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ABSTRACT
This paper discusses why flow scheduling does not apply to
distributed deep learning training and presents EchelonFlow,
the first network abstraction to bridge the gap. EchelonFlow
deviates from the common belief that semantically related
flows should finish at the same time. We reached the key obser-
vation, after extensive workflow analysis of diverse training
paradigms, that distributed training jobs observe strict com-
putation patterns, which may consume data at different times.
We devise a generic method to model the drastically different
computation patterns across training paradigms, and formu-
late EchelonFlow to regulate flow finish times accordingly.
Case studies of mainstream training paradigms under Eche-
lonFlow demonstrate the expressiveness of the abstraction,
and our system sketch suggests the feasibility of an Echelon-
Flow scheduling system.
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Training paradigm CoFlow compliance EchelonFlow arrangement
DP - AllReduce ✓ Same flow finish time

DP - PS ✓ Same flow finish time
PP × Staggered flow finish time
TP ✓ Same flow finish time

FSDP × Staggered Coflow finish time

Table 1: Mainstream distributed deep learning training paradigms in multi-
tenant GPU clusters, including Data Parallelism (DP), with AllReduce and
Parameter Server (PS) architectures, Pipeline Parallelism (PP), Tensor Paral-
lelism (TP), and Fully-Sharded Data Parallelism (FSDP).

1 INTRODUCTION
Recent years have witnessed the rapid development of deep
learning: each leap in the model quality comes with increased
scales of neural networks, from AlexNet [30] with 61M
parameters in 2012 to MT-NLG [50] with 530B parame-
ters in 2022. Various parallel strategies (Table 1) have been
adopted by distributed deep learning training (DDLT) frame-
works [16, 26, 33, 39, 44, 49] to accommodate the ever-
growing model sizes. As a result, communication among
distributed workers, especially over a shared, highly dynamic
network with competing training jobs, has become a notable
bottleneck of the training process [33, 62].

The networking community has a long history of resolv-
ing bandwidth contentions with flow scheduling, from in-
dividual flow scheduling [8, 9, 20, 58] to Coflow schedul-
ing [13, 14, 23, 34, 60]. Surprisingly, despite the popularity
of DDLT applications, we have found no flow scheduling
solution supporting the diverse DDLT paradigms (Table 1) in
GPU clusters! Our analysis suggests two reasons.

The first reason is due to the challenge of defining a global
optimization goal across training jobs. As will be introduced
in §2, the various DDLT paradigms implement drastically
different workflows, which may translate into incompati-
ble network requirements causing network-wide optimiza-
tion to diverge. As such, communication optimizations for
DDLT [10, 11, 19, 24, 27, 31, 36, 37, 43, 46, 54, 56, 61, 63]
focus on data parallelism only, and most work conduct per-job
optimization, with estimations of the available bandwidth.

Pioneering explorations for flow scheduling in DDLT [27,
37], also limited to data parallelism, faced exactly this prob-
lem. Particularly, CadentFlow [27] identified multiple per-
formance metrics, e.g., weights, deadlines, and priorities,
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Figure 1: Workflow of Pipeline Parallelism (exemplified with GPipe [21]).

which may pull the optimization from different directions;
MLNet [37] proposed to schedule flows by priorities, but how
to set priorities to reflect application needs is unknown.

The second reason is the lack of network abstraction for
DDLT. The Coflow [12] network abstraction for traditional
cluster applications falls short in DDLT. Coflow defines a
collection of semantically-related flows and minimizes the
completion time of the last flow1. This goal motivates the
optimizer to schedule the flows to finish at the same time.
Oftentimes in DDLT, though, the followup computations con-
suming the flow data do not start at the same time.

Taking pipeline parallelism (Fig. 1) for example, each
worker computes on sequential micro-batches and sends the
results to a successor worker. Consecutive workers have data
dependencies, and the computations per worker follow the or-
der of input data. For high training throughput, GPU workers
must be well coordinated to preserve the pipeline throughout
the training lifetime. Delay or reordering of data may increase
GPU idleness (the grey areas) and reduce training efficiency.
To match this strict computation pattern, data flows across
micro-batches should (ideally) finish in a staggered manner
(Fig. 2c). Formulating the flows as a Coflow tends to finish
them simultaneously (Fig. 2b), making the duration of this
computation phase even longer than bandwidth fair sharing!

Through extensive workflow analysis, we generalize this
observation to other DDLT paradigms: regardless of the great
diversity, each DDLT paradigm has a unique, pre-defined
computation pattern that regulates the finish times of flow
transmissions. These computation patterns, which are essen-
tially computation dependencies (i.e., DAG) and times, are
prevalent in distributed applications. Yet, the repetitiveness
of DDLT jobs, e.g., similar or identical computations across
training layers and iterations, makes it possible to extract
the patterns through computation profiling and convey the
application-level guidelines to network flows.

Following this insight, we aspire to fill the gap of flow
scheduling in DDLT. We propose the EchelonFlow network
abstraction to finish flows according to strict DDLT com-
putation patterns, and with EchelonFlow comes our global
optimization goal of minimizing communication time while

1Another optimization goal is to ensure all flows in a Coflow meet a common
deadline. Flows missing the deadline can be aborted. This goal does not
apply to DDLT, since data loss generally hurts model convergence.

maintaining the computation patterns, like preserving the ar-
rangement of an echelon formation [1]. EchelonFlow is the
first network abstraction for flow scheduling in diverse DDLT
paradigms. It is also extensible to future DDLT paradigms, as
long as their computation patterns can be profiled.

Contributions of the paper are as follows.
• We formally define EchelonFlow and formulate a global

optimization goal for it (§ 3.2).
• We prove important properties of EchelonFlow. Partic-

ularly, EchelonFlow scheduling can minimize comple-
tion times of mainstream DDLT paradigms, and Eche-
lonFlow is a superset of Coflow (§ 3.3).

• Through case studies, we show the expressiveness of
EchelonFlow by presenting popular DDLT paradigms
with the EchelonFlow abstraction (§ 4).

• We sketch the system implementation to discuss the
practicality of EchelonFlow scheduling (§ 5).

2 BACKGROUND
2.1 Distributed Deep Learning Training
Various parallel strategies have been proposed to accelerate
DDLT. Here, we briefly review mainstream training paradigms
(Table 1), with a focus on their communication patterns.

Data Parallelism (DP) is the most basic parallel strategy,
where, as shown in Fig. 4a, each worker maintains a com-
plete copy of the model and conducts forward and backward
propagations on its local mini-batch of training data. The gra-
dients generated by each worker are synchronized per training
iteration, and popular schemes for gradient exchange com-
munications include parameter server [26, 32] and MPI-style
collective operators such as AllReduce [16, 33, 47].

The parameter server (PS) architecture (Fig. 4b) contains
a logical PS node and a set of worker nodes. During training,
each worker fetches the model from the PS, runs forward and
backward computations, and pushes the gradients to the PS;
while the PS aggregates the gradients from all the workers and
updates the parameters. In AllReduce, nodes pass gradients
to their neighbors along a ring by running the all-reduce
collective communication operator, which further splits into
a reduce-scatter followed by an all-gather opera-
tion. For an 𝑚-worker ring, each operation has 𝑚 − 1 steps,
each containing𝑚 − 1 data transfers.

Pipeline Parallelism (PP) [21, 40–42] is a form of model
parallelism to distribute the model across workers. In PP,
the model is partitioned into multiple stages each including
consecutive layers of the neural network, and each stage is
assigned to a worker. To maximize the system throughput,
each training mini-batch is further split into micro-batches, so
that computations can be executed as a pipeline. PP demands
point-to-point communications for activations and their gradi-
ents to be exchanged between consecutive stages.
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In the GPipe [21] realization (Fig. 1), each node sends
the output activations to the successor node in the forward
phase and sends the gradients of its input activations to its
predecessor node in the backward phase. Later PP implemen-
tations [40–42] follow the same principle. They create similar
computation pipelines, while reordering computations and
data transmissions based on the data dependency to reduce
the computation idleness (e.g., the grey areas in Fig. 1a).

Tensor Parallelism (TP) is another form of model parallelism
introduced by Megatron [49] (Fig. 5) for even larger models.
In the forward phase, all nodes must run an all-reduce
to aggregate the activations generated by the forward com-
putation from the local shard of parameters assigned to each
node; while in the backward phase, all nodes will run another
all-reduce for the corresponding gradients.

Fully-Sharded Data Parallelism (FSDP) [3], invented by
ZeRO [44, 45] (Fig. 3), is a modification of vanilla DP for
model scaling, where the parameters are sharded among all
nodes, and computation and communication are done layer-
wise. Each node collects the sharded parameters for the cur-
rent layer with all-gather before the forward/backward
computation and discards them afterwards to make room
for the next layer. After the backward computation, an addi-
tional reduce-scatter is executed to dispatch the gradi-
ent shards to the corresponding nodes for synchronization.

2.2 Coflow
Coflow [12] is a network abstraction for traditional cluster ap-
plications, e.g., MapReduce [15], Spark [59], Pregel [38], and
Dryad [22]. It conveys application-level semantics by identify-
ing a collection of flows sharing a common performance goal,

e.g., minimizing the completion time of the latest flow1. This
goal implies the set of flows should finish at the same time,
consistent with a common scenario where a computation task
can only start after all flows from the previous communica-
tion stage have finished. Yet, Fig. 2 suggests DDLT jobs may
require flows to finish at different times, and thus requires a
new network abstraction. We will explain in §4 that Coflow
can only present a subset of DDLT paradigms (Table 1).

3 ECHELONFLOW
Next, we detail the EchelonFlow network abstraction: its in-
tuition, formal problem formulation, and proofs of properties.

3.1 Intuition
The design of EchelonFlow draws inspiration from echelon
formations [1]. Intuitively, computation units in DDLT mimic
aircraft units in an echelon military formation. The arrange-
ment, or relative unit positions, in the echelon formation maps
to the DDLT computation pattern. In Fig. 6, the diagonally
arranged aircraft map to pipeline parallelism in DDLT (the
dashed parallelogram) where computation units are pipelined
across micro-batches on the same worker (blocks 1-4 of the
same color on each worker in Fig. 1a).

An echelon arrangement can be represented by its shape
and the distance between the units (Fig. 6a). For a computa-
tion arrangement, the “shape” is predetermined by the training
paradigm based on its specific workflow (as in §2), and the
“distance” is the duration of each computation unit, which
can be profiled by running a few training iterations. In Ech-
elonFlow, we describe the computation arrangement with
an arrangement function, which contains the “shape” and
“distance” of the arrangement.
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Analogous to formation flying where aircraft units main-
tain the echelon arrangement, the computation arrangement
in DDLT is determined by data transmissions that stall the
computations. As Fig. 1b shows, the computation pipeline
on a worker depends on data from the predecessor worker.
Hence, the key to maintaining the computation arrangement
in DDLT is to manage the finish times of the traffic flows. To
speed up training, we should minimize the communication
time while maintaining the computation arrangement.

To this end, we define ideal finish time as the earliest finish
time of a flow in theory. This definition enables us to minimize
the communication overhead in DDLT for the (unrealistically)
ideal case of an infinitely fast network. Assuming zero data
transmission time, the ideal flow finish time (𝑑0, 𝑑1, 𝑑2 in
Fig. 6b) is its start time. If the computation unit generating
the data flow misses the computation arrangement (due to
delay of the previous flow), then the ideal flow finish time
should be further advanced to offset the delay. In Fig. 6b, 𝑓 ′1
and 𝑓 ′2 start late because of delays of the previous flows 𝑓1
and 𝑓2. Their ideal finish times 𝑑 ′1 and 𝑑 ′2 are thus set to earlier
than their start times, to give them opportunities to transmit
faster and catch up with the computation arrangement.

How much should we offset the ideal finish time? Given the
arrangement of an echelon formation (Fig. 6a), the location of
each unit can be derived by “reference” to the location of the
head unit. Likewise, in EchelonFlow, we define the reference
time as the start time of the flow that starts first (head flow).
The ideal finish time of the head flow is its start time and
also the reference time. Ideal finish times of later flows can
all be derived from the “reference time”, one by one using
the relative “distance” in the arrangement function. In this
way, a DDLT job recalibrates the computation arrangement
whenever a new EchelonFlow is generated.

3.2 Problem Formulation
Definition 3.1 (EchelonFlow). An EchelonFlow is a set

of flows with related ideal finish times, where the relation is
represented by an arrangement function of the reference time.

𝐻 = {𝑓0, 𝑓1, ..., 𝑓 |𝐻 |−1} is an EchelonFlow with reference
time 𝑟 , where |𝐻 | is the cardinality (i.e., the number of flows)

in 𝐻 , and the flows follow the ascending order of the start
time. The set 𝐷 = {𝑑0, 𝑑1, ..., 𝑑 |𝐻 |−1} contains the ideal finish
time 𝑑 𝑗 of each flow 𝑓𝑗 ∈ 𝐻 , and 𝑠0 is the start time of 𝑓0. Then
𝑑0 = 𝑟 = 𝑠0, and we have an arrangement function 𝑔(𝐷, 𝑟 ).

Definition 3.2 (Flow Tardiness). The tardiness of a flow is
its actual finish time exceeding its ideal finish time.

Let 𝑑 be the ideal finish time of a flow 𝑓 and 𝑒 be the flow’s
actual finish time, the tardiness 𝑡𝑓 of 𝑓 is:

𝑡𝑓 = 𝑒 − 𝑑 (1)

We define tardiness to differentiate from most flow sched-
uling work that minimizes flow completion time. Tardiness
regulates flows regarding their ideal finish times, rather than
their flow start times. This definition allows computation
units to realign with the arrangement per EchelonFlow. If
optimizing with flow completion time, after flows delay, later
EchelonFlows cannot recover the arrangement.

Definition 3.3 (EchelonFlow Tardiness). The tardiness of
an EchelonFlow is the maximum tardiness of all its flows.

For EchelonFlow 𝐻 , following the above notations, let 𝑒 𝑗
be the actual finish time of flow 𝑓𝑗 , corresponding to the ideal
finish time 𝑑 𝑗 . The tardiness 𝑡𝐻 of 𝐻 is:

𝑡𝐻 =𝑚𝑎𝑥 (𝑒 𝑗 − 𝑑 𝑗 ), 0 ≤ 𝑗 < |𝐻 | (2)
Following the intuition in § 3.1, the tardiness of all the

flows in an EchelonFlow should remain the same if the Eche-
lonFlow constantly maintains the computation arrangement.
The definition of maximum tardiness helps to reduce the dif-
ference in tardiness among individual flows.
Optimization Objective

Naturally, based on our earlier definitions, the optimiza-
tion objective of EchelonFlow scheduling is tardiness mini-
mization. For an individual EchelonFlow 𝐻 , particularly, the
objective is to minimize its tardiness 𝑡𝐻 :

Minimize: 𝑧 = 𝑡𝐻 (3)
For multiple EchelonFlows, the objective is to minimize

the sum of their tardiness. For a set EchelonFlows H =

{𝐻0, 𝐻1, ..., 𝐻 |H |−1}, where |H | is the cardinality and 𝑡𝐻𝑖
is

the tardiness of EchelonFlow 𝐻𝑖 ∈ H , the objective is:

Minimize: 𝑧 =
∑︁

0≤𝑖< |H |
𝑡𝐻𝑖

(4)

The objective can be easily adjusted to the weighted sum of
individual EchelonFlows’ tardiness, should there be a proper
way to assign weights to different DDLT jobs.

3.3 Properties
Here we list important properties of EchelonFlow and give
a high-level overview of the proofs. We have proved these
properties formally in a technical report [2].
Property 1: EchelonFlow scheduling minimizes completion
times of popular DDLT paradigms.

96



EchelonFlow HotNets ’22, November 14–15, 2022, Austin, TX, USA

Tardiness minimization aims to advance computation units
while maintaining the desirable computation arrangement,
which ultimately speeds up training. We prove it case-by-case
for the popular DDLT paradigms in Table 1 [2].

Property 2: EchelonFlow is a superset of Coflow.
Coflow can be presented as a special EchelonFlow where

all the flows share a common ideal finish time (Eq. 5). In this
case, by definition, the tardiness of every flow is its finish
time minus the start time of the first flow. Our EchelonFlow
optimization objective of minimizing the maximum tardiness
among all the flows (Eq. 3) becomes minimizing Coflow com-
pletion time. This property makes EchelonFlow compatible
with traditional cluster applications covered by Coflow.

Property 3: EchelonFlow scheduling is NP-hard.
Coflow scheduling is NP-hard [14], so the superset problem

EchelonFlow scheduling is also NP-hard.

Property 4: Coflow scheduling algorithms can be adapted to
EchelonFlow scheduling at the same complexity.

There exists a one-to-one mapping between EchelonFlow
and Coflow metrics. In this sense, we can adapt Coflow sched-
uling algorithms to EchelonFlow scheduling, with a different
metric for evaluating flows. In MADD [14], for example, in
intra-EchelonFlow scheduling, we estimate the latest flow that
has the largest tardiness, rather than the longest flow comple-
tion time as for Coflow; in inter-EchelonFlow scheduling, we
rank EchelonFlows by each EchelonFlow’s tardiness (Eq. 2),
instead of the Coflow completion time. This mapping does
not change the algorithm complexity.

4 CASE STUDIES
Mainstream DDLT paradigms in Table 1 can all be described
by EchelonFlow. We demonstrate the expressiveness of Eche-
lonFlow by showing each paradigm’s arrangement function.

Case I: Coflow-Compliant Paradigms
As discussed in § 3.3, Coflow is a special EchelonFlow

whose flows share the same ideal finish time. For a Coflow
in the form of an EchelonFlow 𝐻 , the ideal finish time 𝑑 𝑗 of
flow 𝑓𝑗 ∈ 𝐻 follows the arrangement function below, where 𝑟
is the reference time, i.e., the start time of the first flow 𝑓0.

𝑑 𝑗 = 𝑟, 0 ≤ 𝑗 < |𝐻 | (5)

Next, we show how to group flows into Coflows for differ-
ent Coflow-compliant DDLT paradigms.

Data Parallelism. The workers exchange gradients after
backward computations (Fig. 4a), and training frameworks
bucket gradients of several layers to perform all-reduce
across workers [33]. In the AllReduce architecture (Fig. 4b),
these gradient transmissions form a Coflow, because the train-
ing can move on to the next bucket only after they all finish.
In parameter server (Fig. 4b), besides these Coflows for gra-
dient synchronizations from workers to the PS, on the reverse

path, the PS updates the model and sends the weights to all
workers. These flows form another Coflow, as the completion
of them all signifies the start of the next training iteration.
Tensor Parallelism. Megatron [49] (Fig. 5) contains two
types of all-reduce operations. The first is for activation
synchronization from all the workers in each layer of forward
computation, and the second is for gradient synchronization
per layer in the backward pass. The all-to-all flows in each
all-reduce fall into a Coflow, as they altogether barrier
computation in the next layer.
Case II: Pipeline Parallelism

The GPipe [28] (Fig. 1b) pipelines computations for suc-
cessive micro-batches of data on each worker, so the data
flows these computations depend on should preserve stag-
gered finish times following the computation pipeline. As
Fig. 1b shows, the flows from one worker to another form an
EchelonFlow. The arrangement function of such an Echelon-
Flow 𝐻 is as below, with notations similar to Eq. 5.

𝑑 𝑗 =

{
𝑟, 𝑗 = 0

𝑑 𝑗−1 +𝑇, 1 ⩽ 𝑗 < |𝐻 | (6)

The ideal finish time 𝑑0 of the first flow 𝑓0 is its start time,
or the EchelonFlow’s reference time 𝑟 . The ideal finish time
𝑑 𝑗 of each flow 𝑓𝑗 afterwards is time 𝑇 later than that of the
previous flow, where 𝑇 is the computation time on one micro-
batch of data. As explained in §3.1, 𝑇 can be obtained from
computation profiling on the training framework.

Other PP variations [40–42] form EchelonFlows similarly,
while reordering computations for different micro-batches.
As long as the data depencies are determined, relations be-
tween the data flows can also be expressed as an arrangment
function, albeit more complicated than Eq. 6.
Case III: Fully-Sharded Data Parallelism

ZeRO/FSDP [3, 44] (Fig. 3) uses the all-gather col-
lective primitive to gather weights from all nodes before
each layer’s forward and backward computations. Flows in
each all-gather collective form a Coflow. These Coflows
along the computation timeline further form an EchelonFlow,
following a pipeline-like pattern as in GPipe (Fig. 1b). The
arrangement function is thus similar to Eq. 6.

𝑑𝑐𝑖 =


𝑟𝑐0 , 𝑖 = 0

𝑑𝑐𝑖−1 +𝑇𝑓 𝑤𝑑 , 1 ⩽ 𝑖 ⩽ 𝑛 − 1
𝑑𝑐𝑖−1 +𝑇𝑏𝑤𝑑 , 𝑛 ⩽ 𝑖 ⩽ 2𝑛 − 1

(7)

For an 𝑛-layer neural network, let 𝐶𝑖 be the 𝑖𝑡ℎ Coflow,
then 𝐶0 − 𝐶𝑛−1 and 𝐶𝑛 − 𝐶2𝑛−1 belong to the forward and
backward phase, respectively. The reference time 𝑟𝑐0 is the
reference time of the first Coflow 𝐶0, which is the start time
of its first flow. Since all flows in a Coflow share the same
ideal finish time (Eq. 5), the (single) ideal finish time of each
Coflow 𝑑𝑐𝑖 is time𝑇𝑓 𝑤𝑑 or𝑇𝑏𝑤𝑑 later than the previous Coflow
𝑑𝑐𝑖−1 depending on whether it lies in the forward or backward
phase. 𝑇𝑓 𝑤𝑑 and 𝑇𝑏𝑤𝑑 can both be profiled.
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Figure 7: EchelonFlow scheduling system diagram.
The reduce-scatter operations after the backward

computation of each layer, from the communication’s per-
spective, are equivalent to gradient synchronizations in DP
(Fig. 4b). Similarly, the reduce-scatter flows in each
gradient bucket across different workers are in a Coflow.

5 SYSTEM SKETCH
EchelonFlow targets at DDLT in GPU clusters, where train-
ing jobs share the network bandwidth and GPUs can be frag-
mented [25, 56]. Because EchelonFlow relies on accurate pro-
filing of the computation time to construct the arrangement
function, it is best suited for the mainstream training config-
uration with dedicated, monolithic GPUs. As performance
isolation in GPU sharing advances [6, 52], EchelonFlow may
apply to GPU-shared training in the future.

In this section, we get insights from DDLT communica-
tion scheduling and Coflow scheduling systems to sketch our
system design. Fig. 7 is our envisioned system diagram.

We are inspired by ByteScheduler [43] to build an Echelon-
Flow Agent as a shim layer between DDLT frameworks and
message-passing backends, e.g., NCCL [5], MPI [55], and
Gloo [4]. It collects EchelonFlow information across DDLT
frameworks and implements coordinated flow scheduling de-
cisions by issuing communication calls to the backends. For
each training instance, the framework breaks down the work-
flow into EchelonFlows, like in § 4, based on the training
paradigm used. For each EchelonFlow, it reports the arrange-
ment function and per-flow information (the size, source, and
destination) to the agent via a library of EchelonFlow APIs.

The agent sends the EchelonFlow requests to a Coordinator
for EchelonFlow scheduling. As discussed in § 3.3, we ex-
pect the coordinator to run a heuristic algorithm adapted from
Coflow scheduling, e.g., MADD [14]. Such algorithms would
rerun per EchelonFlow arrival/departure or per scheduling in-
terval. We propose to improve the scalability by revising them
to maintain the scheduling decision throughout the DDLT
lifetime leveraging the iterative nature of DDLT jobs.

We follow the common practice to enforce the schedules
through flow priorities [13, 23, 34]. The agent stores flow
data into priority queues based on their allocated bandwidth,
and calls message-passing backends through weighted shar-
ing of network bandwidth among the queues. This approach,
from the communication call’s perspective, is essentially the

same as gradient reordering in many DDLT communication
scheduling systems [19, 24, 43]. Yet, unlike their strategy
of single-job optimization, our EchelonFlow agent supports
communication scheduling across DDLT jobs.

6 RELATED WORK
EchelonFlow is a direct improvement to DDLT communi-
cation scheduling solutions [10, 11, 19, 24, 27, 31, 36, 37,
43, 46, 54, 56, 61, 63]. Compared to their limited scope of
DP, EchelonFlow provides a comprehensive abstraction for
diverse training paradigms. By actively shaping the network
dynamics across jobs, EchelonFlow is also more effective
than most prior work’s passive reactions to available network
bandwidth per job [10, 11, 19, 24, 37, 56, 61, 63].

EchelonFlow is motivated by Coflow [7, 13, 14, 23, 34, 60,
64], but deviates from Coflow’s assumption that all flows in
a collective group have a common finish time. The arrange-
ment function of EchelonFlow captures general computa-
tion dependencies, giving EchelonFlow richer expressiveness
(e.g., PP and FSDP) than Coflow. EchelonFlow incorporates
inter-Coflow dependencies in the design, e.g., concatenating
Coflows in FSDP (§4), similar to inter-Coflow scheduling in
multi-stage applications with DAGs [35, 48, 51, 53, 57].

EchelonFlow is orthogonal to communication-aware task
scheduling [17, 18, 29]. EchelonFlow takes the computation
DAG as input to construct the arrangement function and co-
ordinates jobs holistically through flow scheduling, whereas
their approach is for each job to consider the network condi-
tion while building the DAG. We solve the common problem
of accelerating job completion from different angles.

7 CLOSING REMARKS
Our proposal of EchelonFlow provides a breakthrough to flow
scheduling for DDLT. Core to the proposal lie the new net-
work abstraction to unify different workflows across training
paradigms under the generic arrangement function, and the
global optimization goal of tardiness minimization to enforce
different flow finish times. This novel solution opens up two
new avenues for network-for-machine-learning research. First,
it shows potential to regulate the network proactively, e.g., via
EchelonFlow scheduling, to coordinate machine learning ap-
plications, rather than the current practice of per-application
optimization under what the network grants. Second, it urges
the networking community to integrate network management
systems and machine learning systems, like the EchelonFlow
scheduling system, to make network a first-class resource for
machine learning applications.
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