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Neoclassical toroidal viscous (NTV) torque [1] arises from the non-resonant part of 3D mag-

netic perturbations in tokamak plasmas. This includes external perturbations such as error fields,

ripple and intentional 3D fields from extra coils to mitigate edge localized modes (ELMs) and

internal perturbations from magnetohydrodynamic (MHD) modes [6]. Quantifying this torque

is required for example to assess the risk of plasma rotation slowdown and subsequent resis-

tive wall modes (RWMs). Another important application is neoclassical transport of (impurity)

species densities, linked to the NTV torque via the flux-force relation [1, 2, 4]. One mecha-

nism behind NTV torque is resonant diffusion due to orbital (not magnetic field) resonances.

They occur when toroidal precession stops (superbanana resonance) or has a rational ratio to

the bounce/transit frequency (drift-orbit resonance). If a 3D perturbation contains harmonics

matching this ratio, a periodic excitation of the respective orbit occurs in the sense of wave-

particle interaction. As in usual neoclassical theory, depending on collisionality and perturba-

tion amplitude, three main transport regimes arise [1]: a non-linear regime in the collisionless

limit, a resonant plateau regime, and collisional regimes. The drift-kinetic solver NEO-2 [4, 5]

treats the latter two cases range for electrons, bulk ions and impurities, whereas the Hamilto-

nian code NEO-RT [2] focuses on the low-collisional limit and resonant plateau important for

ion NTV in reactor conditions. NTV models usually rely on a local neoclassical ansatz treating

deviations of orbits from flux surfaces as infinitesimal with the thin orbit limit for bounce and

precession frequencies. This approach is limited in particular for ion NTV for two reasons: 1)

orbit frequencies and even topology – e.g. potato orbits near the the magnetic axis – differ from

infinitely thin passing and banana orbits on a flux surface. 2) Finite orbits radially re-distribute

quantities such as torque density. The second point has been addressed earlier [3] while keeping

thin orbit frequencies. Here we present the full orbit model for NEO-RT in the quasilinear limit.
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The quasilinear evolution of the leading order distribution function f0 due to Fourier harmon-

ics Hm of a Hamiltonian in terms of canonical angles θ k is

∂ f0

∂ t
= ∑

m
mi

∂

∂Ji
Qm, where Qm =

π

2
|Hm|2δ (mkΩ

k−ω)mk
∂ f0

∂Jk
. (1)

Here Jk and Ωk are canonical actions and frequencies, respectively, and Qm the driving term for

resonant diffusion in action space. The unperturbed distribution is a quasi-Maxwellian,

f0 = f0(ψ
∗,H0) =

n0(ψ
∗)

(2πmT0(ψ∗))−3/2 exp
(

eΦ(ψ∗)−H0

T0(ψ∗)

)
where ψ∗ = cpϕ/e and H0 are normalized toroidal canonical momentum and unperturbed

Hamiltonian, respectively. A static, ω = 0, Hamiltonian perturbation driven by the non-axisymmetric

corrugation of magnetic flux surfaces [2] is used here as a Fourier series expansion over θ k,

H−H0 = (2H0−2eΦ−ωc0J⊥)
δB
B0

= Re∑
m

Hmeim·θ , (2)

where δB = B−B0 is the perturbation of magnetic field strength, J⊥ is the canonical perpen-

dicular momentum and ωc0 = eB0/(mc). A conservation law for any moment of the distribution

function integrated over the volume V (r0) limited by a flux surface r(r)< r0

A(t,r0) =
∫

V (r0)

d3r
∫

d3 p f (t,r,p)a(r,p) (3)

is obtained multiplying Eq. (1) with a(θ ,J)Θ(r0 − r(θ ,J)) where Θ(x) is a Heaviside step

function and integrating over actions and angles,

∂

∂ t
A(t,r0)+ΓA(t,r0) = SA(t,r0), (4)

where the total flux is

ΓA(t,r0) =−
∫

d3
θ

∫
d3J δ (r0− r(θ ,J))∑

m
Qma(θ ,J)mi

∂

∂Ji
r(θ ,J), (5)

and the integral source is

SA(t,r0) =−
∫

d3
θ

∫
d3J Θ(r0− r(θ ,J))∑

m
Qmmi

∂

∂Ji
a(θ ,J). (6)

Setting a = pϕ yields the integral source of the toroidal canonical momentum,

Tϕbox(r0) =−2π
3
∑
m

∑
σ=±1

m2
ϕ

∫
dH0

∫
dJ⊥

∫
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k)
∂ f0

∂ pϕ

∫
τb

0
dτ Θ(r0− r(r(τ,J))),

(7)
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where mϕ is the toroidal harmonic index and time integration along the unperturbed orbit r(τ,J)

is over the full bounce period τb. Here, integration over the poloidal action and angle has been

replaced with integration over total energy H0 and orbit parameter τ and, therefore, can be

performed using usual particle orbits in non-canonical phase space variables. To parameterize

integration over pϕ we introduce the Poincaré cut ∇B×∇ψ ·∇ϕ = 0 which can be shown to

cross all possible orbits in case of constant electrostatic potential within flux surfaces Φ=Φ(ψ).

This surface reduces to the Z = 0 plane in up-down symmetric configurations.
Figure 1: Fitted plasma profiles for

ASDEX Upgrade discharge #32169:

density n [1019 m−3] (−), electron

temperature Te [keV] (−−), ion tem-

perature Ti [keV] (−−), Electric po-

tential Φ [kV] (−·), safety factor q (··).

The full orbit model in NEO-RT was applied to compute NTV torque in ASDEX Upgrade

discharge #32169 (Fig. 1, [6]) with a helical core of toroidal mode number n = 1, based on a 3D

MHD equilibrium modeled in VMEC. The radial electric field Er is computed from measured

toroidal rotation velocity using NEO-2. We compare two cases to the original thin orbit model

of NEO-RT: One with temperature and Er scaled down by a factor of 100, and one with actual

profiles. The scaling is performed for two reasons: To reduce finite orbit width towards the thin

orbit limit, and to remove a siginificant shift in the bounce frequency ωb due to Er. Results for

integrated toroidal torque T int
ϕ are shown in Fig. 2, and canonical frequencies at a specific flux

surfaces are compared in Fig. 3. In the scaled case (Fig. 2a) the computed torque agree well

between thin and full orbit models. This is to be expected looking at Fig. 3a, where canonical

frequencies, and therefore orbital resonances nearly coincide. In contrast, toroidal torque from

the full orbit model is significantly different for actual profiles (Fig. 2b). In contrast to the thin

orbit limit, transport near ρpol = 0.4 is absent for full orbits. Besides the larger orbit width,

an explanation for this are modified canonical frequencies (Fig. 3b) and therefore resonances.

Furthermore, near the magnetic axis, the torque from the collisionless full orbit model in NEO-

RT matches a collisional computation in NEO-2 more closely than the collisionless thin orbit

model. This is probably a coincidence, as transport is enhanced by non-standard orbits near the

axis and collisions to a similar degree. Apart from that, the relatively close agreement of NEO-2

and thin orbit NEO-RT confirms major contributions from collisionless resonant transport. Up

to ρpol = 0.6 the full orbit model predicts substantially less ion torque than previous approaches.
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a) b)

Figure 2: Integral torque T int
ϕ over normalized poloidal radius ρpol ∼

√
ψpol. a) Deuterium ions

in NEO-RT full (−) and thin (−−) orbit model with temperature and electric field reduced by

factor 100. b) Actual profiles, adding NEO-2 collisional model for ions (−·) and electrons (··).

a) b)

Figure 3: Canonical frequencies Ω2 = ωb (−) and Ω3 = Ωtor (−−) at ρpol = 0.54 from NEO-

RT full and thin orbit model (light colors) with scaled field and temperature (a) and actual

conditions (b). The radial electric field shifts trapped-passing boundary for opposite signs of v‖.
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