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Plasma diagnostics in fusion research devices often observe distinct locations in the target

plasma. To gain a consistent picture and separate geometric effects from 3D transport phenom-

ena, these observations are commonly mapped into a radial coordinate. For the Wendelstein

7-X Stellarator (W7-X) [1, 2], this procedure is usually performed with the assistance of the

Fourier-representation based MHD equilibrium code VMEC (see [3] and references therein).

Such an approach, however, can not map out magnetic islands and other non-nested magnetic

topologies, which severely hampers its extension onto the plasma edge. To analyze the edge-

core relationship and define approximate profiles in the plasma edge, we would like to construct

a general approach to magnetic surface mapping„ which does not require these surfaces to form

simple nested topologies.

Mathematical construction of topology-aware mapping

We would like our surface label function to fulfill the following criteria:

• It should be formulated as a function from R3 to R to allow us to map arbitrary lines of

sight into identical profile spaces.

• The label should be constant along magnetic field lines.

• In a perfect circular Tokamak, the mapping should ideally correspond to the minor radius.

• It should be monotonic not only in the plasma core, but also inside magnetic islands.

We do, however, not require the O-point to reside at a minimum, a maximum is also

acceptable.

Such a mapping can be constructed by the following procedure:
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1. For a 3D magnetic field B⃗ :R3 →R3 and a piecewose differentiable path γ ∈C1,p ([0,1] ,R3)
we define its perpendicular length as

l⊥(γ) =

∫
1

0

∣∣∣∣B⃗× dγ

dτ
(τ)

∣∣∣∣dτ

.

2. For a pair of magnetic surfaces S1,S2 ⊂ R3, we define their perpendicular distance as

d⊥ (S1,S2) = min
γ∈C1,p([0,1],R3)
γ(0)∈S1,γ(1)∈S2

l⊥(γ)

3. Given a surface S ⊂ R3 and assuming a magnetic axis A ⊂ R3, we define its perpendic-

ular radius as

r⊥(S) = d⊥(S,A)

For a single point x ∈ R3, we interpret its perpendicular radius r⊥(x) as r⊥ ({x}).

Numerical approximation of mapping

While the above-mentioned mapping fulfills the desired criteria, it can not be exactly evalu-

ated. We therefore propose the following 3-step procedure to approximate it on a set of sample

point:

1. Extend the sample points (including at least one known point on the magnetic axis) into

approximate magnetic surfaces by tracing field lines from their start positions and record-

ing intersections with preselected toroidal angle planes.

2. Estimate the geometric distance between magnetic surfaces by computing the pairwise

distance between all recorded points per cross section, and then minimizing over all points

in identical surfaces.

3. Record all mutual distances in a fully connected graph and compute the shortest path

lengths from the magnetic axis (for example using Dijkstra’s algorithm).

This yields a surface label for each traced surface, and therefore for each point recorded on this

surface (including the original sample points). By taking advantage of GPU processing power,

this bulk calculation can be performed in reasonable time for offline analysis (1 hour on NVidia

1080 TI, 500 surfaces traced for 100 turns across 20 cross sections).
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Acceleration using deep learning techniques

Figure 1: Contour plot of the interpolated mapping

function in the W7-X magnetic standard configura-

tion. The background color indicates an attempt by

the trained network to partition the magnetic geom-

etry into subdomains (such as magnetic islands).

While the above mentioned bulk com-

putation is acceptable for the occasional

precise offline analysis of specific exper-

iment scenarios, it is prohibitively slow

for near-real-time data analysis during or

shortly after experiments. Furthermore,

it requires a pre-calculated equilibrium

to match the experiment conditions.

Therefore, we desired a procedure

that would allow us to interpolate the

computed mapping both in position and

in configuration space. After initial in-

vestigations into Delaunay-interpolators

(which gave poor results), we chose to

train a deep neural network on the com-

puted samples, which can identify and

take advantage of the underlying struc-

ture of the magnetic configurations. The

network was build and trained in Tensor-

Flow [4], with hyperparameters for the

training selected by Optuna [5]. As ex-

emplarily demonstrated in figure 1, the

resulting mapping function is able to

capture the complicated magnetic topol-

ogy of W7-X, particularly the structure

of its island divertor.
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Summary and outlook

The presented implementation of diagnostic mapping serves both as a proof of principle and

a first practical implementation. Efforts to integrate it into the W7-X data processing pipeline, as

well as to fully automate the training process in order to make it easier to apply to other devices,

are already ongoing. Additionally, alternative training methods are investigated to potentially

reduce the (multi-day) training time required.
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