
VoGE: A Differentiable Volume Renderer using
Gaussian Ellipsoids for Analysis-by-Synthesis

Angtian Wang1, Peng Wang2, Jian Sun2, Adam Kortylewski3, and Alan Yuille1

1 Johns Hopkins University angtianwang@jhu.edu, ayuille1@jhu.edu
2 Bytedance USA jerryking234@gmail.com, geomtop@gmail.com
3 Max Planck Institute for Informatics akortyle@mpi-inf.mpg.de

Abstract. Differentiable rendering allows the application of computer
graphics on vision tasks, e.g. object pose and shape fitting, via analysis-
by-synthesis, where gradients at occluded regions are important when
inverting the rendering process. To obtain those gradients, state-of-the-
art (SoTA) differentiable renderers [14,30] use rasterization to collect a
set of nearest components for each pixel and aggregate them based on the
viewing distance. In this paper, we propose VoGE, which uses ray tracing
to capture nearest components with their volume density distributions
on the rays and aggregates via integral of the volume densities based
on Gaussian ellipsoids, which brings more efficient and stable gradients.
To efficiently render via VoGE, we propose an approximate close-form
solution for the volume density aggregation and a coarse-to-fine rendering
strategy. Finally, we provide a CUDA implementation of VoGE, which
gives a competitive rendering speed in comparison to PyTorch3D [22].
Quantitative and qualitative experiment results show VoGE outperforms
SoTA counterparts when applied to various vision tasks, e.g., object pose
estimation, shape/texture fitting, and occlusion reasoning. The VoGE
library and demos is available at https://github.com/Angtian/VoGE.

Keywords: Differentiable Render, Analysis-by-Synthesis

1 Introductions

Recently, significant advances in computer vision tasks have been achieved,
through the integration of deep learning and computer graphics, e.g. in pose
estimation [24], 3D reconstruction [31], or texture estimation [2]. Different from
traditional graphics applications, the differentiability of the rendering process is
of utmost importance for inverse graphics applications in computer vision. Dif-
ferentiable renderers compute the gradients w.r.t. the image formation process,
and hence enable to broadcast cues from 2D images towards the parameters of
computer graphics models, such as the camera parameters, or the object ge-
ometry and texture. Such an ability is also essential when embedding graphics
models into deep neural networks. In this work, we focus on developing a differ-
entiable renderer using explicit object representations, which can be either used
separately for image generation or for serving as 3D aware neural network layers.

https://github.com/Angtian/VoGE

2 Angtian Wang et al.

(c) Texture Extraction and Rerender on Novel Viewpoints(b) Shape Fitting via Inverse Rendering

VoGETarget PyTorch3DPyTorch3D VoGE

(a) Object Pose Estimation

Fig. 1: VoGE on various vision tasks. (a) and (b) shows comparison between
VoGE and PyTorch3D, a wildly used differentiable renderer. (c) shows high-
quality texture extraction using VoGE.

The traditional rendering process typically involves a naive rasterization [9],
which projects components onto the image plane and only captures the nearest
components for each pixel. However, this process eliminates the cues from the
occluded components and blocks gradients toward them. Liu et al. [14] provide a
solution to this problem by tracking a set of nearest components for each image
pixel instead of only one, and aggregates based on the viewing distance. However
such an approach is sensitive to the settings of near and far distance, while
also introducing incorrect transparencies when components are near to each
other. This limitation is introduced by the ambiguity during the rasterization
process, which assumes components do not overlap with each other and are
ordered front to back along the viewing direction [33]. Such assumption raise a
paradox for differentiable rendering since during optimization components are
necessary to overlap with each other when they change the order along viewing
direction. In order to resolve this assumption, we propose to record the volume
density distributions instead of simply recording the viewing distance, since such
distributions provide cues on occlusion and interaction of components when they
overlapped.

Recent works [17,23] show the power of volume rendering with high-quality
occlusion reasoning and differentiability, which benefits from the usage of ray
tracing volume densities [8]. However, the rendering process in those works re-
lies on implicit object representations which limits the modifiability and inter-
pretability. Back in the 90s, graphics researchers developed the splatting method
[27,33] which reconstruct objects using volumetric Gaussian kernels and renders
based on a simplification of the ray tracing volume densities method. Unfor-
tunately, splatting methods were designed for graphics rendering without con-
sidering the differentiability and approximate the ray tracing volume densities
using rasterization. Inspired by both approaches [33,14], we propose VoGE using
3D Gaussians to represent objects, which give soften boundary of components.
Specifically, VoGE traces components along viewing rays as a density function,
which gives a probability of observation along the viewing direction.

In VoGE rendering pipeline, the ray tracing method is designed to replace
rasterization, and a better aggregation function is developed based on integral
of traced volume densities functions. As Figure 2 shows, VoGE uses a set of
Gaussian ellipsoids to reconstruct the object in 3D space. Each Gaussian ellipsoid
is indicated with a center locationM, and a spatial varianceΣ. During rendering,
we first sample viewing rays with the camera configuration. Then for each ray,

VoGE 3

Camera
Gaussian Ellipsoids

ρ(𝑟(𝑡))

near far

𝑒− 𝑛𝑒𝑎𝑟
𝑓𝑎𝑟 ρ(t) dt

near far

𝑇(𝑟(𝑡))

near far𝑡

𝑊(𝑟(𝑡))
ρ(𝑟(𝑡)) ∗ 𝑇(𝑟(𝑡))

−න
𝑛𝑒𝑎𝑟

𝑓𝑎𝑟

ρ(t) dt

W

Weight of Kernels on 𝑟(𝑡)

𝑡 𝑡
Kernel-to-Pixel Weight

Kernel Attributes

K

Synthesized Image

Fig. 2: VoGE conducts ray tracing and volume density aggregation. Given the
Gaussian Ellipsoids, i.e. a set of anisotropic 3D Gaussian reconstruction kernels,
VoGE first samples rays r(t). And along each ray, VoGE traces the density distri-
bution of each ellipsoid ρk(r(t)) respectively. Then occupancy T (r(t)) is accumu-
lated via density aggregation along the ray. The observation of each Gaussian
ellipsoid kernels Wk is computed via integral of reweighted per-kernel volume
density Wk(r(t)). Finally, VoGE synthesizes the image using the computed Wk

on each pixel to interpolate per kernel attributes. In practice, the density aggre-
gation process is bootstrapped via approximate close-form solutions.

we trace the volume density of each ellipsoid as a function of distance along the
ray respectively. We further compute the occupancy along the ray via an integral
of the volume density and reweight the contribution of each ellipsoid. Finally,
we interpolate the attribute of each reconstruction kernel with the kernel-to-
pixel weights into an image. In practice, we propose an approximate close-form
solution, which makes it feasible to compute the density aggregation without
computational heavy operation, e.g., integral, cumulative sum. Benefitting from
the advanced differentiability, VoGE obtain satisfied performance on various
vision tasks as Figure 1 shows.

In summary, the contribution of VoGE includes:

1. A ray tracing method that traces each component along viewing ray as
density functions. VoGE ray tracing is a replacement for rasterization.

2. An aggregation function that integral the traced density functions to reason
the occlusion between components on each viewing ray, with differentiability
toward both visible and invisible components.

3. A differentiable CUDA implementation with competitive rendering speed.
VoGE can be inserted into neural networks via our PyTorch APIs.

4. Exceptional performance on various vision tasks. Quantitative results demon-
strate that VoGE significantly outperforms concurrent state-of-the-art dif-
ferentiable renderer on in-wild object pose estimation tasks.

2 Related Works

Volume Rendering. In the 1980s, Blinn [3] introduces the volume density rep-
resentation, which simulates the physical process of light interacting with mat-
ter. Kajiya and Herzen [8] develop the ray tracing volume density aggregation

4 Angtian Wang et al.

Table 1: Comparison with state-of-the-art differentiable renderers. Similar to
NeRF but different from previous graphics renderers, VoGE uses ray tracing to
record volume densities on each ray for each component, and aggregate them
via integral of volume densities.

Method Representation Component Component Tracking Aggregation

NMR [9] explicit mesh rasterization none
SoftRas [14] explicit mesh rasterization distance
PyTorch3D [22] explicit mesh/points rasterization distance
DSS [30] explicit 2D Gaussian rasterization distance
Pulsar [11] explicit sphere rasterization distance
VoGE (ours) explicit 3D Gaussian ray tracing volume density

NeRF [17] implicit — ray tracing volume density

algorithm, which renders the volume density via light scattering equations. How-
ever, obtaining the contiguous volume density function is infeasible in practice.
Current approaches [17,20,16,5] use implicit functions, e.g., neural networks, as
object representations. Though those implicit representations give a satisfying
performance, such representations are lacking interpretability and modifiability,
which may limit their usage in analysis tasks. In this work, we provide a solution
that utilizes explicit representation while rendering with the ray tracing volume
density aggregation.

Kernel Reconstruction of 3D Volume. Westover [27] introduces the volume
reconstruction kernel, which decomposes a 3D volume into a sum of homoge-
neous components. Zwicker et al.[33] introduces the elliptical Gaussian kernel
and show such reconstruction gives satisfied shape approximation. However,
both approaches conduct non-differentiable rendering and use rasterization to
approximate the ray tracing process.

Differentiable Renderer using Graphics.Graphics renderers use explicit ob-
ject representations, which represent objects as a set of isotropic components. As
Table 1 shows, concurrent differentiable graphics renderers use rasterization to
track components. In order to compute gradients across components boundaries,
some approaches [15,9,13] manually create the gradients while others [14,30] use
components with soft boundaries to allow gradients flow. Whereas to differentiate
toward those occluded components, current differentiable renders [14,30,11] ag-
gregate tracked components via viewing distance. However, all existing graphics
renderers ignore the density distributions when conducting aggregation, which
will introduce confusion while limiting differentiability.

Renderer for Deep Neural Features. Recent works demonstrate exceptional
performance for rendering deep neural features. Specifically, works on object pose
estimation [24,7] demonstrate rendering on deep neural features benefits the
optimization process in render-and-compare. Niemeyer et al.[19] show rendering
deep neural features also helps image generation tasks. In our work, we show
VoGE benefits rendering using deep neural features via a better reconstruction
of the spatial distribution of deep neural features.

VoGE 5

3 Volume Renderer for Gaussian Ellipsoids

In this section, we describe VoGE rendering pipeline that renders explicit 3D vol-
ume representations into images with a certain camera configuration. Section 3.1
introduces the volume rendering. Section 3.2 describes the kernel reconstruction
of the 3D volume using Gaussian ellipsoids. In Section 3.3, we propose the ren-
dering pipeline for Gaussian ellipsoids via an approximate closed-form solution
of ray tracing and volume density aggregation. Section 3.4 discusses embedding
the proposed pipeline into deep neural networks.

3.1 Volume Rendering

Different from the surface based shape representations, in volume rendering,
objects are represented using continuous volume density functions. Specifically,
for each point in the volume, we have a corresponded density ρ(x, y, z) with
emitted color c(x, y, z) = (r, g, b), where (x, y, z) donates location of the point
in the 3D space. During the volume rendering process, light scattering equation
for volume density [8] provides a mechanism to compute the observed color C(r)
along a ray r(t) = (x(t), y(t), z(t)):

C(r) =

∫ tf

tn

T (t)ρ(r(t))c(r(t))dt,where T (t) = exp

(
−τ

∫ t

tn

ρ(r(s))ds

)
(1)

where τ is a coefficient that determines the rate of absorption, tn and tf donates
the near and far bound alone the ray.

3.2 Gaussian Ellipsoid Reconstruction Kernel

Due to the difficulty of obtaining contiguous function of the volume density and
enormous computation cost when calculating the integral, kernel reconstruction
is introduced to conduct volume rendering in a computationally efficient way [27].
The reconstruction decomposes the contiguous volume into a set of homogeneous
kernels, while each kernel can be described with a simple density function. We
use volume ellipsoidal Gaussians as the reconstruction kernels. Specifically, we
reconstruct the volume with a sum of ellipsoidal Gaussians:

ρ(X) =

K∑
k=1

1√
2π · ||Σk||2

e−
1
2 (X−Mk)

T ·Σ−1
k ·(X−Mk) (2)

where K is the total number of Gaussian kernels, X = (x, y, z) is an arbitrary
location in the 3D space. The Mk, a 3×1 vector, is the center of k-th ellipsoidal
Gaussians kernel. Whereas the Σk is a 3 × 3 spatial variance matrix, which
controls the direction, size and shape of k-th kernel. Also, following previous
works [33], we assume that the emitted color is approximately constant inside
each reconstruction kernel c(r(t)) = ck.

6 Angtian Wang et al.

𝑊𝑘 𝑊𝑘 𝑊𝑘

(a) K=2 (b) K=3 (c) K=4

Fig. 3: Rendering with increasing numbers of
Gaussian Ellipsoids. Top: the kernel-to-pixel
weight along the median row on the image, the
colors demonstrate each corresponded Gaussian
ellipsoids. Bottom: the rendered RGB image.
Note VoGE resolves occlusion naturally in a con-
tiguous way.

[0, 0, 1]

[0, 1, 0]

[0, 0, 1]

[1, 0, 0]

Gx=1425.9

Gy=-635.4

[0, 0, 1]

[0, 0, 0]

Target

Gx=-0.0004

Gy=-1335.4

[0, 0, 1]

[1, 1, 0]

Gx=2338.5

Gy=141.9

(a) (b)

(c) (d)

Fig. 4: Computing gradient of
M when rendering two ellip-
soids. The colored numbers be-
low image indicate the M of
each ellipsoids. The red arrow

and Gx, Gy show the ∂(I−Î)2

∂Mred

on horizontal directions.

The anisotropic Gaussian ellipsoid kernels can reconstruct arbitrary 3D shapes,
which makes it feasible to convert common representations into Gaussian ellip-
soids. When converting meshes, we compute Σk based on the distance from k-th
vertex to its neighbors. Point clouds can be easily converted via homogeneous
isotropic Gaussians. Refer to Appendix for details.

3.3 Render Gaussian Ellipsoids

Figure 5 shows the rendering process for VoGE. VoGE takes inputs of a perspec-
tive camera and Gaussian ellipsoids to render images, while computing gradient
towards both camera and Gaussian ellipsoids (shows in Figure 3 and 4).
Viewing transformation utilize the extrinsic configuration E of the camera
to transfer the Gaussian ellipsoids from the object coordinate to the camera co-
ordinate. Let Mo

k donate centers of ellipsoids in the object coordinate. Following
the standard approach, we compute the centers in the camera coordinate:

Mk = R ·Mo
k +T (3)

where R and T are the rotation and translation matrix included in E. Since
we consider 3D Gaussian Kernels are ellipsoidal, observations of the variance
matrices are also changed upon camera rotations:

Σ−1
k = RT · (Σo

k)
−1 ·R (4)

Perspective rays indicate the viewing direction in the camera coordinate. For

VoGE 7

E I
Camera

Σ

M

G
au

ss
ia

n
 E

ll
ip

so
id

s

Transforms

Σ

M

D

Viewing Rays

Coarse Rasterize

(Optional)

Ray Tracing

l

q

Volume

Density

Aggregation

C

O

Differentiable forward

Non-Differentiable forward

σ

Fig. 5: The forward process for VoGE rendering. The camera described with the
extrinsic matrix E composed withR and T, as well as the intrinsic matrix I com-
posed with F and Ox, Oy. Given Gaussian Ellipsoids, VoGE renderer synthesizes
an image O.

each pixel, we compute the viewing ray under the assumption that the camera
is fully perspective:

r(t) = D ∗ t =
[
i−Oy

F
j−Ox

F 1
]T

∗ t (5)

where p = (i, j) is the pixel location on the image, Ox, Oy is the principal point
of the camera, F is the focal length, D is the ray direction vector.
Ray tracing observes the volume densities of each ellipsoid along the ray r
respectively. Note the observation of each ellipsoid is a 1D Gaussian function
along the viewing ray (for computation details, refer to Appendix):

ρm(r(s)) = exp(qm − (s− lm)2

2 · σ2
m

) (6)

where lm =
MT

m·Σ−1
m ·D+DT ·Σ−1

m ·Mm

2·DT ·Σ−1
m ·D is the length along the ray that gives peak

activation for m-th kernel. qm = − 1
2V

T
m ·Σ−1

m ·Vm, where Vm = Mm − lm ·D
computes peak density ofm-th kernel alone the ray. The 1D variance is computed
via 1

σ2
m

= DT ·Σ−1
m ·D. Thus, when tracing along each ray, we only need to record

lm, qm and σm for each ellipsoid respectively.
Volume density aggregation computes the observation along the ray r. As
the Figure 2 shows, different from other generic renderers, which only consider
the viewing distance for aggregation, VoGE aggregates all observations based on
integral of volume densities along the ray. However, computing the integral using
brute force is so computational inefficient that even infeasible for concurrent
computation power. To resolve this, we propose an approximate closed-form
solution, which conducts the computation in a both accurate and effective way.

We use the error function the Error Function erf to compute the integral
of Gaussian function, since it is already implemented in common computation
platforms and can be computed via numerical approach directly. Specifically,
with Equation 13 and Equation 5, we can calculate T (t) as (for computation

8 Angtian Wang et al.

Fig. 6: Comparison for rendering speeds of VoGE and PyTorch3D, reported in
images per second (higher better). We evaluate the rendering speed using cuboids
with different number of components (verts, ellipsoids), which illustrated using
different colors, also different image sizes and numbers of component per pixel.

detail, refer to Appendix):

T (t) = exp(−τ

∫ t

−∞
ρ(r(s))ds) = exp(−τ

K∑
m=1

eqm
erf((t− lm)/σm) + 1

2
) (7)

Now, in order to compute closed-form solution of the outer integral in Equa-
tion 11, for each Gaussian ellipsoid, we use the T (t), t = lk at the peak of ρ(r(t))
alone the rays. Here we provide the closed-form solution for C(r) (for details,
refer to Appendix):

C(r) =

∫ ∞

−∞
T (t)ρ(r(t))c(r(t))dt =

K∑
k=1

T (lk)e
qkck (8)

Note based on the assumption that distances from camera to ellipsoids are sig-
nificantly larger than ellipsoid sizes, it is equivalent to set tn = −∞ and tf = ∞.
Coarse-to-fine rendering. In order to improve the rendering efficiency, we
implement VoGE rendering with a coarse-to-fine strategy. Specifically, VoGE
renderer has an optional coarse rasterizing stage that, for each ray, selects only
10% of all ellipsoids. Besides, the ray tracing to the volume density aggregation
also works in a coarse-to-fine manner. VoGE aggregates K

′
nearest ellipsoids

among all traced kernels that gives eqk > thr = 0.01. We provide a CUDA
[21] implementation of VoGE with both forward and backward function. The
CUDA-VoGE is packed with an easily used ”autogradable” PyTorch API.

3.4 VoGE in Neural Networks

VoGE can be easily embedded into neural networks by serving as neural sampler
and renderer. As a sampler, VoGE extracts attributes αk (e.g., deep neural fea-
tures, textures) from images or feature maps into kernel-correspond attributes,

VoGE 9

(a) Cuboids with increasing value in Σ (b) Surface normal & diffusing light (c) Pointcloud

Fig. 7: Visualization of VoGE rendering. (a) renders colored cuboids with differ-
ent Σ. (b) Rendering surface normals of the Stanford Bunny mesh, then diffuse
lights. (c) Rendering a colored pointcloud.

which is conducted via reconstructing their spatial distribution in the screen
coordinates. When serving as a renderer, VoGE converts kernel-correspond at-
tributes into images or feature maps. Since both sampling and rendering give the
same spatial distribution of feature/texture, it is possible for VoGE to conduct
geometry-based image-to-image transformation.

Here we discuss how VoGE samples deep neural features. Let Φ donates
observed features, where ϕp is the value at location p. Let A =

⋃K
k=1{αk}

donates the per kernel attribute, which we want to discover during sampling.
With a given object geometry Γ =

⋃K
k=1{Mk,Σk} and viewing rays r(p). The

the observation formulated with conditional probability regarding αk:

ϕ
′
(p) =

K∑
k=1

P(αk|Γ, r(p), k)αk (9)

Since Φ is a discrete observation of a continuous distribution ϕ(p) on the screen,
the synthesis can only be evaluated at discrete positions, i.e.the pixel centers.
As the goal is to make Φ

′
similar as Φ on all observable locations, we resolve

via an inverse reconstruction:

αk =

P∑
p=1

P(ϕ(p)|Γ, r(p), p)ϕ(p) =
∑P

p=1 Wp,k ∗ ϕp∑P
p=1 Wp,k

(10)

where Wp,k = T (lk)e
qk is the kernel-to-pixel weight as described in 3.1.

4 Experiment

We explore several applications of VoGE. Section 4.1 shows qualitative rendering
results with evaluation on rendering speed. In section 4.2, we study the object
pose estimation using VoGE in a feature level render-and-compare pose esti-
mator. In section 4.3, we study viewpoint matching using VoGE that samples
feature and rerender on novel views. In section 4.4, we explore texture extraction
ability of VoGE. In section 4.5, we demonstrate VoGE can optimize the shape
representation via multi-viewed images.

10 Angtian Wang et al.

Table 2: Pose estimation results on the PASCAL3D+ and the Occluded PAS-
CAL3D+ dataset. Occlusion level L0 is the original images from PASCAL3D+,
while Occlusion Level L1 to L3 are the occluded PASCAL3D+ images with in-
creasing occlusion ratios. NeMo is an object pose estimation pipeline via neural
feature level render-and-compare. We compare the object pose estimation per-
formance using different renderers, i.e. VoGE, Soft Rasterizer, DSS, PyTorch3D
(which is used in NeMo originally).

Evaluation Metric ACCπ
6

↑ ACC π
18

↑ MedErr ↓
Occlusion Level L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3
Res50-General 88.1 70.4 52.8 37.8 44.6 25.3 14.5 6.7 11.7 17.9 30.4 46.4
Res50-Specific 87.6 73.2 58.4 43.1 43.9 28.1 18.6 9.9 11.8 17.3 26.1 44.0
StarMap 89.4 71.1 47.2 22.9 59.5 34.4 13.9 3.7 9.0 17.6 34.1 63.0
NeMo+SoftRas 85.3 75.2 63.0 44.3 59.7 46.7 32.1 16.8 9.1 14.8 24.0 39.3
NeMo+DSS 81.1 71.9 56.8 38.7 33.5 30.4 23.0 14.1 16.1 19.8 25.8 40.4
NeMo+PyTorch3D 86.1 76.0 63.9 46.8 61.0 46.3 32.0 17.1 8.8 13.6 20.9 36.5
NeMo+VoGE(Ours) 90.1 83.1 72.5 56.0 69.2 56.1 41.5 24.8 6.9 9.9 15.0 26.3

Input Image NeMo+VoGE(ours) NeMo+PyTorch3D

Fig. 8: Qualitative object
pose estimation results
on PASCAL3D+ dataset.
We visualize the pre-
dicted object poses from
NeMo+VoGE and stan-
dard NeMo. Specifically,
we use a standard mesh
renderer to render the
original CAD model un-
der the predicted pose
and superimpose onto the
input image.

4.1 Rendering Results

We convert existing meshes or pointclouds into Gaussian ellipsoids using the
method described in 3.2. As Figure 7(a) shows, increasing the value in Σ will
reduce the transparency, with less visibility toward those occluded ellipsoids.
In Figure 7(b), we first render the surface normal of Stanford Bunny mesh [4],
then diffuse the rendered normals with a directional light using tools provided
by PyTorch3D. In Figure 7(c), we render a pointcloud provided by PyTorch3D
[22] demo. For more rendering results, refer to Appendix.
Rendering Speed. As Figure 6 shows, CUDA-VoGE provides a competitive
rendering speed compare to concurrent state-of-the-art differentiable generic ren-
derer.

VoGE 11

Table 3: Pose estimation results on the ObjectNet3D dataset. Evaluated via pose
estimation accuracy for error under π

6 (higher better).

ACCπ
6

↑ bed shelf calculator cellphone computer cabinet guitar iron knife

StarMap 40.0 72.9 21.1 41.9 62.1 79.9 38.7 2.0 6.1
NeMo+PyTorch3D 56.1 53.7 57.1 28.2 78.8 83.6 38.8 32.3 9.8
NeMo+VoGE(Ours) 76.8 83.2 77.8 50.7 78.8 83.6 54.6 45.4 12.1
ACCπ

6
↑ oven pen pot rifle slipper stove toilet tub wheelchair

StarMap 86.9 12.4 45.1 3.0 13.3 79.7 35.6 46.4 17.7
NeMo+PyTorch3D 90.3 3.7 66.7 13.7 6.1 85.2 74.5 61.6 71.7
NeMo+VoGE(Ours) 94.9 13.5 77.8 30.8 22.2 89.8 81.9 68.9 68.4

4.2 Object Pose Estimation in Wild

We evaluate the ability of VoGE when serving as a feature sampler and renderer
in an object pose estimation pipeline. Here, we utilize the pipeline proposed by
NeMo [24], which is an in-wild category-level object 3D pose estimator that con-
ducts render-and-compare on neural feature level. NeMo utilizes PyTorch3D [22]
as the feature sampler and renderer, where the former converts the feature maps
to vertex corresponded feature vectors and the latter conducts the inverse pro-
cess. In our NeMo+VoGE experiment, we use VoGE to replace the PyTorch3D
sampler and renderer via the approach described in Section 3.4.
Dataset. Following NeMo, we evaluate pose estimation performance of our ap-
proach on the PASCAL3D+ dataset [29], the Occluded PASCAL3D+ dataset
[26] and the ObjectNet3D dataset [28]. The PASCAL3D+ dataset contains ob-
jects in 12 man-made categories with 11045 training images and 10812 testing
images. The Occluded PASCAL3D+ contains the occluded version of same im-
ages, which is obtained via superimposing occluder cropped from MS-COCO
dataset [12]. The dataset includes three levels of occlusion with increasing oc-
clusion rates. In the experiment on ObjectNet3D, we follow NeMo to test on 18
categories.
Evaluation Metric. We measure the pose estimation performance via accuracy
of rotation error under given thresholds and median of per image rotation errors.
The rotation error is defined as the difference between the predicted rotation ma-

trix and the ground truth rotation matrix: ∆ (Rpred, Rgt) =
∥logm(RT

predRgt)∥
F√

2

Baselines. We compare our VoGE for object pose estimation with other state-
of-the-art differentiable renderers, i.e. Soft Rasterizer, DSS, and PyTorch3D. For
comparison, we use the same training and inference pipeline, and same hyper-
parameters for all 4 experiments. Our baselines also includes Res50-General/Specific
which converts object pose estimation into a bin classification problem, and
StarMap [32] which first detect keypoints and conduct pose estimation via the
PnP method.
Experiment Details. Following the experiment setup in NeMo, we train the
feature extractor 800 epochs with a progressive learning rate. During inference,
for each image, we sample 144 starting poses and optimizer 300 steps via an
ADAM optimizer. We convert the meshes provided by NeMo using the method
described Section 3.2.

12 Angtian Wang et al.

Table 4: (Left) Ablation study for object pose estimation on PASCAL3D+. We
control the coverage rate ζ when computing Σ, higher ζ gives larger values in
Σ. w/o grad T (r) means we block the gradient from T (r), while w/o grad ρ(r)
means gradient on eqk in Equation 8 is blocked.

Exp. Setup ACCπ
6
ACC π

18
MedErr

ζ = 0.2 89.9 68.7 7.0
ζ = 0.5 (standard) 90.1 69.2 6.9
ζ = 0.8 90.3 64.7 8.5

w/o grad T (r) 47.1 18.9 39.1
w/o grad ρ(r) 31.7 8.0 48.1

Fig. 9: (Right) Viewpoint matching via neural feature synthesis results on PAS-
CAL3D+ car. We compare VoGE(ours) with Soft Rasterizer and PyTorch3D for
sampling and rerendering neural features. Evaluated via rotations error (lower
better).

Results. Figure 8 and Table 2 show the qualitative and quantitative results
of object pose estimation on PASCAL3D+ and the Occluded PASCAL3D+
dataset. Results in Table 2 demonstrate significant performance improvement
using VoGE compared to Soft Rasterizer[14], DSS[30] and PyTorch3D[22]. More-
over, both qualitative and quantitative results show our method a significant
robustness under partial occlusion and out distributed cases. Also, Figure 8
demonstrates our approach can generalize to those out distributed cases, e.g., a
car without front bumper, while infeasible for baseline renderers. Table 3 shows
the results on ObjectNet3D, which demonstrates a significant performance gain
compared to the baseline approaches.
Ablation Study. As Table 4 shows, we conduct controlled experiments to val-
idate the effects of different components. Using the method we described in 3.2,
we develop tools that convert triangle meshes to Gaussian ellipsoids, where a
tunable parameter, coverage rate, is used to control the intersection rate be-
tween nearby Gaussian ellipsoids. Specifically, the higher coverage rate gives the
large Σ, which makes the feature more smooth but also fuzzy, vice versa. As the
results demonstrate, increasing Σ can increase the rough performance under π

6 ,
while reducing it can improve the performance under the more accurate evalu-
ation threshold. We also ablate the affect regarding block part of the gradient
in Equation 8. Specifically, we conduct two experiments on all kernels, we block
the gradient on T (lk) and eqk respectively. The results show blocking either term
leads significant negative impact on the final performance.

4.3 Neural View Matching

We conduct the neural feature synthesis for matching experiment introduced by
NVS [25]. Such method retrieves images under a certain viewpoint given a view-

VoGE 13

Input Image Gaussian Ellipsoids

Synthesized Image on Novel View

-30° -10° +10° +30°

(a)

(b)

(c)

Fig. 10: Sampling texture and rerendering on novel view. The inputs include a
single RGB image and the Gaussian Ellipsoids with corresponded pose. Note the
result is produced without any training or symmetrical information.

point annotated anchor image. During the retrieval, a renderer is used to synthe-
size deep neural features, under a given viewpoint. Following their experiment
setup, we randomly select 20 images from car category in PASCAL3D+ dataset
as the anchor images. For each anchor image with viewpoint annotation θ, we
retrieve 3 images that are most likely to fit viewpoint θ +∆θ among the whole
dataset. We evaluate totally 15 different ∆θ. In the retrieval process, firstly, an
ImageNet Pretrained Resnet50 [6] backbone is used to extract features from the
anchor image. Then we sample vertex corresponded features given viewpoint θ
with correspond object geometry and rerender under the target viewpoint θ+∆θ.
Finally, we compare the synthesized feature map with all feature maps extracted
from the dataset and select the images with top 3 similarities. We compare the
average rotation error (see Section 4.2) using VoGE, Soft Rasterizer and Py-
Torch3D. Figure 9 shows the quantitative results for the matching. The result
demonstrates that VoGE significantly outperforms PyTorch3D and Soft Raster-
izer, especially under those pose far from the anchor. This is because VoGE has
a better reconstruction of the feature spatial distribution as described in 3.4.

4.4 Texture Extraction and Rerendering

As Figure 10 shows, we conduct the texture extraction on real images and reren-
der the extracted textures under novel viewpoints. The qualitative results is
produced on PASCAL3D+ dataset. The experiment is conducted on each image
independently that there is no training included. Specifically, for each image,
we have only three inputs, i.e. the image, the camera configuration, the Gaus-
sian ellipsoids converted from the CAD models provided by the dataset. Using
the method proposed in 3.4, we extract the RGB value for each kernel on the
Gaussian ellipsoids using the given groundtruth camera configuration. Then we
rerender Gaussian ellipsoids with the extracted texture under a novel view, that
we increase or decrease the azimuth of the viewpoint (horizontal rotation). The
qualitative results demonstrate a satisfying texture extraction ability of VoGE,
even with only a single image. Also, note that details (e.g., numbers on the second
car) are retained in high quality under the novel view. Admittedly, the alignment

14 Angtian Wang et al.

(a) Target (b) Init. (Ours) (c) Init. (PyTorch3D)

(e) Ours(d) Ours w/o Constraint (f) PyTorch3D

Fig. 11: The shape fitting result
with 20 multi-viewed images
following the PyTorch3D [22]
official tutorial. (a) one of the
optimization targets. (b) and
(c) initializations for ours and
PyTorch3D. (d) result of ours
without any shape consistency
loss. (e) and (f) ours and Py-
Torch3D results with the same
shape consistency losses.

between the Gaussian ellipsoids model and the object in the image can affect
the quality of texture extraction. Nevertheless, the experiment demonstrates a
single aligned geometry is already enough for detailed texture extraction using
VoGE.

4.5 Shape Fitting via Inverse Rendering

Figure 11 shows the qualitative results of multi-viewed shape fitting. In this
experiment, we follows the setup in fit a mesh with texture via rendering from
PyTorch3D official tutorial [1]. First, a standard graphic renderer is used to ren-
der the cow CAD model in 20 different viewpoints under a fixed light condition,
which are used as the optimization targets. For both baseline and ours, we give
a sphere object geometry with 2562 vertices and optimize toward target im-
ages using the same configuration, e.g., iterations, learning rate, optimizer, loss
function. During the shape optimization process, we compute MSE loss on both
silhouettes and RGB values between the synthesized images and the targets. The
vertices locations and colors are gradiently updated with an ADAM optimizer
[10]. We conduct the optimization for 2000 iterations, while in each iteration, we
randomly select 5 out of 20 images to conduct the optimization. In Figure 11 (e)
and (f), we use the normal consistency, edge and Laplacian loss [18] to constrain
the object geometry, while in (d) no additional loss is used. From the results,
we can see that VoGE has a competitive ability regarding shape fit via defor-
mation. Specifically, VoGE gives better color prediction and a smoother object
boundary. Also, we observe the current geometry constrain losses do not signifi-
cantly contribute to our final prediction. We argue since those losses are designed
for surface triangular meshes, they are not suitable for Gaussian ellipsoids. The
design of geometry constraints that are suitable for Gaussian ellipsoids is an
interesting topic but beyond scope of this paper.

4.6 Occlusion Reasoning of Multiple Objects

Figure 12 shows differentiating the occlusion reasoning process between two ob-
jects. Specifically, a target image, and the colored cuboid models and initial-

VoGE 15

Fig. 12: Reasoning multi-object occlusions for single view optimization of object
location. Left: objects rendered in initialization and target via VoGE. Middle:
target image for VoGE and SoftRas, note the target image generate via each
rendering method. Right: the optimization results.

ization locations, are given to the method. Then we render and optimize the
3D locations of both the cuboids. In this experiment, we find both SoftRas and
VoGE can successfully optimize the locations when the occludee (blue cuboid)
is near the occluder (red cuboid), which is 1.5 scales behind the occluder as the
thickness of the occluder is 0.6 scales. However, when the the occludee is far
behind the occluder (5 scales), SoftRas fails to produce correct gradient to op-
timize the locations, whereas VoGE can still successfully optimize the locations.
We think such advantage benefits from the better volume density aggregation
compared to the distance based aggregation used in SoftRas.

5 Conclusion

In this work, we propose VoGE, a differentiable volume renderer using Gaus-
sian Ellipsoids. Experiments on in-wild object pose estimation and neural view
matching show VoGE an extraordinary ability when applied on neural features
compare to the concurrent famous differential generic renderers. Texture ex-
traction and rerendering experiment shows VoGE the ability on feature and
texture sampling, which potentially benefits downstream tasks. Overall, VoGE
demonstrates better differentiability, which benefits vision tasks, while retains
competitive rendering speed.
limitations. Effectiveness of anisotropic Gaussians ellipsoids is not harvested
due to implementation of our concurrent mesh converter. Existing geometry
constraints aren’t suitable for Gaussian ellipsoids. We think better geometry
constrains are needed for the deformable object using VoGE.

16 Angtian Wang et al.

References

1. Pytorch3d official tutorials: Fit a mesh via rendering. https://pytorch3d.org/
tutorials/fit_textured_mesh, accessed: 2021-11-10

2. Bhattad, A., Dundar, A., Liu, G., Tao, A., Catanzaro, B.: View generalization for
single image textured 3d models. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 6081–6090 (2021)

3. Blinn, J.F.: Light reflection functions for simulation of clouds and dusty surfaces.
Acm Siggraph Computer Graphics 16(3), 21–29 (1982)

4. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. pp. 303–312 (1996)

5. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit
functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2020)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition
(2016)

7. Iwase, S., Liu, X., Khirodkar, R., Yokota, R., Kitani, K.M.: Repose: Fast 6d object
pose refinement via deep texture rendering. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (2021)

8. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH
computer graphics 18(3), 165–174 (1984)

9. Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: Proceedings of the
IEEE conference on computer vision and pattern recognition (2018)

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Lassner, C., Zollhofer, M.: Pulsar: Efficient sphere-based neural rendering. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (2021)

12. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. Springer (2014)

13. Liu, G., Ceylan, D., Yumer, E., Yang, J., Lien, J.M.: Material editing using a
physically based rendering network. In: Proceedings of the IEEE International
Conference on Computer Vision (2017)

14. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for image-
based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (2019)

15. Loper, M.M., Black, M.J.: Opendr: An approximate differentiable renderer. In:
European Conference on Computer Vision. Springer (2014)

16. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

17. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean conference on computer vision. Springer (2020)

18. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization.
In: Proceedings of the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia (2006)

https://pytorch3d.org/tutorials/fit_textured_mesh
https://pytorch3d.org/tutorials/fit_textured_mesh

VoGE 17

19. Niemeyer, M., Geiger, A.: Giraffe: Representing scenes as compositional generative
neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2021)

20. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (2020)

21. NVIDIA, Vingelmann, P., Fitzek, F.H.: Cuda, release: 11.2.89 (2022), https://
developer.nvidia.com/cuda-toolkit

22. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501 (2020)

23. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: Graf: Generative radiance fields
for 3d-aware image synthesis. Advances in Neural Information Processing Systems
33 (2020)

24. Wang, A., Kortylewski, A., Yuille, A.: Nemo: Neural mesh models of contrastive
features for robust 3d pose estimation. In: International Conference on Learning
Representations (2020)

25. Wang, A., Mei, S., Yuille, A., Kortylewski, A.: Neural view synthesis and matching
for semi-supervised few-shot learning of 3d pose. Advances in Neural Information
Processing Systems (2021)

26. Wang, A., Sun, Y., Kortylewski, A., Yuille, A.L.: Robust object detection under
occlusion with context-aware compositionalnets. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (June 2020)

27. Westover, L.: Footprint evaluation for volume rendering. In: Proceedings of the
17th annual conference on Computer graphics and interactive techniques. pp. 367–
376 (1990)

28. Xiang, Y., Kim, W., Chen, W., Ji, J., Choy, C., Su, H., Mottaghi, R., Guibas,
L., Savarese, S.: Objectnet3d: A large scale database for 3d object recognition. In:
European Conference Computer Vision (2016)

29. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: A benchmark for 3d object
detection in the wild. In: IEEE Winter Conference on Applications of Computer
Vision (2014)

30. Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable sur-
face splatting for point-based geometry processing. ACM Transactions on Graphics
38(6), 1–14 (2019)

31. Zhang, J., Yang, G., Tulsiani, S., Ramanan, D.: Ners: Neural reflectance surfaces
for sparse-view 3d reconstruction in the wild. Advances in Neural Information
Processing Systems 34 (2021)

32. Zhou, X., Karpur, A., Luo, L., Huang, Q.: Starmap for category-agnostic key-
point and viewpoint estimation. In: Proceedings of the European Conference on
Computer Vision (2018)

33. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Ewa volume splatting. In: Pro-
ceedings Visualization, 2001. VIS’01. IEEE (2001)

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

18 Angtian Wang et al.

A Additional Details of VoGE Renderer

In this section we provide more detailed discussion for the math of ray tracing
volume densities in VoGE (section A.1 and A.2), coarse-to-fine rendering strategy
(section A.3), and the converters (section A.4).

A.1 Ray Tracing

In this section, we provide the detailed deduction process for Equations 6 in the
main text. First, let’s recall the formula of Ray tracing volume densities [8]:

C(r) =

∫ tf

tn

T (t)ρ(r(t))c(r(t))dt,

where T (t) = exp

(
−τ

∫ t

tn

ρ(r(s))ds

) (11)

where T (t) is the occupancy function alone viewing ray r(t), as we describe in
Equation 5 in main text:

r(t) = D ∗ t (12)

where D is the normalized direction vector of the viewing ray.
Also, as we describe in Section 3.2, we reconstruct the volume density func-

tion ρ(r(t)) via the sum of a set of ellipsoidal Gaussians:

ρ(X) =

K∑
k=1

1√
2π · ||Σk||2

e−
1
2 (X−Mk)

T ·Σ−1
k ·(X−Mk) (13)

where K is the total number of Gaussian kernels, X = (x, y, z) is an arbitrary
location in the 3D volume. Mk is the center of k-th ellipsoidal Gaussians kernel:

Mk = (µk,x, µk,y, µk,z) (14)

whereas the Σk is the spatial variance matrix:

Σk =

σk,xx σk,xy σk,xz

σk,yx σk,yy σk,yz

σk,zx σk,zy σk,zz

 (15)

Note that Σk is a symmetry matrix, e.g., covariance σk,xy = σk,yx.
Occupancy Function. Based on Equation 13 and 11, T (t) can be computed

via:

T (t) = exp

(
−τ

∫ t

tn

ρ(r(s))ds

)
= exp(−τ

∫ t

tn

K∑
k=1

1√
2π · ||Σk||2

e−
1
2 (sD−Mk)

T ·Σ−1
k ·(sD−Mk)ds)

(16)

VoGE 19

(a) (b) (c)

Fig. 13: Approximate computation of integral along the viewing ray for a single
kernel. (a) T (t) is the real occupancy function along the ray, T

′
(t) means we

use the occupancy at lk of ρ(r(t)), since ρ(r(t)) are mainly concentrate near lk.

(b) shows W (t) =
∫ t

−∞ T (s) · ρ(r(s))ds, W ′
(t) =

∫ t

−∞ T
′
(s) · ρ(r(s))ds and the

difference W (t) −W
′
(t). Since we use the infinite integral with t, only error at

end of t axis need to be consider. (c) shows the accumulative W (t)−W
′
(t) using

different σ = DT ·Σ−1 ·D. Interestingly, the final error gives a fix value which
is independent from σ. Note that the final error is 0.0256 which can be ignored
when compared to the integral result W = 1.

Now, let Mk = lkD + Vk, where lk is a length along the viewing ray, Vk =
Mk − lkD is the vector from location lkD on the ray to the vertex Mk (we will
discuss a solution for Vk and lk later). Equation 16 can be simplified as:

T (t) = exp(−τ

∫ t

tn

K∑
k=1

1√
2π · ||Σk||2

e−
1
2 (s−lk)

2DT ·Σ−1
k ·D

e−
1
2 (s−lk)(V

T
k ·Σ−1

k ·D+DT ·Σ−1
k ·Vk)e−

1
2V

T
k ·Σ−1

k ·Vkds)

(17)

In order to further simplify T (t), we take Vk that makes:

VT
k ·Σ−1

k ·D+DT ·Σ−1
k ·Vk = 0 (18)

which can be solve using Vk = Mk − lkD:

(Mk − lkD)T ·Σ−1
k ·D+DT ·Σ−1

k · (Mk − lkD) = 0

MT
k ·Σ−1

k ·D+DT ·Σ−1
k ·Mk − 2lkD

T ·Σ−1
k ·D = 0

lk =
MT

k ·Σ−1
k ·D+DT ·Σ−1

k ·Mk

2 ·DT ·Σ−1
k ·D

(19)

20 Angtian Wang et al.

Note that lk is also the length that gives the maximum density ρk(r(t)) along
the ray for k-th kernel. To proof this, we compute:

∂

∂t
ρk(r(t)) =

∂

∂t

1√
2π · ||Σk||2

e−
1
2 (tD−Mk)

T ·Σ−1
k ·(tD−Mk)

=
1

4
√
2π||Σk||2

(tD−Mk)
TΣ−1

k (tD−Mk)

· (MT
kΣ

−1
k D+DTΣ−1

k Mk − 2tDTΣ−1
k D)

· e− 1
2 (tD−Mk)

T ·Σ−1
k ·(tD−Mk)

(20)

Obviously, the solve for ∂
∂tρk(r(t)) = 0 is:

t =
MT

k ·Σ−1
k ·D+DT ·Σ−1

k ·Mk

2 ·DT ·Σ−1
k ·D

= lk (21)

Now the density function of the k-th ellipsoid along the viewing ray r(s) gives
an 1D Gaussian function:

ρk(r(s)) =
e−

1
2V

T
k ·Σ−1

k ·Vk√
2π · ||Σk||2

e−
1
2 (s−lk)

2DT ·Σ−1
k ·D

=
1√

2π · ||Σk||2
· exp(qk − (s− lk)

2

2 · σ2
k

)

(22)

where qk = − 1
2V

T
k ·Σ−1

k ·Vk,
1
σ2
k
= DT ·Σ−1

k ·D. Thus, when tracing along each

ray, we only need to record lk, qk and σk for each ellipsoid respectively.

A.2 Volume Density Aggregation

Since qk is independent from t, the Equation 16 can be further simplified:

T (t) = exp(−
K∑

k=1

eqk
∫ t

−∞

1√
2π · ||Σk||2

e−(s−lk)
2/σ2

kds)

= exp(−
K∑

k=1

eqk
erf((t− lk)/σk) + 1

2
)

(23)

where erf is the error function, that concurrent computation platforms, e.g.,
PyTorch, Scipy, have already implemented.

Scattering Equation. Now we compute the final color observation C(r).
As we describe in Section 3.2, we assume each kernel has a homogeneous Ck.
Thus, here we compute:

Wk(t) =

∫ tf

tn

T (t)ρ(r(t))dt

=

∫ ∞

−∞
T (t)

K∑
k=1

1√
2π · ||Σk||2

e−
1
2 (X−Mk)

T ·Σ−1
k ·(X−Mk)dt

(24)

VoGE 21

(a) K
′
= 5 (b) K

′
= 10 (c) K

′
= 20 (d) K

′
= 40

(e) η = 0.1 (f) η = 0.01 (g) η = 0.001 (h) η = 0.0001

Fig. 14: Rendering cuboid using differentK
′
and η. (a) to (d) shows the rendering

result using different K
′
, the threshold is fix as η = 0.01. (e) to (h) shows the

rendered cuboid with different η, while fixing K
′
= 20.

where X = tD. Similar to previous simplifications, we use qk and lk to replace
Mk in Equation 24:

Wk(t) =

K∑
k=1

eqk
∫ ∞

−∞
T (t)

1√
2π · ||Σk||2

e−(t−lk)
2/σ2

kdt (25)

Due to the error function is already a complex function, it is infeasible to compute
the integral of T (t). We propose an approximate solution that we use T (lk) to
replace T (t) inside the integral. Now the final closed-form solution for Wk(t) is
computed by:

Wk(t) =

K∑
k=1

T (lk)e
qk

∫ ∞

−∞

1√
2π · ||Σk||2

e−(t−lk)
2/σ2

kdt

=

K∑
k=1

T (lk)e
qk

(26)

Because of the complexity when computing integral of the erf function, here
we prove that in practice such approximate gives high enough accuracy. To sim-
plify the problem, we study the case that the volume only contains a single
Gaussian ellipsoid kernel. We further suggest that in the multi-kernel cases, the
errors between different kernels introduced by the approximation will be lower.
Because m-th kernel has a low ρm(r(t)) at lk, which makes the corresponded
T (t) more flatten, thus the approximation fits better. As Figure 13 (a) shows,
we plot density function along the ray. Specifically, we sample 10k points on

22 Angtian Wang et al.

the ray, and for each point, we plot its density, the real occupancy, and the
approximate occupancy. Figure 13 (b) shows the real weight W which is com-
puted via the cumulative sum along the ray, and the approximate weight W

′

which is computed via our proposed approximate closed-from solution. We also
show the difference between W

′
and W with the green line, which is significantly

smaller compare to W . Interestingly, as Figure 13 (c) shows, we find the error
W (t)−W

′
(t) is independent from Σ−1 and D, that always converge to a same

value: 0.0256. Though we cannot give a mathematical explanation regarding this
phenomenon, we argue the result is already enough to draw the conclusion that
such approximation gives satisfying accuracy.

A.3 Coarse-to-Fine Rendering with Kernel Selection

As we discussed in Section 3.3 in the main text, in order to efficiently render
Gaussian ellipsoids, we design the coarse-to-fine rendering strategy. Specifically,
we gradually reduce the number of ellipsoids that interact with viewing rays.
Following PyTorch3D, we develop a optional coarse rasterization stage, which
select 10% of all ellipsoids and feed them into the ray tracing stage. Specifically,
we project the center of each ellipsoid onto the screen coordinate via standard
object-to-camera transformation, then for each ellipsoids, we compute the height
bh and width bw of a maximum bounding box of the ellipsoids in 2D screen
coordinate. The height and width are computed via:[

bh bw .
]
=

log(−η)

dz
·Ω ·Σ−1 ·Ω (27)

where dz is the distance from camera to the center of ellipsoid, η is the threshold
for maximum volume density, Ω is the projection matrix from camera coordinate
to screen:

Ω =

 2·F
h 0 0
0 2·F

w 0
0 0 1

 (28)

Then we rasterize the bounding boxes to produce a pixel-to-kernels assignment
in a low resolution (8 times smaller compared to the image size), which indicates
the set of ellipsoid kernels for each pixel to trace.

Similarly, the ray tracing stage is also select only part of all Gaussian el-
lipsoids to feed into the aggregation stage. When conducting ray tracing, we
only trace K

′
nearest kernels that has non-trivial contributions regarding its

final weight Wk. Specifically, we first record all ellipsoids that gives a maximum
density eqk > η. For all the recorded kernels, we sort them via the length to
the 1D Gaussian center lk and select K

′
nearest ellipsoids. In the experiment,

we find K
′
has a significant impact on the quality of rendered images, while

the threshold η has relatively low impact, but needs to be fit with K
′
. Here we

provide default settings that give a satisfying quality with low computation cost:
K

′
= 20, η = 0.01.
Figure 14 shows the rendered cuboids using different K

′
and η. Here the

results demonstrate that inadequate K
′
will lead to some dark region around the

VoGE 23

1.5 0 0
0 0.3 0
0 0 0.3

1 0.7 0.6
0.7 1 0.9
0.6 0.9 1

1 1.2 1.6
1.2 1 0.9
1.6 0.9 1

1 0 0.9
0 1 0
0.9 0 1

+0° azimuth +45° azimuth +90° azimuth

Fig. 15: Rendering single
anisotropic ellipsoidal Gaus-
sian. Left column shows the Σ for
the kernel. We render the kernel
under 3 different viewpoint: 0◦

azimuth, 45◦ azimuth, and 90◦

azimuth.

1 0 0
0 0.8 ±0.79
0 ±0.79 0.8

1 0 0
0 0.8 ±0.6
0 ±0.6 0.8

1 0 0
0 0.8 ±0.3
0 ±0.3 0.8

+0° azimuth +45° azimuth +90° azimuth

det 𝚺 = 0.0159

det 𝚺 = 0. 28

det 𝚺 = 0.55

Fig. 16: Rendering flattened Gaussian ellip-
soids to approximate the 2D Gaussian el-
lipses. For each row, we show two Gaussian
ellipsoids viewed in 3 different viewpoints.
From top to bottom: decrease det(Σ) to flat-
ten Gaussian ellipsoids.

boundary of kernels, which we think is caused by the hard cutoff of the boundary.
On the other hand, decreasing the threshold η could make the object denser (less
transparent), but need more kernels (higher K

′
) to avoid the artifacts.

A.4 Mesh & Point Cloud Converter

We develop a simple mesh converter, which converts triangular meshes into
isotropic Gaussian ellipsoids, and a point cloud converter. In the mesh converter,
we retain all original vertices on the mesh and compute theΣk using the distance
between each vertex and its connected neighbors. Specifically, for each vertex,
we compute the average length dk of edges connected to that vertex. Then Σk

is computed via:

Σk =

σk 0 0
0 σk 0
0 0 σk

 (29)

where σk is computed via the coverage rate ζ and dk,

σk =
(dk/2)

2

log(1/ζ)
(30)

Similarly, in the point cloud converter, the Σk is controlled with the same func-
tion, but the dk is determined by the distance to m nearest points of the target
points.

24 Angtian Wang et al.

(a) Bunny

(b) Dragon

(c) Armadillo

Fig. 17: Rendering the surface normal using VoGE under 8 different viewpoints.
The Gaussian ellipsoids are converted from meshes provided by The Stanford
3D Scanning Repository.

Since the concurrent mesh converter does not consider the shape of the tri-
angles, admittedly we think this could be improved via converting each triangle
into an anisotropic Gaussian ellipsoid, which we are still working on.

B Additional Rendering Results

B.1 Rendering Anisotropic Gaussian Ellipsoids

As Figure 15 shows, VoGE rendering pipeline natively supports anisotropic ellip-
soidal Gaussian kernels, where for each kernel the spatial variance is represented
via the 3×3 symmetric matrix Σk. Note that, the spatial covariances, e.g., σk,xy,
cannot exceed square root of dot product of the two variances, e.g.,

√
σk,xxσk,yy,

otherwise, the kernel will become hyperbola instead of ellipsoids (as the last row
in Figure 15 shows).

On the other hand, we suggest that ellipsoidal Gaussian kernels can also
approximate the 2D Gaussian ellipses (the representation used in DSS [30]),
which can be simply done by set det(Σ) → 0, where det is the determinant of
matrix. Figure 16 shows the rendering result using flattened Gaussian ellipsoids.
As we demonstrated in the third row, VoGE rendering pipeline allows rendering
the surface-liked representations in a stable manner.

B.2 Rendering Surface Normal

As Figure 17 shows, we render CAD models provided by The Stanford 3D Scan-
ning Repository [4]. Specifically, we use our mesh converter to convert the meshes

VoGE 25

provide by the dataset into Gaussian ellipsoids. In detail, the Bunny contains
8171 vertices, the Dragon contains 22998 vertices, and the Armadillo contains
33792 vertices. During rendering, we compute surface normals via PyTorch3D
and use the normals as the RGB value of each vertex. Then we render the Gaus-
sian Ellipsoids in 8 different viewpoints, and interpolate the RGB value into
images.

B.3 Rendering Quality vs Number of Gaussians

Figure 19 shows surface normal rendering quality of VoGE using different number
of Gaussians. We also include comparison of rendering quality of VoGE vs Py-
Torch3D mesh renderer. In each image, we control a same number of Gaussians
vs mesh vertices, which gives similar number of parameters that 9 ∗ NGauss vs
3∗Nverts+3∗Nfaces. Here we observe that increasing number of Gaussians will
significant improve rendering quality. Admittedly, VoGE renderer gives slight
fuzzier boundary compare to mesh renderer.

B.4 Lighting with External Normals

Although Gaussian ellipsoids do not contain surface normal information (since
they are represented as volume), VoGE still can utilize surface normal via pro-
cessing them as an extra attribute in an external channel as we describe in
section B.2. Once the surface normals are rendered, the light diffusion method
in the traditional shader can be used to integrate lighting information into VoGE
rendering pipeline. Figure 18 shows the results that integrate lighting informa-
tion when rendering the Stanford bunny mesh using VoGE. Specifically, we first
render the surface normals computed via PyTorch3D into an image-liked map
(same as the process in section B.2). Then we use the diffuse function (Py-
Torch3D.renderer.lighting), to compute the brightness of the rendered bunny
under a point light. In the visualization, we place the light source at variant
locations, while using a fully white texture on the bunny.

B.5 Rendering Point Clouds

Figure 20 shows the point clouds rendering results using VoGE and PyTorch3D.
We follow the Render a colored point cloud from PyTorch3D official tutorial [?].
Specifically, we use the PittsburghBridge point cloud provided by PyTorch3D,
which contains 438544 points with RGB color for each point respectively. We
first convert the point cloud into Gaussian ellipsoids using the method described
in A.4. Then we render the Gaussian ellipsoids using the same configuration (Ex-
cept the camera. As the tutorial uses orthogonal camera, which concurrently we
don’t support, we alternate the camera using a PerspectiveCamera with a sim-
ilar viewing scope). The qualitative results demonstrate VoGE a better quality
with smoother boundaries.

26 Angtian Wang et al.

Table 5: Per category result for in-wild object pose estimation results on PAS-
CAL3D+. Results are reported in Accuracy (percentage, higher better) and
Median Error (degree, lower better).

a
ero

b
ik
e

b
o
a
t

b
o
ttle

b
u
s

ca
r

ch
a
ir

ta
b
le

m
b
ik
e

so
fa

tra
in

tv
M
ea
n

↑
A
C
C

π6

R
es5

0
-G

en
era

l
8
3
.0

7
9
.6

7
3
.1

8
7
.9

9
6
.8

9
5
.5

9
1
.1

8
2
.0

8
0
.7

9
7
.0

9
4
.9

8
3
.3

8
8
.1

R
es5

0
-S
p
ecifi

c
7
9
.5

7
5
.8

7
3
.5

9
0
.3

9
3
.5

9
5
.6

8
9
.1

8
2
.4

7
9
.7

9
6
.3

9
6
.0

8
4
.6

8
7
.6

S
ta
rM

a
p

8
5
.5

8
4
.4

6
5
.0

9
3
.0

9
8
.0

9
7
.8

9
4
.4

8
2
.7

8
5
.3

9
7
.5

9
3
.8

8
9
.4

8
9
.4

N
eM

o
+
S
o
ftR

a
s

8
0
.8

7
9
.2

7
0
.3

8
8
.0

8
9
.1

9
8
.4

8
5
.6

7
4
.9

8
2
.0

9
5
.7

7
6
.2

8
2
.3

8
5
.3

N
eM

o
+
D
S
S

7
7
.2

6
9
.3

6
5
.4

8
3
.7

9
1
.4

9
6
.5

8
0
.9

6
7
.8

7
1
.0

8
9
.9

7
6
.3

7
7
.5

8
1
.1

N
eM

o
+
P
y
T
o
rch

3
D

8
2
.2

7
8
.4

6
8
.1

8
8
.0

9
1
.7

9
8
.2

8
7
.0

7
6
.9

8
5
.0

9
5
.0

8
3
.0

8
2
.2

8
6
.1

N
eM

o
+
V
o
G
E
(o
u
rs)

8
9
.7

8
2
.6

7
7
.7

8
8
.2

9
8
.1

9
9

9
0
.5

8
4
.8

8
7
.5

9
4
.9

8
9
.2

8
3
.9

9
0
.1

↑
A
C
C

π1
8

R
es5

0
-G

en
era

l
3
1
.3

2
5
.7

2
3
.9

3
5
.9

6
7
.2

6
3
.5

3
7
.0

4
0
.2

1
8
.9

6
2
.5

5
1
.2

2
4
.9

4
4
.6

R
es5

0
-S
p
ecifi

c
2
9
.1

2
2
.9

2
5
.3

3
9
.0

6
2
.7

6
2
.9

3
7
.5

4
2
.0

1
9
.5

5
7
.5

5
0
.2

2
5
.4

4
3
.9

S
ta
rM

a
p

4
9
.8

3
4
.2

2
5
.4

5
6
.8

9
0
.3

8
1
.9

6
7
.1

5
7
.5

2
7
.7

7
0
.3

6
9
.7

4
0
.0

5
9
.5

N
eM

o
+
S
o
ftR

a
s

4
7
.5

2
6
.2

3
6
.2

4
9
.9

8
5
.5

9
4
.5

4
6
.7

5
0
.7

2
9
.8

5
9
.5

6
3
.9

4
2
.6

5
9
.7

N
eM

o
+
D
S
S

2
2
.8

1
0
.2

2
3
.7

3
7
.8

5
2
.8

3
8
.9

2
3
.1

1
5
.9

1
2
.1

3
1
.7

1
8
.7

2
5
.7

2
7
.8

N
eM

o
+
P
y
T
o
rch

3
D

4
9
.7

2
9
.5

3
7
.7

4
9
.3

8
9
.3

9
4
.7

4
9
.5

5
2
.9

2
9
.0

5
8
.5

7
0
.1

4
2
.4

6
1
.0

N
eM

o
+
V
o
G
E
(o
u
rs)

6
1
.4

4
0
.3

5
1
.2

5
3
.9

9
3
.8

9
6
.7

5
8
.6

7
0
.8

3
9
.6

6
3
.8

7
9
.3

4
7
.9

6
9
.2

↓
M
ed
E
rr

R
es5

0
-G

en
era

l
1
3
.3

1
5
.9

1
5
.6

1
2
.1

8
.9

8
.8

1
1
.5

1
1
.4

1
6
.6

8
.7

9
.9

1
5
.8

1
1
.7

R
es5

0
-S
p
ecifi

c
1
4
.2

1
7
.3

1
5
.4

1
1
.7

9
.0

8
.8

1
2
.0

1
1
.0

1
7
.1

9
.2

1
0
.0

1
4
.9

1
1
.8

S
ta
rM

a
p

1
0
.0

1
4
.0

1
9
.7

8
.8

3
.2

4
.2

6
.9

8
.5

1
4
.5

6
.8

6
.7

1
2
.1

9
.0

N
eM

o
+
S
o
ftR

a
s

1
0
.6

1
7
.3

1
5
.1

1
0
.0

3
.3

3
.4

1
0
.4

9
.9

1
4
.9

8
.4

6
.1

1
2
.3

9
.1

N
eM

o
+
D
S
S

1
6
.6

2
3
.0

1
9
.5

1
3
.1

9
.3

1
1
.7

1
6
.2

1
8
.7

2
1
.9

1
4
.2

2
0
.5

1
8
.2

1
6
.1

N
eM

o
+
P
y
T
o
rch

3
D

1
0
.1

1
6
.3

1
4
.9

1
0
.2

3
.2

3
.2

1
0
.1

9
.3

1
4
.1

8
.6

5
.4

1
2
.2

8
.8

N
eM

o
+
V
o
G
E
(o
u
rs)

7
.5

1
2
.8

9
.8

9
.1

2
.6

2
.9

8
.6

5
.8

1
2
.5

7
.7

4
.3

1
0
.5

6
.9

VoGE 27

C Additional Experiment Results

C.1 In-wild Object Pose Estimation

Table 5 shows the per-category object pose estimation results on PASCAL3D+
dataset (L0). All NeMo [24] baseline results and ours are conducted using the
single cuboid setting described in NeMo. Specifically, Gaussian ellipsoids used in
VoGE is converted from the same single cuboid mesh models provided by NeMo
(coverage rate ζ = 0.5).

Figure 21 shows the additional qualitative results of the object pose esti-
mation. In the visualization, we use a standard graphic renderer to render the
original CAD models provide by PASCAL3D+ dataset under the predicted pose,
and superimpose the rendered object onto the input image.

C.2 Texture Extraction and Rerendering

Figure 24 shows the additional texture extraction and rerendering results on
car, bus and boat images from PASCAL3D+ dataset. Interestingly, Figure 24
(g) shows the texture extraction using VoGE demonstrate stratifying generation
ability on those out distributed cases.

C.3 Shape Fitting via Inverse Rendering

Figure 23 shows the losses in the multi-viewed shape fitting experiment. Specif-
ically, we plot the losses regarding optimization iterations using the method
provided by fit a mesh with texture via rendering from PyTorch3D official tuto-
rial [1]. Note the geometry constraint losses except normal remain relatively low
in VoGE without constraints experiment. We think such results demonstrate the
optimization process using VoGE can give correct gradient toward the optimal
solution effectively, that even without geometry constraint the tightness of the
Gaussian ellipsoids is still retained. As for the normal consistency loss, since we
use the volume Gaussian ellipsoids, the surface normal directions are no longer
informative.

28 Angtian Wang et al.

(a) e = 30, a = −45 (b) e = 30, a = 45 (c) e = 30, a = 135

(d) e = 0, a = −45 (e) e = 0, a = 45 (f) e = 0, a = 135

(g) e = −30, a = −45 (h) e = −30, a = 45 (i) e = −30, a = 135

Fig. 18: Lighting rendered mesh using external normals. We first render the sur-
face normals of the bunny mesh using VoGE. Then we use the light diffusion
functions provided by PyTorch3D to light the render surface normal. For each
image, we place a point light source in the object space using different elevations
(e) and azimuth (a). The distance from the light source to the object center is
fixed as 1.

VoGE 29

Fig. 19: Comparison of rendering quality with number of components using VoGE
vs PyTorch3D hard mesh renderer.

(a) PyTorch3D 1x

(b) PyTorch3D 4x (c) PyTorch3D 16x

(d) VoGE 1x
(e) VoGE 4x (f) VoGE 16x

Fig. 20: Rendering point clouds using VoGE and PyTorch3D. In the 1x visual-
ization, we render the image with camera with standard focal length. In 4x and
16x we zoom-in the camera by increase the focal length by 4x and 16x.

30 Angtian Wang et al.

Fig. 21: Additional qualitative in-wild object pose estimation results for
NeMo+VoGE and NeMo+PyTorch3D.

P
y
T
o
rc

h
3
D

V
o
G

E

iter 0 iter 250 iter 500 iter 1000 iter 2000 target

Fig. 22: The shape fitting process regarding optimization iterations. We visualize
both VoGE and PyTorch3D with all constraints.

VoGE 31

(a) VoGE with all constraints.

(b) VoGE without constraints.

(c) PyTorch3D with all constraint.

Fig. 23: Losses in the shape fitting experiment. Note that for the VoGE without
constraint, we only calculate the geometry loss but not compute gradient with
those losses.

32 Angtian Wang et al.

Input Image Gaussian Ellipsoids

Synthesized Image on Novel View

-30° -10° +10° +30°

(a)

(b)

(c)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 24: Additional results for texture extraction experiment on car, bus and boat
category in PASCAL3D+ dataset. We extract texture using a in-wild image
and Gaussian ellipsoids with corresponded viewpoint, and render under novel
viewpoint.

	VoGE: A Differentiable Volume Renderer using Gaussian Ellipsoids for Analysis-by-Synthesis

