related to
the D-NeRF approach by Pumarola et al. [33], who intro-
duced a synthetic monocularized dataset to reconstruct dy-
namic foreground objects. Our method, however, signifi-



Figure 2. Framework overview. Our method takes a set of calibrated monocular RGBA images to reconstruct a deformable radiance field
for novel-view synthesis. We feed sampled points x and the their normalized timestamp t into individual shallow MLPs, and combine the
resulting high-dimensional embeddings using matrix multiplication to obtain a deformation vector δx into canonical space. The canonical
module is implemented as a fast hash-encoded neural radiance field, estimating opacity σ and view-dependent color c for volume rendering.

cantly accelerates training and improves the visual fidelity
using a new factorization-based deformation module cou-
pled with an explicit static scene representation. Further-
more, we demonstrate the practicability of our approach on
real-world data on a new dataset generated by monoculariz-
ing inward-facing multi-view recordings (i.e. discarding all
but one view per time-frame). In contrast to full multi-view
methods for dynamic radiance fields reconstructing (e.g. us-
ing hyper spherical harmonics [53], Fourier transform [47]
or compact latent codes [17]), our method and setup enable
reconstruction in a matter of minutes due to the immense
reduction in compute and memory requirements.
NeRF Acceleration. The training and rendering speed of
conventional NeRF methods is often limited by the amount
of ray-marching samples and expensive network queries
during volume rendering. One branch of research focuses
on improving inference times by applying efficient accel-
eration structures to the radiance field [9, 12, 34, 51],
or introducing advanced ray sampling and stopping crite-
ria [19, 32]. Another branch attempts to accelerate train-
ing using generalized pretrained models to fit novel scenes
from one or few input views [52, 4, 20]. Recently, multiple
works introduced explicit scene representations such as dis-
crete grids [43, 37], to replace the costly MLP queries with
efficient data lookups and trilinear interpolation. However,
the reduced computational cost of dense data grids usually
implies an increase in memory requirement, which can limit
the obtainable rendering quality. To reduce the increased
memory footprint, Chen et al. [3] model the explicit vol-
ume as a 4D tensor factorized into compact low-rank tensor
components. Müller et al. [24] on the other hand propose
an explicit feature encoding for MLP-based graphics prim-
itives (including NeRFs) using multi-resolution hash grids.
They work remarkably well on rigid scenes, but their adapt-
ability for non-rigid extensions remains unclear. This work
builds upon the success of instant NGP [24], introducing

the first approach leveraging hash encoding for non-rigid
reconstruction from monocularized data.
Concurrent Work on arXiv. Concurrent to our work,
other non-rigid NeRF methods for the monocularized set-
ting adapt explicit scene representation to improve train-
ing and inference speed for inward-facing scenes. Guo et
al. [11] adapt efficient direct voxel grid optimization [43] to
model scene deformation, density and color. Fang et al. [11]
use a time-aware neural voxel grid with multi-distance inter-
polation for fast, high-quality non-rigid reconstruction. For
reference, we show that our hash-grid-based method trains
faster while obtaining higher average scores according to
several quality metrics on the D-NeRF benchmark dataset.

3. Method
Given a set ofN calibrated input images I = (i1, ..., iN )

depicting a non-rigidly deforming object, the correspond-
ing foreground masks S = (s1, ..., sN ), and per frame-
normalized timestamps T = (t1, ..., tN ) ∈ [0, 1]N , our
MoNeRF model enables joint novel view synthesis and
seamless temporal interpolation in real time. As illus-
trated in Fig. 2, the core of our model comprises an ex-
plicit hashmap-based radiance field representing the scene
in canonical (i.e. static undeformed) space, which is opti-
mized using conventional neural volume rendering. We fur-
ther incorporate temporal deformations in our model by pre-
connecting an efficient ray-bending component transform-
ing spatiotemporal samples into canonical space. In the fol-
lowing, we provide a detailed description of our individual
framework components and the optimization procedure.

3.1. Volume Rendering

To optimize and render novel views from our model,
we apply discrete sample-based ray marching derived from
classical volume rendering [15] as introduced in the context



of NeRF [23]. As these fundamental concepts have been
extensively discussed in the aforementioned literature, we
provide a brief introduction of the mathematical concepts
and notation necessary to delineate our method.

To query the expected color of a single pixel in a camera
view n, we first construct a ray r(p) = o + pd starting at
the camera’s optical center o and passing through the pixel’s
center in direction d. For any continuous scene function Φ
(e.g., NeRF) mapping a spatial position x ∈ R3 and viewing
direction d ∈ R3 to a density σ ∈ R and color c ∈ R3, i.e.,

(σ, c) = Φ(x, d), (1)

we can then evaluate the local scene properties (σi, ci), i ∈
{1, ...,M} for a set of M discrete spatial samples xi =
(r(pi), pi ∼ [pn, pf ]) along the ray within a predefined
minimal (pn) and maximal (pf ) distance from the image
plane. The final pixel color is obtained by estimating the in-
tegral C(r) over all samples according to the optical model
of Max [22]:

C(r) =

M∑
i=1

Ti(1− exp(−σiδi))ci, (2)

where Ti = exp(−
∑i−1
j=1 σjδj) and δi = pi+1− pi denotes

the distance between adjacent samples. Finally, we use the
pixel’s total transmittance α(r) given by

α(r) =

M∑
i=1

Ti(1− exp(−σiδi)) (3)

to blend the estimated color with a static background color.
The following section describes how our method repre-

sents the local scene density and color for rendering non-
rigid scenes.

3.2. Scene Representation

The scene function (Eq. 1) has no notion of time, and
thus cannot reflect objects undergoing non-rigid deforma-
tions. Inspired by previous work on deforming radiance
fields [33, 45], we introduce a framework consisting of two
distinct subcomponents to handle the temporal dimension:
A static module Φcan representing the scene in canonical
(i.e. undeformed) space, and a deformation module Φdef es-
timating the offset of a spatial point at timestamp t into its
canonical state. Formally, the full scene function imple-
mented in our framework can be rewritten as:

Φ(x, d, t) = Φcan(x+Φdef(x, t), d). (4)

3.2.1 Deformation Module

The deformation module Φdef estimates the deformation
vector δx ∈ R3 for a discrete spatial position x at a normal-
ized timestamp t. This process was previously described as

a form of ray bending, where rays cast by a virtual video
camera are distorted so that related samples along the rays
can be evaluated at their original location in a canonical vol-
ume [45]. Recent methods usually implement ray bending
using a single multilayer perceptron (MLP) of a similar size
as the canonical NeRF itself [33, 45, 29]. While this ap-
proach can represent high-quality deformation fields, it also
significantly contributes to the overall computational cost,
both during training and inference. To reduce execution
times while preserving high quality, we propose a new de-
formation module architecture decoupling the processing of
spatial and temporal information into individual MLPs:

δx = Φdef(x, t) = φpos(x)� φtmp(t), (5)

with φpos : R3 → R3×l denoting the positional MLP,
φtmp : R → Rl×1 denoting the temporal MLP, and � be-
ing conventional matrix multiplication. We further apply
frequency encoding [23] to the input position and one-blob
encoding [25] to the timestamp before passing them to the
neural networks to enable higher frequencies.

The key idea of our approach is disentanglement of the
embeddings into temporal and spatial components. Thus,
we estimate a higher-dimensional feature vector of size l
for every spatial input dimension, which is then reduced to
a single offset by linear combination with temporally vary-
ing coefficients (estimated by a separate network). With
sufficient capacity, i.e., a large enough l, this representa-
tion can support arbitrary deformation fields and does not
limit the overall model expressivity. As a result, this pol-
icy enables the use of more shallow network architectures
with fewer input parameters; it accelerates training while
maintaining an overall high quality of the deformation field.
The speed up is particularly noticeable when querying de-
formation vectors for the same spatial positions over multi-
ple points in time, as the positional MLP φpos needs to be
executed only once. Temporal basis vectors can be inferred
and applied in parallel, allowing for efficient acceleration
strategies as described in Sec. 3.4.

3.2.2 Canonical Module

After shifting the input samples to the canonical space by
adding the estimated offset δx, we apply a static radiance
field representation Φcan to obtain their local density σ and
view-dependent color values c as stated earlier in Eq. (1).
For this purpose, we adapt the recent instant neural geomet-
ric primitives (NGP) introduced by Müller et al. [24], which
reconstructs NeRF in a few minutes at a competitive visual
quality. The authors achieve this unprecedented level of
speed by replacing the frequency-based input encoding [23]
with an explicit multi-resolution hash grid encoding. For
our framework, we apply a fast PyTorch [31] implementa-
tion using the architectural hyperparameters provided in the
original publication.



3.3. Optimization

We optimize our full model Φ (Eq. 4) end-to-end over
the course of 30k training iterations via stochastic gradient
descent. During each iteration, we chose a random camera
view n ∈ {1, ..., N} with associated image in, foreground
mask sn, and timestamp tn. For this view, we uniformly
sample a batch R of 8192 rays, which are rendered using a
maximum of 512 samples per ray.

Our full objective function L consists of three terms:

L = Lphoto + λbgLbg + λdefLdef, (6)

with scalar hyperparameters λbg and λdef that we set to 10−2

and 10−3 for all our experiments, respectively. The photo-
metric loss Lphoto compares the estimated pixel color cestim
to the ground truth pixel color cgt:

Lphoto =
1

|R|
∑
r∈R
||C(r)− Cgt(r)||22, (7)

where Cgt(r) denotes the ground-truth color of ray r in the
training view in. Following Müller et al. [24], we stabi-
lize training by applying a random background color during
each iteration based on the ray transmittance α(r) and fore-
ground mask sn for the estimated and ground-truth color
respectively. We further apply two regularization losses to
stabilize the optimization and improve the generalization to
novel views. The background entropy loss Lbg enforces a
clear transition between foreground object and empty scene
space, while the deformation field regularizer Ldef encour-
ages the deformations to small and sparse:

Lbg =
1

|R|
∑
r∈R
−αr log(αr), (8)

Ldef =
1

|Xδ|
∑
δx∈Xδ

||δx||1. (9)

Here, Xδ denotes the set of all deformation vectors esti-
mated via Eq. (4) during rendering. The entire optimization
takes 6-7 minutes on a single NVIDIA RTX 3090 GPU. Our
full implementation is available on our project page.

3.4. Acceleration Strategies

An advantage of our method is that—despite adding a
temporal extension to the radiance field—we can directly
apply the ray marching acceleration techniques proposed
for instant NeRF, such as transmittance-based stopping cri-
teria to speed up training and inference times [24]. Another
common way to increase inference speed is keeping track of
an occupancy grid, which marks unoccupied (empty) scene
space that can be skipped during ray marching [24, 43].
However, naively applying an occupancy grid to our canon-
ical module implies that the deformation module needs to

Figure 3. A point cloud visualization of our temporal occu-
pancy grids. Left: A synthetic human avatar performing jumping
jacks. Right: A real recording of an actor performing squats.

be executed for all samples before being able to skip single
evaluations in canonical space, which would result in a sig-
nificant performance loss. Thus, we extend this acceleration
structure in the form of a temporal occupancy grid, which
marks points in space that are occupied during any times-
tamp in the normalized time period [0, 1], as visualized in
Fig. 3. This way, both the canonical and deformation mod-
ule are only evaluated on a sparse subset of the scene to
model the foreground object and resolve the (dis)occluded
areas. We can then update our temporal grid by sampling a
set of candidate cells as proposed by Müller et al. [24] for
the rigid case, and threshold the accumulated density from
a set of l random equidistant timestamps. For all our exper-
iments, we use q = 20 temporal samples, which can effi-
ciently be evaluated in parallel by our deformation model.

4. Monocularized Multi-View Actors Dataset
To investigate the applicability of the monocularized

data setup for real-world inward-facing scenes, we record
new sequences in the spirit of the synthetic D-NeRF [33]
dataset. We dub our novel real-world dataset Monocular-
ized Multi-View Avatars (MMVA). It comprises a total of
12 sequences showing a variety of actors and clothing (10
full body and 2 faces) performing a single motion, cap-
tured by a large inward-facing multi-view setup of up to
112 synchronized 50Hz cameras. Each sequence consists of
n ∈ [100, 250] RGB images with a resolution of 1028×752
pixels, and the corresponding foreground masks obtained
via background subtraction. We monocularize the multi-
view recordings by randomly extracting a single image per
time-frame from a uniformly sampled camera, resulting in
a total of n training images with temporally varying cam-
era positions and viewing directions. During training image
sampling, we leave out two expressive camera views which
we reserve for the test and validation sets.

Discarding a significant percentage of training data im-
plies an inevitable loss in the accessible reconstruction qual-
ity. However, as evident by the synthetic D-NeRF dataset,
monocularized data is compact in size (∼500MB per se-
quence for our MMVA dataset) and thus drastically reduces
the compute and memory requirement of full multi-view



Method D-NeRF Dataset
PSNR ↑ SSIM ↑ LPIPS ↓ Time Storage

ST
A

T
IC

NERF [23] 19.00 0.87 0.18 ∼ hours 5 MB
DirectVoxGO [43] 18.61 0.85 0.17 5 mins 205 MB
Plenoxels [37] 20.24 0.87 0.16 6 mins 717 MB
InstantNGP [24] 19.00 0.88 0.17 5 mins 35 MB

D
Y

N
A

M
IC

T-NeRF [33] 29.51 0.95 0.08 ∼ hours n/a
D-NeRF [33] 30.50 0.95 0.07 ∼ hours 13 MB
NR-NeRF [45] 26.15 0.95 0.09 ∼ hours 13 MB
MoNeRF (ours) 32.16 0.98 0.03 7 mins 80 MB
TiNeuVox-S [7] 30.75 0.96 0.07 8 mins 8 MB
TiNeuVox-B [7] 32.67 0.97 0.04 28 mins 48 MB
NDVG [11] 30.32 0.96 0.05 20 mins n/a

Table 1. Quantitative comparison on the D-NeRF Dataset [33].
The reported values are averaged over all eight sequences.

systems [17]. We show that MoNeRF can exploit those
characteristics to perform fast NeRF reconstruction in min-
utes, while maintaining high visual quality for novel view
synthesis. In the future, our dataset can help to further in-
vestigate the D-NeRF setup for practical applications (e.g.,
in the context of integrated systems with memory and com-
pute limitations, or to generate fast previews of recordings
before applying expensive multi-view reconstruction). To
this end, our dataset will be made publicly available.

5. Experimental Evaluation
We perform extensive experiments on an established

synthetic dataset and the newly recorded real-world MMVA
sequences. For quantitative and qualitative evaluation, we
compare our MoNeRF to the most related state-of-the-art
(SotA) methods, i.e., D-NeRF [33], NR-NeRF [45], and the
static InstantNGP [24]. We report three metrics for quanti-
tative assessment: Peak signal-to-noise ratio (PSNR), struc-
tural similarity (SSIM) [48] and learned perceptual image
patch similarity (LPIPS) [55]. While PSNR reflects the per-
pixel error and is thus closest to the training objective func-
tion, SSIM and LPIPS gauge the perceptual reconstruction
accuracy from a larger context. The video and additional
visualizations are available in our supplement.

5.1. Synthetic Scenes

We use the D-NeRF dataset [33] to test and compare
our method on clean synthetic data. It comprises eight se-
quences, each consisting of 50−200 frames, showing de-
forming objects of varying motion complexity. Similar to
previous work, we downsample the images to half resolu-
tion (400×400 pixels) to fairly compare against other meth-
ods. Tab. 1 shows average quantitative results over all eight
sequences, including training time and storage cost (see the
supplement for a more detailed version). In addition to
the abovementioned benchmark methods, we show results
for further methods gathered from literature, including fast
static radiance field methods [23, 43, 37, 24] and works

Method MMVA Dataset
PSNR ↑ SSIM ↑ LPIPS ↓

InstantNGP [24] 16.04 0.90 0.30
D-NeRF [33] 31.77 0.97 0.07
NR-NeRF [45] 29.84 0.97 0.04
MoNeRF (ours) 33.29 0.98 0.03

Table 2. Quantitative comparison on our MMVA Dataset. We
report the averages according to PSNR/SSIM (higher is better) and
LPIPS (lower is better) on the set of 12 recorded scenes.

on arXiv [7, 11]. Compared to previous dynamic NeRF
approaches [33, 45] that take ∼20 hours to reconstruct a
single scene, our novel deformation network and explicit
hash-encoded scene representation achieve significant im-
provements in the training speed (finishing training in un-
der seven minutes and rendering novel views in real time).
The quality metrics show that our approach also outper-
forms previous work in image quality, maintaining fine de-
tails in high-frequency areas, as shown in Fig. 4. Even com-
pared to concurrent work, MoNeRF is faster and achieves
the best overall trade-off between training speed and final
image quality. Fig. 5 provides detailed evidence of model
convergence. MoNeRF needs a fraction of the training iter-
ations compared to other methods and yields detailed novel
views in as few as 30k update steps.

5.2. Real-World Scenes

We examine the effectiveness of our approach on real-
world data by performing quantitative and qualitative evalu-
ations on our new MMVA dataset (introduced in Sec. 4). In
contrast to the tests with synthetic data, we train all meth-
ods at full resolution of 1028×752 pixels. Fig. 6 shows
results for MoNeRF and related benchmark methods on a
variety of sequences featuring challenging non-rigid defor-
mations and texture patterns. As evident from the quali-
tative evaluation –despite unavoidable uncertainties arising
from camera calibration, synchronization and foreground
extraction– monocularized data can effectively be applied
for fast, high-fidelity non-rigid reconstruction in real-world
scenarios. Moreover, our method again outperforms recent
approaches both in image quality and training speed (see
Tab. 2). Similar to the synthetic data, MoNeRF reconstructs
finer, more detailed object surfaces and smoother motion in
only seven minutes of training, without any adjustments or
overhead for real-world recordings.

5.3. Ablation Study

We next study the impact of individual MoNeRF compo-
nents. First, we investigate the significance of our deforma-
tion module factorization for the disentanglement of spatial
and temporal information (Sec. 3.2.1). To this end, we train
an alternative version of MoNeRF that directly infers point-
wise offset vectors from 4D spatiotemporal input samples



Figure 4. Comparison on the synthetic D-NeRF dataset [33]. We show detailed comparisons of our results (MoNeRF) against ground-
truth (GT) and benchmark methods the for the T-Rex and Stand Up sequences.

Figure 5. Comparison of training speed. (Top): The number of
training iterations in relation to the test set PSNR on a synthetic
sequence. (Bottom): An exemplary rendering and training time
after 30k iterations. At this stage, NR-NeRF still produces blurry
results and D-NeRF cannot yet portray the correct pose, while our
MoNeRF displays fine texture and motion details.

in a single MLP with the same total amount of hidden lay-
ers. Moreover, we experiment with the number of temporal
samples q used for approximating the temporal occupancy
grid (Sec. 3.4), which is an essential component for train-
ing acceleration. Tab. 3 shows training times and average
PSNR on the D-NeRF dataset for different configurations.
We observe that our novel factorization-based deformation
module achieves higher visual quality and enables faster oc-
cupancy grid updates (and thus overall training times) for
larger q values, which are needed to retain delicate scene ap-

Temporal
samples (q)

Factori-
zation PSNR ↑ Training

Time ↓
Lbg

Eq. (8)
Ldef

Eq. (9) PSNR ↑

1 3 31.88 4m 01s 7 7 31.35
1 7 31.55 3m 57s 7 3 32.07
20 3 32.16 6m 13s 3 7 31.52
20 7 31.62 8m 18s 3 3 32.16
30 3 32.23 7m 15s
30 7 31.85 10m 27s

Table 3. Ablation experiment on the effect of our deformation
module factorization, the number of samples q for updating the
temporal occupancy grid, and the regularization losses. The high-
lighted rows show our final configuration.

pearance. Note that for q>30, most GPUs run out of mem-
ory for parallel execution, resulting in a significant drop in
performance without notably improving the reconstruction
quality. We also assess the influence of our regularization
losses and observe that both losses contribute to the overall
accuracy (visually and in terms of average PSNR). The best
results are obtained using our full objective function.

6. Discussion

Although MoNeRF achieves a superior visual quality
compared to previous methods, it can still suffer from arti-
facts (e.g., pixelation in areas undergoing fast motion). We
assume that these effects are caused by the explicit nature of
the underlying hash-grid representation, which does not of-
fer the natural continuous regularization of large MLPs. We
observe a similar effect on sequences recorded as a continu-
ous camera trajectory (see Fig. 7): Despite its design for
monocularized inward-facing setups, we test our method
on a publicly available training sequence by Tretschk et
al. [45]. While MoNeRF preserves finer geometric details,
the generalization of motion to far off camera views is cur-



Figure 6. Comparison on our MMVA dataset. We compare our results (MoNeRF) against ground-truth (GT) and benchmark methods
on a variety of real-world sequences comprising complex textures and motion. Note that MoNeRF produces sharper renderings and finer
details than other methods (e.g., garment wrinkles, textures and the plush toy).

Figure 7. Comparison on continuous training data. We train
our model on a continuous sequence provided by NR-NeRF [45],
and render the video from a static camera position. (Top): The
timestamp matching the camera position during training. (Bot-
tom): A timestamp that was not observed from this camera posi-
tion.

rently limited. In the future, adding explicit spatial and tem-
poral regularizer can help to adjust our method for continu-
ous monocular video and forward-facing scenarios.

Our experiments further demonstrate the effectiveness of
monocularized real-world data. For future work, the inves-
tigation of more sophisticated importance sampling tech-

niques [27] on ray- or image-level is needed to optimize the
setting for practical applications.

7. Conclusion
We introduced an unprecedentedly fast and accurate

method for novel view synthesis of arbitrary non-rigidly de-
forming scenes in a monocularized setting. The win-win
combination of fast training (inference) and accurate novel
view synthesis is enabled by the new deformation module
with separate spatial and temporal components. The ex-
periments show that MoNeRF can reconstruct qualitatively
appealing radiance and (temporally coherent) deformation
fields for challenging scenes with fine appearance details
in a matter of minutes, i.e., several magnitudes faster than
previous approaches. Moreover, we observe in the tests
with our new dataset that the advantages of the proposed
approach and monocularized setting can directly be trans-
ferred to real-world recordings. We believe our work opens
many opportunities for applications and further research.
Our supplementary material contains additional de-
tails on our new dataset, and in depth comparisons
with other techniques. The full implementation is avail-
able at our project page https://graphics.tu-bs.de/
publications/kappel2022fast.

https://graphics.tu-bs.de/publications/kappel2022fast
https://graphics.tu-bs.de/publications/kappel2022fast
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Figure 8. Multi-view recording setups for the MMVA dataset. (Left): The setup used for the full-body recordings; (Right): the setup
for the facial performances.

Supplementary Material

This supplementary document provides more details on our
new MMVA dataset (Sec. A), along with additional compar-
isons between the proposed MoNeRF and the benchmark
methods examined in the main paper (Sec. B).

A. The MMVA Dataset
The main goal of our MMVA dataset is to investigate the

adaptability of monocularized data (in the spirit of the es-
tablished D-NeRF dataset [33]) to real-world scenarios. On
top, it can serve as a benchmark for developing and evalu-
ating new methods tailored towards fast full 360° inward-
facing reconstruction from monocular sequences, which is
currently limited to synthetic scenes.

The synthetic D-NeRF dataset consists of eight se-
quences showing deforming objects rendered from a single
view per time-frame from a camera position randomly sam-
pled from the full upper hemisphere. For dynamic scenes,
this setup entails various benefits over continuous camera
recordings. Most importantly, the rapidly changing view-
ing angles of the teleporting cameras allow observing adja-
cent deformation states from varying perspectives, enabling
high-quality full 360° novel view synthesis over the entire
temporal sequence. At the same time, the image sequences
remain small in size (i.e., the same as a monocular record-
ing of the same length), meaning they can be pre-loaded
into GPU VRAM for fast and efficient training.

When creating our MMVA dataset, we closely follow
the D-NeRF dataset specifications to maintain comparabil-
ity and compatibility with recent methods. As continu-
ous sampling is impossible for real-world setups, and we
want to avoid motion blur from fast-moving cameras, we
record our dataset using a large-scale synchronized multi-
view setup; see Fig. 8. We then monocularize the multi-
view data by selecting a single camera image per timeframe
for training, i.e., a discrete version of the D-NeRF hemi-

sphere sampling. Using this setup, we record a total of
twelve (i.e., ten full-body and two face) sequences show-
ing human actors performing different actions in a variety
of challenging clothing. Like the D-NeRF sequences, our
recordings contain single short motions (100-250 frames, 2-
5 seconds). A visualization of all our sequences is available
in our supplemental video. We calibrate the cameras using
COLMAP [38, 39] and extract foreground masks via back-
ground subtraction and human body segmentation. We then
re-scale the camera extrinsics such that the actor is located
at a zero-centered cube of side 0.5. The final data format is
designed to be compatible with existing NeRF implementa-
tions and only adds per-camera focal lengths and principal
points. The full dataset is available at our project page.

B. Additional Results
In this section, we report an additional experiment to

compare our method’s capabilities against the most related
static InstantNGP [24], and provide detailed per-scene re-
sults for the experiments in the main document.

B.1. Comparison to InstantNGP

To investigate the difference in quality to its static coun-
terpart, we compare our MoNeRF to the neural radiance
field implementation of InstantNGP [24]. To this end, we
train InstantNGP on one static frame of our MMVA Plush-
Dog sequence. In contrast to MoNeRF, which is trained on
the entire monocular sequence (i.e., only sees one single im-
age per timeframe), we leverage the multi-view recordings
of our MMVA dataset to train instantNGP on all 107 camera
views of a single timeframe in the middle of the sequence.
Figure 9 shows renderings from a novel view unseen by
both methods during training. We observe that our MoN-
eRF produces more blur in dynamic image regions, like the
plush dog and the actor’s face, as it has to jointly infer the
scene motion and appearance from a single image at a time.
InstantNGP, on the other hand, when provided with multi-



Figure 9. Comparison on a single static frame: A novel
view generated by InstantNGP [24] and our MoNeRF. While our
method was trained on the monocularized dynamic sequence, In-
stantNGP was provided with 107 multi-view images for the static
frame. MoNeRF produces more blurry results in deforming areas
of the scene but still maintains an overall high image quality.

view data, can reconstruct fine details for the entire static
frame. However, when provided with monocularized data
of a dynamic scene, the static architecture of InstantNGP
cannot reconstruct a consistent representation of the scene,
as shown in our detailed comparisons below (see Fig. 11).

Despite the drastically reduced training data per time
frame and additional task of compensating dynamic scene
deformations, our MoNeRF is capable of visually appeal-
ing novel view synthesis close to the quality of related static
multi-view approaches.

B.2. Depth Map Reconstruction

The main goal of our MoNeRF approach is high-fidelity
free 360° spatiotemporal novel view synthesis for non-
rigidly deforming scenes. To generate the final RGB out-
put images, the underlying ray-marching-based volume ren-
dering from a neural radiance field reconstructs an implicit
3D model, which enables the extraction of dense metrical
depth maps or explicit scene geometry. While reconstruct-
ing static geometry from multiple calibrated input views is
a well-constrained problem, estimating a temporally consis-
tent representation from monocular recordings of a dynamic
scene is far more challenging. In Fig. 10, we show exam-
ples of depth maps generated by MoNeRF when rendering

novel views for all scenes from the D-NeRF and MMVA
datasets. As can be seen, our method is not only capable
of rendering visually appealing RGB images but also faith-
fully reconstructs consistent 3D information over the entire
temporal sequence.

B.3. Detailed Comparisons

In the main paper, we compare MoNeRF to two bench-
mark methods, namely D-NeRF [33] and NR-NeRF [45].
In Tab. 4 and Tab. 5, we supplement our experiments with
detailed per-sequence quantitative analysis for the D-NeRF
and MMVA datasets, respectively. We also provide more
qualitative comparisons in Fig. 11 and Fig. 12, showing all
remaining dataset sequences not contained in the main doc-
ument. Across all sequences, our method does not only train
and render significantly faster than the benchmark meth-
ods, but also yields sharper, more detailed textures and ob-
ject boundaries on a per-image level. We further observe
that MoNeRF’s video results are less jittery than those of
D-NeRF and NR-NeRF. Recall that due to the monocular-
ized setting with arbitrary sampled camera views, the dif-
ferences in the input observations can be significant, which
leads to the jitter in the deformable scene representations of
D-NeRF and NR-NeRF. In contrast, our architecture is es-
pecially robust to such artefacts due to the inductive bias of
our factorization-based deformation module.



Figure 10. Depth map reconstruction: We show ground-truth (GT) images from the test sets of all scenes and the corresponding depth
maps reconstructed by MoNeRF and visualized as heatmaps (blue: near; red: far).



Hell Warrior Mutant Hook Bouncing Balls
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NERF [23] 13.52 0.81 0.25 20.31 0.91 0.09 16.65 0.84 0.19 20.26 0.91 0.20
DirectVoxGO [43] 13.32 0.75 0.25 19.45 0.89 0.12 16.16 0.80 0.21 20.20 0.87 0.22
Plenoxels [37] 15.19 0.78 0.27 21.44 0.91 0.09 17.90 0.81 0.21 21.30 0.89 0.18
InstantNGP [24] 15.28 0.84 0.26 20.59 0.91 0.11 15.92 0.82 0.23 19.12 0.89 0.19
T-NeRF [33] 23.19 0.93 0.08 30.56 0.96 0.04 27.21 0.94 0.06 37.81 0.98 0.12
D-NeRF [33] 25.02 0.95 0.06 31.29 0.97 0.02 29.25 0.96 0.11 38.93 0.98 0.10
NR-NeRF [45] 23.74 0.94 0.07 30.77 0.97 0.03 26.49 0.94 0.07 24.72 0.95 0.15
MoNeRF 26.53 0.96 0.06 35.51 0.99 0.01 31.12 0.98 0.03 39.45 0.99 0.04
TiNeuVox-S [7] 27.00 0.95 0.09 31.09 0.96 0.05 29.30 0.95 0.07 39.05 0.99 0.06
TiNeuVox-B [7] 28.17 0.97 0.07 33.61 0.98 0.03 31.45 0.97 0.05 40.73 0.99 0.04
NDVG [11] 25.53 0.95 0.07 35.53 0.99 0.01 29.80 0.96 0.04 34.58 0.97 0.11

Lego T-Rex Stand Up Jumping Jacks
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NERF [23] 20.30 0.79 0.23 24.49 0.93 0.13 18.19 0.89 0.14 18.28 0.88 0.23
DirectVoxGO [43] 21.13 0.90 0.10 23.27 0.92 0.09 17.58 0.86 0.16 17.80 0.84 0.20
Plenoxels [37] 21.97 0.90 0.11 25.18 0.93 0.08 18.76 0.87 0.15 20.18 0.86 0.19
InstantNGP [24] 19.99 0.90 0.11 25.45 0.94 0.07 15.99 0.86 0.20 19.62 0.90 0.17
T-NeRF [33] 23.82 0.90 0.15 30.19 0.96 0.13 31.24 0.97 0.02 32.01 0.97 0.03
D-NeRF [33] 21.64 0.83 0.16 31.75 0.97 0.03 32.79 0.98 0.02 32.80 0.98 0.03
NR-NeRF [45] 23.90 0.91 0.14 28.28 0.96 0.12 26.61 0.96 0.05 24.70 0.94 0.09
MoNeRF 25.19 0.94 0.04 33.06 0.99 0.02 34.29 0.99 0.01 32.14 0.98 0.03
TiNeuVox-S [7] 24.35 0.88 0.13 29.95 0.96 0.06 32.89 0.98 0.03 32.33 0.97 0.04
TiNeuVox-B [7] 25.02 0.92 0.07 32.70 0.98 0.03 35.43 0.99 0.02 34.23 0.98 0.03
NDVG [11] 25.23 0.93 0.05 30.15 0.97 0.05 34.05 0.98 0.02 29.45 0.96 0.08

Table 4. Quantitative per-scene comparison on the D-NeRF [33] dataset. We report PSNR/SSIM (higher is better) and LPIPS (lower is
better) for all eight dynamic scenes of the D-NeRF dataset. The best results are highlighted in bold. We highlight occasional better results
in italics for concurrent work (last three rows).

Archer Bow Cheeks Eyebrows
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
InstantNGP [24] 14.77 0.89 0.29 14.48 0.88 0.24 23.86 0.86 0.17 19.96 0.83 0.19
D-NeRF [33] 32.41 0.99 0.02 35.07 0.99 0.06 27.56 0.89 0.20 26.68 0.91 0.23
NR-NeRF [45] 30.50 0.98 0.02 30.24 0.99 0.02 27.70 0.89 0.18 27.24 0.91 0.15
MoNeRF 34.57 0.99 0.01 37.18 1.00 0.01 27.18 0.90 0.13 26.93 0.92 0.11

Fusion Kimono1 Kimono2 PlushDog
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
InstantNGP [24] 16.13 0.93 0.16 12.16 0.89 0.59 15.13 0.91 0.31 15.70 0.89 0.30
D-NeRF [33] 32.83 0.99 0.14 30.80 0.98 0.13 30.33 0.98 0.02 29.62 0.98 0.02
NR-NeRF [45] 30.80 0.99 0.02 29.09 0.98 0.02 28.97 0.98 0.02 29.50 0.98 0.03
MoNeRF 34.32 0.99 0.01 31.39 0.98 0.02 31.29 0.98 0.02 35.67 0.99 0.01

Sari Scissors Squat Step
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
InstantNGP [24] 14.28 0.90 0.36 15.52 0.93 0.20 13.73 0.90 0.53 16.73 0.94 0.27
D-NeRF [33] 32.80 0.98 0.07 35.21 0.99 0.01 32.80 0.99 0.02 35.07 0.99 0.01
NR-NeRF [45] 29.66 0.98 0.03 31.36 0.99 0.01 31.97 0.99 0.02 31.02 0.99 0.01
MoNeRF 33.50 0.99 0.01 36.52 1.00 0.01 34.62 0.99 0.01 36.26 1.00 0.01

Table 5. Quantitative per-scene comparison on our MMVA dataset. We report PSNR/SSIM (higher is better) and LPIPS (lower is
better) on all twelve dynamic scenes of our dataset. The best results are highlighted in bold.





Figure 11. Qualitative comparisons on the D-NeRF [33] dataset: Novel view synthesis on the remaining six scenes.



Figure 12. Further qualitative comparisons on our MMVA dataset: Novel view synthesis on the remaining four scenes.
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