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Abstract. Providing explanations in the context of Visual Question Answering
(VQA) presents a fundamental problem in machine learning. To obtain detailed
insights into the process of generating natural language explanations for VQA,
we introduce the large-scale CLEVR-X dataset that extends the CLEVR dataset
with natural language explanations. For each image-question pair in the CLEVR
dataset, CLEVR-X contains multiple structured textual explanations which are
derived from the original scene graphs. By construction, the CLEVR-X explana-
tions are correct and describe the reasoning and visual information that is neces-
sary to answer a given question. We conducted a user study to confirm that the
ground-truth explanations in our proposed dataset are indeed complete and rel-
evant. We present baseline results for generating natural language explanations
in the context of VQA using two state-of-the-art frameworks on the CLEVR-X
dataset. Furthermore, we provide a detailed analysis of the explanation genera-
tion quality for different question and answer types. Additionally, we study the
influence of using different numbers of ground-truth explanations on the conver-
gence of natural language generation (NLG) metrics. The CLEVR-X dataset is
publicly available at https://github.com/ExplainableML/CLEVR-X.
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1 Introduction

Explanations for automatic decisions form a crucial step towards increasing trans-
parency and human trust in deep learning systems. In this work, we focus on natural
language explanations in the context of vision-language tasks.

In particular, we consider the vision-language task of Visual Question Answering
(VQA) which consists of answering a question about an image. This requires multiple
skills, such as visual perception, text understanding, and cross-modal reasoning in the
visual and language domains. A natural language explanation for a given answer allows
a better understanding of the reasoning process for answering the question and adds
transparency. However, it is challenging to formulate what comprises a good textual
explanation in the context of VQA involving natural images.
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Fig. 1. Comparing examples from the VQA-X (left), e-SNLI-VE (middle), and CLEVR-X (right)
datasets. The explanation in VQA-X requires prior knowledge (about cars from the 1950s), e-
SNLI-VE argues with a tautology, and our CLEVR-X only uses abstract visual reasoning.

Explanation datasets commonly used in the context of VQA, such as the VQA-X
dataset [26] or the e-SNLI-VE dataset [13,29] for visual entailment, contain expla-
nations of widely varying quality since they are generated by humans. The ground-
truth explanations in VQA-X and e-SNLI-VE can range from statements that merely
describe an image to explaining the reasoning about the question and image involving
prior information, such as common knowledge. One example for a ground-truth expla-
nation in VQA-X that requires prior knowledge about car designs from the 1950s can be
seen in Fig. 1. The e-SNLI-VE dataset contains numerous explanation samples which
consist of repeated statements (“x because x”). Since existing explanation datasets for
vision-language tasks contain immensely varied explanations, it is challenging to per-
form a structured analysis of strengths and weaknesses of existing explanation genera-
tion methods.

In order to fill this gap, we propose the novel, diagnostic CLEVR-X dataset
for visual reasoning with natural language explanations. It extends the synthetic
CLEVR [27] dataset through the addition of structured natural language explanations
for each question-image pair. An example for our proposed CLEVR-X dataset is shown
in Fig. 1. The synthetic nature of the CLEVR-X dataset results in several advantages
over datasets that use human explanations. Since the explanations are synthetically
constructed from the underlying scene graph, the explanations are correct and do not
require auxiliary prior knowledge. The synthetic textual explanations do not suffer from
errors that get introduced with human explanations. Nevertheless, the explanations in
the CLEVR-X dataset are human parsable as demonstrated in the human user study that
we conducted. Furthermore, the explanations contain all the information that is neces-
sary to answer a given question about an image without seeing the image. This means
that the explanations are complete with respect to the question about the image.

The CLEVR-X dataset allows for detailed diagnostics of natural language expla-
nation generation methods in the context of VQA. For instance, it contains a wider
range of question types than other related datasets. We provide baseline performances
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on the CLEVR-X dataset using recent frameworks for natural language explanations in
the context of VQA. Those frameworks are jointly trained to answer the question and
provide a textual explanation. Since the question family, question complexity (num-
ber of reasoning steps required), and the answer type (binary, counting, attributes) is
known for each question and answer, the results can be analyzed and split according to
these groups. In particular, the challenging counting problem [48], which is not well-
represented in the VQA-X dataset, can be studied in detail on CLEVR-X. Furthermore,
our dataset contains multiple ground-truth explanations for each image-question pair.
These capture a large portion of the space of correct explanations which allows for a
thorough analysis of the influence of the number of ground-truth explanations used on
the evaluation metrics. Our approach of constructing textual explanations from a scene
graph yields a great resource which could be extended to other datasets that are based
on scene graphs, such as the CLEVR-CoGenT dataset.

To summarize, we make the following four contributions: (1) We introduce the
CLEVR-X dataset with natural language explanations for Visual Question Answering;
(2) We confirm that the CLEVR-X dataset consists of correct explanations that con-
tain sufficient relevant information to answer a posed question by conducting a user
study; (3) We provide baseline performances with two state-of-the-art methods that
were proposed for generating textual explanations in the context of VQA; (4)We use the
CLEVR-X dataset for a detailed analysis of the explanation generation performance for
different subsets of the dataset and to better understand the metrics used for evaluation.

2 Related Work

In this section, we discuss several themes in the literature that relate to our work, namely
Visual Question Answering, Natural language explanations (for vision-language tasks),
and the CLEVR dataset.

Visual Question Answering (VQA). The VQA [5] task has been addressed by several
works that apply attention mechanisms to text and image features [16,45,55,56,60].
However, recent works observed that the question-answer bias in commonVQAdatasets
can be exploited in order to answer questions without leveraging any visual informa-
tion [1,2,27,59]. This has been further investigated in more controlled dataset settings,
such as theCLEVR [27], VQA-CP [2], andGQA [25] datasets. In addition to a controlled
dataset setting, our proposed CLEVR-X dataset contains natural language explanations
that enable a more detailed analysis of the reasoning in the context of VQA.

Natural Language Explanations. Decisions made by neural networks can be visually
explained with visual attribution that is determined by introspecting trained networks
and their features [8,43,46,57,58], by using input perturbations [14,15,42], or by
training a probabilistic feature attribution model along with a task-specific CNN [30].
Complementary to visual explanations methods that tend to not help users distin-
guish between correct and incorrect predictions [32], natural language explanations
have been investigated for a variety of tasks, such as fine-grained visual object clas-
sification [20,21], or self-driving car models [31]. The requirement to ground lan-
guage explanations in the input image can prevent shortcuts, such as relying on dataset
statistics or referring to instance attributes that are not present in the image. For a
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comprehensive overview of research on explainability and interpretability, we refer to
recent surveys [7,10,17].

Natural Language Explanations for Vision-Language Tasks. Multiple datasets for
natural language explanations in the context of vision-language tasks have been pro-
posed, such as the VQA-X [26], VQA-E [35], and e-SNLI-VE datasets [29]. VQA-
X [26] augments a small subset of the VQA v2 [18] dataset for the Visual Question
Answering task with human explanations. Similarly, the VQA-E dataset [35] extends
the VQA v2 dataset by sourcing explanations from image captions. However, the VQA-
E explanations resemble image descriptions and do not provide satisfactory justifi-
cations whenever prior knowledge is required [35]. The e-SNLI-VE [13,29] dataset
combines human explanations from e-SNLI [11] and the image-sentence pairs for the
Visual Entailment task from SNLI-VE [54]. In contrast to the VQA-E, VQA-X, and
e-SNLI-VE datasets which consist of human explanations or image captions, our pro-
posed dataset contains systematically constructed explanations derived from the asso-
ciated scene graphs. Recently, several works have aimed at generating natural language
explanations for vision-language tasks [26,29,38,40,52,53]. In particular, we use the
PJ-X [26] and FM [53] frameworks to obtain baseline results on our proposed CLEVR-
X dataset.

The CLEVR Dataset. The CLEVR dataset [27] was proposed as a diagnostic dataset
to inspect the visual reasoning of VQA models. Multiple frameworks have been pro-
posed to address the CLEVR task [23,24,28,41,44,47]. To add explainability, the XNM
model [44] adopts the scene graph as an inductive bias which enables the visualization
of the reasoning based on the attention on the nodes of the graph. There have been
numerous dataset extensions for the CLEVR dataset, for instance to measure the gen-
eralization capabilities of models pre-trained on CLEVR (CLOSURE [51]), to evaluate
object detection and segmentation (CLEVR-Ref+ [37]), or to benchmark visual dia-
log models (CLEVR dialog [34]). The Compositional Reasoning Under Uncertainty
(CURI) benchmark uses the CLEVR renderer to construct a test bed for compositional
and relational learning under uncertainty [49]. [22] provide an extensive survey of fur-
ther experimental diagnostic benchmarks for analyzing explainable machine learning
frameworks along with proposing the KandinskyPATTERNS benchmark that contains
synthetic images with simple 2-dimensional objects. It can be used for testing the qual-
ity of explanations and concept learning. Additionally, [6] proposed the CLEVR-XAI-
simple and CLEVR-XAI-complex datasets which provide ground-truth segmentation
information for heatmap-based visual explanations. Our CLEVR-X augments the exist-
ing CLEVR dataset with explanations, but in contrast to (heatmap-based) visual expla-
nations, we focus on natural language explanations.

3 The CLEVR-X Dataset

In this section, we introduce the CLEVR-X dataset that consists of natural language
explanations in the context of VQA. The CLEVR-X dataset extends the CLEVR
dataset with 3.6 million natural language explanations for 850k question-image pairs.
In Sect. 3.1, we briefly describe the CLEVR dataset, which forms the base for our pro-
posed dataset. Next, we present an overview of the CLEVR-X dataset by describing
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how the natural language explanations were obtained in Sect. 3.2, and by providing a
comprehensive analysis of the CLEVR-X dataset in Sect. 3.3. Finally, in Sect. 3.4, we
present results for a user study on the CLEVR-X dataset.

3.1 The CLEVR Dataset

The CLEVR dataset consists of images with corresponding full scene graph annota-
tions which contain information about all objects in a given scene (as nodes in the
graph) along with spatial relationships for all object pairs. The synthetic images in the
CLEVR dataset contain three to ten (at least partially visible) objects in each scene,
where each object has the four distinct properties size, color, material, and
shape. There are three shapes (box, sphere, cylinder), eight colors (gray, red,
blue, green, brown, purple, cyan, yellow), two sizes (large, small), and
two materials (rubber, metallic). This allows for up to 96 different combinations
of properties.

There are a total of 90 different question families in the dataset which are grouped
into 9 different question types. Each type contains questions from between 5 and 28
question families. In the following, we describe the 9 question types in more detail.

Hop Questions: The zero hop, one hop, two hop, and three hop question types contain
up to three relational reasoning steps, e.g. “What color is the cube to the left of the
ball?” is a one hop question.

Compare and Relate Questions: The compare integer, same relate, and comparison
question types require the understanding and comparison of multiple objects in a scene.
Questions of the compare integer type compare counts corresponding to two indepen-
dent clauses (e.g. “Are there more cubes than red balls?”). Same relate questions reason
about objects that have the same attribute as another previously specified object (e.g.
“What is the color of the cube that has the same size as the ball?”). In contrast, compar-
ison question types compare the attributes of two objects (e.g. “Is the color of the cube
the same as the ball?”).

Single and/or Questions: Single or questions identify objects that satisfy an exclusive
disjunction condition (e.g. “How many objects are either red or blue?”). Similarly, sin-
gle and questions apply multiple relations and filters to find an object that satisfies all
conditions (e.g. “How many objects are red and to the left of the cube.”).

Each CLEVR question can be represented by a corresponding functional program
and its natural language realization. A functional program is composed of basic func-
tions that resemble elementary visual reasoning operations, such as filtering objects by
one or more properties, relating objects to each other, or querying object properties.
Furthermore, logical operations like and and or, as well as counting operations like
count, less, more, and equal are used to build complex questions. Executing the func-
tional program associated with the question against the scene graph yields the correct
answer to the question. We can distinguish between three different answer types: Binary
answers (yes or no), counting answers (integers from 0 to 10), and attribute answers
(any of the possible values of shape, color, size, or material).
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Fig. 2. CLEVR-X dataset generation: Generating a natural language explanation for a sample
from the CLEVR dataset. Based on the question, the functional program for answering the ques-
tion is executed on the scene graph and traced. A language template is used to cast the gathered
information into a natural language explanation.

3.2 Dataset Generation

Here, we describe the process for generating natural language explanations for the
CLEVR-X dataset. In contrast to image captions, the CLEVR-X explanations only
describe image elements that are relevant to a specific input question. The explanation
generation process for a given question-image pair is illustrated in Fig. 2. It consists of
three steps: Tracing the functional program, relevance filtering (not shown in the figure),
and explanation generation. In the following, we will describe those steps in detail.

Tracing the Functional Program. Given a question-image pair from the CLEVR
dataset, we trace the execution of the functional program (that corresponds to the ques-
tion) on the scene graph (which is associated with the image). The generation of the
CLEVR dataset uses the same step to obtain a question-answer pair. When executing
the basic functions that comprise the functional program, we record their outputs in
order to collect all the information required for explaining a ground-truth answer.

In particular, we trace the filter, relate and same-property functions and record the
returned objects and their properties, such as shape, size etc. As a result, the tracing
omits objects in the scene that are not relevant for the question. As we are aiming for
complete explanations for all question types, each explanation has to mention all the
objects that were needed to answer the question, i.e. all the evidence that was obtained
during tracing. For example, for counting questions, all objects that match the filter
function preceding the counting step are recorded during tracing. For and questions, we
merge the tracing results of the preceding functions which results in short and readable
explanations. In summary, the tracing produces a complete and correct understanding
of the objects and relevant properties which contributed to an answer.

Relevance Filtering. To keep the explanation at a reasonable length, we filter the object
attributes that are mentioned in the explanation according to their relevance. For exam-
ple, the color of an object is not relevant for a given question that asks about the
material of said object. We deem all properties that were listed in the question to
be relevant. This makes it easier to recognize the same referenced object in both the
question and explanation. As the shape property also serves as a noun in CLEVR, our
explanations always mention the shape to avoid using generic shape descriptions like
“object” or “thing”. We distinguish between objects which are used to build the ques-
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tion (e.g. “[. . . ] that is left of the cube?”) and those that are the subject of the posed
question (e.g. “What color is the sphere that is left of the cube?”). For the former, we
do not mention any additional properties, and for the latter, we mention the queried
property (e.g. color) for question types yielding attribute answers.

Explanation Generation. To obtain the final natural language explanations, each ques-
tion type is equipped with one or more natural language templates with variations in
terms of the wording used. Each template contains placeholders which are filled with
the output of the previous steps, i.e. the tracing of the functional program and subse-
quent filtering for relevance. As mentioned above, our explanations use the same prop-
erty descriptions that appeared in the question. This is done to ensure that the wording
of the explanation is consistent with the given question, e.g. for the question “Is there
a small object?” we generate the explanation “Yes there is a small cube.”1 . We ran-
domly sample synonyms for describing the properties of objects that do not appear in
the question. If multiple objects are mentioned in the explanation, we randomize their
order. If the tracing step returned an empty set, e.g. if no object exists that matches the
given filtering function for an existence or counting question, we state that no relevant
object is contained in the scene (e.g. “There is no red cube.”).

In order to decrease the overall sentence length and to increase the readability,
we aggregate repetitive descriptions (e.g. “There is a red cube and a red cube”) using
numerals (e.g. “There are two red cubes.”). In addition, if a function of the functional
program merely restricts the output set of a preceding function, we only mention the
outputs of the later function. For instance, if a same-color function yields a large
and a small cube, and a subsequent filter-large function restricts the output to
only the large cube, we do not mention the output of same-color, as the output of
the following filter-large causes natural language redundancies2 .

The selection of different language templates, random sampling of synonyms and
randomization of the object order (if possible) results in multiple different explanations.
We uniformly sample up to 10 different explanations per question for our dataset.

Dataset Split. We provide explanations for the CLEVR training and validation sets,
skipping only a negligible subset (less than 0.04�) of questions due to malformed
question programs from the CLEVR dataset, e.g. due to disjoint parts of their abstract
syntax trees. In total, this affected 25 CLEVR training and 4 validation questions.

As the scene graphs and question functional programs are not publicly available for
the CLEVR test set, we use the original CLEVR validation subset as the CLEVR-X test
set. 20% of the CLEVR training set serve as the CLEVR-X validation set. We perform
this split on the image-level to avoid any overlap between images in the CLEVR-X
training and validation sets. Furthermore, we verified that the relative proportion of

1 The explanation could have used the synonym “box” instead of “cube”. In contrast, “tiny”
and “small” are also synonyms in CLEVR, but the explanation would not have been consistent
with the question which used “small”.

2 E.g. for the question: “How many large objects have the same color as the cube?”, we do not
generate the explanation “There are a small and a large cube that have the same color as the
red cylinder of which only the large cube is large.” but instead only write “There is a large
cube that has the same color as the red cylinder.”.
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samples from each question and answer type in the CLEVR-X training and validation
sets is similar, such that there are no biases towards specific question or answer types.

Code for generating the CLEVR-X dataset and the dataset itself are publicly avail-
able at https://github.com/ExplainableML/CLEVR-X.

3.3 Dataset Analysis

Table 1. Statistics of the CLEVR-X dataset compared to the VQA-X, and e-SNLI-VE datasets.
We show the total number of images, questions, and explanations, vocabulary size, and the aver-
age number of explanations per question, the average number of words per explanation, and the
average number of words per question. Note that subsets do not necessarily add up to the Total
since some subsets have overlaps (e.g. for the vocabulary).

Dataset Subset
Total # Average #

Images Questions Explanations Vocabulary Explanations Expl. Words Quest. Words

VQA-X

Train 24,876 29,549 31,536 9,423 1.07 10.55 7.50
Val 1,431 1,459 4,377 3,373 3.00 10.88 7.56
Test 1,921 1,921 5,904 3,703 3.07 10.93 7.31
Total 28,180 32,886 41,817 10,315 1.48 10.64 7.49

e-SNLI-VE

Train 29,779 401,672 401,672 36,778 1.00 13.62 8.23
Val 1,000 14,339 14,339 8,311 1.00 14.67 8.10
Test 998 14,712 14,712 8,334 1.00 14.59 8.20
Total 31,777 430,723 430,723 38,208 1.00 13.69 8.23

CLEVR-X

Train 56,000 559,969 2,401,275 96 4.29 21.52 21.61
Val 14,000 139,995 599,711 96 4.28 21.54 21.62
Test 15,000 149,984 644,151 96 4.29 21.54 21.62
Total 85,000 849,948 3,645,137 96 4.29 21.53 21.61

We compare the CLEVR-X dataset to the related VQA-X and e-SNLI-VE datasets in
Table 1. Similar to CLEVR-X, VQA-X contains natural language explanations for the
VQA task. However, different to the natural images and human explanations in VQA-
X, CLEVR-X consists of synthetic images and explanations. The e-SNLI-VE dataset
provides explanations for the visual entailment (VE) task. VE consists of classifying an
input image-hypothesis pair into entailment / neutral / contradiction categories.

The CLEVR-X dataset is significantly larger than the VQA-X and e-SNLI-VE
datasets in terms of the number of images, questions, and explanations. In contrast
to the two other datasets, CLEVR-X provides (on average) multiple explanations for
each question-image pair in the train set. Additionally, the average number of words
per explanation is also higher. Since the explanations are built so that they explain each
component mentioned in the question, long questions require longer explanations than
short questions. Nevertheless, by design, there are no unnecessary redundancies. The
explanation length in CLEVR-X is very strongly correlated with the length of the cor-
responding question (Spearman’s correlation coefficient between the number of words
in the explanations and questions is 0.89).

https://github.com/ExplainableML/CLEVR-X
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Fig. 3. Stacked histogram of the average explanation lengths measured in words for the nine ques-
tion types for the CLEVR-X training set (left). Explanation length distribution for the CLEVR-X,
VQA-X, and e-SNLI-VE training sets (right). The long tail of the e-SNLI-VE distribution (125
words) was cropped out for better readability.

Figure 3 (left) shows the explanation length distribution in the CLEVR-X dataset for
the nine question types. The shortest explanation consists of 7 words, and the longest
one has 53 words. On average, the explanations contain 21.53 words. In Fig. 3 (right)
and Table 1, we can observe that explanations in CLEVR-X tend to be longer than the
explanations in the VQA-X dataset. Furthermore, VQA-X has significantly fewer sam-
ples overall than the CLEVR-X dataset. The e-SNLI-VE dataset also contains longer
explanations (that are up to 125 words long), but the CLEVR-X dataset is significantly
larger than the e-SNLI-VE dataset. However, due to the synthetic nature and limited
domain of CLEVR, the vocabulary of CLEVR-X is very small with only 96 different
words. Unfortunately, VQA-X and e-SNLI-VE contain spelling errors, resulting in mul-
tiple versions of the same words. Models trained on CLEVR-X circumvent those afore-
mentioned challenges and can purely focus on visual reasoning and explanations for the
same. Therefore, Natural Language Generation (NLG) metrics applied to CLEVR-X
indeed capture the factual correctness and completeness of an explanation.

3.4 User Study on Explanation Completeness and Relevance

In this section, we describe our user study for evaluating the completeness and relevance
of the generated ground-truth explanations in the CLEVR-X dataset. We wanted to
verify whether humans are successfully able to parse the synthetically generated textual
explanations and to select complete and relevant explanations. While this is obvious for
easier explanations like “There is a blue sphere.”, it is less trivial for more complex
explanations such as “There are two red cylinders in front of the green cube that is to
the right of the tiny ball.” Thus, strong human performance in the user study indicates
that the sentences are parsable by humans.

We performed our user study using Amazon Mechanical Turk (MTurk). It con-
sisted of two types of Human Intelligence Tasks (HITs). Each HIT was made up of
(1) An explanation of the task; (2) A non-trivial example, where the correct answers are
already selected; (3) A CAPTCHA [3] to verify that the user is human; (4) The problem
definition consisting of a question and an image; (5) A user qualification step, for which
the user has to correctly answer a question about an image. This ensures that the user is
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Fig. 4. Two examples from our user study to evaluate the completeness (left) and relevance (right)
of natural language explanations in the CLEVR-X dataset.

able to answer the question in the first place, a necessary condition to participate in our
user study; (6) Two explanations from which the user needs to choose one. Example
screenshots of the user interface for the user study are shown in Fig. 4.

For the two different HIT types, we randomly sampled 100 explanations from each
of the 9 question types, resulting in a total of 1800 samples for the completeness and
relevance tasks. For each task sample, we requested 3 different MTurk workers based
in the US (with high acceptance rate of > 95% and over 5000 accepted HITs). A total
of 78 workers participated in the completeness HITs. They took on average 144.83 s
per HIT. The relevance task was carried out by 101 workers which took on average
120.46 s per HIT. In total, 134 people participated in our user study. In the following,
we describe our findings regarding the completeness and relevance of the CLEVR-X
explanations in more detail.

Explanation Completeness. In the first part of the user study, we evaluated whether
human users are able to determine if the ground-truth explanations in the CLEVR-
X dataset are complete (and also correct). We presented the MTurk workers with an
image, a question, and two explanations. As can be seen in Fig. 4 (left), a user had to
first select the correct answer (yes) before deciding which of the two given explanations
was complete. By design, one of the explanations presented to the user was the com-
plete one from the CLEVR-X dataset and the other one was a modified version for
which at least one necessary object had been removed. As simply deleting an object
from a textual explanation could lead to grammar errors, we re-generated the explana-
tions after removing objects from the tracing results. This resulted in incomplete, albeit
grammatically correct, explanations.
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Table 2. Results for the user study evaluating the accuracy for the completeness and relevance
tasks for the nine question types in the CLEVR-X dataset.

Zero
hop

One
hop

Two
hop

Three
hop

Same
relate

Compari-
son

Compare
integer

Single
or

Single
and All

Completeness 100.00 98.00 98.67 94.00 100.00 83.67 77.00 84.00 94.33 92.19
Relevance 99.67 99.00 95.67 89.00 95.67 87.33 83.67 90.67 92.00 92.52

To evaluate the ability to determine the completeness of explanations, we measured
the accuracy of selecting the complete explanation. The human participants obtained
an average accuracy of 92.19%, confirming that complete explanations which mention
all objects necessary to answer a given question were preferred over incomplete ones.
The performance was weaker for complex question types, such as compare-integer and
comparison with accuracies of only 77.00% and 83.67% respectively, compared to the
easier zero-hop and one-hop questions with accuracies of 100% and 98.00% respec-
tively.

Additionally, there were huge variations in performance across different partici-
pants of the completeness study (Fig. 5 (top left)), with the majority performing very
well (>97% answering accuracy) for most question types. For the compare-integer,
comparison and single or question types, some workers exhibited a much weaker per-
formance with answering accuracies as low as 0%. The average turnaround time shown
in Fig. 5 (bottom left) confirms that complex question types required less time to be
solved than more complex question types, such as three hop and compare integer ques-
tions. Similar to the performance, the work time varied greatly between different users.

Explanation Relevance. In the second part of our user study, we analyzed if humans
are able to identify explanations which are relevant for a given image. For a given
question-image pair, the users had to first select the correct answer. Furthermore, they
were provided with a correct explanation and another randomly chosen explanation
from the same question family (that did not match the image). The task consisted of
selecting the correct explanation that matched the image and question content. Expla-
nation 1 in the example user interface shown in Fig. 4 (right) was the relevant one, since
Explanation 2 does not match the question and image.

The participants of our user study were able to determine which explanation
matched the given question-image example with an average accuracy of 92.52%. Again,
the performance for complex question types was weaker than for easier questions. The
difficulty of the question influences the accuracy of detecting the relevant explana-
tion, since this task first requires understanding the question. Furthermore, complex
questions tend to be correlated with complex scenes that contain many objects which
makes the user’s task more challenging. The accuracy for three-hop questions was
89.00% compared to 99.67% for zero-hop questions. For compare-integer and com-
parison questions, the users obtained accuracies of 83.67% and 87.33% respectively,
which is significantly lower than the overall average accuracy.

We analyzed the answering accuracy per worker in Fig. 5 (top). The performance
varies greatly between workers, with the majority performing very well (>90% answer-
ing accuracy) for most question types. Some workers showed much weaker perfor-
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Fig. 5. Average answering accuracies for each worker (top) and average work time (bottom) for
the user study (left: completeness, right: relevance). The boxes indicate the mean as well as lower
and upper quartiles, the lines extend 1.5 interquartile ranges of the lower and upper quartile. All
other values are plotted as diamonds.

mance with answering accuracies as low as 0% (e.g. for compare-integer and single or
questions). Furthermore, the distribution of work time for the relevance task is shown in
Fig. 5 (bottom right). The turnaround times for each worker exhibit greater variation on
the completeness task (bottom left) compared to the relevance task (bottom right). This
might be due to the nature of the different tasks. For the completeness task, the users
need to check if the explanation contains all the elements that are necessary to answer
the given question. The relevance task, on the other hand, can be solved by detecting a
single non-relevant object to discard the wrong explanation.

Our user study confirmed that humans are able to parse the synthetically generated
natural language explanations in the CLEVR-X dataset. Furthermore, the results have
shown that users prefer complete and relevant explanations in our dataset over corrupted
samples.

4 Experiments

We describe the experimental setup for establishing baselines on our proposed CLEVR-
X dataset in Sect. 4.1. In Sect. 4.2, we present quantitative results on the CLEVR-X
dataset. Additionally, we analyze the generated explanations for the CLEVR-X dataset
in relation to the question and answer types in Sect. 4.3. Furthermore, we study the
behavior of the NLG metrics when using different numbers of ground-truth expla-
nations for testing in Sect. 4.4. Finally, we present qualitative explanation generation
results on the CLEVR-X dataset in Sect. 4.5.
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4.1 Experimental Setup

In this section, we provide details about the datasets and models used to establish base-
lines for our CLEVR-X dataset and about their training details. Furthermore, we explain
the metrics for evaluating the explanation generation performance.

Datasets. In the following, we summarize the datasets that were used for our exper-
iments. In addition to providing baseline results on CLEVR-X, we also report exper-
imental results on the VQA-X and e-SNLI-VE datasets. Details about our proposed
CLEVR-X dataset can be found in Sect. 3. The VQA-X dataset [26] is a subset of the
VQA v2 dataset with a single human-generated textual explanation per question-image
pair in the training set and 3 explanations for each sample in the validation and test sets.
The e-SNLI-VE dataset [13,29] is a large-scale dataset with natural language explana-
tions for the visual entailment task.

Methods.We used multiple frameworks to provide baselines on our proposed CLEVR-
X dataset. For the random words baseline, we sample random word sequences of
length w for the answer and explanation words for each test sample. The full vocab-
ulary corresponding to a given dataset is used as the sampling pool, and w denotes the
average number of words forming an answer and explanation in a given dataset. For
the random explanations baseline, we randomly sample an answer-explanation pair
from the training set and use this as the prediction. The explanations from this base-
line are well-formed sentences. However, the answers and explanations most likely do
not match the question or the image. For the random-words and random-explanations
baselines, we report the NLG metrics for all samples in the test set (instead of only
considering the correctly answered samples, since the random sampling of the answer
does not influence the explanation). The Pointing and Justification model PJ-X [26]
provides text-based post-hoc justifications for the VQA task. It combines a modified
MCB [16] framework, pre-trained on the VQA v2 dataset, with a visual pointing and
textual justification module. The Faithful Multimodal (FM) model [53] aims at ground-
ing parts of generated explanations in the input image to provide explanations that are
faithful to the input image. It is based on the Up-Down VQA model [4]. In addition,
FM contains an explanation module which enforces consistency between the predicted
answer, explanation and the attention of the VQA model. The implementations for the
PJ-X and FM models are based on those provided by the authors of [29].

Implementation and Training Details. We extracted 14×14×1024 grid features for
the images in the CLEVR-X dataset using a ResNet-101 [19], pre-trained on Ima-
geNet [12]. These grid features served as inputs to the FM [53] and PJ-X [26] frame-
works. The CLEVR-X explanations are lower case and punctuation is removed from
the sentences. We selected the best model on the CLEVR-X validation set based on the
highest mean of the four NLG metrics, where explanations for incorrect answers were
set to an empty string. This metric accounts for the answering performance as well as
for the explanation quality. The final models were evaluated on the CLEVR-X test set.
For PJ-X, our best model was trained for 52 epochs, using the Adam optimizer [33]
with a learning rate of 0.0002 and a batch size of 256. We did not use gradient clipping
for PJ-X. Our strongest FMmodel was trained for 30 epochs, using the Adam optimizer
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with a learning rate of 0.0002, a batch size of 128, and gradient clipping of 0.1. All other
hyperparameters were taken from [26,53].

Evaluation Metrics. To evaluate the quality of the generated explanations, we use
the standard natural language generation metrics BLEU [39], METEOR [9], ROUGE-
L [36] and CIDEr [50]. By design, there is no correct explanation that can justify a
wrong answer. We follow [29] and report the quality of the generated explanations for
the subset of correctly answered questions.

4.2 Evaluating Explanations Generated by State-of-the-Art Methods

In this section, we present quantitative results for generating explanations for the
CLEVR-X dataset (Table 3). The random words baseline exhibits weak explanation
performance for all NLG metrics on CLEVR-X. Additionally, the random answering
accuracy is very low at 3.6%. The results are similar on VQA-X and e-SNLI-VE. The
random explanations baseline achieves stronger explanation results on all three datasets,
but is still significantly worse than the trained models. This confirms that, even with a
medium-sized answer space (28 options) and a small vocabulary (96 words), it is not
possible to achieve good scores on our dataset using a trivial approach.

We observed that the PJ-X model yields a significantly stronger performance on
CLEVR-X in terms of the NLG metrics for the generated explanations compared to
the FM model, with METEOR scores of 58.9 and 52.5 for PJ-X and FM respectively.
Across all explanation metrics, the scores on the VQA-X and e-SNLI-VE datasets are
in a lower range than those on CLEVR-X. For PJ-X, we obtain a CIDEr score of 639.8
on CLEVR-X and 82.7 and 72.5 on VQA-X and e-SNLI-VE. This can be attributed to
the smaller vocabulary and longer sentences, which allow n-gram based metrics (e.g.
BLEU) to match parts of sentences more easily.

In contrast to the explanation generation performance, the FM model is bet-
ter at answering questions than PJ-X on CLEVR-X with an answering accuracy of
80.3% for FM compared to 63.0% for PJ-X. Compared to recent models tuned to
the CLEVR task, the answering performances of PJ-X and FM do not seem very
strong. However, the PJ-X backbone MCB [16] (which is crucial for the answering
performance) preceded the publication of the CLEVR dataset. A version of the MCB
backbone (CNN+LSTM+MCB in the CLEVR publication [27]) achieved an answer-
ing accuracy of 51.4% on CLEVR [27], whereas PJ-X is able to correctly answer
63% of the questions. The strongest model discussed in the initial CLEVR publication
(CNN+LSTM+SA in [27]) achieved an answering accuracy of 68.5%.

4.3 Analyzing Results on CLEVR-X by Question and Answer Types

In Fig. 6 (left and middle), we present the performance for PJ-X on CLEVR-X for the
nine question and three answer types. The explanation results for samples which require
counting abilities (counting answers) are lower than those for attribute answers (57.3 vs.
63.3). This is in line with prior findings that VQA models struggle with counting prob-
lems [48]. The explanation quality for binary questions is even lower with a METEOR
score of only 55.6. The generated explanations are of higher quality for easier ques-
tion types; zero-hop questions yield a METEOR score of 64.9 compared to 62.1 for
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Table 3. Explanation generation results on the CLEVR-X, VQA-X, and e-SNLI-VE test sets
using BLEU-4 (B4), METEOR (M), ROUGE-L (RL), CIDEr (C), and answer accuracy (Acc).
Higher is better for all reported metrics. For the random baselines, Acc corresponds to 100/# answers

for CLEVR-X and e-SNLI-VE, and to the VQA answer score for VQA-X. (Rnd. words: random
words, Rnd. expl: Random explanations)

Model
CLEVR-X VQA-X e-SNLI-VE

B4 M RL C Acc B4 M RL C Acc B4 M RL C Acc

Rnd. words 0.0 8.4 11.4 5.9 3.6 0.0 1.2 0.7 0.1 0.1 0.0 0.3 0.0 0.0 33.3
Rnd. expl 10.9 16.6 35.3 30.4 3.6 0.9 6.5 18.4 21.6 0.2 0.4 5.4 9.9 2.6 33.3

FM [53] 78.8 52.5 85.8 566.8 80.3 23.1 20.4 47.1 87.0 75.5 8.2 15.6 29.9 83.6 58.5
PJ-X [26] 87.4 58.9 93.4 639.8 63.0 22.7 19.7 46.0 82.7 76.4 7.3 14.7 28.6 72.5 69.2

three-hop questions. It can also be seen that single-or questions are harder to explain
than single-and questions. These trends can be observed across all NLG explanation
metrics.

4.4 Influence of Using Different Numbers of Ground-Truth Explanations

In this section, we study the influence of using multiple ground-truth explanations for
evaluation on the behavior of the NLG metrics. This gives insights about whether the
metrics can correctly rate a model’s performance with a limited number of ground-
truth explanations. We set an upper bound k on the number of explanations used and
randomly sample k explanations if a test sample has more than k explanations for k ∈
{1, 2, . . . , 10}. Figure 6 (right) shows the NLG metrics (normalized with the maximum
value for each metric on the test set for all ground-truth explanations) for the PJ-X
model depending on the average number of ground-truth references used on the test set.

Out of the four metrics, BLEU-4 converges the slowest, requiring close to 3 ground-
truth explanations to obtain a relative metric value of 95%. Hence, BLEU-4 might not
be able to reliably predict the explanation quality on the e-SNLI-VE dataset which has
only one explanation for each test sample. CIDEr converges faster than ROUGE and
METEOR, and achieves 95.7% of its final value with only one ground-truth explana-
tion. This could be caused by the fact, that CIDEr utilizes a tf-idf weighting scheme
for different words, which is built from all reference sentences in the subset that the
metric is computed on. This allows CIDEr to be more sensitive to important words
(e.g. attributes and shapes) and to give less weight, for instance, to stopwords, such as
“the”. The VQA-X and e-SNLI-VE datasets contain much lower average numbers of
explanations for each dataset sample (1.4 and 1.0). Since there could be many more
possible explanations for samples in those datasets that describe different aspects than
those mentioned in the ground truth, automated metric may not be able to correctly
judge a prediction even if it is correct and faithful w.r.t. to the image and question.
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Fig. 6. Explanation generation results for PJ-X on the CLEVR-X test set according to question
(left) and answer (middle) types compared to the overall explanation quality. Easier types yield
higher METEOR scores. NLG metrics using different numbers of ground-truth explanations on
the CLEVR-X test set (right). CIDEr converges faster than the other NLG metrics.

4.5 Qualitative Explanation Generation Results

We show examples for explanations generated with the PJ-X framework on CLEVR-X
in Fig. 7. As can be seen across the three examples presented, PJ-X generates high-
quality explanations which closely match the ground-truth explanations.

In the left-most example in Fig. 7, we can observe slight variations in grammar when
comparing the generated explanation to the ground-truth explanation. However, the con-
tent of the generated explanation corresponds to the ground truth. Furthermore, some
predicted explanations differ from the ground-truth explanation in the use of another
synonym for a predicted attribute. For instance, in the middle example in Fig. 7, the
ground-truth explanation describes the size of the cylinder as “small”, whereas the pre-
dicted explanation uses the equivalent attribute “tiny”. In contrast to other datasets, the
set of ground-truth explanations for each sample in CLEVR-X contains these variations.
Therefore, the automated NLG metrics do not decrease when such variations are found
in the predictions. For the first and second example, PJ-X obtains the highest possible
explanation score (100.0) in terms of the BLEU-4, METEOR, and ROUGE-L metrics.

We show a failure case where PJ-X predicted the wrong answer in Fig. 7 (right). The
generated answer-explanation pair shows that the predicted explanation is consistent
with the wrong answer prediction and does not match the input question-image pair.
The NLG metrics for this case are significantly weaker with a BLEU-4 score of 0.0, as
there are no matching 4-grams between the prediction and the ground truth.
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Fig. 7. Examples for answers and explanations generated with the PJ-X framework on the
CLEVR-X dataset, showing correct answer predictions (left, middle) and a failure case (right).
The NLG metrics obtained with the explanations for the correctly predicted answers are high
compared to those for the explanation corresponding to the wrong answer prediction.

5 Conclusion

We introduced the novel CLEVR-X dataset which contains natural language explana-
tions for the VQA task on the CLEVR dataset. Our user study confirms that the expla-
nations in the CLEVR-X dataset are complete and match the questions and images.
Furthermore, we have provided baseline performances using the PJ-X and FM frame-
works on the CLEVR-X dataset. The structured nature of our proposed dataset allowed
the detailed evaluation of the explanation generation quality according to answer and
question types. We observed that the generated explanations were of higher quality
for easier answer and question categories. One of our findings is, that explanations
for counting problems are worse than for other answer types, suggesting that further
research into this direction is needed. Additionally, we find that the four NLG metrics
used to evaluate the quality of the generated explanations exhibit different convergence
patterns depending on the number of available ground-truth references.

Since this work only considered two natural language generation methods for VQA
as baselines, the natural next step will be the benchmarking and closer investigation
of additional recent frameworks for textual explanations in the context of VQA on the
CLEVR-X dataset. We hope that our proposed CLEVR-X benchmark will facilitate fur-
ther research to improve the generation of natural language explanations in the context
of vision-language tasks.
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