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Abstract

Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organi-

zation of cortical activity. Reconstruction of the current source density (CSD) underlying

such recordings, however, requires “inverting” Poisson’s equation. For inter-laminar record-

ings, this is commonly done by the CSD method, which consists in taking the second-order

spatial derivative of the recorded local field potentials (LFPs). Although the CSD method

has been tremendously successful in mapping the current generators underlying inter-

laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar

recordings the CSD method seems reasonably robust against violations of its assumptions,

is it unclear as to what extent this holds for planar recordings. One of the objectives of this

study is to characterize the conditions under which the CSD method can be successfully

applied to Utah array data. Using forward modeling, we find that for spatially coherent

CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted con-

tamination from currents in deeper cortical layers. An alternative approach is to “invert” a

constructed forward model. The advantage of this approach is that any a priori knowledge

about the geometrical and electrical properties of the tissue can be taken into account.

Although several inverse methods have been proposed for LFP data, the applicability of

existing electroencephalographic (EEG) and magnetoencephalographic (MEG) inverse

methods to LFP data is largely unexplored. Another objective of our study therefore, is to

assess the applicability of the most commonly used EEG/MEG inverse methods to Utah

array data. Our main conclusion is that these inverse methods provide more accurate CSD

reconstructions than the CSD method. We illustrate the inverse methods using event-

related potentials recorded from primary visual cortex of a macaque monkey during a motion

discrimination task.
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Introduction

Multi-electrode recordings of extra-cellular potentials (LFPs) provide a window into the meso-

scopic organization of neuronal activity and are a valuable tool in cognitive and perceptual

neuroscience [1–7]. Although the physiological content of LFPs is at present not completely

understood [8–11], their biophysical origin has been clarified [12]: Extra-cellular potentials

reflect volume-conducted transmembrane currents that can be described by a (volume) cur-
rent source density (CSD). Since neural correlates of cognitive and perceptual processes are to

be expressed in terms of transmembrane currents, it is of importance to understand the rela-

tionship between the dynamics of CSDs and that of the ensuing LFPs in any particular experi-

mental set-up. In particular, the existence of discrepancies between CSDs and LFPs hinder

physiological interpretations of experimental results.

For instance, in case of planar recordings of cortical LFPs—which are obtained by inserting

a two-dimensional electrode array into cortical tissue at a certain depth—volume-conduction

leads to increased propagation speeds and spatial coherence and that these discrepancies

between LFP and CSD strongly depend on the inter-laminar organization of the CSD [13].

This study also showed that for oscillatory LFPs, the phases of LFP and CSD might be different,

complicating interpretations of spike-field coherence and spike-trigged LFP averages. The

nature of LFP-CSD discrepancies can be clarified be considering the formal relation between

LFP and CSD, which is described by Maxwell’s equations for electrostatics, that is, Poisson’s

equation, which acts as a spatial lowpass filter [12, 14]. Thus, for example, while an evoked

potential recorded with a planar array might appear as a single synchronized activation, the

underlying CSD might be comprised of a distributed set of local generators. For the above rea-

sons, it is of considerable interest to find out if the transmembrane currents can be recon-

structed from the observed extra-cellular potentials.

For inter-laminar recordings of cortical LFPs—which are obtained by inserting a one-

dimensional electrode array perpendicularly into the cortex—reconstructing the CSD from

observed LFPs is common practice [12, 14] and has yielded valuable information on the lami-

nar organization of evoked, induced, and spontaneous cortical activity [1–3, 15, 16]. The most

widely used method to reconstruct inter-laminar CSD profiles from such recordings is the

one-dimensional CSDmethod and consists in computing the second-order spatial derivative of

the recorded LFPs along the electrode shaft [12, 14]. Although the one-dimensional CSD

method is the most straightforward way to reconstruct CSDs underlying inter-laminar LFPs, it

presupposes that the tissue conductivity is isotropic and homogeneous and that the CSD is

constant in the intra-laminar directions. While cortical tissue is certainly not isotropic and

homogeneous [17, 18] and CSDs are constant in the intra-laminar directions, reasonable CSD

reconstructions might still be obtained, depending on the experimental set-up. It is, however,

difficult to tell a priori for any given experimental set-up exactly how critical these assumptions

are.

The CSD method can also be applied to planar LFPs by computing the sum of the second-

order spatial derivatives of the LFPs along two orthogonal directions of the electrode plane.

This two-dimensional CSDmethod has been applied to planar LFPs to investigate the spatial

organization of neural activity [19–21]. Besides isotropic and homogeneous conductivity, the

two-dimensional CSD method presupposes the CSD to be constant in the inter-laminar direc-

tion. This assumption is likely not to be fulfilled as—apart from the finite thickness of the corti-

cal sheet—the inter-laminar profiles of cortical currents typically comprise several sink/source

pairs [1–3] and tend to be balanced (but see [22, 23]). As with the one-dimensional CSD

method, it is hard to tell a priori in which situations the method yields accurate CSD recon-

structions. This can be done, however, by using a volume-conduction model of a tissue
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preparation. Using such simulations, in [13] it was found that the two-dimensional CSD

method is reasonably robust to violations of its assumptions, at least when oscillatory phases

are concerned. At any rate, it is to be preferred over other reference schemes like the mono-

polar (single wire), bi-polar, and average-reference montage. There remains a need, however,

for more flexible reconstruction methods, ones that allow incorporating prior knowledge of

tissue geometry and conductivity and of the organization of current sources [9, 24].

During the last decade, several reconstruction methods have been developed that use vol-

ume-conduction models and thereby allow to explicitly incorporate prior knowledge [25–30].

The general approach is to construct a volume-conduction model of the tissue at hand, that is,

a “forward model”, that allows calculating LFPs for any given CSD and subsequently to

“invert” the model, that is, to estimate the CSD, given the LFPs. Because generally, the LFP

inverse problem is ill-posed in that many different CSDs can account for an observed LFP,

uniques of the reconstructed CSD is obtained by exploiting prior knowledge or assumptions

on the electrical properties of the tissue and the organization of the CSD. For example, in [25],

inter-laminar LFP recordings are inverted by assuming the inter-laminar CSD to be disk-

shaped, where the radius of the disk is a free parameter that can be adjusted for a given experi-

mental set-up. In [26], uniqueness is obtained by assuming an inter-laminar CSD profile and

using a suitable parameterization of the intra-laminar CSD and by expanding the CSD into an

appropriate set of basis functions [27]. In [29], three-dimensional LFP recordings were

inverted by minimizing the difference between the observed and predicted CSDs while impos-

ing a penalty on the roughness of the CSD as measured by the norm of its Laplacian. This

method thus yields a unique CSD reconstruction by assuming the CSD to be smooth. These

and other LFP inverse methods make explicit our assumptions underlying analysis of LFPs

and potentially yield more accurate reconstructions than the classical CSD method. As such,

they provide a valuable addition to the more traditional tools to analyze extra-cellular poten-

tials [9, 24].

In contrast to the emerging field of LFP inverse modeling [24], inverse modeling of electro-

encephalographic (EEG) and magnetoencephalographic (MEG) data has a long history and

comprises a large body of methods [31]. Although the field of LFP inverse modeling can surely

benefit from these methods, it is not immediately clear, however, if they can directly be applied

to invert LFPs and how they would perform. An exception is low resolution electrical tomogra-
phy (LORETA) which is a popular EEG/MEG inverse method and has recently been shown to

be applicable to three-dimensional LFP recordings [29]. The aim of this study, therefore, is to

adapt, test, and apply several EEG/MEG inverse methods on (simulated and experimental)

LFP data. Concerning the methods, we focus on the most commonly used distributed inverse

methods: the minimum norm estimate (MNE), the weighted minimum norm estimate
(WMNE), dynamic statistical parametric mapping (dSPM), standardized low resolution electro-
magnetic tomography (sLORETA), and low resolution electrical tomography (LORETA) [31].

When describing these methods, we will point out the commonalities and differences between

them and the existing LFP inverse methods [25–30].

Materials and methods

A. Forward modeling

a1. Continuous LFP forward model. The extra-cellular potential ϕ (that is, the LFP) is

generated by transmembrane currents that set up an electric field E and induce an associated

extra-cellular current density J in the tissue volume V [12]. The extra-cellular potential is
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related to J by

J ¼ sE ¼ � sr�; ð1Þ

where σ denotes the conductivity tensor of the tissue [12]. Given that cortical tissue is predom-

inantly organized in the intra- and inter-laminar directions, it is often assumed that σ is a diag-

onal matrix, when expressed in Cartesian coordinates (x, y, z), where (x, y) denote the intra-

laminar (horizontal) and z denotes the inter-laminar (vertical) location. Let us denote the diag-

onal entries of σ by (σx, σy, σz). From Eq (1) and using Cartesian coordinates, it follows that

sx
@

2

@x2
þ sy

@
2

@y2
þ sz

@
2

@z2

� �

� ¼ � C; ð2Þ

where we have introduced the current source density C

C ¼
@

@x
þ
@

@y
þ
@

@z

� �

J; ð3Þ

It is a scalar quantify with the dimension of current per unit-of-volume. Eq (2) is known as

the anisotropic Poisson’s equation. If the tissue is homogeneous, that is, if σ do not depend on

location, Eq (2) can be solved by applying the coordinate transformation

ðx0; y0; z0Þ ¼ ð ffiffiffiffiffiffiffiffiffisysz
p x; ffiffiffiffiffiffiffiffiffi

sxsz
p y; ffiffiffiffiffiffiffiffiffi

sxsy
p zÞ; ð4Þ

which converts it into the isotropic Poisson’s equation. The latter can be solved explicitly and,

after applying the inverse coordinate transformation, yields

�ðu; v;wÞ ¼
R

VKsðu; v;w; x; y; zÞCðx; y; zÞdxdydz; ð5Þ

where the kernel Kσ is given by

Ksðu; v;w; x; y; zÞ ¼
1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

syszðx � uÞ2 þ sxszðy � vÞ2 þ sxsyðz � wÞ2
q ; ð6Þ

[12] and where the integral is taken over the tissue volume V.

a2. Discretization of the forward model. For practical use, both sides of the continuous

forward model (Eq (5)) need to be discretized. Discretization of the left-hand-side of amounts

to calculating the potential ϕ at the electrode tips. Discretization of the right-hand-side of such

an equation (Fredholm integral equation of the first kind) is generally done either by numeri-

cal integration or by expansion of C using a set of basis functions [32]. Since Kσ is singular for

(u, v, w) = (x, y, z), numerical integration becomes problematic when the electrode tip is

located in active tissue (that is, at locations for which C 6¼ 0). In the case of inter-laminar LFP

recordings, the singularity can be dealt with by assuming C to have the form C = ChCv, where

Ch and Cv are intra- and inter-laminar components of C, respectively [25, 30]. For a given

choice of Ch, which corresponds to choosing an a priori intra-laminar source profile, Ch is inte-

grated out of Eq (5) (either analytically or numerically), yielding a one-dimensional continu-

ous forward model with a non-singular kernel that can be discretized either by numerical

integration or basis function expansion. Although in this study we also assume that C can be

decomposed into an intra- and an inter-laminar component, it might be advantageous for

future studies to have a more general way of discretizing Eq (5), which can be done by expand-

ing C using suitable basis functions. Before choosing the basis functions, we briefly outline this

approach.
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The source space of the continuous forward model is the infinite-dimensional vector space

of square-integrable functions C defined on the tissue volume V, denoted by L2ðVÞ. We now

choose n linear independent CSDs r1; � � � ; rn 2 L2ðVÞ and restrict the CSDs to the subspace

H � L2ðVÞ space spanned by ρ1, � � �, ρn. For every r 2 H, there are unique coefficients

C1, � � �, Cn such that

C ¼
Xn

j¼1

Cjrj; ð7Þ

and we can therefore identify every C 2 H with the vector of its expansion coefficients

C = (C1, � � �, Cn)t, where t denotes matrix transpose. The source space of the discretized for-

ward model hence is the n-dimensional Euclidean vector space. By substituting Eq (7) into Eq

(5), it follows that

�ðx; y; zÞ ¼
Xn

j¼1

Z

V
Ksðu; v;w; x; y; zÞrjðx; y; zÞdxdydz

� �

Cj; ð8Þ

which reduces the calculation of ϕ(x, y, z) to calculating the potential (at (x, y, z)) generated by

the basis functions ρ1, � � �, ρn.

To obtain a discrete forward model, the potential field ϕ has to be discretized as well. We

thus select p locations (ui, vi, wi) (i = 1, � � � p) within the tissue volume V, which correspond to

the locations of the p electrode tips. Denote the corresponding potentials by F1, � � �, Fp. Note

that this reduces the data space to the p-dimensional Euclidean space. Define the leadfield
matrix G 2 Rp�n by

Gi;j ¼

Z

V
Ksðui; vi;wi; x; y; zÞrjðx; y; zÞdxdydz ð9Þ

for i = 1, � � �, p and j = 1, � � �, n. This gives the discretized forward model

F ¼ GC; ð10Þ

where F = (F1, � � �, Fp)
t.

Which basis functions are appropriate to represent C? In previous LFP inverse modeling

studies, different basis functions have been used, including step functions, balls, splines, Gaus-

sians, and data kernels [25–27, 30]. Although choosing the data kernels is an interesting option

because it yields a low-dimensional model space, the data kernels of the general forward model

(Eq (6)) are singular, which prohibits their use as basis functions in the current context.

Instead, as basis functions we choose homogeneous voxels, whose potential has been explicitly

calculated for the cubic and isotropic case [33]. In S1 Text, we generalize this formula to the

case of rectangular and anisotropic voxels. These are the indicator functions of voxels within

the tissue volume V, scaled to have unit norm. The advantage of rectangular monopoles over

other basis functions such as Gaussians or balls is that monopolar basis functions are ortho-

normal, in which case the relationship between the singular value expansion (SVE) of the con-

tinuous forward model and the singular value decomposition (SVD) of the discretized model

is well-understood [32]. Moreover, their supports constitute a (arbitrary fine-grained) parti-

tion of V which allows them to efficiently represent arbitrary current distributions. Another

advantage is that only the voxel dimensions have to be chosen, while in the case of balls or

Gaussians, besides their dimensions, their locations have to be chosen as well, which intro-

duces unnecessary (free) parameters in the discretization of the forward model.
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a3. Utah forward model for cortical evoked responses. In the simulations we focus on

inverse modeling of LFPs recorded with the Utah intracortical electrode array [34], which is

one of the most frequently used arrays and comprises 100 electrodes, arranged in a 10 × 10

array with 400 μm inter-electrode spacing. To fully specify the leadfield matrix G, a tissue vol-

ume V, together with a discrete sampling have to be chosen. We take V to have intra-laminar

extent 7.2 × 7.2 mm and inter-laminar extent 3.1 mm, which is about the thickness of the

macaque neocortex. Fig 1A and 1B provide illustrations. Note that the intra-laminar extent of

V is twice that of the Utah array (which equals 3.6 mm), which allows simulating currents out-

side the array, which is generally the most realistic scenario. Next, the source space has to be

discretized. As the inverse methods behave essentially different for source spaces that have a

higher resolution than the Utah array (that is, whose voxel-length is larger than 400 μm) and

Fig 1. Source space for the Utah array. A. Schematic drawing of a piece of cortex enclosing the rectangular source space (black rectangle) and the

Utah electrode array (red line). B. Close-up of the source space and Utah array. The array is located 1 mm under the pial surface. C. Two

discretizations of the (intra-laminar) source space (left panel: high-resolution, right panel: low-resolution). Black dots and red circles denote the centers

of source voxels and locations of the recording electrodes, respectively. In the high-resolution source space, each cortical slice contains 61 × 61 voxels

with intra-laminar lengths of 100 μm. In the low-resolution source space, each cortical slice contains 18 × 18 voxels with intra-laminar lengths of

400 μm. The high and low resolution source spaces comprise 31 cortical slice, each 100 μm thick.

https://doi.org/10.1371/journal.pone.0187490.g001
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those that have a lower resolution than the Utah array (that is, whose voxel-length equals

400 μm), we considered two different discretization schemes, corresponding to voxel dimen-

sions of 100 × 100 × 100 μm3 and 400 × 400 × 100 μm3, respectively. In both cases, the Utah

array was placed at a depth of 1 mm at the intra-laminar center of the tissue volume. Fig 1C

provides an illustration. The high-resolution source space thus contains nv = 32 horizontal cor-

tical slices, each containing n2
h ¼ 722 ¼ 5184 voxels and the total number of voxels hence

equals n ¼ n2
hnv ¼ 165888 [calculate this leadfield again]. The low-resolution source space

contains nv = 31 cortical slices, each containing n2
h ¼ 182 ¼ 324 voxels and the total number

of voxels hence equals n ¼ n2
hnv ¼ 10044.

An evoked CSD C 2 Rn2
h�nv is specified by its value on each of the source voxels. It will be

convenient to use its vectorization VecðCÞ 2 Rn�1 which is obtained by stacking its columns

on top of each other. The evoked LFPs Vk 2 R
p�1 recorded at the p = 100 electrode tips of the

Utah array at the k-trial are given by the following forward model:

Vk ¼ GVecðCÞ þ xk; ð11Þ

where G 2 Rp�n is the leadfield matrix and where xk 2 R
p�1 denotes measurement noise

which we assume to be normally distributed with expectation zero and covariance matrix

Sxk
2 Rp�p (assumed to be the same for each trial) and to be independent across trials. Note

that we assume here that the evoked CSD is the same on every trial. We thus adopt the “signal-

plus-noise model” for evoked responses, according to which the CSD can be written as the

sum of an evoked response (the “signal”) and a term that models the spontaneous background

activity (the “noise”). The signal is assumed to be the same for every trial and the noise is

assumed to be not-locked to the stimulus and therefore to be independent over trials. The

background activity is absorbed into the measurement noise term. Averaging both sides of

Eq (11) over trials yields the trial-averaged forward model

V ¼ GVecðCÞ þ x; ð12Þ

where V and ξ denote the trial-averaged potentials and measurement noise, respectively. Note

that the covariance matrix Sξ of ξ equals Sxk
divided by the number of trials. In the simulations

we can assume assume both to be proportional to the identity matrix since the generally large

number of trials allows an accurate sample estimate of Sξ, which can subsequently be used to

prewhiten the data [32, 35]. Eq (12) describes the trial-averaged forward model whose inver-

sion is the main aim of this study.

B. Linear distributed source modeling

b1. General solution. Inverse modeling aims at “inverting” the forward model for evoked

LFPs (Eq (12)), that is, to reconstruct C from observed V, given the leadfield matrix G. In dis-
tributed source modeling, the reconstructed CSD, denoted by Ĉ , depends linearly on the

observed data through an inverse matrix, denoted by G]:

VecðĈÞ ¼ G]V; ð13Þ

where G] is given by

G] ¼ SGtðGSGt þ SxÞ
� 1
; ð14Þ

where Sξ denotes the trial-averaged noise covariance matrix and S 2 Rn�n can be interpreted

as an a priori covariance matrix for Vec(C) [31]. Indeed, Eq (14) can be derived by following

the standard Bayesian procedure using a (multivariate) normally distributed prior on C. This
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class of source modeling methods is called “distributed” because the reconstructions are

allowed to be distributed across the source-space, in contrast to EEG/MEG dipole localization

methods, in which the number of sources is restricted [31]. Although Eq (14) is the general

solution to the inverse problem, in order to obtain reasonable reconstructions, an inter-lami-

nar CSD profile needs to be assumed [26, 27]. To incorporate this assumption into the CSD

covariance matrix, we denote the inter- and intra-laminar profiles of C by Cv 2 R
nv�1 and

Ch 2 R
n2
h�1, respectively (“h” and “v” stand for “horizontal” and “vertical”, respectively.). The

above assumption means that C can be decomposed as

C ¼ ChCt
v; ð15Þ

where Cv assumed to be known. Thus, for each intra-laminar location, the CSD is given by Cv

up to a multiplicative constant. Since the vertical CSD profile is assumed to be known, the for-

ward model (Eq (12)) can be reduced to the following horizontal forward model:

V ¼ GhCh þ x; ð16Þ

where V and ξ are as in Eq (12) and Gh 2 R
p�n2

h is the horizontal leadfield matrix, which, for

each intra-laminar location, is obtained by taking the inner-products of the inter-laminar

entries of G with Cv. The horizontal forward model makes explicit that only Ch needs to be

reconstructed. Note, however, that Gh depends on the choice for Cv so that a different choice

leads to a different forward model. The solution to the horizontal forward model is given by

the following inverse matrix:

G]

h ¼ ShGt
hðGhShGt

h þ SxÞ
� 1
; ð17Þ

where Sh 2 R
n2
h�n

2
h denotes the a priori covariance matrix of Ch. The distributed inverse meth-

ods that we consider (MNE, WMNE, LORETA, and LORETA�) differ only in the choice of Sh.

b2. Choices for the a priori covariance matrix. The minimum norm estimate (MNE) is a

popular inverse method within the field of EEG/MEG [31, 36] and corresponds to taking the a
priori covariance matrix Sh to be proportional to the identity matrix. The a priori covariance

matrix thus has the following form:

SMNE
h ¼ s2

h1n2
h
; ð18Þ

where s2
h denotes the a priori source variance and 1n2

h
denotes the identity matrix of dimension

n2
h. This means that the MNE assumes the neural currents at two different intra-laminar loca-

tions to be uncorrelated and having equal strength. When applied to EEG/MEG recordings,

the MNE is known to overestimate superficial sources, for example those located on gyral

crowns, and to underestimate deeper sources, for example those located on sulcal walls and

fundi. This undesirable property of the MNE is known as surface bias [31] because MNE

reconstructions tent to concentrate all source power at surface locations in the brain. In Sec-

tion b2 of Materials and Methods we will see that in the case of two-dimensional LFP record-

ings, surface bias takes the form of overestimating currents in the proximity of the electrode

tips.

One way to reduce surface bias is to counterbalance the bias by weighting the a priori source

covariance matrix. This gives the weighted minimum norm estimate (WMNE) [31]. The

WMNE corresponds to the following a priori choice for the intra-laminar covariance matrix:

SWMNE
h ¼ ðWtWÞ� 1

: ð19Þ
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Note that in the special case W ¼ 1n2
h
, the WMNE reduces to the MNE. In applications to

EEG/MEG data, W is usually taken to be a diagonal matrix, thereby reducing the choice of

weights to specifying a weighting vector w (the diagonal of W). Most often the entries of w are

chosen to be powers of the Euclidean norms of the corresponding leadfields:

wi ¼ jjG�;ijj
q
; ð20Þ

where G•,i denotes the i-th column of G (the i-th leadfield) and where q� 0 is a weighting

parameter [36, 37]. Although q is usually set to 0.5, its optimal value depends on several factors

and determining its optimal value is an empirical issue [37].

Another way of dealing with surface bias is low resolution electrical tomography (LORETA),

which combines the weighting matrix W of WMNE with a constraint on spatial smoothness

[31, 38] and has already been successfully applied to three-dimensional LFP recordings [29].

LORETA thus corresponds to the following a priori intra-laminar covariance matrix:

SLORETA
h ¼ ððDWÞtðDWÞÞ� 1

; ð21Þ

where D 2 Rn2
h�n

2
h denotes the discrete two-dimensional Laplace operator, which can be writ-

ten in terms of the (Kronecker) tensor sum� as

D ¼ Dxx � Dyy; ð22Þ

where Δxx and Δyy denote the discrete Laplace operators in the x and y directions, respectively.

Since the Laplace operator is a spatial lowpass filter (it performs a local averaging), LORETA

biases the reconstructions to spatially smooth ones, which reduces surface bias. W we take

identical to the weighting matrix defined in the previous section. Because this choice of W dif-

fers from that in the original version of LORETA [38], we also considered a version of LOR-

ETA without weighting, denoted as LORETA�, which corresponds to the following prior

structure on the intra-laminar covariance matrix:

SLORETA�
h ¼ ðD

t
DÞ
� 1
: ð23Þ

Table 1 lists the different inverse methods.

b3. Model tuning. To actually calculate a CSD reconstruction from observed LFPs, an

estimate of the trial-averaged measurement noise covariance matrix Sξ is required. Because Sξ

is proportional to the single-trial noise covariance matrix Sxk
, it suffices to estimate the latter.

This is usually done by averaging the sample covariance matrices of the pre-stimulus data over

all trials. Since in event-related studies, there typically are a large number of trials, this estimate

will be accurate [35]. The multiplicative factor relating Sξ to Sxk
combines with one due to the

a priori source variances, yielding a free parameter λ> 0 in front of Sξ in the general solution

Table 1. Linear distributed methods considered in this study. First column: abbreviations of the methods’

names: (W)MNE = (weighted) minimum norm estimate, LORETA = low resolution electrical tomography,

LORETA* = LORETA without weighting. Second column: corresponding prior structure on the intra-laminar

CSD covariance matrix. W denotes a weighting matrix and Δ denotes the two-dimensional discrete Laplacian

operator.

Inverse method Prior structure on Σh

MNE 1n2
h

WMNE (Wt W)−1

LORETA ((ΔW)t(ΔW))−1

LORETA* (Δt Δ)−1

https://doi.org/10.1371/journal.pone.0187490.t001
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(Eq (17)), and hence to an inverse matrix G] that depends on λ. To obtain a CSD reconstruc-

tion, λ needs to be chosen, a procedure referred to as model tuning. An appropriate value of

this regularization parameter can be derived from the observed LFPs and a robust and fast

method to do this is generalized cross-validation (GCV) [39] and has already been shown to

work for tuning LORETA reconstructions of three-dimensional CSDs [29]. GCV chooses the

value of λ for which the following function g is minimized:

gðlÞ ¼
jjðGG] � 1pÞVjj

2

Trð1p � GG]Þ
2
; ð24Þ

where 1p denotes the p-dimensional identity matrix (p is the number of electrodes), V the

observed LFPs, and Tr denotes the matrix trace. GCV is fast and it can be shown to approxi-

mate the value of λ obtained by using the computationally expensive leave-one-out cross-

validation [39].

We numerically determined the minimum of the function g by evaluating it in the values

λ = 10−20, 10−19, � � �, 105. It is known that GCV generally works best when the measurement

noise is uncorrelated, that is (Sξ = 1p). In all simulations, we will assume this to be the case and

note that the case of correlated noise can be reduced to this case by pre-whitening the data

[32]. For evoked responses, this can be done since the large number of trials allow Sξ to be esti-

mated accurately.

In Section b2 of Materials and Methods, we assess the bias β of the difference inverse

methods, which, for the general forward model Eq (12), is given by

b ¼ ðRl � 1nÞVecðCÞ; ð25Þ

where C is the true CSD and Rλ = G]G denotes the resolution matrix associated with the inverse

matrix G]. Generally, for Tikhonov estimators, ||β|| increases as a function of λ, which reflects

the trade-off between bias and uncertainty. In particular, in the absence of measurement noise

(λ = 0), the bias is minimal, and it is referred to as the projection bias. In Section b2 of Materi-

als and Methods, we evaluate the projection bias of the different inverse methods. Due to the

finite accuracy of numerically computing the inverse operator, we do not set λ to zero, but to

an extremely small value (λ = 10−30).

b4. Measuring performance. When applying inverse methods to event-related EEG/

MEG data, one is often interested in estimating the locations of relatively localized sources.

For this reason, the performance of distributed inverse methods is often characterized using

resolution matrices [35]. Although resolution matrices contain information on the accuracy of

the reconstructions for localized sources, for more extended sources they are less informative

[40]. In the case of multi-electrode LFP data, the dipole approximation which is central to

inverse modeling of EEG/MEG data is no longer valid and one generally deals with extended

source distributions, rather than with discrete point sources. For this reason, we chose to mea-

sure the performance of the different inverse methods using the relative mean squared error,

which is defined below.

Let Ch 2 R
n2
h�1 be a simulated CSD and let Ĉh 2 R

n2
h�1 be its reconstruction obtained by

applying one of the inverse methods to the horizontal forward model (Eq (16)). We compare

Ĉh and Ch by calculating the relative means squared error (rMSE):

rMSE ¼
jjCh � Ĉhjj

2

jjChjj
2
� 102; ð26Þ

where the factor 102 is included to express the rMSE as a percentage (instead of a fraction).
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There are two complications in using this performance measure. First, because Cv will gener-

ally not be equal to the true inter-laminar profile, Ch and Ĉh do not have the same scale and

therefore cannot be compared directly. Therefore, before calculating the rMSE, Ĉh is scaled by

a constant α so as to minimize jjCh � aĈhjj
2
, which is achieved for a ¼ Ct

hĈh=jjĈhjj
2
. Second,

since the horizontal extent of the source space is larger than that of the electrode array, direct

calculation of the rMSE will yield relatively high values. This is because the CSD lateral of the

electrode array is generally not well reconstructed due to the high dependency of the corre-

sponding leadfields (see S1 Fig). We therefore calculated the rMSE by first restricting Ch and Ĉh

to intra-laminar locations that are covered by the array. The resulting values hence measure the

ability of the inverse methods to reconstruct that part of the CSD that is covered by the elec-

trode array. In the rest of the paper, we simply refer to the rMSE as the (reconstruction) error.

C. Evoked responses

c1. Simulated data. To test the different inverse methods, we simulate LFPs by applying

the trial-averaged forward model to simulated event-related CSDs. Because the CSDs are

assumed to be decomposable into an intra- and inter-laminar profile, simulation of an evoked

CSD at a given latency amounts to specifying these profiles (Ch and Cv). The intra-laminar pro-

files of experimental event-related responses are diverse and depend on several factors, includ-

ing the species under consideration, recording region, response latency, state of the

preparation, stimulus properties (frequency, duration, strength, etc.), and spontaneous back-

ground activity [2, 41–46]. Evoked responses can be confined to single cortical columns

(< 500 μm), as is the case for rat barrel cortex after weak stimulation of individual whiskers

[43] or be complex and distributed (up to several millimeters in extent) containing depolariz-

ing (source) as well as hyperpolarizing (sink) components, as is the case for odor-induced

responses in salamander olfactory bulb [41]. The inter-laminar profiles of evoked responses

display similar diversity and stimulus dependencies [1, 14, 47]. Furthermore, while the CSD is

commonly assumed to be balanced, recent studies have reported observing unbalanced and

monopolar current sources, probably arising through ionic diffusion processes [22, 23].

To be relevant to a broad range of experimental recordings, therefore, we tested the inverse

methods on both simple as well as complex and distributed evoked responses. Specifically, the

complex-valued intra-laminar current profile Ch is modeled as a superposition of N two-

dimensional Gaussian densities:

Chðx; yÞ ¼
XN

n¼1

exp ði�nÞ exp �
ðx � xnÞ

2
þ ðy � ynÞ

2

2g2
h

� �

; ð27Þ

where (xn, yn) denotes the intra-laminar location of the n-th density, ϕn denotes a random

phase (which gives rise to depolarizing and hyperpolarizing components), and γh denotes the

spatial width of the densities, which is used to control the spatial scale of Ch. We set N = 100

and selected the locations randomly from the intra-laminar source space. There is no compel-

ling reason to set N = 100 other than that it yields reasonably looking source distributions. The

simulation parameters should hence not be taken as claims about the true number of genera-

tors of experimental evoked responses; the merely serve to generate a large number of test cur-

rents to evaluate the imaging methods. In addition to these responses, we simulated localized

responses by setting N = 1, ϕ = 0, and (x1, y1) = (3.4, 3.4) (that is, in the center of the electrode

array).
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The inter-laminar current profile Cv is modeled as a superposition of two one-dimensional

Gaussian densities of equal amplitude and opposite sign and centered at depths z0 ± L/2:

CvðzÞ ¼ exp �
ðz � ðz0 þ L=2ÞÞ

2

2g2
v

� �

� exp �
ðz � ðz0 � L=2ÞÞ

2

2g2
v

� �

: ð28Þ

This parametrization corresponds to a dipolar profile with poles located at depths z0 ± L/2

thus having length L. We set L = 0.8 mm and treat z0 as a free parameter (see below). Further-

more, γv models the width of the poles and is kept fixed at γv = L/3.

The trial-averaged evoked LFPs are subsequently calculated by applying the leadfield matrix

(Section Utah forward model for cortical evoked responses) and subsequently adding mea-

surement noise. We take the covariance matrix Sξ of the trial-averaged measurement noise to

be a diagonal matrix with variance s2
x
. Because the variance of the measurement noise is

inversely proportional to the number of trials, which varies from study to study, we consider

different noise-levels. Specifically, following [29], we set

s2
x
¼ 0:01bŝ2

V ; ð29Þ

which expresses the variance of the noise as a percentage β of the (sample) variance ŝ2
V of the

noise-free vector of recorded potentials V, where β ranges from 1 to 20 in steps of 2.

In all simulations except the high-resolution simulations in Section b2 of Materials and

Methods, we vary two key parameters: the width of the intra-laminar current profile (γh) and

the depth of the current generator (z0). Specifically, each of these two parameters takes on two

different values (see Table 2). This means that when assessing the effect of errors in the inter-

laminar current profile, four sets of simulations are performed for each of the five noise-levels.

For each of the four combinations, the reconstruction errors of every inverse method are aver-

aged over 500 independent realizations. To be able to accurately compare the results obtained

for different parameters and different types of errors in the a priori inter-laminar current pro-

file, we used the same 500 realizations of all random variables appearing in the simulations

(the intra-laminar locations, initial phases, and measurement noise). Fig 2A shows that inter-

laminar current profiles of the superficial and deep generators and Fig 2B shows two realiza-

tions of their intra-laminar profiles.

c2. Experimental data. Electrophysiological data were collected from primary visual cor-

tex of a macaque monkey (Macaca mulatta) that was performing a motion discrimination

task. All experimental procedures were in accordance with the animal welfare guidelines of EU

directive 2010/63/EU. Ethical review and permission for this work was granted (F149/05) by

the regional board Regierungspräsidium Darmstadt. The monkey was group housed with

other macaques in facilities of the Ernst StrÜngmann Institute for Neuroscience in accordance

with German and EU regulations. The facility provides an enriched environment including

toys, wood, natural daylight access and exceeds the size requirements of EU regulations. The

monkey received unrestricted access to food and fluids for the duration of the study. On train-

ing and recording days, fluid access was controlled contingent on performance during the

task. The monkey was bred and purchased from Health Protection Agency, Salisbury, UK. At

Table 2. Free parameters and their values. Listed are the free parameters, their symbols, units, and the two

values they take on (Value 1 and Value 2).

Parameter Value 1 Value 2

Intra-laminar width (γh) 0.2 mm (local) 0.8 mm (global)

Depth (z0) 1.4 mm (superficial) 1.9 mm (deep)

https://doi.org/10.1371/journal.pone.0187490.t002
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Fig 2. Simulation of evoked current source densities. A. Inter-laminar current source density (CSD) component modeled by

superficial (left) or deep (right) dipolar profiles. Deep and superficial are with respect to the electrode array, which is located at a

depth of 1 mm (red line). Zero mm corresponds to the pial surface. B. Two (independent) realizations of simulated intra-laminar
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the end of the study all implants for electrophysiological data collection were removed and the

monkey continued to live in his group.

For array and headpost implantation surgeries, anesthesia was induced with a Ketamin/

Dexmeditomidin injection and maintained with volatile Isoflurane. Pain was managed with

Remifentanil. The data analyzed here is from the trial period where the monkey only had to

keep fixation. Black and white square-wave gratings (80% contrast, horizontal orientation,

static, 2˚ diameter, 1.25 cycles/˚, surrounded by a 2 px wide annulus with 2.6˚ diameter) were

presented on a 24” Samsung 2233RZ screen at 120 Hz refresh rate at a viewing distance of 86

cm with gray background. The monkey had to keep fixation within 0.6˚ radius on a small fixa-

tion spot in the center of the screen. Stimuli were presented at 4.5˚ of eccentricity. Local field

potentials (LFPs) were acquired from a 64 multi-electrode grid (“Utah” array, 8 × 8 layout,

400 μm inter-electrode spacing, 1 mm electrode length) using a CerePlex E headstage and con-

nected to a Cerebus System (Blackrock Inc.) at 30 kHz sampling rate. The reference electrode

was a small wire (* 2 mm) reaching out of the array. For the analysis, 535 number of trials

were available.

Results

A. Performance of the CSD method

The most critical assumption underlying the two-dimensional CSD methods is that the inter-

laminar CSD profile is constant (and of infinite extent). Indeed, when the CSD profile is taken

to be constant, the average reconstruction error for the standard set of simulations and in the

absence of measurement noise equals 4.6%. This shows that the assumption of an infinite

inter-laminar extent is not critical and that a cortical thickness of about 3 mm suffices to obtain

accurate CSD reconstructions. Experimental inter-laminar CSD profiles, however, are far

from being constant and typically comprise multiple dipolar generators as predicted by stan-

dard cable theory (but see [22, 23]). It is therefore unclear to what extent the CSD method can

successfully be applied to planar LFP recordings. In [13] it has been shown that, at least theo-

retically, the reconstructed spatial phase-patterns of oscillatory CSDs resemble the true phase-

patterns relatively well and that the CSD method is to be preferred over mono-polar (single-

wire) and average-reference montages. In the current study we are not concerned with oscil-

latory phase-dynamics but with evoked responses and is it a priori unclear how accurate the

CSD method is in this context. Answering this question will also enable us to assess under

which conditions the CSD method is to be preferred over tomographic imaging.

To this end, we applied the numerical CSD method to the standard set of simulations and

compared it with MNE, since the other imaging methods yielded similar results. Since we are

interested in the fundamental limitations of the CSD method, we used it in its most basic form

[14] while assuming zero measurement noise. Also, when including the boundary electrodes,

the CSD method yields high reconstruction errors, and we therefore excluded these electrodes

in the calculation of the reconstruction errors. The results are summarized in Fig 3. The figure

shows that for sources with local intra-laminar activations, the errors of the CSD method and

the inverse method (MNE) are comparable. For global sources, however, the CSD methods

yields much higher errors than MNE. The cause of the poor reconstructions of the CSD

method in case of global sources is that spatially coherent currents in layers other than in

CSD components corresponding to local (left column) and global (right column) activations. Red and blue correspond to current

sources (depolarization) and current sinks (hyperpolarization), respectively. Black dots denote the electrode locations (400 μm

inter-electrode spacing).

https://doi.org/10.1371/journal.pone.0187490.g002
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which the electrode array is located, induce strong electric fields which contaminate the poten-

tials measured at the electrodes [13]. These results demonstrate that the CSD method can be

improved upon by using inverse methods, at least in the absence of measurement noise and

errors in the forward modeling. At any rate, it provides sufficient motivation for the develop-

ment and evaluation of such methods.

B. High-resolution imaging

b1. The Utah leadfield matrix. The Utah leadfield matrix G—which maps cortical cur-

rents to extra-cellular potentials—contains the electrical properties and geometry of the tissue

and recording set-up, and as such, sets limits on what can be recovered by the different inverse

methods. Therefore, before considering the inverse methods, it will be instructive to have a

closer look at the leadfield matrix itself and especially the high-resolution leadfield matrix.

Although the a priori choice of an inter-laminar current profile reduces the inverse problem

to a two-dimensional (intra-laminar) problem by collapsing the inter-laminar dimension of

G. in this section we consider the full three-dimensional leadfield matrix. For one thing, con-

sidering the inter-laminar dimension of G aids in understanding how inter-laminar volume-

conduction effects “contaminate” cortical LFPs [48]. We analyze G through the sensitivities of

its constituent leadfields.

The sensitivity of the k-th leadfield of G, that is, its k-th column, is defined to be its Euclid-

ean norm. It is a measure for the strength with which the corresponding monopolar current of

unit amplitude contributes to the array potentials. Because the columns of the LFP leadfield

matrix are the leadfields of monopolar currents, all entries are positive. This is in contrast to

MEG/EEG leadfields, which contain the sensor-projections of dipolar currents and hence gen-

erally contain both positive and negative entries. Fig 4A shows the sensitivity profiles of G
along three horizontal slices through the modeled tissue volume. The left panel shows the sen-

sitivity profile at the depth of the array (1 mm). It shows that currents at the electrode tips (the

Fig 3. Limitations of the two-dimensional CSD method. Bar plots of the average reconstruction errors for the (numerical) CSD method (yellow) and the

MNE inverse method (green) and under each of the four CSD configurations. Errors were obtained by averaging over 500 independent realizations.

https://doi.org/10.1371/journal.pone.0187490.g003
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black dots) contribute the strongest to the recorded LFPs and that sensitivity drops sharply lat-

eral from the array. The middle and right panels shows that with increasing depth (relative to

the electrode array) the sensitivity profile becomes more homogeneous (middle and right pan-

els) and decreases steadily. Fig 4B shows the sensitivity profiles for three vertical slices through

the modeled tissue. The fast decrease in sensitivity with depth is clear from the left and middle

panels, while the right panel shows that the sensitivity for locations lateral to the electrode

array is relatively homogeneous.

Since the sensitivity of the LFP leadfields decreases fast for locations outside the electrode

array (in both intra- and inter-laminar directions), it might seem as if volume-conduction

does not pose difficulties in the interpretation of LFP data. However, the contribution of a cur-

rent at a particular location is obtained by weighting the locations’ sensitivity with the strength

of the current at that location and this is why LFPs can contain contributions from neural

activity several millimeters or even centimeters away. In [1, 48], for example, visually and audi-

tory evoked potentials are shown to contain contributions of different belts of primary sensory

Fig 4. Sensitivity of the Utah leadfield matrix. A. Sensitivity profile of the leadfields along three intra-laminar (horizontal) slices at different

cortical depths (left: 1 mm, middle: 1.4 mm, right: 1.8 mm). The Utah array is located at a depth of 1 mm. B. Sensitivity profile of the leadfields along

three vertical slices at different lateral locations (left: through the center of the array and on the electrode line, middle: through the center of the

array and off the electrode line, right: 200 μm lateral to the array). In all panels, the same color-scaling has been applied so that the sensitivities can

be directly compared. Green and red correspond to low and high values, respectively. Black dots in A and B denote the electrodes of the 10 × 10

Utah electrode array (400 μm inter-electrode spacing).

https://doi.org/10.1371/journal.pone.0187490.g004
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cortices. It also explains the often observed discrepancies between simultaneously recorded

voltage-sensitive dye (VSD) signals—which are not contaminated by volume-conduction—

and LFP recordings from the same region [13, 49].

b2. Proximity bias. The MNE inverse method solves a penalized least squares problem in

which the penalty is proportional to the power (that is, the squared Euclidean norm) of the

current distribution [31]. When applied to EEG and MEG data, this has the undesirable conse-

quence that the power of reconstructed current distributions tends to concentrate in locations

that are “electrically close” to the EEG electrodes/MEG sensors. More precisely, current power

is over- and under-estimated at locations whose corresponding leadfields have high and low

sensitivity, respectively. Since electric and magnetic fields attenuate with distance, EEG and

MEG leadfield sensitivities correlate with physical proximity. The consequence is that current

power will be overestimated in cortical gyri—which are close to the electrodes/sensors—and

underestimated in cortical sulci. For EEG and MEG data, this “surface bias” in MNE recon-

structions can be reduced by weighting the leadfield matrix with the inverse leadfield sensitivi-

ties (yielding the WMNE), by spatial smoothing (yielding LORETA), or by appropriate

normalization of the MNE reconstructions (yielding dSPM and sLORETA) [31].

Although in the case of intra-cortical LFPs there is no surface bias, leadfield sensitivities can

still be analyzed and it is important, therefore, to consider the presence of a more general bias,

which we will refer to as proximity bias. Although the sensitivities of the LFP leadfield matrix

are all finite—due to the use of voxels instead of point monopoles—in the previous section we

have seen that the leadfields at the electrode locations are particularly sensitive (Fig 4A, left

panel). This suggests that MNE reconstructions might be biased towards electrode locations

and that one of the other imaging methods might perform better. Fig 4A also showed that

proximity bias is largest in the intra-laminar plane containing the electrode array. To assess

the presence of a proximity bias, we therefore simulated CSDs confined to a single high-resolu-

tion intra-laminar slice containing the electrode array.

Fig 5A shows the reconstruction errors averaged over 100 independently generated evoked

responses with intra-laminar spatial width equal to 0.45 mm and measurement noise set to

zero. Note that MNE has relatively large errors compared to WMNE, LORETA, and

LORETA�. These errors are largely due to proximity bias as becomes clear when inspecting

the reconstructions (Fig 5C) of a single simulated CSD (Fig 5B). Note that MNE overestimates

the currents at the electrodes locations and (slightly) underestimates the currents at locations

in between the electrodes. In other words: MNE tends to current power in the electrode loca-

tions, that is, it suffers from proximity bias. Although weighting of the leadfields (WMNE)

yields smaller errors (Fig 5A), it does not completely remove the bias. Following [37], we have

tested a range of values for the weighting parameter p, but this did not substantially reduce the

bias. Fig 5A also shows, however, that WMNE is more effective in reducing proximity bias

than normalization of MNE reconstructions (dSPM and sLORETA), which tends to overcom-

pensate, leading to underestimation of current power at the electrode locations (see Fig 5C).

We did not consider alternative normalization matrices and it therefore remains an open ques-

tion to what extent dSPM and sLORETA can be adjusted to more effectively reduce proximity

bias. It seems that LORETA� reconstructions are free of proximity bias, which is due to its spa-

tial smoothing and absence of weighing (as is done in LORETA).

In the remainder of the manuscript, we restrict to imaging using the low-resolution source-

space for which proximity bias is absent. We do not further consider dSPM and sLORETA as

they practically yielded the same results as MNE.

Source modeling of LFPs

PLOS ONE | https://doi.org/10.1371/journal.pone.0187490 December 18, 2017 17 / 29

https://doi.org/10.1371/journal.pone.0187490


Fig 5. Proximity bias in high-resolution LFP imaging. A. Reconstruction errors averaged over 100 independently generated evoked responses

for each of the inverse methods. Intra-laminar spatial width of the responses was set to 0.45 mm, measurement noise was set to zero, and the

responses were confined to the intra-laminar slice containing the electrode array. B. Single realization of a simulated evoked response (showing

only the part that is covered by the electrode array). C. Reconstructions of the response in B. using the different inverse methods (MNE, WMNE,

LORETA*, LORETA, dSPM, and sLORETA).

https://doi.org/10.1371/journal.pone.0187490.g005
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C. Low-resolution imaging

c1. Performance of the imaging methods. In this section we assess the performance of

the inverse methods in the absence of errors in the a priori inter-laminar current profile. In

other words, we assume that the current profiles are known a priori. The average reconstruc-

tion errors over 500 realizations are displayed in Fig 6 (solid lines). Before we consider perfor-

mance differences between the methods, we have a look at the properties of the current

reconstructions that are common to all methods. First, irrespective of the type of activation

(local/global and superficial/deep), reconstruction errors increase with increasing noise-level.

MNE and WMNE reconstruction errors for global activations seem to be an exception, but in

this case, the average reconstruction errors are less accurate because of their large variance

over realizations. Such a decrease in performance with increasing noise-level is to be expected

because higher noise-levels lead to stronger regularization, which increases the bias in the

reconstructions. Second, for noisy data, the errors vary more across measurements. This is

Fig 6. Performance of the imaging methods. A. Mean reconstruction errors for the four inverse methods (MNE (blue), WMNE (red), LORETA

(green), and LORETA* (black)) as a function of noise-level and for each of the four combinations of simulated currents (superficial/deep and local/

global). Noise-levels are 1, 5, 10, 15, and 20%. The mean errors were obtained by averaging over 500 realizations. B. Same format as in A. but

displaying the error standard deviations instead of their means. In A and B, the solid lines correspond to the case of no mismatch in the a priori inter-

laminar current profiles. The dashed lines correspond to the case of a mismatch in the a priori inter-laminar current profiles (see text).

https://doi.org/10.1371/journal.pone.0187490.g006
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because higher noise levels make it more difficult to select an appropriate value for the noise

regularization parameter. This fact is relevant for experimental data, because in addition to

yielding high errors on average (that is, over a large number of data-sets), high noise-levels

make the reconstructions more uncertain. We also note that although the inverse methods

considered in this study are linear, this is only true when the value of the noise regularization

parameter is set. Indeed, when model tuning is viewed as part of the inverse method, the meth-

ods are non-linear. Third, deep generators are more difficult to reconstruct than superficial

ones, especially for local activations. The reason for this is that the forward model is a spatial

low-pass filter: spatial detail (short-wavelength activity) in the intra-laminar current profiles is

suppressed and hence is harder to recover, especially in the presence of measurement noise.

This is why deep generators are difficult to reconstruct especially for local activations.

Concerning the performance differences between the methods, we make two remarks.

First, MNE and WMNE perform roughly equal and the same holds for LORETA and

LORETA�. This means that weighting of the leadfields only has a small effect on the resulting

reconstructions. To explain this, recall that for the low-resolution source space, each voxel that

is covered by the electrode plane corresponds to an electrode: their are no voxels in-between

electrodes (see Fig 1C). Therefore, the leadfields in the electrode plane have similar norms so

that weighting by (a power of) their norms effectively doesn’t make a difference. For high-reso-

lution imaging, leadfield weighting does make a difference (see Section b1 of Results). Second,

irrespective of the noise-level and generator depth; for local activations, the performance of

MNE (and WMNE) and LORETA (LORETA�) is similar, while for global activations, LOR-

ETA performs much better than MNE. This is to be expected since global currents better agree

with the a priori assumptions of LORETA (spatial smoothness). Corresponding results for

unbalanced sources are shown in S2 Fig.

As described in Section b1 of Materials and Methods, the different imaging methods

require the specification of an a priori inter-laminar current profile. Since generally we cannot

expect this profile to be accurately known, it is important to consider the methods’ perfor-

mance in case of a mismatch between the true and a priori profiles. We conducted the same

sets of simulations as above, but with the difference that in case of a superfical/deep generator,

we a priori assume a deep/superficial generator (see Table 2). The results are shown in Fig 6

(dashed lines). We make several remarks. First, the mismatch affects LORETA/LORETA� dif-

ferently than MNE/WMNE in that for LORETA/LORETA�, the changes in error means and

standard deviations are independent of the noise-level, while for MNE/WMNE they depend

on the noise-level. Second, for all methods, the increases in error means are larger for superfi-

cial than for deep generators. Third, while the mismatch lead to increases in the error variances

for superficial generators, it generally leads to decreases for deep generators. The latter reflects

a more stable selection of the regularization parameter λ. The cause of this is that if a deep gen-

erator is (erroneously) assumed to be superficial, its intra-laminar spatial extent will be overes-

timated, in order to fit the observed data. This is due to the fact that the LFP forward model

acts like a spatial lowpass filter. Especially for local activations and noisy measurements, larger

(assumed) sources are easier to distinguish from spatially uncorrelated noise, which is what

(generalized) cross-validation tries to do when selecting an appropriate value for the regulari-

zation parameter. This also explains the increased error variance for superficial generators

because (erroneously) assuming superfical generators to be deep, leads to underestimation of

their intra-laminar spatial extent, which renders model tuning more difficult.

c2. The effect of electrode-montage. In the simulations above we have used the forward

model given by Eq (12), which describes the relation between the CSD and the ensuing (trial-

averaged) absolute electrical potential at the recording electrodes, that is, the potentials refer-

enced to an electrode located at infinity. In practice, however, the reference electrode must be
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in contact with the preparation because electric potentials are measured indirectly via the cur-

rent between the recording and reference electrode. For in vivo cortical LFPs, the reference

electrode is often located at the surface of the contra-lateral cortex or on the skull. Because

existing LFP volume-conductor models are local [9, 24] and therefore cannot simulate LFPs

that are referenced to a distant electrode, the LFPs have to be re-referenced, prior to the estima-

tion of the CSD. A common misconception in the field of EEG imaging is that switching to a

different electrode montage (that is, re-referencing) does not influence the source reconstruc-

tions and this issue is given surprisingly little attention in the literature. In fact, most EEG (and

ECoG) inverse modeling studies assess the performance of inverse methods on absolute poten-

tials only [31] and whose practical relevance therefore, is limited. As far as we know, reference

issues have not been discussed in the literature on LFP inverse modeling and existing studies

have focused exclusively on absolute potentials [25–28, 30].

It is straightforward to show that re-referencing changes the LFP forward model and hence

the CSD reconstructions. Consider again the horizontal forward model for absolute potentials

(Eq (16)):

V ¼ GhCh þ x; ð30Þ

where V 2 Rp�1, Ch 2 R
n2
h�1, and where x 2 Rp�1 denotes Gaussian measurement noise with

expectation zero and covariance matrix Sξ. Furthermore, let M 2 Rq�p for certain q� p denote

a montage transformation that transforms the absolute potentials V to the re-referenced poten-

tials VM:

VM ¼ MV: ð31Þ

The forward model for the re-referenced potentials is given by

VM ¼ GM
h Ch þ x

M
; ð32Þ

where GM
h ¼ MG 2 Rq�n2

h denotes the re-referenced horizonal leadfield matrix and

x
M
¼ Mx; ð33Þ

denotes the re-referenced measurement noise, which has covariance matrix MSξ Mt. The re-

referenced horizontal forward model shows that re-referencing has two effects: It changes the

leadfield matrix and it changes the covariance structure of the measurement noise. Because we

have assumed the data to be prewhitened, MSξ Mt is a scaled copy of the identity matrix.

Moreover, since we will focus on the average-reference montage, which corresponds to taking

M ¼ 1p � epetp, where ep 2 R
p�1 denotes the vector containing all ones, MMt is close to the

identity matrix and hence MSξ Mt approximately equals Sξ. We therefore focus on the effect

that re-referencing has on the leadfield matrix.

To assess the effect of re-referencing on the quality of the CSD reconstructions, we carried

out the standard set of simulations, but used average-referenced potentials instead of absolute

potentials. Fig 7 shows the difference in mean reconstruction errors with those obtained by

using single-wire potentials. Note that for local activations, changing from absolute potential

to average-reference potentials has practically no effect on the mean reconstruction errors and

this holds for all methods. In contrast, for global activations, changing to the average-reference

montage drastically increased the mean errors. Also note that these effects are independent of

the noise-level. It turns out that the large errors for global activations can largely be accounted

for by errors in the off-set of the reconstructions. This we checked by recalculating the errors

modulo an additive constant: the resulting errors were practically the same as those obtained
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from the absolute potentials. The errors in off-set arise because imaging average-reference

potentials yields approximately balanced (that is, sum-zero) intra-laminar current profiles.

Since localized activations are approximately balanced, error don’t increase much. Global acti-

vations, however, tend to be unbalanced (see Fig 2B), giving rise to larger errors when using

the average-reference montage.

D. Evoked responses in macaque primary visual cortex

In this section we apply inverse modeling to reconstruct the intra-laminar CSD underlying

visually evoked potentials (VEPs) in macaque primary visual cortex (V1) recorded with an

8 × 8 intracortical Utah array with 400 μm inter-electrode spacing. Fig 8A shows a multiplot of

the VEPs where each trace corresponds to a recording electrode. Fig 8B shows a close-up of

the VEP recorded at the electrode in the lower-left corner of the array (red trace in A). We

focus on inverse modeling of the early positive peak (P1) at a latency of 63 ms, which is known

to reflect direct input from the thalamus into cortical layer 4 and can be modeled using a single

dipolar generator [14]. Fig 8C shows the single-wire potential topography of P1. Observe that

the map has a single sign, which likely reflects (stimulus-locked) neural responses in the vicin-

ity of the reference electrode. Before inverting P1, we therefore transformed it to the average-

reference montage. In Section c2 of Results, we have established that the average-reference

potentials only allow reconstruction of relative CSDs and that the reconstruction errors are

similar to those obtained using single-wire potentials. The source space was chosen identical

to that used in the simulations and the leadfield matrix was recalculated for the (8 × 8)) elec-

trode layout. Furthermore, since the conduction properties of the modeled tissue have only a

modest influence on the CSD reconstructions, we assumed isotropy and homogeneity.

We inverted P1 using an a priori inter-laminar profile comprising a single dipolar generator

located 2 mm below the recording array (see Fig 9A) and inverted P1 using MNE, LORETA,

and the CSD method. The reconstructions obtained using MNE and LORETA were tuned

using generalized cross-validation (GCV). The reconstructions are shown in Fig 9B. We make

several remarks. First, the MNE and LORETA reconstructions are relatively similar, which is

an indication that the true CSD is local, that is, contains power at high spatial frequencies. Sec-

ond, the nCSD reconstruction is different from the MNE and LORETA reconstructions. In

particular, it shows local sources and sinks that are suppressed in the MNE and LORETA

reconstructions. It is important to notice that these local currents follow the layout of the elec-

trode array because this indicates that the true CSD is undersampled. In other words, the typi-

cal length-scale over which the true CSD is coherent, most likely is lower than 400 μm (which

Fig 7. Effects of re-referencing the data. Differences in mean reconstruction errors obtained using the average-reference montage and the single-wire

montage for the four inverse methods (MNE (blue), WMNE (red), LORETA (green), and LORETA* (black)) as a function of noise-level and for each of the

four combinations of simulated currents (superficial/deep and local/global). Noise-levels are 1, 5, 10, 15, and 20%. The mean errors were obtained by

averaging over 500 realizations.

https://doi.org/10.1371/journal.pone.0187490.g007
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Fig 9. P1 reconstructions. A. A priori inter-laminar CSD profile using in the inversion of P1. The profile is modeled by a dipolar generator of length 0.4

mm and is located 1.2 mm below the (modeled) pial surface. The horizontal red line indicates the depth of electrode plane. B. Reconstructed CSDs

underlying P1 obtained using MNE (left), LORETA (middle), and the (numerical) CSD method (right). Blue and red correspond to superficial and deep

generators, respectively.

https://doi.org/10.1371/journal.pone.0187490.g009

Fig 8. Evoked potentials in macaque primary visual cortex. A. Multiplot of the visually evoked potentials (VEPs) recorded at the 64

electrodes of the Utah array. Time ranges from 200 ms pre-stimulus to 500 ms post-stimulus. B. Close-up of the VEP at the lower-left corner of

the electrode array (red trace in A). Time is relative to stimulus onset. The peaks selected for analysis is indicated by P1 and has a latency of 63

ms. C. Topographic map of P1. All potentials are relative to the single-wire reference.

https://doi.org/10.1371/journal.pone.0187490.g008
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is the inter-electrode distance). The reason why the inverse reconstructions (MNE and LOR-

ETA) are less affected by this is that the prior inter-laminar CSD profile is chosen close to the

array: when placed deeper, the reconstructions are more affected and become similar to the

nCSD reconstruction.

Discussion

In this study we have described a general way to construct discrete volume-conduction models

for LFP recordings that avoids the singularities that arise when using point-sources and allows

the simulation of arbitrary three-dimensional current-source densities (CSDs). We have con-

structed such a volume-conduction model for cortical Utah array recordings and used it to

investigate the applicability of the most commonly used linear distributed inverse methods in

the field of EEG/MEG imaging [31] to planar LFP data. We also have illustrated these methods

on early evoked potentials in macaque primary visual cortex. Our overall conclusion is that

such methods can indeed be applied to planar LFP recordings and that they have the potential

to yield more accurate CSD reconstructions than the classical (planar) CSD method. To what

extent they outperform the CSD method, however, depends on a number of factors, most

notably the accuracy of the a priori inter-laminar CSD profile. Our study raised a number of

issues, however, that warrant more discussion.

Concerning the factors that affect the performance of the different inverse methods, our

simulations suggest that the most important factor is the a priori inter-laminar CSD profile.

The exact values for tissue anisotropy and homogeneity are much less crucial. This implies

that for successful application of linear distributed inverse methods to planar LFP recordings,

the inter-laminar CSD profile has to be known rather accurately, which can only be obtained

by (not necessarily simultaneous) inter-laminar recordings from the same preparation. In

exchange for this practical inconvenience, however, are possibly high-accuracy reconstruc-

tions of the current sources and sinks underlying the recorded field potentials. We also note

that even the most simple and unrealistic a priori inter-laminar current profile (constant and

finite) is more realistic than the profile presupposed by the two-dimensional CSD method

(constant and infinite). Thus, in the absence of a priori knowledge about the electrical proper-

ties of the tissue at hand and the inter-laminar organization of the currents, LFP inverse meth-

ods force us to make explicit our assumptions regarding the preparation and allow us to

explore the possible current profiles by varying model parameters. These reasons already show

why using forward modeling in the analysis of planar LFP recordings is beneficial.

An interesting (and somewhat unexpected) finding is that the Utah array seems to under-

sample the intra-laminar current profile of the early visually evoked response at least at some

locations. This is manifested by spurious sources and sinks in the reconstructed current pro-

files that have the dimensions of the distance between the recording electrodes (Fig 9B). We

have simulated intra-laminar CSD profiles comprising generators whose characteristic

scale < 400 μm (the inter-electrode distance) which yield the same spurious sources and sinks.

Generally, spatial aliasing (undersampling) occurs when the inter-electrode distance is larger

than half the radius of the sources and sinks (Nyquist sampling theorem). The presence of spu-

rious sources and sinks in our reconstructions therefore implies that the radii of the true

sources and sinks< 800 μm and, based on our simulations, most likely< 400 μm. The reason

why the inverse reconstructions are less affected by spatial aliasing then the CSD method is

that by using an explicit forward model, they take into account the spatial low-pass effects of

volume-conduction. Indeed, anti-aliasing filters act as lowpass spatial filters and have been

applied to CSD reconstructions (obtained by the CSD method) from planar CSD recordings

[19]. Even with the use of an explicit forward model, however, spurious sources and sinks still
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seem to be present (Fig 9B) which indicates that the sampling resolution of the electrode array

is just not sufficient to recover all high spatial frequencies present in the true intra-laminar

CSD profile.

The source-model used in this study is limited in several ways. First, we have only consid-

ered CSDs with balanced (that is, sum-zero) inter-laminar profiles, while recently, unbalanced

cortical CSDs have been reported [23]. An unbalance in the inter-laminar current profile,

however, can easily be incorporated in our source-model (Eq (28)) by separately weighting the

amplitudes of the generator poles. In SF2, we show the reconstruction errors in the case of a

particular unbalance in the inter-laminar profile. Fig 6 shows that the resulting errors are

larger than the errors for the corresponding balanced profiles. These preliminary simulations

show that mono-polar and higher-order >2) terms in the multi-pole expansion of the extra-

cellular potential, do influence the performance of imaging methods, in line with [29]. Second,

following earlier inverse modeling studies of planar LFPs [26, 27], the CSD is assumed to be a

product of real-valued inter- and intra-laminar profiles. The fact that the profiles are assumed

to be real-valued means that intra- and inter-laminar phase-differences cannot be modeled.

Incorporating intra-laminar phase differences is important when inverting spontaneous corti-

cal oscillations, which often exhibit phase-differences between lamina [1, 3, 4, 16, 45, 50].

Incorporating inter-laminar phase-differences enables more accurate inversion of event-

related activity, whose laminar organization can be heterogeneous over the tissue covered by

the recording array. Although intra- and inter-laminar phase-differences can be incorporated

into the estimation framework by extending the source model to the complex domain, it is

unclear under which conditions and assumptions the phase-profiles can be accurately recon-

structed. Third, the intra-laminar CSD profile is assumed to be known, which is not always the

case in experimental applications. When the intra-laminar CSD profile is not fixed a priori,
minimum norm estimators will concentrate the estimated CSD around the electrode (proxim-

ity bias in the inter-laminar direction). A possible approach to reconstruct the inter-laminar

organization directly from the LFPs would be adaptive spatial filtering [51, 52], which is a pop-

ular approach to invert EEG/MEG data [53]. Additional advantages of spatial filters over the

minimum-norm type inverse methods treated in our study is that they do not suffer from sur-

face bias, are more robust to interfering sources, and might allow reconstruction of currents

that are not directly located underneath the electrode array. A major disadvantage is their dis-

ability to deal with correlated activity and therefore need to be adapted in some way to be

applicable to LFP recordings.

Our study entirely focused on the performance of several linear distributed inverse methods

from the field of EEG/MEG inverse imaging and we did not carry out a comparison with exist-

ing inverse methods for planar LFPs [26, 27]. We can make a number of remarks, however.

With respect to the inverse current source density (iCSD) method proposed in [26], we note

that it is a special case of linear distributed inverse methods. Recall that linear distributed

inverse methods stabilize the inversion of the leadfield matrix by adding a regularization term.

Alternatively, when using the low-resolution source space, the leadfields can be restricted to

those that correspond to the electrodes, yielding a square matrix that is inverted directly (if it

has full rank), which is what iCSD does. Thus, iCSD is obtained by restricting the low-resolu-

tion source space and setting the noise regularization parameter to zero. Note that the restric-

tion of the leadfields corresponds to the assumption that all currents are confined to the

electrode grid. Other drawbacks of the iCSD method are that it cannot be generalized to high-

resolution source spaces and that it is sensitive to measurement noise (because of the absence

of a regularization term). An interesting direction for future research will be to provide a gen-

eral statistical framework containing all LFP inverse methods. Such a framework yields
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conceptual clarity and will enable to directly compare the performance of the different inverse

methods.

Supporting information

S1 Text. Derivation of the extra-cellular potential of a charged cube within an infinite

anisotropic volume conductor.

(PDF)

S1 Fig. Reconstruction of distant sources. A. Reconstruction errors for all four imaging

methods (MNE, WMNE, LORETA, and LORETA�) as a function of the y-location of a single

two-dimensional Gaussian source with x-coordinate at the center of the grid. The black verti-

cal bars denote the y-coordinates of the electrodes at the boundary of the grid. The errors were

calculated by taking into account the entire source-space (thus no restriction to the electrodes

as in the main text). The y-coordinate ranged through the (low-resolution) source space in

steps of 0.1 mm. The intra-laminar width of the source was set to 0.5 mm. Measurement noise

was absent. The source was located at a depth of 1.4 mm. B. True (first panel) and recon-

structed (second to fifth panel) intra-laminar CSD. In this case, the (center of the) source was

located 0.8 to the left of the grid boundary.

(EPS)

S2 Fig. Performance of the imaging methods for unbalanced sources. Mean reconstruction

errors for the four inverse methods (MNE (blue), WMNE (red), LORETA (green), and

LORETA� (black)) as a function of noise-level and for each of the four combinations of simu-

lated currents (superficial/deep and local/global). Noise-levels are 1, 5, 10, 15, and 20%. The

mean errors were obtained by averaging over 500 realizations. To unbalance the inter-laminar

current profiles, the amplitude of the lower generator pole was set to half its value.

(EPS)
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