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ABSTRACT

Video frame interpolation (VFI) enables many important applications that might involve the temporal
domain, such as slow motion playback, or the spatial domain, such as stop motion sequences. We
are focusing on the former task, where one of the key challenges is handling high dynamic range
(HDR) scenes in the presence of complex motion. To this end, we explore possible advantages of
dual-exposure sensors that readily provide sharp short and blurry long exposures that are spatially
registered and whose ends are temporally aligned. This way, motion blur registers temporally
continuous information on the scene motion that, combined with the sharp reference, enables more
precise motion sampling within a single camera shot. We demonstrate that this facilitates a more
complex motion reconstruction in the VFI task, as well as HDR frame reconstruction that so far has
been considered only for the originally captured frames, not in-between interpolated frames. We
design a neural network trained in these tasks that clearly outperforms existing solutions. We also
propose a metric for scene motion complexity that provides important insights into the performance
of VFI methods at the test time. Supplementary videos can be found at: deephdr.mpi-inf.mpg.de/.

1 Introduction

Video frame interpolation (VFI) enables many interesting applications ranging from video compression and framerate
up-conversion in TV broadcasting to artistic video effects such as speed ramp in professional cinematography. The
performance of VFI methods is largely affected by various factors such as scene lighting conditions, the magnitude and
complexity of motion in the scene, the spatial extension of resulting motion blur, the presence of complex occlusions,
or thin structures in the scene. Popular VFI methods [Jiang et al.(2018), Bao et al.(2019), Sim et al.(2021)] mostly rely
on well-exposed frames in the captured video. Nevertheless, in the case of high dynamic range (HDR) scenes captured
using traditional single-exposure sensors, undesired under- and over-exposure effects might appear. The resultant
noise and intensity clamping can adversely affect the quality of VFI, as finding the pixel correspondence between
the frames becomes more ambiguous. Another major challenge is the large and non-uniform motion in the scene.
Although recent methods [Reda et al.(2022), Sim et al.(2021)] have shown progress in handling large motion, they
typically heavily rely on the motion linearity assumption that might not hold in practice. Explicit handling of non-linear
motion becomes possible by processing more than two subsequent frames [Xu et al.(2019), Park et al.(2021)]; however,
temporal sampling might still be too low for reliable motion reconstruction. Motion blur due to low-shutter speed and
long-exposure times further leads to spatial and temporal loss of image details. For this reason, handling blurry frames
is typically treated as a challenge in the VFI task [Shen et al.(2020), Zhang et al.(2020)], while potentially, motion blur
encodes continuous temporal information on the magnitude and direction of motion, particularly for large motion.

Programmable sensors with spatially varying exposures [Sony(1999), Carey et al.(2013)] greatly expand the dynamic
range of contrast in captured scenes [Hajsharif et al.(2014),Go et al.(2019),Choi et al.(2017),Heide et al.(2014),Cogalan
et al.(2022), Nguyen et al.(2022), Cho et al.(2014)]. In this work, we explore such sensor capabilities toward improving
the motion estimation accuracy in VFI. In particular, we consider a dual-exposure sensor that captures short and long
exposures for spatially interleaved pixel columns in a single shot [CVM(accessed on Sept. 17, 2021)]. Importantly,
while the exposure duration differs, the exposure completion is temporally aligned, which enables recovering two
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Video frame interpolation for high dynamic range sequences captured with dual-exposure sensors

Long Exposure FILM OursComposed HDR

Figure 1: Video frame interpolation (VFI) in the framerate extension task using the state-of-the-art FILM [Reda
et al.(2022)] and our methods. The first column shows our in-between frame reconstruction, while the insets focus on
the dark scene details that require long exposure durations and feature significant motion blur due to camera motion
(second column). Such blur adversely affects VFI for the FILM method (third column). Our method employs temporally
continuous information on the scene motion that is encoded in motion blur to improve the VFI quality (fourth column).

temporal samples of the scene motion that are perfectly spatially registered at the sensor. We show that such an increased
temporal sampling rate substantially improves the accuracy of complex motion interpolation, as motion non-linearity
can readily be reconstructed for two subsequent frames. Furthermore, the short exposure typically leads to a sharp
image, while the long exposure results in substantial motion blur that provides additional insights into the motion
direction and magnitude (Fig. 1). This is of particular importance in dark scene regions, where the short exposure might
be strongly underexposed and noisy, and the long exposure becomes the only reliable measurement of scene motion.
As in other works, we employ a multi-exposure technique to reconstruct high dynamic range video frames, but for
the first time, we simultaneously perform VFI that can handle complex, non-linear motion in the scene. We train an
end-to-end convolutional network to achieve those goals. We also propose a metric of motion non-linearity that allows
us to analyze the existing high-speed videos.

The key contributions of our work are:

• We propose a machine learning solution for VFI that can handle high-dynamic-range content and complex
non-uniform motion, enabled by deriving two temporal samples of the scene motion for each frame by joint
processing of short and long exposures as captured using a dual-exposure sensor.

• We exploit motion blur information inherent in the long exposure to further improve motion estimation quality.
• We develop a metric of motion complexity that provides interesting insights into existing datasets used in the

training of VFI methods.

In the following section, we discuss previous work, and in Sec. 3, we present our VFI method for HDR sequences.
In Sec. 4 we introduce our metric of scene motion uniformity that enables a meaningful comparison of existing VFI
methods, while Sec. 5 provides implementation details of our network. Sec. 6 confronts our technique with existing
works in a performance comparison and reports an outcome of ablation studies. Finally, we conclude this work in
Sec. 7.

2 Previous work

In this section, we discuss existing VFI methods dealing with either sharp (Sec. 2.1) or blurry (Sec. 2.2) input video.
We focus on the problems of handling non-uniform motion and high-dynamic-range content (Sec. 2.3) that are central
to this work. We refer the reader to a recent survey where a more complete treatment of VFI is presented [Parihar
et al.(2021)].

2.1 Sharp Video Frame Interpolation

A vast majority of existing VFI techniques assume that the motion in the input video is uniform, but there are also
methods explicitly designed without this assumption.
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Uniform motion SepConv [Niklaus et al.(2017)] merges flow estimation and frame warping into a single convolution
step. They predict spatially-varying 1D kernels and convolve with them input frames to interpolate new frames.
SuperSlowMo [Jiang et al.(2018)] uses bi-directional flows and an occlusion map to synthesize intermediate frames
at any arbitrate time. DAIN [Bao et al.(2019)] utilizes additional interpolation kernels and depth maps for blending
the input frames. A cycle consistency loss is introduced to learn frame interpolation with fewer training pairs [Liu
et al.(2019)] or without any supervision [Reda et al.(2019)]. BMBC [Park et al.(2020)] warps the input frames
with a proposed bilateral motion model and combines them using learned dynamic blending filters. CAIN [Choi
et al.(2020)] uses a channel attention module to interpolate video frames without the need for estimation of motion.
SoftSplat [Niklaus and Liu(2020)] proposes differentiable forward warping via softmax splatting and shows its benefits
for VFI. AdaCoF [Lee et al.(2020)] proposes a warping module in which a target pixel can refer to not only one but
many pixels at any location in the reference. XVFI [Sim et al.(2021)] presents a high-speed (1000fps) video dataset and
proposes a multi-scale recursive approach to handle large motion in the scene. Recently, FILM [Reda et al.(2022)]
has introduced a unified framework that achieves superior results for large and complex motions by balancing the
motion range distribution in the training dataset. For all methods discussed here, a combination of large and strongly
non-uniform motion might lead to highly objectionable artifacts.

Non-uniform motion QVI [Xu et al.(2019)] is one of the first video interpolation methods to model curvilinear
motion with the quadratic equation using four temporal frames. Chi et al. [Chi et al.(2020)] extend QVI by introducing
an additional cubic term that accounts for the change in the acceleration. ABME [Park et al.(2021)] handles the
non-uniform motion in the scene by extending the BMBC [Park et al.(2020)] for asymmetric bilateral motion between
input frames. In all those methods, more than two consecutive frames are required to capture the motion non-uniformity
that for large and complex motions might be challenging both because of temporal sampling deficits as well as overall
reduced flow estimation accuracy. In our approach, we capture two exposures in a single frame that increase the
sampling rate twice, and we employ motion blur inherent for the longer exposure as an additional cue to the flow
estimation. Moreover, by explicitly accounting for motion non-uniformity statistics in our training data, we can improve
our network’s ability to handle a wide variation of such motions.

2.2 Joint Video Deblurring and Interpolation

It is inevitable to have motion blur during capturing caused by low shutter speed, long exposure time, or rapid movement
in the scene. Recent works demonstrate that a joint deblurring and frame interpolation greatly improves the resulting
VFI quality over an independent treatment of these tasks. TNTT [Jin et al.(2019)] adopts a joint optimization scheme to
extract sharp keyframes from the blurry input frames and then smoothly interpolate between the extracted keyframes.
BIN [Shen et al.(2020)] and its extended version PRF [Shen et al.(2020)] simultaneously remove the motion blur and
interpolate the in-between frames by employing a recurrent pyramid framework to efficiently aggregate the temporal
information. ALANET [Gupta et al.(2020)] relaxes the strong assumption that all the input frames in a captured video
are blurry and adapts attention mechanisms to decide on deblurring each frame based on the information from the
neighbor frames. These methods mainly perform central frame interpolation, meaning they need to be recursively
applied in order to interpolate an arbitrary frame in time. Moreover, in these methods, the blurry input frames are simply
created by averaging neighbor frames of existing high framerate videos with mutually overlapping temporal windows,
and without accounting for the camera readout time. Those two factors can significantly hinder the reconstruction of
physically correct blur. UTI-VFI [Zhang et al.(2020)] periodically skips selected frames in the input high framerate
video to emulate the lost information during the sensor readout time, and it can also generate the intermediate frames at
an arbitrary time. It first extracts two sharp keyframes corresponding to the start and the end of a given blurry frame
sequence, and then it utilizes an off-the-shelf optical flow network to interpolate in-between frames. Moreover, it
adapts quadratic motion formulation in order to properly handle non-uniform motion. Rengarajan et al. [Rengarajan
et al.(2020)] take a triplet of short-long-short exposures captured by a programmable machine vision camera and recover
a sharp high framerate sequence. In their capturing setup, the short exposures are sharp but noisy and can act as a pivot
for deblurring the long exposure. While these methods attempt to remove the motion blur in the video frames, the
inherent motion blur can potentially reveal information about the magnitude and direction of the motion, especially in
the case of large non-uniform motion. In this work, we explicitly extract the motion flow from the blurry input frames.
Moreover, large motions could make the joint deblurring and VFI tasks very challenging. In our approach, we take
advantage of the less blurry short exposure in each frame to make the flow estimation more reliable.

2.3 High dynamic range video

HDR video reconstruction is performed using multi-exposure techniques, where subsequent frames with temporally
interleaved different exposures are combined, and their dynamic content is aligned typically using optical flow
methods [Kalantari et al.(2013), Kalantari et al.(2017), Kalantari and Ramamoorthi(2019), Yan et al.(2020), Chen
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Figure 2: Our HDR VFI pipeline takes as the input two subsequent frames M0 and M1 as captured using our dual-exposure
sensor. The input frames are independently processed by a learned MakeHDRMakeHDRMakeHDR network, so that the corresponding sharp
HDR images Îe0 and Îe1 are aligned with the short exposures, as well as blurry long exposure images L̂0 and L̂1, whose
ends are aligned with Îe0 and Îe1 are obtained. Next, the motion flows Fe0→s0 and Fe1→s1 are extracted from the
blur inherent to the long exposures L̂0 and L̂1 using a learned Blur2FlowBlur2FlowBlur2Flow network. Also, the motion flows Fe0→s1

and Fs1→e0 estimated between the sharp HDR frames Îe0 and Îs1 in both directions using the state-of-the-art flow
estimation method Raft [Teed and Deng(2020)]. Then, the motion flow pairs Fe0→s0 and Fe0→s1, as well as Fs1→e1

(reverted from Fe1→s1) and Fs1→e0 are independently fed to a non-learnable FitQuadFitQuadFitQuad module to calculate the forward
flows Fe0→t and Fs1→t that are parametrized using a quadratic motion model for a position t. Then, we compute the
backward flows Ft→e0 and Ft→s1 using a differentiable flow ReverseReverseReverse module [Xu et al.(2019)] in order to warp the
frames Îe0 and Îs1 to the position t. Finally, the warped images are combined using a trained SynthesisSynthesisSynthesis network to
produce the output frame Ît.

et al.(2021)]. To alleviate the need for such alignment, single-shot HDR techniques are developed that rely on
specialized dual-ISO sensors [Hajsharif et al.(2014), Go et al.(2019), Choi et al.(2017), Cogalan and Akyuz(2020)].
Dual-exposure sensors [CVM(accessed on Sept. 17, 2021)] offer two motion samples per frame, which, as we show in
this work, is greatly beneficial for VFI, albeit requires long-exposure deblurring in the HDR video reconstruction [Heide
et al.(2014), Cogalan et al.(2022), Nguyen et al.(2022), Cho et al.(2014)]. The scope of these methods is mainly limited
to HDR video reconstruction, and they do not aim for the VFI task. An exception here is the work of Rebecq et
al. [Rebecq et al.(2019)], where high framerate HDR video is reconstructed using a highly specialized event camera
that, in a frameless manner, asynchronously responds to per-pixel brightness changes.

3 Method

In this section we propose a method for video frame interpolation that reconstructs high-dynamic range frames in
the continuous time domain. Fig. 2 summarizes our processing pipeline and the following paragraphs provide more
detailed description of its key components. Our method takes as an input two subsequent video frames M0 and M1
that are captured using our dual-exposure sensor and produces a sharp HDR frame Ît for any position t between
M0 and M1. Each captured frame Mi, where with a suffix i we denote any input frame, contains a pair of spatially
interleaved short and long exposures, and it is processed by the MakeHDRMakeHDRMakeHDR network to produce a sharp HDR frame Îei
that is aligned with the short exposure, and a blurry long exposure frame L̂i, whose end is aligned with Îei. Both
frames are fed to the Blur2FlowBlur2FlowBlur2Flow network to predict the flow Fei→si that extracts the motion from the blur within
the L̂i frame. Next, we compute the flows Fe0→s1 and Fs1→e0 between the sharp HDR frames Îe0 and Îs1 in both
directions using an off-the-shelf flow estimation method such as Raft [Teed and Deng(2020)]. Note that the frame Îs1
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is reconstructed by warping the Îe1 using the backward flow Fs1→e1, where a ReverseReverseReverse module for differentiable flow
reversal [Xu et al.(2019)] is applied to the forward flow Fe1→s1, as originally derived by Blur2FlowBlur2FlowBlur2Flow network. Given
two estimated flows per each frame (Fe0→s0, Fe0→s1 for M0, and Fs1→e1, Fs1→e0 for M1), we fit a quadratic motion
model [Xu et al.(2019)] using a non-learnable FitQuadFitQuadFitQuad module, and compute the forward flows Fe0→t and Fs1→t.
Then, we compute the backward flows Ft→e0 and Ft→s1 using the ReverseReverseReverse module. Finally, the frames Îe0 and Îs1
are warped with the backward flows and combined using the SynthesisSynthesisSynthesis module to interpolate the frame Ît.

HDR reconstruction: MakeHDRMakeHDRMakeHDR We acquire our input video using a dual-exposure sensor [CVM(accessed on Sept.
17, 2021)] that simultaneously captures a short and long exposure for each frame. In our setup, the exposure time for
the long exposure is four times higher than the short exposure. Each exposure is stored at odd and even columns in
the sensor. As a result, both exposures are provided as half-resolution images and they need to be up-sampled in the
horizontal direction. Moreover, the short exposure exhibits strong noise in dark scene regions and requires denoising. On
the other hand, the long exposure is less noisy while it might contain considerable motion blur and requires deblurring.
To do so, we employ the network design and the training strategy introduced in [Cogalan et al.(2022)] to jointly deblur,
denoise, and upsample our input frames Mi to produce sharp, clean, and full-resolution short and long exposures. Both
exposures are then combined using a non-learnable technique, similar to [Debevec and Malik(2008)], to produce a sharp
HDR frame Îei. We also extend the network output to produce an additional full-resolution blurry long exposure L̂i.

Motion from blur: Blur2FlowBlur2FlowBlur2Flow Existing motion blur in the long exposure can potentially reveal information about the
motion in the scene [Shen et al.(2020), Rengarajan et al.(2020)]. Using our Blur2FlowBlur2FlowBlur2Flow network, we aim to recover the
motion flow Fei→si that is responsible for the blur pattern registered in the long exposure L̂i. The sensor design imposes
that the short and long exposures are completed precisely at the same time point, and in our HDR reconstruction, the
sharp frame Îei is aligned with the short exposure. Since we use Îei as a reference for the predicted flow Fei→si

alignment and given that its time span is equivalent to the long exposure duration, an additional per-pixel temporal
motion sample at the beginning of long exposure is readily available by warping Îei to Îsi.

Flow reversal: ReverseReverseReverse As the forward warping of the HDR frame Îei to Îsi using the forward flow Fei→si is not
differentiable, we compute the backward flow Fsi→ei using a flow reversal module introduced in QVI [Xu et al.(2019)].

Quadratic motion model: FitQuadFitQuadFitQuad In this step, we firstReverseReverseReverse the forward flow Fe1→s1, as derived byBlur2FlowBlur2FlowBlur2Flow,
to produce the backward flow Fs1→e1 that we use to warp Îe1 into Îs1. Then, we compute the bidirectional flows Fe0→s1

and Fs1→e0 between the HDR frames Îe0 and Îs1 using a state-of-the-art flow estimation method as proposed in [Teed
and Deng(2020)]. We found that in particular, for complex motion, using Îs1, instead of Îe1, eases the bidirectional
flow computation and improves its quality, as the time span with respect to Îe0 is reduced. Now, to warp Îe0 to a given
time point t, we employ the flows Fe0→s0 and Fe0→s1 to derive a quadratic motion model as:

Fe0→t =
1

2
a0 × t2 + v0 × t (1)

where the acceleration a0 =
2(Fe0→s1 + λFe0→s0)

λ2 + λ
and the velocity v0 =

Fe0→s1 − λ2Fe0→s0

λ2 + λ
directly depend on the

ratio λ between the camera readout time and its complete duty cycle that is required for capturing each frame. Similarly,
to warp Îs1 we compute the flow Fs1→t:

Fs1→t =
1

2
a1 × t2 + v1 × t (2)

where a1 =
2(Fs1→e0 + λFs1→e1)

λ2 + λ
and v1 =

λ2Fs1→e1 − Fs1→e0

λ2 + λ
.

Intermediate frame synthesis: SynthesisSynthesisSynthesis As the forward warping of HDR frames Îe0 and Îs1 to a novel position t
using the flows Fe0→t and Fs1→t is not differentiable, we use the ReverseReverseReverse module to compute the backward flows
Ft→e0 and Ft→s1. Then, we employ a differentiable warping operator warp [Jaderberg et al.(2015)] as:

Îe0→t = warp(Îe0, Ft→e0) and Îs1→t = warp(Îs1, Ft→s1). (3)

Afterwards, the warped frames along with the backward flows are fed to the SynthesisSynthesisSynthesis network:

α = SynthesisSynthesisSynthesis(Îe0→t, Îs1→t, Ft→e0, Ft→s1) (4)

which predicts the soft occlusion weight α that controls the contribution of input warped images Îe0→t and Îs1→t for
each pixel. Finally, we synthesize the interpolated frame Ît as:

Ît = α� Îe0→t + (1− α)� Îs1→t (5)
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Table 1: The statistics of scenes with uniform and non-uniform moving content for the Adobe240 [Su et al.(2017)],
GoPro [Nah et al.(2017)], X4K1000FPS [Sim et al.(2021)], and SlowFlow [Janai et al.(2017)] datasets.

Adobe 240 GoPro X4K1000FPS SlowFlow
Uniform 26 (20%) 2 ( 6%) 108 (98%) 14 (35%)
Non-uniform 107 (80%) 31 (94%) 2 ( 2%) 25 (65%)

where � stands for per pixel multiplication.

Loss function Our loss function is composed of three components that are targeted to train MakeHDRMakeHDRMakeHDR, Blur2FlowBlur2FlowBlur2Flow,
and SynthesisSynthesisSynthesis networks. First, the output of the MakeHDRMakeHDRMakeHDR network is supervised with the ground truth Iei and Li
(refer to Sec. 6.1 on details how we acquire the ground truth frames from high-framerate video datasets) using the
reconstruction loss:

Lhdr =
∑
i=0,1

‖Iei − Îei‖1+‖Li − L̂i‖1 (6)

As the ground truth flow is not available, we supervise the Blur2FlowBlur2FlowBlur2Flow network using the re-projection loss:

Lflow =
∑
i=0,1

‖Iei − warp(Isi, Fei→si)‖1 (7)

where the ground truth frame Isi is warped using the flow Fei→si to align it with the ground truth frame Iei. Finally,
we supervise the SynthesisSynthesisSynthesis network using the reconstruction loss:

Lsynth = ‖It − Ît‖1 (8)

where the interpolated frame Ît and the corresponding ground truth It are compared. The final loss Ltotal is then
computed as:

Ltotal = Lhdr + Lflow + Lsynth (9)

Adobe240 GoPro

SlowFlow X4K1000FPS

Figure 3: Trajectories of pixels (red dots) for 16 consecutive frames in a sample scene from different dataset. The
scenes in Adobe240 and GoPro dataset mostly have globally non-uniform motion due to non-uniform camera motion
while in dataset such as X4K1000FPS and SlowFlow, the scenes mostly contain locally non-uniform motion.

4 Motion non-uniformity analysis

In order to properly validate our proposed method, we need to assure that our dataset contains diverse examples of
scene motion non-uniformity. To this end, we perform an analysis of motion non-uniformity in some of popular
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Figure 4: The histogram of measured non-uniform motions for different datasets, where the horizontal axis shows the
actual motion error (×10−2) with respect to the linear motion fit, and the vertical axis denotes the probability of the
observed frames given an error value.

high-framerate video datasets including Adobe240 [Su et al.(2017)], GoPro [Nah et al.(2017)], X4K1000FPS [Sim
et al.(2021)], and SlowFlow [Janai et al.(2017)]. Our procedure is as follows: For each pixel in a given frame we use
Raft [Teed and Deng(2020)] to track the corresponding pixels for N = 15 consecutive frames. Note that in some
cases such tracking might fail due to occlusions and textureless regions. We find the occlusion regions by applying a
forward-backward flow consistency check [Jonschkowski et al.(2020)] between the first and last frames, and exclude
them in our measurements. Likewise, as the estimated flow in the textureless regions is usually erroneous, we clip the
flow to zero if its value is less than one pixel. In the next step, we find a linear model that in the least square sense
fits to the motion trajectory for each pixel. We then consider the mean square error with respect to such a linear fit,
where higher errors indicate more motion non-uniformity. Fig. 3 shows the trajectories of pixels for a sample scene
containing regions with non-uniform motion in each dataset. Note that for each pixel, the error value is normalized by
the aggregated pixel displacement across the consecutive frames. Since the error is calculated for individual pixels, we
measure the amount of motion non-uniformity in a frame by taking the 90th percentile of the calculated error over all
pixels. We then repeat this procedure for non-overlapping sets of N consecutive frames in each scene in each dataset.
Fig. 4 shows the histogram of measured non-uniform motions for each dataset, where the horizontal axis denotes the
error of the linear fit (×10−2), and the vertical axis is the probability of observing scene for a given error value. In our
experiments, we identify a scene as containing the non-uniform motion, when the average error is over 6.0× 10−2 (the
threshold value is chosen empirically based on our visual inspection of the pixel trajectories as illustrated in Fig. 3).
Based on this threshold, we provide statistics of scenes with uniform and non-uniform motions for each dataset in
Tbl. 1. The Adobe240 and GoPro datasets feature significant percentages of non-uniform motion as they are captured
with a handheld camera. Although large motions are present in the X4K1000FPS dataset, the camera moves along
mostly linear trajectories.

5 Implementation

Our MakeHDRMakeHDRMakeHDR network architecture follows [Cogalan et al.(2022)]. The network output is given in the Bayer domain,
and we apply demosaicing using OpenCV [Bradski(2000)], followed by a gamma correction to create the final short
and long exposures in the sRGB format. The Blur2FlowBlur2FlowBlur2Flow network employs a network architecture similar to the
PWCNet [Sun et al.(2017)]. Our SynthesisSynthesisSynthesis network is implemented as a 12-layer conventional neural network with
dilated convolutions and skip connections. During training we use the patch size of 768 × 768, nevertheless, at the
inference time our convolutional network as well as all non-learnable component scale with resolution.

6 Results

In this section, we first introduce the training and evaluation datasets. Then we show quantitative and qualitative
comparisons of our method with existing VFI methods. Finally, we provide ablation to justify our training set and
different components of our method.
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Figure 5: Visual comparisons of our method with the state-of-the-art VFI methods using the synthetic dataset described
in Sec. 6.1. For each of three scenes, the first row of insets shows the performance of respective VFI methods, while the
second row presents the corresponding per-pixel error maps between the interpolated results and the ground truth. The
PSNR/SSIM values written below each error map are computed for each inset rather than the entire image. In the upper
scene taken from the X4K1000FPS test set, the wheel moves in a non-linear trajectory and the existing VFI methods
struggle to position the wheel correctly for the interpolated frames, while our method leads to a good alignment with the
ground truth. In the middle scene taken from the GoPro dataset the camera is moving with an extremely non-uniform
motion as shown in Fig. 3. While the existing VFI methods produce visually plausible results, they are not correctly
aligned with the ground truth as the error map reveals. The bottom scene, taken again from the X4K1000FPS test set,
contains a combination of camera and object movements. In this case, the existing VFI methods fail to properly handle
the occlusion boundaries.

6.1 Dataset

As it is impossible to capture ground truth high-framerate HDR videos using our dual exposure sensor, and third-party
high-framerate HDR videos are unavailable, we synthesize our training and evaluation datasets using existing LDR high-
framerate videos. In our experiments, we take the scenes from X4K1000FPS [Sim et al.(2021)] and SlowFlow [Janai
et al.(2017)] as our training dataset, and we consider Adobe240 [Su et al.(2017)] and GoPro [Nah et al.(2017)] as our
evaluation dataset. Our training and testing video sequences are defined as follows: We take 16 consecutive frames in a
high framerate video, where the 1st and 4th frames are our sharp beginning and ending frames (Îs0 and Îe0). We sum
up the four neighboring frames starting from 1 to 4 to simulate the long exposure L̂0. We then skip 9 frames to simulate
the camera readout gap. Similarly, we take the 13th and 16th frames as the Îs1 and Îe1 and sum the frames from 13 to
16 to create the long exposure L̂1. We consider frame 7 and 10 as the target frames for the reconstructions. Note that in
our simulation of long exposures, we clip the aggregated pixel intensity if it exceeds the value of 255. In our simulation,
we ignore each patch if more than 20% of its content is already saturated in the original high framerate video. For our
test set, we are interested in evaluating our method for a different dataset containing the scenes with solely uniform and
non-uniform motion; hence we split all the scenes in the Adobe240 [Su et al.(2017)] and GoPro [Nah et al.(2017)]
datasets into uniform and non-uniform sets based on our metric discussed in Sec. 4.

6.2 Quantitative comparison

We compare our proposed method with state-of-the-art sharp VFI methods (refer to Sec. 2.1): FILM [Reda et al.(2022)]
and XVFI [Sim et al.(2021)] that rely on a uniform motion assumption, and QVI [Xu et al.(2019)] and ABME [Park
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Table 2: Quantitative comparison of our method with state-of-the-art video frame interpolation methods. The ABME
and QVI methods are designed to handle non-uniform motions, while the XVFI and FILM methods rely on a linear
motion assumption but can handle large motions.

Uniform Non-uniform
Methods PSNR SSIM PSNR SSIM

ABME [Park et al.(2021)] 33.16 0.88 31.04 0.83
QVI [Xu et al.(2019)] 32.10 0.89 31.32 0.85

XVFI [Sim et al.(2021)] 32.56 0.87 30.88 0.82
FILM [Reda et al.(2022)] 32.89 0.87 30.90 0.82

Ours 35.97 0.94 35.57 0.93

Short Exp. QVI ABME XVFI FILM OursOur Interpolation Long Exp.

Figure 6: The visual comparisons of our interpolation results for three scenes captured using our camera with a
dual-exposure sensor. Our method is able to correctly interpolate the frames in the scenes with the challenging cases
of a rolling round box (the upper scene), a rotary camera motion (the middle scene) and a moving object behind a
refractive object (the bottom scene).

et al.(2021)] that explicitly support non-uniform motion. FILM, XVFI, and AMBE require just two neighboring
frames as an input, while the method QVI needs to process four consecutive frames. Since these VFI methods expect
post-processed sRGB images as an input, and moreover, we are interested in evaluating our interpolation part, we feed
the sharp HDR output to the sharp frame interpolation methods. Note that we are unable to compare with the blurry
VFI methods (refer to Sec. 2.2), as they require well-exposed blurry input frames (effectively, blurry HDR frames)
while our long exposure typically contains a considerable amount of saturation that is poorly handled by these methods.
Table 1 summarizes our comparisons with the VFI methods for the aggregated Adobe240 and GoPro datasets that we
split into two categories with respect to the motion uniformity (Sec. 6.1). For the dataset with uniform motion, the
competing VFI methods perform similarly, while for the non-uniform motion dataset, the methods with a non-uniform
motion assumption (AMBE and QVI) perform, as expected, better compared to ones with a uniform motion assumption
(FILM and XVFI). In any case, our method outperforms the existing VFI methods by a large margin.

9
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6.3 Qualitative comparison

We first provide visual comparisons with the state-of-the-art VFI methods for three scenes synthesized data with ground
truth in Fig. 5. Moreover, in Fig. 1 and Fig. 6 we visualize the results for four captured scenes using our Axiom-beta
camera with a CMOSIS CMV12000 sensor. In both setups, we use the exposure ratio of 4 between the short and
long exposures. Since the captured frames using our camera cannot be fed directly to the other VFI methods, we
provide them with the reconstructed sharp HDR images Îe0 and Îe1 using our MakeHDRMakeHDRMakeHDR network. In Fig. 1, we have an
example a scene with high dynamic range content where there is a moving camera with acceleration during capturing;
the magnitude of the motion blur in the long exposure can show the amount of camera motion. In this case, we can
see a method such as FILM drastically fails, while our method employs the encoded blur information to improve
the interpolation quality. The upper scene in the Fig. 6 shows an example of a rolling box in which the existing VFI
methods even the ones designed to deal with non-uniform motion such as AMBE and QVI fail to properly interpolate
an intermediate frame due to non-uniform motion caused by rotatory motion of the round box. In the next examples, we
captured a crystal ball while the camera is rapidly rotating (the middle scene) or an object is moving behind the crystal
ball (the bottom scene). We can observe that in these challenging examples where even a uniform motion in the scene
might appear non-uniform in the refracted image, other methods struggle to correctly reconstruct an in-between frame.
In all cases, we can see our method faithfully reconstruct the in-between frames even in a difficult conditions where
there are reflections on the crystal ball (the middle and bottom scenes). Please refer to our supplementary video for the
temporal consistency of our method.

Our InterpolationLong Exp. Groundtruth

Figure 7: Our interpolation failure example in case the moving content is largely saturated in the long exposure.

Table 3: The effect of including the scenes with non-uniform motion in our training dataset.

Uniform Non-uniform
Methods PSNR SSIM PSNR SSIM

Ours-uniform 34.86 0.93 34.42 0.91
Ours-non-uniform 34.42 0.93 34.10 0.91

6.4 Ablation study

We perform an experiment to show the effect of including the scenes with non-uniform motion in our training dataset.
We summarize the results in table Tbl. 3. We first train our method using only the scenes with uniform motion (first row
in the Tbl. 3) and train using scenes with non-uniform motion (in the second row). Our results show no significant
difference in the performance of our method when trained using the scenes with non-uniform motion. This is due to the
fact that the quadratic motion fitting part in our method does not have any learnable parameters that could benefit from
non-uniform motion samples in the training set.

Moreover, we analyze the contribution of the Blur2FlowBlur2FlowBlur2Flow network where we attempt to reconstruct the intermediate
frames using only the backward and forward flows between the sharp HDR frames Îe0 and Îe1 using Raft [Teed and
Deng(2020)]. In this case, we linearly split each flow to reach to any position t between the frames. The results are
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shown in the Tbl. 4. The higher number for our full method shows the effectiveness of including the Blur2FlowBlur2FlowBlur2Flow
network in our pipeline.

Table 4: The effect of Blur2FlowBlur2FlowBlur2Flow network in our pipeline.

Uniform Non-uniform
Methods PSNR SSIM PSNR SSIM

Ours-w/o blur2flow 31.51 0.86 30.10 0.81
Ours-full 35.97 0.94 35.57 0.93

6.5 Limitation

Saturation is inevitable in the long exposure for bright scene regions. If the moving content is present in such regions,
our flow prediction using the Blur2FlowBlur2FlowBlur2Flow network becomes less accurate. Fig. 7 shows an example of this case where
we synthetically increase the saturation in the long exposure for the wheel example shown in Fig. 5 and our method
fails to correctly reconstruct the intermediate frame.

The dynamic range that we can reconstruct is limited by the exposure ratio of four that we assume in this work.
For larger ratios, the accuracy of HDR frame reconstruction by the MakeHDRMakeHDRMakeHDR network might be reduced [Cogalan
et al.(2022)], which could adversely affect the accuracy of HDR video interpolation.

7 Conclusion

In this work, we presented a method for high-dynamic-range video frame interpolation using the dual-exposure sensors.
Our method outperforms the existing VFI methods both in terms of quantitative metrics as well as visual results for the
challenging scenes containing non-uniform motions. In particular, we achieve high precision alignment of scene motion
with the ground truth, where other methods clearly fail, although they may produce visually plausible results. Our
method can handle complex motion with consistently high performance as it depends little on explicitly training this
reconstruction aspect. Instead, we capitalize on the increased temporal sampling rate due to motion reconstruction from
blur information. Also, our method is less dependent on scene lighting conditions, whereas other methods designed for
single exposure sensors may suffer from image saturation in bright regions or excessive noise in dark conditions.
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