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1. Introduction

From the point of inception, a primary focus of SWGO has been its location in the Southern
hemisphere, providing access to the Southern sky and the more densely populated regions of the
Galactic Plane. As such, Galactic science is a key component of themotivation and scientific agenda
for SWGO: a ground-based particle detector in the South, sensitive to very high energy gamma-
rays. Three key themes push the design and therefore are used for bench-marking SWGO. These
are: gamma-ray halos around energetic pulsars; Galactic diffuse gamma-ray emission including the
Fermi bubbles; and the search for and study of PeVatrons, accelerators of Galactic Cosmic Rays up
to and beyond PeV energies.

Correspondingly, we explore the constraints that the locations of promising pulsars and halo
candidates place on the site location in section 2. As the Galactic plane is by nature crowded with
sources located at similar positions along the line of sight, particularly along spiral arms, the angular
resolution is constrained by the likely level of source confusion from gamma-ray sources in close
proximity. Nevertheless, extended gamma-ray sources will lead to inevitable overlap along the line
of sight in some cases.

For studies of low surface brightness Galactic diffuse emission, good background rejection
is paramount; SWGO plans to achieve a level that will plausibly enable detection of the Fermi
bubbles. In order to detect PeVatrons and study their spectral features the highest energies, such as
their spectral curvature, good energy resolution and sensitivity is required (see section 3).

Galactic gamma-ray science with SWGO offers a rich opportunity to study the origins of the
highest energy Galactic cosmic rays from PeVatrons and the particle transport processes in gamma-
ray halos, including particle escape and confinement due to magnetic fields. Additionally, the
complex evolutionary history of our Galaxy can be studied through the Fermi bubbles which indicate
potential past activity. The ambient sea of Galactic cosmic rays, those which we isotropically detect
at Earth, can be probed through studies of the Galactic diffuse gamma-ray emission that arises as a
result of interactions with interstellar clouds (producing gamma-rays through the decay of neutral
pions) and radiation fields (producing gamma-rays through the leptonic inverse Compton scattering
process).

2. Gamma-ray halos

New gamma-ray observations in the GeV and TeV domain have revealed a new class of gamma-
ray emission regions: the gamma-ray halos [4]. Gamma-ray halos are characterized by regions
in which electrons and positrons generated in the pulsar magnetosphere escape from the Pulsar
Wind Nebula and produce a region that is bright in gamma rays. The study of these sources is of
paramount importance to unveil acceleration and propagation of Cosmic Rays (CRs) in pulsars and
their environments, and calculate the contribution to the local CR fluxes measured by satellites and
ground-based detectors. Although Imaging Atmospheric Cherenkov Telescopes (IACTs) are very
sensitive to the detection of emission of ≤ 1 deg, if the central engines generating this emission
are very closeby, the source produced at VHE gamma rays extends over regions of several degrees.
Wide FoV VHE gamma-ray experiments such as HAWC, LHAASO in the Northern hemisphere
have proven to be ideal instruments in the detection and characterization of this kind of extended
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Figure 1: Top-down view showing how the observable regions of the Galaxy - and hence the coverage of
local (< 500 pc), energetic pulsars - depends on the latitude of the chosen observatory site. The outer reach
of ∼ 620 pc is given by the 5 year sensitivity.

sources. The future SWGO in the Southern hemisphere is expected to add several detections to this
source type and contribute in their understanding. In Fig. 1 we show all the pulsars within 500
pc with an age < 1 Myr and the SWGO reach for its location at different latitudes. We can see
that locating it at a latitude of -20◦, all the pulsars fulfilling the above-mentioned criteria are within
reach of the observatory. In this plot we did not take into account the reduction of sensitivity due
to a lower exposure of sources culminating at high zenith angle, which will reduce the sensitivity
of their observation.

The source observability seen as their culmination as a function of their declination can be
seen in Figure 2. We also mark the limits of the Northern-most (Mina Chungar) and Southern-
most (Salta) proposed sites. We note that although locating the observatory further South, more
sources are accessible, also known sources like Geminga or PSR B0656+14, important to be able to
characterize gamma-ray halo measurements would be barely visible due to their high culmination,
and therefore difficult to be detected.

Although best to study nearby, very extended sources, SWGO will also be able to reach further
away sources with a smaller angular size. In Figure 3 we include the pulsar population from the
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Figure 2: The observability of local energetic pulsars as a function of site latitude. Those pulsars for which
the diagonal lines, indicating the source culmination on the sky, intersect with the vertical lines for the site
latitude are observable from that particular site. Two example site locations are indicated, representing the
Northern-most (Mina Chungar) and Southern-most (Salta) candidate sites respectively.

ATNF catalogue highlighting themost promising gamma-ray halo candidates. We draw a sensitivity
line for SWGO assuming gamma-ray halos to be Geminga-like in terms of size and gamma-ray
surface brightness. All sources above the line are candidates to be detected by SWGO. In this plot
we did not perform any assumption on the angular resolution of the instrument, that will reduce the
sensitivity for the detection of further sources.

Due to the presence of many sources in the Galactic plane, we will also face problems with
source separation. We performed a study using known gamma-ray sources from the H.E.S.S.
Galactic Plane Survey (HGPS) and predicted gamma-ray halos [2]. As extended emission around
pulsars is likely to account for the most numerous source class with the largest radial extents, we
modelled the radial evolution hypothetical pulsar wind nebulae and halos for all nearby pulsars
listed in the ATNF catalogue [5].

The radial evolution of pulsar wind nebulae is modeled in stages, adopting:

' = 1.1pc
( ¤�0

1038ergs−1

)1/5 (
C

103yrs

)6/5
, (1)

from [6], for a supernova with a canonical ejection energy of 1051 erg and ejecta mass of 10 Msun,
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Figure 3: Pulsar population from the ATNF catalogue - the most promising halo candidates are shown in
orange. The dashed line indicates the SWGO sensitivity to extended sources, assuming similar properties as
for the halo around the Geminga pulsar.

then evolving according to:

'(C) ∝


C6/5 for C ≤ g0
C for g0 < C ≤ Crs
C3/10 for C > Crs.

(2)

from [3]. The parameters ¤�0 and g0 are obtained via g0 =
2g2
=−1

(
%0
%

)=−1
and ¤� = ¤�0

(
1 + C

g0

)− =+1
=−1

where it is assumed that the braking index = = 3. Furthermore, we assume that the initial spin
period %0 = 30ms and that the reverse shock occurs at Crs ∼ 7 kyr. For ages C > 20 kyr, we assume
that the system then enters the halo evolutionary stage, with the gamma-ray radial extent dominated
by the escaped electrons and positrons. During the halo stage, radial evolution is described by
' ∝ 2

√
� (�)C where we adopt the diffusion coefficient found by HAWC in the vicinity of Geminga

[4]. Both this model and the HGPS size estimates are valid for the energy range ∼ 1 − 10TeV.
Whilst many assumptions enter into this model, by adopting typical values we intend to capture a
likely distribution of radial extents, sufficient to estimate the challenges that will be faced by SWGO
in terms of source confusion and required angular resolution.

Combining the known gamma-ray sources and this predicted sample, the angular separation
between nearby sources is calculated between the 1f radial extents. As it can be drawn from Figure
4, we will be able to separate 93% of the sources if we reach an angular resolution better than
0.5◦ and 98% if we reach an angular resolution resolution better than 0.2◦. These values are as a
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Figure 4: The cumulative distribution of angular separations between all known gamma-ray sources in the
Southern Galactic plane [2] and predicted pulsar wind nebulae and halos from the ATNF [5]. The angular
separation is calculated between the radial extent (1f) of the sources. Normalised to the total number of
sources with an angular separation < 5◦. Vertical dashed lines indicate the angular resolution required to
resolve the indicated percentage of sources. Sources that overlap significantly are not considered.

proportion of the total number of sources with angular separations < 5◦. Sources that are predicted
to overlap significantly are not considered, as there will be some inevitable intrinsic overlap along
the line of sight that cannot be avoided.

3. PeVatrons

Decades of Cosmic-ray (CR) measurements improved our understanding and helped to con-
struct the energy spectrum of primary CRs observed from Earth. The reconstructed CR spectrum
exhibits a remarkable power law in energy over several orders of magnitude. This power law has a
break in energy at a few Peta-electronvolts (PeV, 1015 eV), which is referred to as the knee. Below
the knee energies, CRs are believed to be of Galactic origin. Such a spectral feature in the CR
spectrum is an indication for the existence of extreme CR factories in our Galaxy, but the sources
where they are produced are still unknown. In this context, Galactic sources capable of accelerating
particles up to at least PeV energies are called ‘Galactic PeVatrons’. Understanding the origin of CRs
using direct measurements is an impossible task due to the presence of interstellar magnetic fields
that deviate the path of charged particles before they reach Earth. Neutral messengers generated by
CR interactions, such as gamma rays and neutrinos, are used to determine the origin of CRs. The
gamma-ray energy produced in CR interactions is approximately a factor 10 lower than the parent
CR energy [7]. Thus, one can probe PeVatrons by searching for gamma-ray emission at energies of
100 TeV and above.

The potential of detecting gamma-rays having energies at/above 100 TeV with a wide field
of view, and very high duty cycle, ground-based water Cherenkov telescope arrays has been
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Figure 5: Left panel:reconstructed best fit LogParabola models obtained from LHAASO observations of
LHAASO J2226+6057 (solid-red), LHAASO J1908+0621 (solid-blue) and LHAASO J1825−1326 (solid-
green). The LHAASO public data models are taken from http://english.ihep.cas.cn/doc/4035.html. Right
panel: W-ray emission models from proton-proton interactions followed by subsequent c0 decay, originated
from protons following power-law with exponential cutoff spectral model with fixed proton cutoff energy at
3 PeV, corresponding to the knee feature seen the CR spectrum. Different colors show proton spectra with
spectral indices in [2.0, 2.3], while the normalization of proton spectra are arranged to give 5 mCrab W-ray
flux at 1 TeV, assuming a distance of 4.0 kpc and gas density of 100 cm−3. Crab unit is taken as 3.84 × 10−11

cm−2 s−1 TeV−1. The dashed and solid black lines show conservative 1-year and 5-year SWGO sensitivity
curves [1], respectively.

demonstrated by the current generation instruments HAWC [8] and LHAASO [9] located in the
Northern hemisphere. Especially, the recent discovery of 12 Galactic sources emitting gamma-rays
at energies above 100 TeV, and up to 1.4 PeV [9], which are located at Galactic Longitudes ; ≥ 10◦,
provided a robust evidence of the presence of PeVatron sources in our Galaxy. Currently, there
is no such instrument, acting as ‘PeVatron hunter’, operational in the Southern hemisphere, which
covers the most intriguing part of the Galactic plane in W-rays including the Galactic Center region
harbouring a PeVatron source [10] and potential E > 100 TeV W-ray emission regions such as
Westerlund 1 [11] & HESS J1641−463 [12] and HESS J1702−420 [13]. The future SWGO, located
in South America, will be able to detect W-rays at energies above 100 TeV from this intriguing part
of the Galactic Plane. Such future observations will help construct a full picture of the Galactic
Plane above 100 TeV W-ray energies, therefore allowing population studies of Galactic PeVatrons,
which can resolve the 110 year old mystery of the origin of Galactic cosmic-rays.

Figure 5 (left) shows the comparison between conservative 1-year/5-year future SWGO sen-
sitivity curves and reconstructed spectral models from LHAASO observations of three sources
showing emission above 100 TeV [9], namely LHAASO J2226+6057, LHAASO J1908+0621 and
LHAASO J1825−1326. It can be seen from the figure that the future SWGO will be able to
detect 100 TeV W-ray emission from possible similar sources, located at ; ≤ 0◦, even after ∼1-year
observations, while deeper 5-year observations will allow detailed spectral studies of such possible
sources. Figure 5 (right) shows the W-ray emission, originated from proton-proton interactions,
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giving rise to 5 mCrab W-ray flux (at 1 TeV) level observed from Earth. At least few years deeper
observations will be needed in order to reconstruct W-ray spectra from such faint Galactic sources.
We note that the sensitivity curves given in Fig. 5 are quite conservative, therefore an improvement
in performance is expected. In general, robust detection of PeVatron signature requires detailed
spectral investigation not only in W-rays but also in the proton parameter space. In this context,
derivation of proton spectral cutoff lower limits, together with significant high energy (≥ 100 TeV)
W-ray spectral flux points would be helpful to understand PeVatron nature of sources.

4. Fermi Bubbles and Galactic Diffuse

Bubble-like structures, above and below the Galactic plane have been detected by radio and
gamma-ray instruments. The observation of such large structures, together with that of the galac-
tic diffuse emission is particularly challenging for current and even future Imaging Atmospheric
Cherenkov Telescopes. To achieve the goal of the detection of Fermi Bubbles and Galactic Diffuse
emission, the SWGO observatory plans to optimize the gamma/hadron separation to reach the min-
imum possible diffuse cosmic-ray residual background level, key for their detection. Preliminary
estimates suggest that the reachable levels imply the detectability of the large-scale Galactic Dif-
fuse Emission up to tens of TeV. The detectability of the Fermi Bubbles remains an open question
depending on the models extending their emission up to higher energies than those detected by
Fermi-LAT. More detailed calculations are currently ongoing and will be shown in future works.
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