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Abstract

Besides standard cameras, autonomous vehicles typically include multiple addi-
tional sensors, such as lidars and radars, which help acquire richer information for
perceiving the content of the driving scene. While several recent works focus on
fusing certain pairs of sensors—such as camera and lidar or camera and radar—by
using architectural components specific to the examined setting, a generic and
modular sensor fusion architecture is missing from the literature. In this work,
we focus on 2D object detection, a fundamental high-level task which is defined
on the 2D image domain, and propose HRFuser, a multi-resolution sensor fusion
architecture that scales straightforwardly to an arbitrary number of input modalities.
The design of HRFuser is based on state-of-the-art high-resolution networks for
image-only dense prediction and incorporates a novel multi-window cross-attention
block as the means to perform fusion of multiple modalities at multiple resolutions.
Even though cameras alone provide very informative features for 2D detection,
we demonstrate via extensive experiments on the nuScenes and Seeing Through
Fog datasets that our model effectively leverages complementary features from
additional modalities, substantially improving upon camera-only performance
and consistently outperforming state-of-the-art fusion methods for 2D detection
both in normal and adverse conditions. The source code is publicly available at
https://github.com/timbroed/HRFuser.

1 Introduction

High-level visual perception is vital for the deployment of autonomous vehicles and robots. The
primary sensors for such agents to perceive the surrounding scene are cameras, as they provide rich
texture information at very high spatial resolution. This enables perception algorithms to achieve
high accuracy in tasks central to recognition, such as 2D object detection and semantic segmentation.

However, the quality of images captured by cameras degrades severely in adverse visual conditions,
e.g. with poor illumination (night), low visibility (fog) or intense backscatter and noise (rain, snow).
Moreover, cameras output 2D readings, which do not explicitly capture depth or other geometric
attributes of the scene. Complementary characteristics to cameras, such as robustness to adverse
conditions or explicit range and velocity measurements, are provided by other sensors, notably lidars,
radars, and gated cameras [2]. Thanks to developments in sensor technology (e.g. quasi-solid-state
lidar scanners [75]), these types of sensors are gradually becoming cheaper and thus more commonly
used in practice in automated driving. Exploiting all available measurements from the sensor suite of
an autonomous car is of utmost importance for accurate perception under all possible conditions. As
a result, fusing information from various sensors is a necessary step in practical visual perception
systems, for which redundancy is a must.

Most of the sensor fusion works for visual perception have focused on 3D tasks, such as 3D object
detection, in which the range measurements of lidars and/or radars provide a very informative feature.
Thus, these works have examined the utility of adding information from cameras on top of the ranging
sensors. By contrast, we focus on the 2D image domain, which is also fully relevant for perception
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Figure 1: An instantiation of the overall architecture of our HRFuser backbone for the case where
two additional sensors besides the camera are available. Feature maps are colored according to the
sensor branch to which they belong. For brevity, we only show the backbone of the network and not
the detection head. Transf.: transformer, Conv.: convolution, MWCA: multi-window cross-attention.
Best viewed on a screen and zoomed in.

in autonomous vehicles. In particular, we consider the fundamental recognition task of 2D object
detection. For image-based methods, the 2D setting is far more explored in the literature compared to
3D settings, and very strong models have been presented in this context [28, 40, 56]. In this setting,
we aim to show that properly leveraging information from additional sensors besides the camera can
substantially improve detection performance, even when starting from very strong state-of-the-art
image-only baselines. We pursuit this goal by building a modular architecture which treats the camera
as the primary modality and adaptively fuses features from an arbitrary number of additional sensors
in a repeatable manner.

Our network, which we name HRFuser, consists of a multi-resolution multi-sensor fusion architecture
for 2D object detection. The structure of HRFuser is based on the paradigm of HRNet [76] and
HRFormer [88], two networks for camera-only dense prediction. Both preserve high-resolution
representations throughout their layers. HRFuser constitutes an adapted version of this architectural
paradigm which handles an arbitrary number of additional modalities besides the camera. In particular,
in HRFuser we create a separate branch for each modality and process representations in each branch
in parallel. Each additional sensor besides the camera adds limited complexity to the network, as
the respective branches only include feature maps at one—namely the highest—resolution. Only
the camera branch progressively constructs additional lower resolutions. Fusion happens at multiple
levels and for all resolutions of the camera branch. This helps to aggregate context not only from the
camera features but also from features corresponding to the additional sensors. We implement fusion
via a novel multi-window cross-attention (MWCA) block. This block performs an attention-based
fusion of the camera with each additional sensor individually, over multiple non-overlapping spatial
windows. It aggregates the outputs via addition over sensors and concatenation over windows.

Our architecture is generic, as it handles all additional sensors in the same way, except for basic
pre-processing. Thus, it scales straightforwardly to an arbitrary number of sensors. This allows
to leverage multiple sensors, such as a lidar, radar, and gated camera, without the need to create
specialized architectural components dedicated to each individual sensor. HRFuser inherits the
benefits of HRNet and HRFormer associated to processing camera features at multiple resolutions
while preserving a high resolution representation, allowing aggregation of global context without
loss of fine spatial details. On top of that, HRFuser exploits high-resolution features from additional
sensors, by paying attention only to the subset of these features relevant for 2D detection and filtering
out the others.

We conduct a thorough experimental evaluation of our network for 2D object detection on two major
autonomous driving datasets, the large-scale nuScenes and the adverse-condition-oriented Seeing
Through Fog (STF). A camera is used as the primary modality, and a lidar, radar and gated camera
as additional modalities. HRFuser substantially outperforms state-of-the-art camera-only networks
which are heavily engineered for dense prediction tasks, as well as state-of-the-art sensor fusion
methods for 2D detection, and this on both sets. Notably, our network is versatile, as it can easily be
adapted for sensor fusion on various datasets with different sets of available sensors. Detailed ablation
studies evidence the benefit of our carefully designed multi-window cross-attention fusion block
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compared to basic fusion strategies. They also demonstrate the improvement induced by adding more
sensors to our network, showing that the latter succeeds in leveraging the complementary information
provided by these sensors.

2 Related Work

Object detection methods output either 2D or 3D bounding boxes of the objects of the input scene.
A popular line of work on 2D detection consists in the region-based CNN (R-CNN) framework [5,
25, 28, 58], which employs a two-stage pipeline that first generates object proposals and then
predicts the final boxes from the proposals. An alternative approach is single-stage detection [39,
40, 56, 57], which is typically faster but less accurate. Recent approaches alleviate the need for
anchor boxes [34, 71], improve the efficiency of the detectors [69], explore the usage of keypoints
in formulating the box predictions [21, 91], and adapt networks to adverse conditions such as
fog [11, 60]. HRNet [76] constitutes a CNN backbone for detection and other dense prediction tasks
that preserves a high resolution for intermediate representations, while aggregating global context via
parallel lower-resolution branches. Very recently, HRFormer [88] has extended this idea by replacing
most convolutional blocks of HRNet with transformer blocks, which facilitate context aggregation
via attending to features from any location of the input. Our HRFuser follows the architecture of
HRNet and HRFormer with parallel branches of different resolutions, but it upgrades this architecture
with a multi-modal transformer-based fusion block, which allows us to adaptively fuse information
from additional modalities—encoded by parallel branches—in the detection pipeline. While 2D
detection usually works with images, 3D detection methods mostly operate on point clouds, with the
associated challenge of how to best represent these sparse 3D inputs so that they can be consumed
by CNNs. This has been addressed via voxels [92], vertical pillars [33], and combinations of voxels
and points [63]. Recent methods enhance existing detectors by implementing a point-based second
detection stage [35], employ transformer modules to attend to relevant local and global features of
point clouds [49], and augment point clouds using physically-based simulation to adapt to fog [26]
and snowfall [27]. Although these works on 3D detection are related to ours as they also use lidar
point clouds, our focus is rather on 2D detection and how to improve it by using point clouds from
lidar and radar as extra modalities besides the camera.

Sensor fusion for object detection is the primary application of sensor fusion in visual perception,
although other tasks [12, 62, 67, 77] have also been studied. For a comprehensive overview of related
work, we refer the reader to [23, 29, 86]. The KITTI dataset [24] has catalyzed research in this area by
providing recordings of driving scenes with multiple sensors, notably a lidar and a camera, along with
object annotations. Successors of KITTI include nuScenes [4], Waymo Open [68] and Argoverse [6].
Notably, nuScenes also includes radar readings, which are important in adverse-weather scenarios.
Such scenarios are explicitly covered in [2, 43, 51, 61]. Based primarily on the aforementioned sets,
several sensor fusion works have been presented, most of which focus on improving lidar-based 3D
detection by fusing information from the camera. This category of works range from early (low-level)
fusion [16, 19, 32, 45, 50, 66, 73, 74, 81, 82, 83, 89, 90], which directly combines the raw lidar
data with raw image data or image features, and mid-level fusion [8, 22, 31, 59, 66, 74, 83, 87, 89],
which combines lidar features with image-space features, to late fusion [31, 50, 59], which fuses
the detection results from lidar and camera, asymmetric fusion [10, 16, 32, 90], which fuses the
object-level representations from one modality with data-level or feature-level representations from
the other, and weak fusion [20, 54, 64, 70, 80], which utilizes one modality to provide guidance to
the other. 3D detection is also addressed by fusing radar and lidar [55, 85] or radar and camera [47].
Fewer sensor fusion methods address 2D detection and a lot of them are based only on radar and
camera sensors [7, 13, 46, 48, 65, 84]. Methods which improve image-based 2D detection by fusing
information only from lidar include [1, 3, 15, 17, 44]. Very few previous works [2, 52] fuse all three
modalities, i.e. camera, lidar, and radar, for detection. We argue that using all three modalities is
relevant, as they provide complementary characteristics which are essential for detection, and we
propose a modular fusion architecture for 2D detection that easily scales to an arbitrary number of
modalities. Another feature of our network is the fusion at multiple levels and resolutions, which has
also been applied in previous works [2, 30, 36, 37, 42]. Different from these methods, our approach
maintains high-resolution representations for the camera branch throughout the network in parallel
with lower-resolution representations, which allows to better preserve details in the shape of the
objects while also exploiting global context for classification.
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Figure 2: Our multi-window cross-attention (MWCA) fusion block, consisting of (a) our MWCA
and a subsequent feed-forward network. Inputs to the parallel cross-attention blocks are colored
according to the sensor they come from. DW conv.: depth-wise convolution.

Transformers [72] gained popularity in computer vision with the vision transformer [18]. The more
recent Pyramid Vision Transformer (PVT) [78] introduces a spatial reduction attention reducing
memory footprint. PVTv2 [79] improves upon PVT by using a linear-complexity attention module.
Attention is vital when handling multiple modalities, as in our sensor fusion setting. Two recent
works [53, 77] use transformer blocks specifically for sensor fusion, similarly to our method. Different
from these works, our transformer-based network handles several modalities instead of only two and
fuses them at multiple resolutions, combining both global and local features of the input scene more
effectively. Moreover, our MWCA fusion block allows to apply attention at a high resolution by
operating on separate spatial windows.

3 HRFuser

The proposed HRFuser network builds upon the seminal HRNet [76] and its more recent transformer-
based variation, HRFormer [88]. In particular, we extend the regime of repeated multi-resolution
fusion that is employed in the aforementioned networks to work with multiple modalities. To this end,
we expand the HRFormer backbone with one additional high-resolution branch for each additional
input modality besides the camera. These additional, or secondary, modalities are fused repeatedly at
multiple resolutions into the branch of the primary modality, i.e. the camera.

Fig. 1 illustrates the general architecture of the multi-sensor fusion backbone of HRFuser. The
branches of additional sensors are equivalent to the first 3 stages of the high-resolution stream from
HRFormer. Whereas the design of the camera branch follows the full HRFormer, except for the novel
MWCA fusion block we insert, which is illustrated in Fig. 2. The MWCA fusion block is inserted
between the multi-resolution fusion module used in HRNet and HRFormer and the subsequent
HRFormer block, allowing the features from the secondary modalities to be fused into the camera
branch. All secondary branches include feature maps at a single, high resolution, while in the camera
branch we introduce lower resolutions as we proceed to later stages, progressively aggregating
context. Before applying our MWCA fusion blocks we add 3×3 strided convolutions to match the
high-resolution secondary modalities to the lower resolution stream of the primary modality, similar
to the HRNets multi-resolution fusion.
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Fusing multiple modalities in such an asymmetric way provides scalability to our method, as the extra
branches only have few feature channels. We can include an arbitrary number of modalities by simply
adding an extra secondary branch for each new modality and fusing it in parallel into the camera
branch. We demonstrate this possibility in Section 4 by applying HRFuser to the STF dataset [2] and
utilizing a gated camera as fourth sensor, besides the more common lidar and radar sensors.

The HRFuser backbone illustrated in Fig. 1 is followed by a neck which forms a feature pyramid
by concatenating the up-sampled outputs of all streams [76]. This neck is in turn followed by a
Cascade R-CNN head [5], following the widely used two-stage detector architecture. Cascade R-CNN
introduces a sequence of detectors trained with increasing Intersection over Union (IoU) thresholds
setting a strong baseline for any given backbone.

Multi-window cross-attention. We propose a novel multi-window cross-attention (MWCA) block
to fuse multiple modalities in parallel by applying multi-head cross-attention (CA) on multiple
non-overlapping local windows. MWCA extends the local-window self-attention proposed by Yuan
et al. [88] to the context of multi-modal fusion. In particular, it limits the spatial extent of the attention
to small windows, thereby reducing the computational cost of each attention operation and allowing
to apply this operation to high-resolution feature maps. For each window, this results in K2 tokens
with dimensionalityD, depending on the number of channels of the stream we fuse into. Compared to
self-attention, CA fuses two modalities by applying attention with queries from the primary modality
α and keys and values from the secondary modality β.

More formally, we partition the input feature map X of our primary modality α into a grid of p non-

overlapping spatial windows: Xα Split−−→ {Xα
1 , X

α
2 , . . . , X

α
P }. The exact same partition is done for

the feature maps Yβ of all secondary modalities β ∈ {1, . . . , M}: Yβ Split−−→ {Yβ
1 , Y

β
2 , . . . , Y

β
P }.

All input feature maps are vectorized across the spacial dimensions and have the same shape X,Y ∈
RN×D, where N denotes the total number of spatial positions and D denotes the number of channels,
and each window is of size K×K.

A local transformer applies parallel CA to each corresponding set of windows independently. Parallel
CA on the set of p-th windows is formulated as follows:

MultiHead(Xα
p ,Y

β
p ) = Concat[head(Xα

p ,Y
β
p )1, . . . , head(X

α
p ,Y

β
p )H ] ∈ RK

2×D, (1)

head(Xα
p ,Y

β
p )h = Softmax

[
(Xα

pW
h,β
q )(Yβ

pW
h,β
k )T√

D/H

]
Yβ
pW

h,β
v ∈ RK

2×D
H , (2)

X̂p = Xα
p +

M∑
β=1

[
Yβ
p +MultiHead(Xα

p ,Y
β
p )W

β
o

]
∈ RK

2×D, (3)

Cross-
Attention

Cross-
Attention

βα α β

Figure 3: Our parallel cross-
attention block for the case where
two additional sensors besides the
camera are used. α denotes the pri-
mary modality (camera) and β de-
notes the secondary modalities.

where Wβ
o ∈ RD×D and Wh,β

q , Wh,β
k , Wh,β

v ∈ RD×D
H for

h ∈ {1, . . . , H} are weight matrices implemented by train-
able linear projections. H denotes the number of heads and
X̂p denotes the output of the parallel CA for the set of p-th
windows.

We arrange the outputs from all P sets of windows back into a
single feature map to get the final output of MWCA, XMWCA:{

X̂1, X̂2, . . . , X̂P

}
Merge−−−→ XMWCA. (4)

Fig. 2 illustrates how we split up the input maps for each modal-
ity into non-overlapping windows and apply parallel CA across
modalities within each window independently, before merging
the resulting outputs back into a single feature map. Whereby
Fig. 3 illustrates parallel CA in more detail. To allow informa-
tion exchange between the non-overlapping windows, we add
a feed-forward network including 3×3 depth-wise convolution
similar to the HRFormer block [88].
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Other architectural features. Before feeding inputs to HRFuser, we project all secondary modali-
ties onto the image plane of the camera, using perspective projection as proposed in [93]. This yields
an exact spatial correspondence between the input feature maps of different modalities, ensuring con-
sistency among corresponding windows from different modalities in MWCA. All branches start with
a CNN reducing the resolution by a factor of 4, followed by 4 stages consisting of multiple identical
blocks. For all branches, we use basic bottleneck blocks to build the first stage [76] and transformer
blocks to build all subsequent stages and streams [88]. The parameters of each MWCA transformer
(H , D) are equal to the parameters of the subsequent transformer blocks of the respective stream. We
include additional implementation details on different versions of HRFuser in Appendix A.

4 Experiments

We organize this section as follows. We first present our experimental setup for multi-sensor 2D object
detection, i.e. the implementation details for our method on the two examined datasets, nuScenes [4]
and STF [2]. We then compare our method to the state of the art in multi-sensor fusion and conduct
detailed ablation studies on the fusion mechanism and the utility of including additional sensors.

4.1 Experimental Setup

In all our experiments, we use a two-stage HRFuser network for 2D detection. The backbone of the
network is structured as per Section 3 and its outputs are used to feed a Cascade R-CNN [5] head
which serves as the second stage of the network. We test a tiny (T), small (S) and base (B) version of
HRFuser and implement them using the mmdetection framework [9].

HRFuser is trained on nuScenes for 12 epochs on batches of size 12 using AdamW [41] with a base
learning rate of 0.0001, weight decay of 0.01 and betas of 0.9 and 0.999. We apply a learning rate
warm-up for 500 iterations with a ratio of 0.001 and reduce the learning rate by a factor of 10 at
epochs 8 and 11. The training settings are the same for STF, except that the total epochs are 60, the
base learning rate is 0.001 and the learning rate reduction is done at epochs 40 and 50. To accelerate
learning of features from the less rich modalities such as radar, we randomly set inputs to zero during
training [2, 48] with a chance of 20% for nuScenes and 50% for STF.

NuScenes [4] is a large-scale dataset (1.4M images) providing 3D data and annotations of a full
autonomous vehicle sensor suite including 6 cameras, 1 lidar and 5 radars. We use the 360-degree
data of all 6 cameras. We follow [48] for basic sensor pre-processing, creating radar images with
range, radar cross-section (RCS) and velocity over ground, and lidar images with range, intensity
and height. Compared to [48], we do not accumulate radar data across time or filter them in any way.
Unless otherwise stated, we use a subset of 10 nuScenes object classes following the mmdet3d [14]
framework: car, truck, trailer, bus, construction vehicle, bicycle, motorcycle, pedestrian, traffic cone,
and barrier. Similar to [46, 48], we project the 3D annotations onto the image plane, keeping only
boxes that are at least 40% visible. We train on the official training set and evaluate on the validation
set, due to the lack of a public test set. Evaluation uses the 2D COCO evaluation metrics [38].

STF [2] is a multi-modal driving dataset with 100k 2D and 3D bounding boxes. The dataset provides
camera images, lidar and radar points, and gated camera images, captured under a variety of normal
and adverse weather conditions. The gated camera in STF captures images in the NIR band at 808nm
with a time-synchronized flood-lit flash laser source. Following the standard dataset splits in [2], we
train only on clear-weather data and use adverse-condition data only for evaluation. We follow [2] for
basic sensor pre-processing, obtaining 1248×360 images with depth, intensity and height for lidar
and depth and velocity over ground for radar. Note that radar is missing the RCS channel, since this
is not published with the rest of STF. We train on the common KITTI classes car, pedestrian, and
cyclist, and evaluate only on car using the KITTI evaluation framework [24], similar to [2].

4.2 Comparison to the State of the Art

We compare multiple versions of HRFuser to state-of-the-art camera-only and multi-modal methods
on nuScenes in Table 1. All versions of HRFuser, based either on HRFormer or HRNet, outperform
substantially all camera-only models. In particular, the fully-fledged HRFuser-B improves AP by
5.0% compared to HRFormer-B and demonstrates analogous improvements in all other metrics.
Moreover, all versions of HRFuser beat the radar-camera fusion method of [46] by a large margin
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Table 1: Comparison of 2D detection methods on nuScenes evaluated on 6 classes: car, truck, bus,
bicycle, motorcycle and pedestrian. The first group of rows shows results on the standard nuScenes
validation set. The second group of rows shows results using the split from [48] for training and
evaluation. All entries including the word “HRFuser” constitute versions of our method and state the
camera-only model upon which they build in parentheses. All HR* methods use a Cascade R-CNN
head and have undergone hyper-parameter tuning. C: camera, R: radar, L: lidar, (*): results taken
directly from the respective paper.

Method Modalities AP AP0.5 AP0.75 APm APl AR

HRNetV2p-w18 [76] C 32.4 56.6 33.5 21.0 43.7 43.4
HRFormer-T [88] C 34.3 59.6 35.6 23.2 45.5 43.9
HRFormer-B [88] C 33.8 59.4 34.6 22.4 45.1 43.1
Radar-Camera Fusion[46]* CR 35.6 60.5 37.4 - - 42.1
HRFuser-w18 (HRNet) CRL 36.7 63.1 38.1 24.9 48.6 47.0
HRFuser-T (HRFormer) CRL 38.3 65.3 40.1 26.8 49.9 48.3
HRFuser-S (HRFormer) CRL 38.5 65.6 40.2 27.2 49.9 48.1
HRFuser-B (HRFormer) CRL 38.8 66.0 41.0 26.9 50.7 48.6

CRF-Net [48] CR 27.0 42.7 29.0 22.7 35.6 31.3
HRFuser-T (HRFormer) CRL 34.6 62.0 34.7 26.0 48.5 45.8

Table 2: Comparison of 2D detection methods on the STF test sets. HRFuser-T builds upon HRFormer.
(*): results taken directly from the respective paper.

Weather clear light fog dense fog snow/rain
Difficulty easy mod. hard easy mod. hard easy mod. hard easy mod. hard

Deep Entropy Fusion [2]* 89.84 85.57 79.46 90.54 87.99 84.90 87.68 81.49 76.69 88.99 83.71 77.85
HRFuser-T 90.15 87.10 79.48 90.60 89.34 86.50 87.93 80.27 78.21 90.05 85.35 78.09

on the standard nuScenes split, showcasing the advantage of leveraging multiple complementary
sensors—including lidar—with a single, modular architecture as ours over just using radar and
camera. A substantial performance gain is also observed over CRF-Net [48] on the nuScenes split
that this work employs and using only the front camera for evaluation.

In Table 2, we compare our HRFuser-T to the fusion method of [2] on STF. Our model clearly
outperforms [2] across all weather conditions, showing in particular significant improvements in
the cases of light fog and dense fog, in which it beats [2] by 1.6% and 1.5% on the “hard” setting,
respectively. This finding showcases the ability of our model to generalize well to previously unseen,
adverse conditions, which degrade the quality of the readings for some of the sensors, such as the
camera and the lidar, by properly attending to the features from the sensors that are more robust to
these conditions, such as the radar and the gated camera.

Fusing multiple modalities does not only allow to build more robust features, but also helps against
overfitting. This is demonstrated in Table 1, where HRFormer-T outperforms the significantly larger
HRFormer-B by 0.5% in AP, but HRFuser-B outperforms the smaller HRFuser-T by 0.5% in AP.

4.3 Ablation Studies

Fusion mechanism. Table 3 presents an ablation study on nuScenes regarding the fusion mech-
anism which is used in HRFuser, in order to verify the benefit of our MWCA fusion block. The
reference is the camera-only HRFormer-T baseline. Early fusion—which utilizes a concatenated
8-channel input without any additional changes to HRFormer-T—achieves only a slight 1.2% im-
provement in AP over the camera-only HRFormer-T. Using our proposed multi-resolution fusion
design for our HRFuser, but with a simplified addition-based fusion block instead of MWCA, already
yields a large 4.3% improvement in AP over the camera-only baseline. Replacing addition with our
proposed MWCA further improves performance consistently across all metrics, showcasing the utility
of attention-based fusion for detection. Limiting the fusion to only the high-resolution stream of the
camera branch yields a 1.0% reduction in AP, highlighting the importance of multi-resolution fusion.
We compare our MWCA to an alternative attention mechanism via the state-of-the-art transformer
PVTv2 [79], adapted for cross-attention (PVTv2-CA). For implementation details we refer the reader
to Appendix C. Our MWCA fusion outperforms PVTv2-CA and the linear version PVTv2-Li-CA
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Table 3: Ablations of fusion strategies on nuScenes. Early: early fusion by direct concatenation of all
3 input modalities, Addition: fusion at multiple levels and resolutions between secondary branches
and camera branch via an addition block, MWCA: our MWCA fusion block, MWCAonlyHighRes: our
fusion block included only in the highest resolution of the camera branch.

Method (Fusion Type) AP AP0.5 AP0.75 APm APl AR

HRFormer-T 26.5 49.9 25.3 18.2 37.0 26.8
HRFormer-T (Early) 27.7 51.6 26.5 18.4 38.8 38.9
HRFuser-T (Addition) 30.8 56.4 30.5 22.0 41.9 42.0
HRFuser-T (MWCAonlyHighRes) 30.5 56.1 29.7 21.8 41.4 41.5
HRFuser-T (MWCA) 31.5 57.4 31.1 22.7 42.5 42.3

HRFuser-T (PVTv2-CA [79]) 29.8 54.3 29.4 20.1 41.3 40.9
HRFuser-T (PVTv2-Li-CA [79]) 29.5 54.2 28.6 19.9 41.0 40.6

Table 4: Ablations of input modalities for HRFuser-T on the STF test sets. Results are in AP.

Lidar Gated clear light fog dense fog snow/rain
RGB Radar easy mod. hard easy mod. hard easy mod. hard easy mod. hard

X × × × 79.81 62.48 53.68 80.84 63.07 62.08 71.84 62.69 54.05 78.68 61.19 52.72

X X × × 89.91 85.16 78.68 90.47 88.44 80.55 87.39 78.32 71.13 89.21 79.88 76.19
X X X × 89.88 85.17 78.64 90.46 87.87 80.51 88.10 80.11 72.01 89.40 80.02 76.11
X X × X 90.14 87.18 79.44 90.62 89.17 80.95 88.56 80.33 72.21 90.09 85.32 78.09
X × X X 89.87 85.13 78.55 90.64 88.37 80.52 88.97 80.86 78.64 89.85 80.33 76.54
X X X X 90.15 87.10 79.48 90.60 89.34 86.50 87.93 80.27 78.21 90.05 85.35 78.09

by 1.7% and 2.0% respectively, demonstrating the advantage of our local MWCA attention, when
trained on a mid-sized dataset such as nuScenes.

Modalities. Table 5 investigates the contribution of each modality by training HRFuser-T with
different subsets of input modalities. Adding radar to HRFuser-T yields an improvement of 1.4%
over using only images. The improvement is larger (4.7%) when adding lidar, and is maximized
(5.0%) when combining all 3 sensors, showing the ability of our MWCA fusion to attend to the useful
part of extra modalities while ignoring noisy content in them. This is in contrast to HRFormer-T
(Early Fusion), where the combination of camera and lidar performs 0.5% better than combining all
3 modalities, but still only 1.7% better than the camera-only baseline.

Table 5: Ablations of input modalities on
nuScenes. Results are in AP. EF: early
fusion, C: camera, R: radar, L: lidar.

Modalities HRFuser-T HRFormer-T(EF)

C 26.5 26.5

CR 27.9 25.7
CL 31.2 28.2
CRL 31.5 27.7

We examine the effect of different input modalities on STF
in Table 4. A combination of all four modalities yields the
overall best performance, except for the case of dense fog,
where a combination of camera, radar and gated camera
performs best. This is in line with the findings of [2] and
is due to the severe impact of fog on the lidar, as the laser
pulse has to travel to the object and back, which squares
the attenuation due to the presence of fog. By contrast,
radar and gated camera are more robust to fog. Note that
all models in this experiment are trained solely on clear-
weather data, so the effect of fog on lidar which is present
in the foggy test sets is unseen to them. Thus, the network
cannot learn how to deal with this adverse condition, as it did with the radar noise on nuScenes.
Another finding is that adding the gated camera on top of lidar and radar provides a consistent
improvement across conditions, evidencing the informativeness of the high-resolution features from
this sensor, which is generally robust to adverse conditions.

4.4 Qualitative Results

Fig. 4 presents detection results on nuScenes of the best-performing HRFormer (HRFormer-T) and
HRFuser (HRFuser-B). HRFuser detects the partially occluded pedestrian in the first example, which
is missed by HRFormer. The second example demonstrates a failure case where both methods do
not identify the cars in the background. The last example displays a very difficult dark input which
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Figure 4: Qualitative detection results on nuScenes. From left to right: image with ground-truth
annotation, prediction of HRFormer, prediction of HRFuser. Best viewed on a screen at full zoom.

Figure 5: Qualitative detection results on STF. From left to right: image with ground-truth annotation,
prediction of HRFormer, prediction of HRFuser. Best viewed on a screen at full zoom.

provides minimal queues from the camera. Despite this, HRFuser correctly detects both cars of the
scene, showcasing its ability to leverage additional complementary sensors for object detection.

The respective qualitative results on STF in Fig. 5 demonstrate that our proposed method is signifi-
cantly more resilient to adverse conditions which are not encountered during training than a strong
camera-only model. Using multiple modalities allows HRFuser to extract features that incorporate
information from additional modalities and are thus more robust to changes in weather or illumination
and resulting changes in the appearance of objects. The camera-only HRFormer struggles particularly
for detecting objects at a large distance. This can be attributed to the cumulative effect of atmospheric
phenomena such as fog and snow on the appearance of objects as their distance from the camera
increases. The relatively good performance of HRFuser demonstrates its greater generalization
capability thanks to learning robust fused features from multiple modalities. Note e.g. the correct
detection by HRFuser of the two distant cars which are obscured by fog in the second example,
which are both missed by HRFormer. Of course, HRFuser misses few distant objects in the other two
examples, but still performs significantly better than HRFormer.

5 Conclusion

We have proposed HRFuser, a multi-modal, multi-resolution and multi-level fusion architecture. In
particular, we have extended the camera-only HRNet and HRFormer models to multiple modalities
by introducing additional high-resolution branches for the extra modalities besides the camera.
HRFuser repeatedly fuses the extra modalities into the multi-resolution camera branch with a novel
transformer that applies multi-window cross attention and enables efficient learning of multi-modal
features without requiring very large datasets. We have evaluated HRFuser on nuScenes and STF and
demonstrated its state-of-the-art performance in 2D object detection across a wide range of scenes
and conditions. Our architecture is generic and scales straightforwardly to an arbitrary number of
sensors, thus being of particular relevance for practical multi-modal settings in autonomous cars and
robots, which usually involve a diverse set of sensors.
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A Additional Architectural Details

The camera branch follows HRFormer [88], where each stage introduces an additional stream with
halved resolution. The single-resolution branches of the secondary modalities are equivalent to the
high-resolution stream from HRFormer. The network starts with a CNN reducing the resolution by
four with respect to the input, followed by 4 stages consisting of multiple identical blocks. For all
branches, we use basic bottleneck blocks to build the first stage [76] and transformer blocks to build
all subsequent stages and streams [88]. A transformer block consists of a local-window self-attention
on 7× 7 windows followed by an feed-forward network with 3× 3 depth-wise convolution and an
expansion ratio of 4. The additional parameters of the transformer blocks for different versions of
HRFuser are displayed in Table 6, where Ds and Hs apply to all blocks and MWCA modules within
a given stream.
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Table 6: Parameters of the tiny (T), small (S), and base (B) versions of HRFuser. Ds denotes the num-
ber of channels and Hs the number of heads, with s ∈ {1, . . . , 4} denoting the corresponding stream.
For the camera branch α, the values are displayed as: (D1, D2, D3, D4) and (H1, H2, H3, H4). The
secondary branches β only have one stream: D1 and H1.

Model Branch #channels (Ds) #heads (Hs)

HRFuser-T α (18, 36, 72, 144) (1, 2, 4, 8)
β 18 1

HRFuser-S α (32, 64, 128, 256) (1, 2, 4, 8)
β 32 1

HRFuser-B α (78, 156, 312, 624) (2, 4, 8, 16)
β 78 2

Figure 6: Example inputs to HRFuser from nuScenes. From left to right: RGB image, projected lidar
points, projected radar points. The radar and lidar projections are highlighted and enlarged for better
visualization. Best viewed on a screen at full zoom.

B Additional Details on the Experimental Setup

NuScenes [4]. Similar to [48], we resize the recorded 1600×900 images to 640×360 and project the
radar points as 3m-high pillars onto the image plane. This creates a 640×360 projected radar image
with 3 channels: range, radar cross-section (RCS) and velocity over ground. Compared to [48], we
do not accumulate radar data across time or filter them in any way. The lidar points are projected onto
the image plane, yielding a 640×360 image with 3 channels: range, intensity and height. Example
inputs are displayed in Fig. 6. All input channels are normalized over the entire dataset. We follow
the mmdet3d [14] framework and use a set of 10 classes for training and evaluation, which are defined
based on the original nuScenes classes as shown in Table 7. We run the training of HRFuser-T on 4
Nvidia RTX 2080 TI GPUs with a batch size of 12.

Seeing Through Fog [2] (STF). The dataset provides 1920×1024 camera images, lidar and radar
points, and 1280×720 gated camera images, captured under a variety of normal and adverse weather
conditions. We process the inputs in the same way as [2]. The camera is cropped to a 1248×360
window around the center of the gated camera. The image from the gated camera is transformed into
the image plane of the camera using a homography mapping as in [2]. We also crop the annotated 2D
bounding boxes to the aforementioned 1248×360 window, discarding boxes for which more than
90% of the original box area lies out of the crop. The gated camera is cropped to the same window.
The strongest lidar return and radar are projected onto the image plane. As the RCS data are not
publicly available, we use only 2 radar channels: depth and velocity over ground. However, RCS data
were used for training the method of [2], so comparing [2] to our method is not fully fair. Example
inputs are displayed in Fig. 7. We train on 3 classes defined as shown in Table 8, and evaluate only
on the car class, using the KITTI evaluation framework [24]. We run the training of HRFuser-T on 4
Nvidia Titan RTX GPUs with a batch size of 12.

C Additional Details on Ablations

PVTv2 adaptations. We create the alternative attention mechanisms PVTv2-CA and PVTv2-Li-
CA which are presented in Table 4 of the main paper by adapting the state-of-the-art transformer

16



NuScenes Class Mapped Class

vehicle.car car
vehicle.truck truck
vehicle.trailer trailer

vehicle.bus.bendy bus
vehicle.bus.rigid bus

vehicle.construction construction_vehicle
vehicle.bicycle bicycle

vehicle.motorcycle motorcycle
human.pedestrian.child pedestrian
human.pedestrian.adult pedestrian

human.pedestrian.construction_worker pedestrian
human.pedestrian.police_officer pedestrian

movable_object.trafficcone traffic_cone
movable_object.barrier barrier

Table 7: Mapping from original nuScenes classes to our default set of training and evaluation
classes [14].

Figure 7: Example inputs to HRFuser from STF. From left to right: RGB image, warped gated camera
image, projected lidar points, projected radar points. The radar and lidar projections are highlighted
and enlarged for better visualization. Best viewed on a screen at full zoom.

STF Class Mapped Class

PassengerCar Car
Pedestrian Pedestrian

RidableVehicle Cyclist
LargeVehicle DontCare

Vehicle DontCare
DontCare DontCare

Table 8: Mapping from original STF classes to the set of classes we use for training.
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Table 9: Additional ablation of MWCA on nuScenes. MWCA: our MWCA fusion block,
MWCAw/o skip: our fusion block without skip connections for secondary modalities in the paral-
lel CA block.

Method AP AP0.5 AP0.75 APm APl AR

HRFuser-T (MWCAw/o skip) 30.9 56.6 30.0 22.1 41.9 41.9
HRFuser-T (MWCA) 31.5 57.4 31.1 22.7 42.5 42.3

Table 10: Additional comparison on nuScenes of CRF-Net [48] against a radar-only HRFuser, both
evaluated on 6 classes: car, truck, bus, bicycle, motorcycle and pedestrian, using the split from [48]
for training and evaluation. C: camera, R: radar.

Method Modalities AP AP0.5 AP0.75 APm APl AR

CRF-Net [48] CR 27.0 42.7 29.0 22.7 35.6 31.3
HRFuser-Tradar (HRFormer) CR 31.9 58.2 31.6 23.9 45.2 42.6

PVTv2 [79]. We adapt its spatial reduction attention module for cross-attention by entering the
query from our primary branch and the key and value from our secondary branch, and pass this into
their proposed convolutional feed-forward module employing depth-wise convolution. In contrast
to PVTv2, we do not incorporate the overlapping patch embedding, in order to keep the spacial
dimensions of the feature maps unchanged. No pre-training is applied when training PVTv2, which
is also the case for all other presented methods.

Parallel cross-attention skip connection. To examine the benefit of the skip connections for the
secondary modalities—which are involved in our parallel CA block as shown in Fig. 3 of the main
paper—we remove these skip connections (blue and orange in Fig. 3) and observe in Table 9 a drop
of 0.6% in AP relative to our default MWCA. This finding indicates that skip connections from all
modalities are beneficial for cross-attention, as it allows the network to attend to details without
having to learn the identity function.

D HRFuser with an HRNet-based Backbone

Table 1 of the main paper also includes HRFuser-w18 (HRNet), a variant of HRFuser built upon
HRNetV2-w18 [76]. In this variant, we keep the same transformer-based MWCA fusion mechanism
with the same parameters as for the default, HRFormer-based HRFuser. However, the camera branch
of this variant, in which our MWCA fusion blocks are inserted, resembles HRNetV2p-w18 and
follows the HRNet architecture using "Basic" blocks introduced in [76]. The secondary modality
branches we introduce follow analogously the design of the highest-resolution branch of HRNetV2p-
w18. Table 1 of the main paper shows a 4.3% improvement in AP of our HRFuser-w18 over the
camera-only HRNetV2-w18, which demonstrates the generality of the components introduced in
HRFuser, as they benefit various dense prediction networks such as HRNet and HRFormer.

E Comparison to CRF-Net Using Only Radar

In Table 10, we compare on nuScenes the CRF-Net [48] to a version of HRFuser which only uses radar
besides the camera, i.e., omitting lidar. This comparison serves in investigating whether HRFuser
can leverage information from the radar better than the competing state-of-the-art CRF-Net, which
focuses explicitly on the radar modality. Indeed, HRFuser-Tradar yields a 4.9% improvement in AP
over CRF-Net, which verifies that HRFuser achieves state-of-the-art results on nuScenes even when
only considering radar as a secondary modality.

F Additional Qualitative Results

We show further qualitative results for nuScenes in Fig. 8 with exemplary failure cases in Fig.9 and
for STF in Fig. 10 with exemplary failure cases in Fig.11.
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Figure 8: Further qualitative detection results on nuScenes. From left to right: image with ground-
truth annotation, prediction of HRFormer, prediction of HRFuser. Best viewed on a screen at full
zoom.

Figure 9: Further qualitative detection results on nuScenes with exemplary failure cases of HRFuser.
From left to right: image with ground-truth annotation, prediction of HRFormer, prediction of
HRFuser. Best viewed on a screen at full zoom.

Figure 10: Further qualitative detection results on STF. From left to right: image with ground-truth
annotation, prediction of HRFormer, prediction of HRFuser. Best viewed on a screen at full zoom.
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Figure 11: Further qualitative detection results on STF with exemplary failure cases of HRFuser.
From left to right: image with ground-truth annotation, prediction of HRFormer, prediction of
HRFuser. Best viewed on a screen at full zoom.
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