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Abstract

The EDGE MULTICUT problem is a classical cut problem where given an undirected
graph G, a set of pairs of vertices P, and a budget k, the goal is to determine if there is
a set S of at most k edges such that for each (s,t) € P, G — S has no path from s to t.
EDGE MULTICUT has been relatively recently shown to be fixed-parameter tractable (FPT),
parameterized by k, by Marx and Razgon [SICOMP 2014|, and independently by Bousquet
et al. [SICOMP 2018]. In the weighted version of the problem, called WEIGHTED EDGE
MULTICUT one is additionally given a weight function wt : F(G) — N and a weight bound
w, and the goal is to determine if there is a solution of size at most k£ and weight at most
w. Both the FPT algorithms for EDGE MULTICUT by Marx et al. and Bousquet et al. fail
to generalize to the weighted setting. In fact, the weighted problem is non-trivial even on
trees and determining whether WEIGHTED EDGE MULTICUT on trees is FPT was explicitly
posed as an open problem by Bousquet et al. [STACS 2009]. In this article, we answer this
question positively by designing an algorithm which uses a very recent result by Kim et al.
[STOC 2022] about directed flow augmentation as subroutine.

We also study a variant of this problem where there is no bound on the size of the
solution, but the parameter is a structural property of the input, for example, the number
of leaves of the tree. We strengthen our results by stating them for the more general vertex
deletion version.

1 Introduction

EDGE MULTICUT is a generalization of the classical (s,¢)-CUT problem where given a graph G, a
set of terminal pairs P = {(s1,%1),..., (sp,tp)}, and an integer k, the goal is to determine if there
exists a set of at most k edges whose deletion disconnects s; from ¢;, for each i € [p]. Such a set is
called a P-multicut in G. The case p = 1 corresponds to the classical (s,¢)-CUT problem. EDGE
MULTICUT is polynomial time solvable for p < 2 23] and is NP-hard even for p = 3 [8]. From
the parameterized complexity point of view, it was a long-standing open question to determine
if the problem is fixed-parameter tractable (FPT) parameterized by the solution size. This
question was resolved independently by Marx and Razgon [22| and Bousquet et al. [2], proving
that the problem is FPT. Both algorithms extensively use the notion of important separators, a
technique introduced earlier by Marx [21]. Bousquet et al. [2] additionally use several problem-
specific observations and arguments about the structure of multicut instances, while Marx and
Razgon 22| formulated the technique of random sampling of important separators, which found
further applications for many other problems [4, 5, 6, 18, 19, 20].

Weighted Multicut. One drawback of the algorithms using important separators is that
they are essentially based on a replacement argument: if a subset X of the solution satisfies



some property, then this technique allows us to find a set X’ such that X can be replaced
with X', thereby making progress towards fully identifying a solution. This local replacement
argument inherently fails if the overall solution is also required to satisfy additional properties,
such as minimizing the overall weight, since replacing X with X’ may violate these additional
constraints. Thus, the ideas from the algorithms of Marx and Razgon [22| and Bousquet et
al. [2] fail to generalize to the edge deletion version of WEIGHTED MuLTICUT (WMC) where we
are, additionally, given a weight function wt : F(G) — N and an integer w, and the goal is to
determine if there exists a P-multicut in G of size at most k and weight at most w.

(Weighted) Multicut on Trees. EDGE MULTICUT remains NP-hard on trees [11] but can
be solved in (’)(2’“ - n)-time, where n is the number of vertices in the input tree, using an easy
branching algorithm [12]: for the “deepest” (s;,t;)-path branch on the deletion of the two edges
on this path which are incident to the lowest common ancestor of s; and ;. A series of work shows
improvement over this simple running time [3, 14|, and also the problem admits a polynomial
kernel [1, 3|. Since the algorithmic approaches for EDGE MULTICUT on trees are based on
greedily finding partial solutions, they do not generalize to the weighted setting. In fact, the
question whether WMC on trees is FPT (parameterized by the solution size), was explicitly
posed as an open problem by Bousquet et al. [1]. In this article, we answer this question in the
positive.

Flow Augmentation. As mentioned earlier, most of the available techniques used to design
FPT algorithms, especially for cut problems, do not work in the weighted setting. Kim et al.
[15] recently developed the technique of flow augmentation in directed graphs. This technique
offers a new perspective to design FPT algorithms for cut problems and positively settles the
parameterized complexity of some long standing open problems, such as WEIGHTED (s, t)-CUT,
WEIGHTED DIRECTED FEEDBACK VERTEX SET and WEIGHTED DIGRAPH PAIrR CUT.

Our main goal is to use this technique for the underlying core difficulty in wMC on trees.
More precisely, we do not use the directed flow augmentation technique as such but we crucially
use the FPT algorithm for WEIGHTED DIGRAPH PAIR CUT (WDPC) which is one important
example of the use of this technique. The WDPC problem is defined as follows [15, 17]: given a
directed graph G, a source vertex r € V(G), terminal pairs P = {(s1,%1),..., (sp,tp)}, a weight
function wt : E(G) — N, a positive integer k, the goal is to determine if there exists a set S of at
most k arcs of G such that wt(S) is minimum!, and for each i € [p], if G — S has a path from r to
s;, then G — S has no path from r to ¢;. Such a set is called a P-dpc with respect to r in G. Kim
et al. [15, Section 6.1ff] showed that WDPC can be solved in randomized 2°*") . n®M_time.
The randomized running time of this algorithm is an artifact of the use of the directed flow
augmentation procedure which is randomized. Apart from this step, all the other steps of the
algorithm are deterministic. Our basic observation is that the algorithm for WDPC can be used
to solve a non-trivial base case of WMC in trees: if there is a vertex r € V(T') such that all
the terminal pair paths of P pass through r, then S is a P-multicut of T' if and only if for all
(s,t) € P, S intersects the (r, s)-path or the (r,¢)-path. This is equivalent to saying that S is a
P-dpc for T (in WDPC we interpret each edge of T to be directed away from r).2

Edge Deletion vs. Vertex Deletion. In the weighted setting, the edge deletion version
of WMC (on trees) reduces to its vertex deletion version (on trees), by subdividing each edge
and assigning the weight of the original edge to the newly added vertex corresponding to the

'Though the formal description of the problem in [15] asks for a solution S with wt(S) < w, the authors
remark that the algorithm in fact finds a minimum weight solution.

2When dealing with undirected graphs, the flow augmentation restricted to undirected graphs given by Kim
et al. [16] may suffice to solve WDPC on undirected graphs. As this problem is not mentioned explicitly in [16],
we stick to the directed setting.



edge, and by setting the weights of the original vertices to oo (or larger than the weight budget
parameter). Note that such a reduction does not work in the unweighted setting as the vertex
deletion version of MULTICUT in trees is polynomial time solvable [7].

Main Result. From now on we only study the vertex deletion version of WMC on trees which,
as mentioned above, is more general than the edge deletion version. It is formally defined below.

WEIGHTED MULTICUT ON TREE (WMC-TREE)

Input: A tree T, a collection of terminal pairs P C V(T) x V(T'), a vertex weight function
wt : V(T) — N, and positive integers w and k.

Question: Does there exist S C V(T') such that |S| < k, wt(S) < w, and S intersects the
unique (s, t)-path in 7', for each (s,t) € P?

We set wt(S) = > cgwt(v) for the ease of notation. We use the FPT algorithm for wWDPC
(restricted to trees) [15, Section 6.1ff] as a subroutine to prove our main result, namely that
WMC-TREE is FPT.

Theorem 1.1. WMC-TREE can be solved in randomized 2°*") . n®W) time.

Structural Parameterizations. In scenarios where the size of the solution is large, it might
be desired to drop the constraint on the size of the solution altogether, and seek to parameterize
the problem with some structural parameter of the input. In this setting, we first consider the
problem parameterized by the number of leaves of the tree and then extend this result to a
more general parameter that takes into account the number of requests (terminal pair paths)
passing through a vertex. Technically, we solve a different problem in this setting, where we
only have a uni-objective function seeking to minimize the weight of the solution (in contrast to
the bi-objective function in the case of WMC-TREE). This problem is formally defined below.

UNCONSTRAINED WEIGHTED MULTICUT ON TREE (UWMC-TREE)

Input: A tree T, a collection of terminal pairs P C V(T') x V(T'), a vertex weight function
wt : V(T') — N and a positive integer w.

Question: Does there exist S C V(T') such that wt(S) < w and S intersects the unique
(s,t)-path in T, for each (s,t) € P?

UWMUC is another generalization of the vertex deletion variant of MuLTICUT. The former
problem has been studied on trees in the parameterized complexity setting with respect to certain
structural parameters. In particular, Guo et al. [13, Theorem 9] showed that UWMC-TREE is
FPT when the parameter is the maximum number of (s,¢)-paths that pass through any vertex
of the input. We call this parameter the request degree d of an instance. Guo et al. [13] gave an
algorithm for UWMC-TREE that runs in time O(3¢ - n).

We first study UwMC-TREE when the parameter is the number of leaves of the tree. The
problem is polynomial time solvable on paths (Lemma 4.1) but becomes NP-hard on (general)
trees. Thus, the number of leaves appears to be a natural parameter which could explain the
contrast between the above two results. Formally, we prove the following theorem.

Theorem 1.2. UWMOC-TREE can be solved in 20(¢*1080) . nO(1) time, where £ is the number of
leaves in the input tree.

At the core of the algorithm for Theorem 1.2, we again solve instances of WDPC on trees,
but, in this case, these instances have a special structure: they are subdivided stars (i.e. trees
with at most one vertex of degree at least 3). We show that these instances do not require the use
of the flow augmentation technique. In fact, these instances correspond to the arcless instances
of WDPC in [15, Section 6.2.2] defined roughly as follows: the input graph comprises of two
designated vertices s,t with internally vertex-disjoint paths from s to ¢, and the solution picks
exactly one arc from each of these internally vertex-disjoint paths. Since the arcless instances



can be solved faster than the general instances of WDPC and do not require the usage of the
flow augmentation technique [15, Lemma 6.12|, the algorithm for UWMC-TREE is deterministic
and has a better running time.

As a final result, we use the algorithm of Theorem 1.2 as a subroutine to give an FPT
algorithm for UWMC-TREE that generalizes the result of Guo et al. [13, Theorem 9| and Theo-
rem 1.2. To do so, we define a new parameter that comprises both the request degree and the
number of leaves of the input instance. An instance (T, P,wt,w) is (d, q)-light if the following
hold. Let Y be the set of vertices through which at most d terminal pair paths of P pass. Such
vertices are called d-light vertices. Then for each connected component C of T'—Y ', the number
of leaves of T'[N[C]] must be at most g (see Figure 6 for an illustration of the definition). We
observe in Section 5 that it is crucial to consider the neighborhood of the component, as the
problem is otherwise already NP-hard for d = 3 and ¢ = 2. We design a dynamic programming
algorithm that stores partial solutions for every d-light vertex using the algorithm of Theorem 1.2
as a subroutine to solve the problem on (d, ¢)-light instances.

Theorem 1.3. UWMC-TREE can be solved in 3% - 2% . 20(¢*1089) . nOW) time on (d, q)-light
tmstances.

Observe that an instance with a tree on £ leaves is a (0, £)-light instance, and an instance with
the request degree at most d is a (d,0)-light instance. Thus, Theorem 1.3 implies Theorem 1.2
and Theorem 9 in [13], up to the polynomial factors in the running time.

Our Methods. Our algorithms for Theorems 1.1 and 1.2, are crucially based on the observa-
tion mentioned earlier: if every terminal path goes through a root r, then the problem reduces
to WDPC. In the vertex deletion version, the vertex P-multicut in a tree can be found using the
algorithm for WDPC, by assigning the weight of a vertex to the unique edge connecting it to its
parent in T'. The general idea for both our algorithms is to design a branching algorithm that
effectively solves instances of the above-mentioned type to reduce the measure in each branch.
Let T be a rooted tree. The goal is to identify two vertices x,y € V(T') where z is a descen-
dant of y, and branch on the possibility of a hypothetical solution intersecting the (y,x)-path.
If the solution does not intersect the (y,x)-path, then contracting the edges of the (y,z)-path
and making the resulting vertex undeletable, is a safe operation. If the solution intersects the
(y, z)-path, then for each vertex v on the (y,z)-path, we increase the weight of v by adding to
it the minimum weight of a solution in T, — {v} (where T, is the subtree of T rooted at V'), and
then forget about the terminal pair paths in T,, — {v}. To update the weight of v, one therefore
needs to find a minimum weight solution in T, — {v}. For this reason, we choose the vertices
x,y so that the instance restricted to T;,, — {v} can be solved using the algorithm for wDPC.

If z,y are vertices of degree at least 3 (branching vertices) in 7', then contracting the (y, x)-
path decreases the number of branching vertices in the resulting instance. This choice of z,y
allows to design a branching algorithm where the measure is the number of branching vertices,
and thus the number of leaves (Theorem 1.2). If z, y are vertices of a minimum-size (unweighted)
P-multicut (which can be found in polynomial time), then contracting the (y, z)-path decreases
the size of a P-multicut in the resulting instance. This choice of z,y allows the design of
a branching algorithm parameterized by the solution size (Theorem 1.1). Additionally, if we
choose x to be the furthest branching vertex in 7' (resp. furthest vertex of X) from the root and
y to be its unique closest ancestor that is a branching vertex (resp. in X), then for each vertex v
on the (y, z)-path, the instance restricted on T, — {v} can indeed be solved using the algorithm
for wDPC.

Organization. In Section 2 we define some basic notation. In Section 3 we prove Theorem 1.1,
in Section 4 we prove Theorem 1.2, and in Section 5 we prove Theorem 1.3. We finally conclude
in Section 6.



Figure 1: Tree rooted at r and an illustration of T, TJ, To.z) TJJ.

2 Notation and Preliminaries

For a positive integer n, we denote the set {1,2,...,n} by [n]. We use N to denote the set of
all non-negative integers. Given a function f: X — Z and Y C X, f|y denotes the function f
restricted to Y.

Graph Theory. For a (di-)graph G, V(G) and E(G) denote the set of vertices and edges
(arcs) of G, respectively. For an undirected graph G and any v € V(G), Ng(v) = {u : (u,v) €
E(G)} denotes the (open) neighbourhood of v, and Ng[v] = Ng(v) U {v} denotes the closed
neighbourhood of v. The degree of v is |[Ng(v)|. For a digraph G and v € V(G), the in-degree
of v is the number of vertices u such that (u,v) € E(G). When the graph G is clear from the
context we omit subscript G. For any u,v € V(G), a (u,v)-path in G denotes a path from u to
vin G. For any S C V(G), G[S] denotes the graph G induced on S. We say G' C G if G’ is a
subgraph of G. For any further notation from basic graph theory, we refer the reader to [9].

Contraction. For any edge e = (u,v) of G, G/e represents the graph G obtained after con-
tracting the edge e, where the contraction of e is defined as follows: delete u,v from G and
add a new vertex say x,, that is adjacent to the all the vertices in N[u] U N[v] \ {u,v}, that
is all vertices that were either adjacent to u or v or both. We sometime also say that the edge
e is contracted onto the vertex z,,. For any F' C E(G), G/F denotes the graph obtained by
contracting the edges of F' (one after the other in no specified order). Formally speaking G/F
corresponds to a unique map ¢ : V(G) — V(G \ F), such that for each u € V(G/F), G[tb~(u)]
is connected. Let P C V(G) x V(G) be a set of pairs of vertices, then P/F' is obtained from P
by replacing each (u,v) € P by (¢(u),1(v)). Given P C V(G) x V(G) and an induced subgraph
G’ of G, P|gr C P such that if (u,v) € P then (u,v) € P|g if and only if u,v € V(G').

Terminal Pairs and Terminal Pair Paths. Recall that the instances of all our problems
contain a set P C V(T') x V(T') where T is a tree. We interchangeably refer to a pair (s,t) € P
as the terminal pair (s,t) and as the unique (s,t)-path between in 7'

Trees. A treeT is a connected acyclic graph. A subdivided staris a tree with at most one vertex
of degree at least 3 (in other words, it is a tree obtained by repeatedly sub-dividing the edges
of a star graph). For any x,y € V(T), P, denotes the unique (x,y)-path in 7. Note that the
vertices of such a path P, , are ordered starting from x thus they have a natural order defined on
them. Let T be a tree rooted at a vertex r. A vertex u € V(T') is called a furthest vertex from v if
distr (u, v) = max,cy () {distr(x,v)}. Here, distr(u,v) denotes the length of the shortest (u,v)-
path in 7. Similarly, u € V(T') \ {r} is closest to v, if 0 < disty(u,v) = mingey (p){distr(z,v)}.
We say that a vertex is furthest (resp. closest) if it is furthest (resp. closest) from r. The sets
V>3(T) and V=1(T') denote the set of vertices of degree at least 3, and of degree equal to 1,
respectively. The set V>3(T') is also called the set of branching vertices of T' and the set V1 (T")
is called the set of leaves of T'. Note that |V>3(T)| < |[V=1(T)| — 1.



The following notation (see Figure 1) comes handy while describing the algorithms on a tree
T with root r. Given u,v € V(T), u is a descendant of v in T, if v lies on the unique (r,u) path
in T and u is called an ancestor of v if u lies on the unique (r,v)-path in T' (u could be equal to
v). We denote by T, the subtree of T rooted at u and Tj = T}, \ {u}. For any descendant z of
u, the tree denoted by T, . is defined as follows. Let {v1,...,v,} be the children of v in T" and
say v € V(Ty,). Then T, , = T, \ (Uje[p]\{i}TUj). Observe that T, , is connected. Also define
Ti.=Tus \ {u}.

Let X C V(T'), then the lca-closure of X is the set X’ obtained from X by repeatedly
adding, for each pair of vertices u,v € X', the least common ancestor w to X', that is the
vertex w € V(T) furthest from r such that u,v € V(T},). Note that |X'| < 2|X| (because
[V>3(T')| < |V=1|(T)). We say that a set X is closed under taking lca if for every pair of vertices
of X, their least common ancestor is in X. Whenever we talk about a rooted (undirected) tree
T in a directed setting, we refer to the tree T' where each vertex except the root has in-degree
exactly one.

Parameterized Complexity. The input of a parameterized problem comprises of an instance
I, which is an input of the classical instance of the problem, and an integer k, which is called
the parameter. A problem II is said to be fixed-parameter tractable or FPT if given an instance
(I,k) of II, we can decide whether (I,k) is a YES instance of II in time f(k) - [I|°V). Here,
f(+) is some computable function whose value depends only on k. We say that two instances,
(I,k) and (I',)K'), of a parameterized problem II are equivalent if (I,k) € II if and only if
(I' k') € TI. For more details on parameterized algorithms, and in particular parameterized
branching algorithms, we refer the reader to the book by Cygan et al. [7].

3 WMOC-TREE Parameterized by the Solution Size

In this section, we prove Theorem 1.1 by designing a branching algorithm. In order to reduce
the measure of a given instance, our branching algorithm requires a solution for the instances
where every terminal pair path passes through a single vertex. Let Z = (T, P,r,wt, k) be an
instance such that all the terminal pair paths of P pass through r, and wt : V(7T') — N is a vertex
weight function. Let ? be the directed tree obtained by orienting the edges of T" so that all the
vertices, except for r, have in-degree exactly one, while r has in-degree zero. In other words, the
oriented tree T' is an out-tree rooted at r. We define an edge weight function wt' : E(7) — N
such that for every arc e = (u,v) € E(?), wt'(e) = wt(v). Then it can be easily seen that
Z C E(?) is a P-dpc in T with wt'(Z) = w if and only if S = {v : (u,v) € Z} C V(T)\ {r}
(that is, S is obtained from Z by picking the heads of all the arcs in Z) is a P-multicut in T
with wt(S) = w (see Figure 2). Let Agpc be the algorithm that takes as input an instance 7 as
above, constructs the edge-weight function wt’ and uses the WDPC algorithm of Kim et al. [15,
Section 6.1ff| to solve the instance (?, P,r,wt’, k). This runs in randomized 2°¢*" . n®(W_time
3. Therefore, Agpc outputs the minimum weight of a solution of 7 if it exists, and oo otherwise.
In particular, if P = () then Aqg,c outputs 0.

Branching Algorithm. Let (7,P,wt, w,k) be an instance of WMC-TREE. Fix an arbitrary
vertex r € V(T') to be the root of T. We begin by finding a set X C V(7T') which is a P-multicut
in T and is closed under taking lca (least common ancestor). To find X, we first compute
a unweighted P-multicut Xope € V(T') in 7' of minimum size. The set Xopt can be found
in polynomial time (folklore) by the following greedy algorithm. Initialize Xope = 0,7" = T,
and P’ = P. Let v € V(T") be a furthest vertex from r such that there exists (s,t) € P’

3The dependency in k is not explicit in [15] but can be easily deduced.
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Figure 2: One-to-one correspondence between the solutions of WMC-TREE and the solutions of
wDPC when all the paths of P pass through r.

with s,t € V(T,). By the choice of v, the (s,t)-path (and every terminal pair path in P|z,)
passes through v. It is easy to see that there is a minimum-size P’-multicut containing v. Set
Xopt = Xopt U{v}, P/ = P'\ Plp,, T" = T" \ T,, and repeat the procedure until P’ = (. At
the end of the procedure, Xopt is @ minimum-size P-multicut in T'. If [Xpe| > k, report No.
Otherwise, let X be the lca-closure of X in 7. Hence, |X| < 2k.

A notable property of a P-multicut X closed under taking lca is that for any x € X, if
y € X is the unique closest ancestor of = in T', then for each v € V(P, ;) \ {y}, all the terminal
pair paths of P|r, either pass through x, or are contained in T,. Indeed, if T, \ T, contains a
path of P, then any P-multicut intersects V(T \ T,). Then there exists a vertex y’ € X such
that ¢/ # z lies on P, ; C PJ@, contradicting the choice of y.

We design a branching algorithm whose input is Z = (7,P,wt,w,k, X) where X is P-
multicut X C V(T') closed under taking lca, and where the measure of an instance Z is defined
as u(Z) = |X|. Note that, as mentioned above, u(Z) < 2k. The base case of the branching
algorithm occurs in the following scenarios.

1. If u(Z) =0, then 0 is a solution of Z. Return YEs iff £ > 0 and w > 0.

2. If u(Z) =1, let X = {z}. In this case, since all the paths of P pass through z, return YES
if and only if the Agpc (T, P, x,wt, k) < w.

3. If k<0, or k<0 and P # 0, then return No.

If u(Z) > 2 (that is, | X| > 2), then let z € X be a furthest vertex from r and let y € X be
its unique closest ancestor. We branch in the following two cases.

Case 1. There exists a solution of I that does not intersect V (P, ). In this case, we return
the instance 7, = (T1, P1,wt1, w, k, X1) where T1 = T/E(P, ), P1 = P/E(P,.). Let the ver-
tex onto which the edges of P, are contracted be y°. Then wt(y°) = w + 1 and, for each
ve V(Ty)\{y°}, wt1(v) = wt(v). Observe that (X \ {z,y})U{y°} is a P;-multicut in 7} and is
closed under taking lca and thus, we may set X; = (X \ {z,y}) U{y°}. Clearly, u(Z1) < p(Z)
and 7Z; can be constructed in polynomial time.

Case 2. There exists a solution of I that intersects V(P,.). In this case, the idea is the
following: for each vertex v on the P, , path, we increase the weight of v by the weight of the
solution in the tree TJ@ (the tree strictly below v). To do so, the size of a solution in the tree
TJ@ is first guessed. Once the weights are updated, we can forget the terminal pairs contained

in the tree T, mi and just remember that the solution picks a vertex from P, .. This is formalized
below.

Let S be a solution which intersects V (P, ;) and let z € V(P, ) be the vertex in S closest
to y. Then we further branch into k+ 1 branches where each branch corresponds to the guess on
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Figure 3: The branches of the algorithm for Theorem 1.1 with (s;,t;) € P.

|SﬂTZT7x|. More precisely, for every ¢ € {0}U[k], we create the instance Zy ; = (1o, P2, wto, W, k—
i, Xy) where Ty = T\ TJ, Py = Plp, \ (V(T.) x V(T3.2)) U{(y,2)} and wty is defined below
(see Figure 3).

whai(9) wt (v) + Adpe(Thas Pl el 10 ifv € V(P
2, — v,x v,z .
' wt(v) otherwise.

Observe that the set X \ {z} is a Pe-multicut in Tp with y € X \ {«}. The only paths that
might not be cut are the ones in P|TT as they pass through x, but they are not contained in
Py by definition. Also X \ {z} is closed under taking lca in T, thus we may set Xo = X \ {z}.
Clearly, u(Zy;) < p(Z) for each ¢ € {0} U [k].

Lemma 3.1. 7 is a YES-instance if and only if at least one of 11,Zoy, ..., Lo\ 15 a YES-instance.

Proof. (=) Assume that Z is a YEs-instance and let S be a minimal solution of Z. Suppose
first that SNV (P,,) = 0 and consider a path Ps; of P;. Then (s,t) # (y°,y°) for otherwise,
S would not intersect the path in P corresponding to the pair (s,t) € Py. If y° ¢ {s,t} then
(s,t) € P and so, S intersects the path Ps;. Otherwise, assume, without loss of generality, that
s =y° and let (z,t) € P where z € V(P, ), be the terminal pair in P corresponding to (s,t).
Then, since P, is intersected by S\ V(P z), Ps is also intersected by S\ {y°}. Thus, S is a
solution for Z;.

Suppose next that SN V(P ;) # 0 and let z € V(P, ;) be the vertex in S closest to y.
Observe that since X is a P-multicut in T and = € X is a furthest vertex in T from r, every
path of P contained in T, passes through z. Similarly, if z # x then, from the choice of x
and gy, each terminal pair path contained in T;f,z passes through x: indeed, if there exists a
terminal pair path contained in T;r,x \ Ty, then it is not intersected by X, a contradiction to
the fact that X is a P-multicut. Let $* = SN TJ, and let i = |S*|. Note that if z =  then
Pri = () by the above, and thus, S* = () by minimality of S. Since S* is a 73|Tzfz—multicut,
it follows that wt(S*) > Adpc(ij,ﬂTT , T, wt\TT ,i). Now let S = S\ S*. Note that z € 5;
in fact, S’ NV(P,,) = {z} by the choice of z. We claim that S’ is a solution for T5;. Clearly,
IS/ = |S| |S*| < k —i. Furthermore, wtg ;(S’) = wt(S) — wt(S*) — wt(z) + wto;(2) and since
2z € V(Pyz), wtai(z) < wt(z)+wt(S*). Thus, wta;(S") < wt(S) < w. We now show that S’ is a
Py-multicut. Consider a path Ps; of Pa. Since by construction, Py N (V(Tg,x) X V(Tg,x)) =0, at
most one of s and ¢ belongs to V(T ). Suppose first that {s,t} NV (T}.) # 0, say s € V(TJx)
without loss of generality. If s € V(P,.) \ {y, 2z} then, by the choice of z and because S is



P-multicut, P, is intersected by S\ V(TZLE) C §’. Otherwise, Ps; passes through z and is
therefore intersected by S’. Since it is clear that Py, is intersected by S” if {s,t} NV (Ty..) = 0,
we conclude that S’ is indeed a Ps-multicut.

(<) Suppose first that Z; is a YES-instance and let S; be a solution of Z;. Since wty(y°) =
w+1, y° € S. This implies, in particular, that (y°,4°) ¢ P; and thus, no path of P is contained
in Py,. Therefore, Si is a solution for Z. Suppose next that there exists i € {0,...,k} such
that Zp; is a YES-instance and let Sp; be a minimal solution of Zp;. We first claim that
|S2,; N V(P )| = 1. Indeed, observe that So; N V(P,,) # 0 since (y,x) € P2. For the sake
of contradiction, suppose that there exist z,2’ € Sa2; N V(P, ) such that 2z’ # z, say 2/ is a
descendant of z. Since, by construction, no path of Ps is contained in TJ@, each path of P
that passes through 2/, also passes through z. Thus, Sy; \ {z'} is a Py-multicut, contradicting
the minimality of Sy;. Let So; NV (P, ) = {z}. As argued above, if z # z, then, from the
choice of x and y, every path of P contained in T;ix passes through z. Similarly, every path of P
contained in T}, passes through x. Let S* be a 73|Tz»r _-multicut of size at most ¢ such that wt(S™)

is minimum. Then wt(S*) = Ade(TZT,x,PTJz,x,wt\Tzfz,i). Let S = S5, US*. We claim that S
is a solution for Z. Indeed, first note that | S| = |S2.4] +18*| < k —i+1i = k. Furthermore, since
S9i NV (Py ) = {z}, wt(S2;) = wto;(S2;) — wto;(2) + wt(2) and wto;(2) = wt(z) + wt(S*).
Thus, wt(S) = wt(S2,;) + wt(S*) < wto;(S2,) < w. We now show that S is a P-multicut. Since
Sz C S and Sy ; is a Pe-multicut, any path of P fully contained in V(T')\ V(TJ,;E) is intersected
by S. Consider now a path Ps; of P that intersects V (T}, ;) If P, is fully contained in TZT@7 then
it is intersected by S*. Similarly, if P, passes through z, then it is intersected by .S since z € S.
If P;; passes through y without containing z, then P;; € P2 and so, by the choice of z, Ps; is
intersected by Sa; \ {#z} € S. Observe finally that Ps; is not fully contained in V(PJ’Z) \ {z}
for otherwise, Ps; is not intersected by X, a contradiction to the fact that X is a P-multicut.
Therefore, S is a solution for Z. O

Proof of Theorem 1.1. Let T = (T,P,wt,w,k) be an instance of WMC-TREE. Lemma 3.1
shows that the above algorithm correctly solves the problem. The described algorithm does a
(k + 2)-way branching, where the measure of the input instance is bounded by 2k and drops by
at least 1 in every branch. Since the branching stops when the measure is at most 1, the total
number of branching nodes of the algorithm is at most (k +2)?**1. Since Z; can be constructed
in polynomial time and each instance Zy; can be constructed by making O(n) calls to Agpc, the

final running time is 20(kY) . nO(1), O

4 UWMC-TREE Parameterized by the Number of Leaves

In this section, we prove Theorem 1.2. We first show that the problem on sub-divided stars
can be solved without using the flow augmentation from [15] (Lemma 4.3). Towards this, we
first design a simple polynomial-time algorithm for the problem on paths (Lemma 4.1) and
use it to eliminate the terminal pair paths that do not pass through the high degree vertex
of the sub-divided star. We then observe that the problem on sub-divided stars, when each
terminal pair path pass through the high degree vertex, corresponds to the arcless instances
of [15, Section 6.2.2], which can be solved faster [15, Lemma 6.12] (Proposition 4.2). We then
use the algorithm of Lemma 4.3 as a subroutine to design a branching algorithm that proves
Theorem 1.2.

Lemma 4.1. Let T be a disjoint union of paths, P C V(T) x V(T) and wt : V(T) — N. There
is an algorithm Apaen that outputs the weight of a P-multicut S C V(T), in T such that wt(S)
18 minimum, n polynomial time.



Proof. If T is the union of at least two disjoint paths, then it is enough to solve the problem on
each path independently and output the sum of the weights returned in each instance. Without
loss of generality, let T be a path (v1,...,v,). For each i € [n], let T; = T[{v1,...,v;}]. We use
dynamic programming to compute for each ¢ € [n], B[] which stores the minimum weight of a
P|r,-multicut in 7;. This is computed as follows. For any ¢ € [n] such that P|p, # 0, let ¢* <4
be the largest index such that there exists (s,t) € P where Py C T'[{v; | j € {i*,...,i}}]. Then
B[i] is computed as follows.

0 if Plp, =10
Bli] = { wt(v1) ifi=1
ming<j<;{wt(v;) + B[j — 1]} otherwise.

The algorithm then returns B[n|. Clearly, the algorithm runs in polynomial time. If P|z, = 0,
then S = 0 is a solution. Otherwise, if i = 1, then (vi,v1) € P and so, S = {v1} is a
minimum weight solution. If 4 > 1, then from the choice of i*, for any minimal P|z,-multicut S,
SN {v,...,v} = 1. If SN{v=,...,v;} = {v;}, then by induction, wt(S) = wt(v;) + B[j — 1].
Again from the choice of i*, for any j € {7*,...,i}, v; union any P|r,_,-multicut is also a
P|r,-multicut. O

An r-rooted subdivided star is a subdivided star with root r, where r is a highest degree
vertex of T, that is, r is the unique degree 3 vertex, if it exists, or any arbitrary internal vertex
if T is a path. Consider an instance (7, P,r,wt) such that T is an r-rooted subdivided star
and all the paths of P in T pass through r. The goal is to find a P-multicut S such that
wt(S) is minimum. We show that such instances corresponds to the arcless instances of WDPC
as defined in [15, Section 6.2.2]. An instance (7,P,wt) is an arcless instance if (i) given two
designated vertices s, t, the graph T consists of only internally vertex-disjoint paths from s to t,
and (ii) if it is a YES-instance, then there exists a solution for this instance that intersects every
(s,t)-path exactly once.

The following result follows from [15, Section 6.2.2, Lemma 6.12]. The root of a subdivided
star, that is not a path, is the unique branching vertex.

Proposition 4.2 ([15]). Given an instance (T, P C V(T) x V(T),r € V(T),wt : V(T) — N)
such that T is a subdivided star with root r and £ > 3 leaves. Suppose all the terminal pair paths
in P pass through r. Then one can find the weight of a P-multicut S C V(T) such that wt(S)
18 minimum, n time 20(logt) . nO(1)

Proof. We show how to reduce the given instance to an equivalent arcless instance of WDPC. Let
ui,...,us be the leaves of T' and let P; be the path from r to w;. For each i € [¢], guess whether
the solution of Z intersects P; \ {r}. This takes 2¢ branches. In the branch corresponding
to the guess where S N (V(P;) \ {r}) = 0, contract all the edges of P; onto the vertex r.
Observe that the resulting graph in each of the branches is still a subdivided star and has the
property that the solution intersects every root-to-leaf path. Further note that no minimal
solution contains more than one vertex from the root-to-leaf path, otherwise the deletion of a
vertex that is furthest from the root would result in a smaller solution. Thus, there exists a
minimal solution that intersects every root-to-leaf path exactly once. Let T be constructed
from T by (1) adding a new vertex T and making it an out-neighbour of all the leaves of T', and
(2) orienting every edge zy € E(T) from x to y if y is closer to ¥ than = (in the undirected
setting). Then clearly 7" is a graph consisting of internally vertex-disjoint (r,T)-paths such
that the solution intersects each vertex-disjoint path exactly once. We define a weight function
wt' : E(T") — N as follows. For every i € [{], let P, = (vj1,...,0ip;) where r = v;; and
i = Uip,. Then wt'((vij,vij+1)) = wt(v;jq1) for each j < p; — 1, and wt'((viy,,T)) = L
where L = >° oy wt(v) + 1. Then observe that V' = {viis. .., 004} is a P-multicut in 7'
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Figure 4: Updating the weights of the vertices in
Lemma 4.3. P = {(s;,t;) | i € [6]}, z is closest to r
such that the (s, %1)-path is contained in the (z,r)-
path.

: The dotted parts are deleted and the weights of the
ty .2»_{ filled vertices also include the weight of the minimum
! weight solution below them.

with wt(V’) = w if and only if E' = {(vi,4,-1,v14,),-- -, (Vei,—1,0e4,)} is & P-dpc in T" with
wt'(E') =w. O

Lemma 4.3. UWMC can be solved in 201080 . nO0) _time on a subdivided star with ¢ leaves.

Proof. Let the input instance be Z = (T, P,wt,w). If £ = 2, then T is a path. In this case,
report YES if and only if An(T,P,wt) < w. Otherwise, let r € V(T) be the root of T,
that is r is the unique vertex of degree at least 3 in 7. In the first step, the algorithm guesses
whether r is in the solution or not. If r belongs to the solution, then delete r from T and
solve the resulting instance using Apyen. Formally, the algorithm returns YES if and only if
wt(r) + Apaen (T, P,wt) < w. Henceforth, we assume that the solution does not contain r, or
equivalently, we set wt(r) = w + 1. The remaining algorithm has two phases. In the first phase,
it eliminates all the paths in P that do not pass through r. In the second phase, it uses the
algorithm of Proposition 4.2 to solve the problem.

Suppose that there exists a path in P that does not pass through r. Let z € V(T) be a
vertex that is closest to r such that there exists a path Ps; in P where P, C PJ,Z. We create
a new instance Z' = (17", P’,wt’, w) (in polynomial time) such that Z’ is equivalent to Z. Here,
T =T\ TJ and, P = P\ (V(T{.) x V(T{.)) U{(r,2)}. Observe that the new terminal pair
path Py in P’ intersects r and thus, P’ contains strictly fewer paths that do not pass through
r (compared to P). Since T is a subdivided star, for each v € V(T)\ {r}, T} is a path. The
new weight function wt’ is defined as follows (see Figure 4).

wt(v) otherwise.

(=) Let S be a P-multicut of 7" such that wt(S) < w. Since Plz contains a path of P,
SﬁV(PJ:z) £ 0. Lety € SOV(PJ:Z) be the vertex that is closest to r. Construct S’ = S\V(TJ).
We claim that S’ is a solution for Z'. Observe that S'NV/(Tj..) = {y}. Observe that SNV (T} ) is
a P\Tg—multicut in TyT. Thus, wt(SN V(TJ)) > Apath <TJ’P‘TJ’Wt|V(TJ)>
of S” and the weight function wt’, wt’(S’") = wt(.5) —wt(SﬂV(TJ)) —wt(y)+wt'(y) <wt(S) < w.
We now show that S’ is a P’-multicut. Sincey € S'NV(P].), T—5" has no (r, z)-path. Consider
any path of P’ that intersects a vertex of TJ. Since the paths of P’ are not contained in le,
such a path also pass through r and hence y. Since y € S’, S’ is a P’-multicut.

(<) Let S’ be a minimal P’-multicut in 7 such that wt'(S’) < w. Then T'— S’ has no (r, 2)-
path. Since wt/(r) = w + 1, &’ N V(PB].) # 0. Since S’ is a minimal solution, [$' NV (B].)| = 1
for otherwise, deleting the vertex of S on the (r, z)-path that is furthest from r would result

. From the construction

in a smaller solution. Let S’ N V(PJ,Z) = {y}. Let S* be a minimum weight P| s-multicut.
Yy
Then wt(S*) = Apath(TJ7P\TT,wt|V(TT)). Construct S = 5" U S*. We will now show that S is a
Yy Yy
solution of Z. From the construction of S and wt’, wt(S) = wt(S’) + wt(S*) = wt/(S) —wt'(y) +
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wt(y) + wt(S*) < wt/(S’) < w. Since S’ C S, S is a P'-multicut. Consider a path of P that is
contained in TJ,Z. If such a path passes through y or is contained in T}, then it is intersected by
S*U{y} (and hence S). Otherwise such a path is contained in P;r’y \ {y}. But this contradicts
the choice of z. Therefore, S is indeed a P-multicut.

We conclude that whenever there exists a path in P that does not pass through r, we can
apply the above procedure in polynomial time. Since every application of the above procedure
decreases the number of paths of P that do not pass through r by at least one, the above
procedure can be exhaustively applied in polynomial time. This ends the first phase of the
algorithm. At the end of the first phase, all the paths of P pass through r. Therefore, in this
case, we solve the instance (T, P,r,wt) using the algorithm of Proposition 4.2. Since the first
phase of the algorithm takes polynomial time and the second phase takes 20(£*logf) -nPW_time,
the algorithm runs in time 20(%log ) . pO(1), O

Observe that we can use Lemma 4.3 to find the minimum weight P-multicut in a subdivided
star by doing a simple binary search starting with w = 0,1,2,4,8,... and so on. This would
incur an extra O(logw) factor in the running time. Thus, even if w is given as a unary input,
the resulting algorithm is still polynomial in the input size. Therefore, the following corollary
follows from Lemmas 4.1 and 4.3.

Corollary 4.4. Let T be a subdivided star with ¢ leaves. Let P C V(T)xV(T) and wt : V(T') —
N. There is an algorithm Astar that finds the weight of a P-multicut S C V(T') such that wt(.S)
18 minimum, in 20(£1og) . ,OM) time.

We are now equipped to design the branching algorithm for Theorem 1.2. Let Z = (T, P, wt, w)
be an instance of UWMC-TREE. Root T  at an arbitrary vertex r. With each instance Z, we as-
sociate the measure p(Z) = |V>3(T')|+|V=1(T)|. Since |V=1(T")| < £ and |V>3(T)| < |V=1(T)|—-1,
w(Z) < 2¢. We now design a branching algorithm such that the measure p drops in each branch.
The following cases appear as base cases: (1) If |[V>3(T')| < 1, then return YES if and only if
Astar (T, P,wt) < w, and (2) If w < 0 or, w <0 and P # 0, then return No.

If |[V>3(T)| > 2, let o,y € V>3(T') such that x is a furthest in 7" and, y is its unique closest
ancestor. We branch into the following two cases.

Case 1. There exists a solution of Z that does not intersect V (P, ;). In this branch, we return
the instance Z; = (T3, Py, wty, w) where Ty = T/E(P, ;) and Py = P/E(P, ;). Let the vertex
onto which the edges of P, , are contracted be y°. The new weight function wt; is defined as
follows: wti(v) = wt(v) for each v € V/(T1) \ {y°}, and wt1(y°) = w + 1. Observe that Z; can
be constructed in polynomial time. Furthermore, since z,y € V>3(7T') and the edges of P, , are
contracted in 7y, |V>3(T1)| = [V>3(T)| — 1 and thus, u(Z;) = u(Z) — 1.

Case 2. There ezists a solution of T that intersects V (P, ;). In this case, let z € V(P, ;) be
the closest vertex to y such that P, . contains a path of P. If no such vertex exists then set
z = 2. Return the instance Ty = (Tb, Py, wto, w) where T = T\ T and Py = (P \ (V(Tyz) x
V(Ty2))) U{(y,2)}. Observe that, by construction, any solution of Z intersects V (P, .). The
new weight function wts is defined as follows (see Figure 5).

t(v) + Astar (T 2, Pl LWt ifveV(P,.
wt2():{w (W) + Astar(Toz, Py o wtly g ,) - v € VB

wt(v) otherwise.

Observe that, for each v € V(P ;) \ {z}, TJ}I has exactly one branching vertex, namely z,
since «x is a furthest branching vertex in T' from r, y is the branching vertex that is the closest
ancestor of x and v € V(P ). Also, T;r,z = T} is a disjoint union of paths. Since z € V>3(T),
from the construction of Ty, |V_1(T3)| < |V=1(T")| and so, u(Z2) < pu(Z).
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(b) Case 3. z is closest to y such that the (y, 2)-
path contains (s1,t1). The weight of the filled ver-
tices includes the weight of the minimum weight
solution below them. T is deleted (dotted part).

(a) Case 1. The marked orange edges are con-
tracted onto the undeletable vertex y°.

Figure 5: The branches of the algorithm of Theorem 1.2 with terminal pairs (s;,¢;). = is a
furthest branching vertex and y its unique closest branching ancestor.

Lemma 4.5. T is a YES-instance if and only if Iy or Iy is a YES-instance.

Proof. (=) Let I be a YES-instance and let S be a solution of Z. Suppose first that SNV (P, ) =
() and recall that y° is the vertex onto which the path P, , is contracted in Z;. Consider a path
P, inPy. Then (s,t) # (y°, y°) for otherwise, S would not intersect the path in P corresponding
to (s,t). If y° ¢ {s,t} then (s,t) € P and so, S intersects the path Ps;. Otherwise, assume,
without loss of generality, that s = y° and let (2,t) € P where z € V(P, ), be the terminal pair
in P corresponding to (s,t). Then since P, ; is intersected by S\ V (P, ), we conclude that P,
is also intersected by S\ {y°}.

Now suppose that S NV (P, ) # 0. From the choice of z, SNV (P,.) # 0. Let v be the
closest vertex of P, , to y that belongs to S. Construct S' =5\ V(TJ@). We claim that S’ is a
Py-multicut in Tp and wto(S’) < w. Since v € V(P, ) NS’, To — S’ does not contain the (y, z)-
path. Consider now a path Ps; in P \ {(y,2)}. Then by definition of Py, [{s,t} NV (T} )| < 1.
If {s,t} NV (Ty.) = 0 then P, is intersected by S\ V (T}, ,) C S’ since S is a P-multicut. Thus,
suppose that {s,t} NV (T, ) # 0, say s € V(T ) without loss of generality (note that then,
t € V(T)\ V(Tye)). If Psy contains v, then Ps; is intersected by S’ since v € S’. Otherwise,
s € V(Py,)\{v} in which case, by the choice of v and because S is a P-multicut, P ; is intersected
by S\ V(Ty.») € S’. Thus, we conclude that S’ is a Py-multicut in T5. From the construction of
S’, observe that S"NV (P, ;) = {v}. Thus, wta(S’) = wt(S) —wt(SN V(Ti.)) — wt(v) + wta(v).
Since SNV(T} ) is a P|TJ _-multicut, wt(SNV(Ti2)) > Astar(Th s P ). Therefore,
wto(S') < wt(S) < w. ’

(<) If Z; is a YES-instance, then since wt;(y°) = w+ 1, no solution of Z; contains y°. Thus,
every solution of Z; is also a solution for Z. If Z, is a YES-instance and let S’ be a minimal
solution of Zy. Since S’ is a Py-multicut and (y,2) € P2, S’ NV (P,.) # 0. In fact, since S’ is
a minimal, |S" NV (P,;)| = 1 for otherwise, deleting the vertex of S” on the (y, z)-path that is
furthest from y would result in a smaller solution (recall that Py contains no terminal pair in
V(Tyz) x V(Tyz)). Let ve SNV (Py.). If v =z, then S is also a solution for Z. Otherwise,
let v # . Let S* be the solution given by Astar(TJ@,P’TJIth‘V(TJz)) and let § = §'U 57
We claim that S is a P-multicut in T such that wt(S) < w. Since §' C S, S is a Py-multicut.

AL
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Figure 6: A (d,6)-light instance for some d. The d-light vertices vertices are shown in blue, and
the d-heavy vertices in red. The closed neighborhood of the central component (marked with
dashed boundary) containing d-heavy vertices has six leaves (marked with big circles), five of
which are d-light vertices.

Consider a path Ps; of P that is contained in T} ;. Then either Ps; is contained in TJ@ or Py
contains v: indeed, if neither hold then Ps; is contained in P,, \ {v}, a contradiction to the
choice of z. Now if Ps; is contained in TJ}I, then it is intersected by S*; and if Ps; contains v,
then it is intersected by S since v € S. Thus, S is a P-multicut. From the construction of 5,
wt(S) = wt(9') + wt(S*). Also, wt(S5') = wt(S") — wta(v) + wt(v) because S’ NV (P, .) = {v}.
Since wta(v) = wt(v) + wt(S*), we conclude that wt(S) = wta(S') < w. O

We now prove Theorem 1.2 formally.

Proof of Theorem 1.2. Let Z = (T, P,wt,w) be an instance of UWMC-TREE. Lemma 4.5 shows
that the algorithm described above correctly decides if 7" has a P-multicut S such that wt(S) <
w. Since the algorithm is a 2-way branching algorithm, the measure of the algorithm, which
drops by one in each branching step, is bounded by 2¢ and the branching stops when the measure
is at most 1, the total number of nodes of the branching tree is at most 22¢*!. Now note that the
worst running time at each branching node is during the construction of Z,. However, since the
construction of Z, requires making O(n) calls to the algorithm of Corollary 4.4 (Astar), Z2 can
be constructed in 20?108 . pO) time, Thus, the algorithm runs in time 20(Elogt) . nO(1) [

5 Weighted Multicut on (d, ¢)-Light Instances

In this section we prove Theorem 1.3 by giving an FPT-algorithm which solves uwMC on (d, ¢)-
light instances in time 3¢ - 2% . 20(logt) ., O(1) - For this, we first formally define the notion of
(d, ¢)-light.

Definition 5.1. Let T' be a tree and P C V(T') x V(T) be a set of terminal pairs. A wvertex
v € V(T) is called a d-light vertex of (T, P) if at most d terminal pair paths of P pass through
vinT.

The set of d-light vertices of (T, P) is denoted by light(T, P, d).

We say that (T, P) is (d,0)-light if T is a tree and for each connected component C of
T — light(G,P,d), N[C] has at most { leaves.

For ease of notation, we say that a vertex v € V(T') \ light(G, P, d) is d-heavy. See Figure 6
for an illustration of this definition.

In the definition of (d, g)-light instances, it is crucial to consider the number of leaves in the
tree induced by the closed neighborhood of each component C of T'—Y (i.e. T[N[C]] must have
at most ¢ leaves). Assume, for a moment, that we just require that T[C] has at most ¢ leaves,
then we do not expect the result as in Theorem 1.3.
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This is because with this new (and wrong) definition of (d, ¢)-light instances, UWMC-TREE
is NP-hard for d = 3 and ¢ = 2. Let (G, k) be an instance of VERTEX COVER with V(G) =
{v1,...,v,}. Let G’ be a graph on 2n vertices x1,..., Ty, y1,..., Y, where x; is adjacent to ;11
for all i € [n — 1] and each y; adjacent to x; for all i € [n]. Define the set of terminal pairs P as
(vi,y;j) € P if and only if (v;,v;) € E(G). The weight function wt : V(G') — {1,n+1} is defined
as wt(x;) = n+ 1 for each i € [n] and wt(y;) = 1 for each i € [n]. It is easy to observe that
{viy,..., v } is a vertex cover of G if and only if {y;,,...,y;, } is a P-multicut in G’. We know
that VERTEX COVER is NP-hard on graphs with maximum degree 3 [10]. Hence, we can assume
that for each y; at most 3 terminal pair paths of P pass through it. Thus Y = {y1,...,yn} is
a set of 3-light vertices and the removal of any superset of it leaves a collection of paths each
of which has at most 2 leaves. Thus, with the wrong definition of (d, ¢)-light instances, the
resulting instance is a (3, 2)-light instance.

Notation. Let Z = (T, P,wt,w) be a UWMC instance. Then Z is called a (d, £)-light instance
if (T, P) is (d, £)-light.

Assume that T is rooted. For every vertex v € V(T'), we denote by I[v] C P|r, the set of
terminal pairs (s,t) € P|r, such that v is contained in the (s, ¢)-path in T, and by O[v] C P the
set of terminal pairs (s,t) € P such that {s,t} NV (T,) # 0 and {s,t} N V(T)\ V(T,) # 0. In
other words, I[v] denotes the set of terminal pairs going through v and which are fully contained
in the subtree rooted at v. In constrast, the set O[v] contains those terminal pairs going through
v and leaving the subtree rooted at v. Note that if v is a d-light vertex then |I[v]| + |O[v]| < d
by definition.

Intuition. The intuition of the algorithm is as follows. For each d-light vertex v € V(T') and
for all sets O C O[v], we compute the minimum weight of a partial solution Sp, C V(7)) such
that Sp, is a P|r,-multicut and for every (s,t) € O, So, intersects the (s,t)-path in 7. We
store this minimum weight of a solution as Tab[v, O]. We use a dynamic program to compute the
table entries for the d-light vertices in a bottom-up transversal of T' (we assume that 7" is rooted).
The crucial part of the algorithm is that we do not compute these partial solutions for every
d-heavy vertices. Instead, one can think of partitioning the tree into (connected) components
corresponding to the status of being d-light or d-heavy. For the components with the d-light
vertices, we compute the best solution by an exhaustive search. This works because there are
at most d terminal pair paths going through a d-light vertex. For the components consisting
of d-heavy vertices, we make use of the previous result in Theorem 1.2 to compute a minimum
solution. Here, we exploit the fact that such a component has at most ¢ leaves. We first design
the main algorithm that computes the table entries Tablv, -] for every v € light(T,P,d). This
algorithm uses as a subroutine the second algorithm Ageavy to compute partial solutions for the
d-heavy children of v.

First observe that if (T, P) contains no d-light vertex then, by definition, 7" has at most ¢
leaves and thus, we may use the algorithm of Theorem 1.2 to solve UWMC on instance Z in time
20(?log6) . ,O() - Agsume henceforth that light(T, P,d) # () and let us root T" at some d-light
vertex r. We define the table Tab formally as follows: for every v € light(T,P,d) and for every
set O C O[v],

Tab[v, O] o Scn‘l/i(r% )Wt(S) s.t.

S is a P|r,-multicut A V(s,t) € O : S intersects the (s,t)-path in T

Initially, every entry of the table Tab is set to +00. To update each entry of Tablv, |, we
assume that AN is given. The output is YES if Tab[r, )] < w and NoO otherwise. Note that
this entry is defined as we assume that r is d-light. For every d-light vertex, we proceed as

follows.
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Updating d-Light Leaves. Let v € light(7,P,d) be a leaf of T'. Then for every O C OJv],
we set
Tab[u, 0] — {wt(v) if O # Q,
0 otherwise.

Updating Internal d-Light Vertices. Let v € light(T,P,d) be an internal vertex of T" and
let uy,...,u, € V(T') be the children of v. Let O C O[v] be fixed. As mentioned above, we
assume that there is a subroutine A" which takes as an input a child u ¢ light(T, P, d) of v
and a set @ C Olu| of terminal pairs, and outputs the minimum weight of a set S C V(T,,) such
that S is a P|r,-multicut and for every (s,t) € @, S intersects the (s,¢)-path in T (we show
below how to obtain Ai}e“y). For ease of notation, we define a function Aj: for every child u of
v and every set Q@ C Oful,

. Tab[u, Q if u € light(T,P,d),
'AU(U7Q) = { hea[vy ] ( )

v 7 (u,Q) otherwise.

Intuition. We first describe the intuition of the algorithm. Note that it is always possible to
delete v. In this case, the solution is the disjoint union of optimal solutions for the children,
where we do not have to cut any of the outgoing terminal pairs. Moreover, we have to delete v
if (v,v) is a terminal pair, or there are terminal pairs in O which start at v and leave T), (these
pairs are later denoted by Oy).

In the case where v is not deleted, we proceed as follows. We denote by I; ; the set of terminal
pairs in /[v] which use u; and u; where i < j. Likewise, the set I; C I[v] denotes the terminal
pairs which use only u; and end at v, i.e. they do not go into any other subtree. We guess which
of the paths in I; ; are cut by the solution for the subtree rooted at u;. We denote this set by
Qi ;. Note that the pairs in I; ; \ @;; must then be cut by the solution for the subtree rooted
at u;. Besides these pairs, we also have to cut the terminal pairs which leave T, and start/end
in a subtree of some child u;. We denote this set by O;. Thus, for each child u; we have to cut
the terminal pairs in O; U I; U Uj>i Qi U Uj<i Lii\ Qji.

We now give the formal algorithm. For every i,j € [p] where i < j, denote by I;; =
I[v] N Olu;] N Ofuy] and for every i € [p], denote by I; = Iv] N Ofu;] \ U;~; 1i,j- Further denote
by Inp = {(v,v)} N I[v]. Note that for every (s,t) € I[v], one of three cases may arise:

o (5,t) & Ujeppy Oluil, that is, (s,t) = (v,v), or
e there exists a unique index ¢ € [p] such that (s,t) € Olu,], or
e there exist exactly two indices i € [p] such that (s,t) € Ofu;].

Indeed, the (s,t)-path would otherwise leave T, thereby contradicting the fact that (s,t) € I[v].
Therefore, {Io, I1,...,Ip,112,...,Ip—1,} is a partition I[v].

Denote by Oy € O the set of terminal pairs (s, t) € O such that (s, t) & U;ep, Olui], and for
every ¢ € [p], denote by O; C O the set of terminal pairs (s,t) € O such that (s,t) € Ofu;]. Note
that for every (s,t) € O, one of two cases may arise:

o (s,t) € O[v] \ Ujepp Oluil, or
e there exists a unique index i € [p| such that (s,t) € Olu;].

Indeed, the (s,t)-path would otherwise not leave T, thereby contradicting the fact that (s,t) €
Olv]. Therefore, {Oy,...,0,} is a partition O.
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If o UOy # (), then the only way to separate the terminal pairs in Iy U Oy is by removing v.
Thus, in this case, we update Tab[v, O] as follows.

Tab[v, O] = wt(v) + ZA* (ug, 0).
i€(p)

Otherwise, let a distribution be a p(p — 1)/2-tuple 7 = (Q1,2,Q1.3, - .., @p—1,) Where for every
i€[p—1]and j > i, Q;; is a subset of I; ;. Then we update Tab[v, O] according to the following
procedure.

1. Set Tab[v, O] = wt(v) + e, Au(ui, 0).
2. For every distribution 7 = (Q1,2, Q13- - ., Qp—1,p) do:

e For every i € [p], define P[ = O; UL UU,;; Qij UU;~; Lji \ @ji
e Tab[v,0] = min{Tab[v, 0], 3";c(,; As(ui, P}

Lemma 5.2. For every internal d-light vertex v, if A% is correct then the table entries Tablv, -]
are updated correctly. Furthermore, Tab[v,-] can be updated in 3% - O(T( Zeavy))—time where

T( geaVY) is the running time of the subroutine Abeawy

Proof. Let v € light(T,P,d) be an internal vertex of T" and let u1, ..., u, € V(T') be the children
of v. Assume that A} is correct (in particular, for every child u € light(T,P,d) of v, the table
Tab[u, ] is correctly filled).

Let us first show that for any set O C O[v], there exists a set S C V(T,) of weight Tab[v, O]
such that S is a P|r,-multicut and for every (s,t) € O, S intersects the (s,¢)-path in T.

Consider a set O C O[v]. Observe that the update step sets Tab[v, O] to a finite value.
Suppose first that Ip U Oy # 0. Since A% is correct, it follows from the update step that there
exists for every i € [p], a Plg,,-multicut S; such that Tab[v, O] = wt(v) + >_,cp; wt(Si). Then
the set {v} U ;e Si is the desired S. Second, suppose that Io U Op = 0. Since Aj is correct,
it follows from the update step that either

(i) there exists for every i € [p], a P|r, -multicut S; such that Tab[v, O] = wt(v)+3 ;1) wt(5i),
or

(ii) there is a distribution 7 = (Q12,Q1,3,-..,Qp—1,p) such that for every i € [p], there exists
a set S; where

e S is a P|g, -multicut and

e for every (s,t) € P, S; intersects the (s,t)-path in T,
and Tablv, O] = 3~ wt(Si).

If (i) holds then we conclude, as previously, that {v} U J;cp,) Si is the desired S. Thus, assume
that (i) holds and let us show that (J;c(, Si is the desired S. Note that since for every i € [p],
Si is a P|r,,-multicut, it suffices to show that for every (s,t) € I[v]U O, ;) Si intersects the
(s,t)-path in T Consider, therefore, a terminal pair (s,t) € I[v]UO. If (s,t) € O; U I; for some
i € [p], then S; intersects the (s, t)-path in T" by definition. Thus, assume that (s,t) € I; ; for
some 4, j € [p] where i < j. Then either (s,t) € Q;; in which case S; intersects the (s, t)-path in
T by definition; or (s,t) € I; ; \ Q; ; in which case S; intersects the (s,t)-path in 7" by definition.

Second, let us show that for any set O C O[v], if S is a set of minimum weight such that S is a
P|7,-multicut and for every (s,t) € O, S intersects the (s,¢)-path in T, then wt(S) > Tab[v, O].

Let S be a set of minimum weight such that S is a P|r,-multicut and for every (s,t) € O, S
intersects the (s, )-path in T. For every i € [p|, denote by S; = SNV (Ty,). Suppose first that
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v € S. Then for every i € [p], S is a P|r, -multicut which implies that wt(S;) > Aj(u;, 0) as
A’ is correct. But Tab[v, O] < wt(v) + Zie[p] A% (u;,0) by the update step and thus, the claim
holds true. Second, suppose that v ¢ S (note that o U Oy = 0 in this case). Then for every
i,j € [p] where i < j, and every terminal pair (s, t) € I, j, at least one of .S; and S; must intersect
the (s,t)-path in 7" let us denote by Q;; C I; ; the set of terminal pairs (s,t) € I; ; such that
S; intersects the (s,t)-path in T' (note that then, for every (s,t) € I;; \ Qi ;, S; intersects the
(s,t)-path in T'). Since the update procedure loops over every distribution, it considers at some
point the distribution (Q1,2,Q1,3,...,Qp—1,p) and thus,

Tablv, O] < ) Aj(us;, P})

i€[p]

where we set PT = O; U I; U UKJ- Qi ;U Ui>j I;i \ Qj, as above.
Now observe that for every i € [p] and every terminal pair (s,t) € P|z,, U O; U I;, S; must
intersect the (s,t)-path in T', as v ¢ S, and so

wt(Si) > Ay (ui, P)

as A3 is correct. Therefore, Tab[v, O] < wt(S) as claimed.
By the above, we conclude that for every set O C O[v], Tab[v, O] is filled correctly. Finally,
observe that for every O C OJv],

O] + Z Z\Iz',j\ <d

i€[p—1] j>i
since v is d-light. Thus, for a fixed O C O[v], there are
H Hglfm'l — 9 iclp-1] 25> il < 2d4-10

i€p—1] j>0

distributions to consider in Step 2. It follows that Tab[v,O] can updated in time at most
24-101 . O(T(AN®®Y)) and thus, it takes at most

d
> ()2t o) = 3t o)

. 1
=0

time to update Tablv, ]. O

Heavy Vertices with d-Light Parents. Let us now describe the subroutine Ageavy for a d-
light vertex v with at least one d-heavy child. Let u be a fixed d-heavy child of v. Denote by C,
the connected component of T'— light(T, P, d) containing u and by N,, = N(Cy)Nlight(T, P, d) \
{v}. If N, # 0, then we denote by N,, = {uq,...,uy} for some A < ¢, and for every i € [\], we
let p; be the parent of u; in T' (note that, by definition, p; € C,, for every i € [A]).

Given a set @@ C Olu], the basic idea is to “guess” for each w;, a set O; of pairs in O]
which are already cut by an optimal solution for the subtree T),,. We are then only interested
in separating terminal pairs which intersect T,, and are not already separated by a solution in
some T,,,. By definition of the problem, we also do not have to separate the pairs in Ofu] \ Q.
By these observations, it suffices to only consider the subtree T}, obtained from T, after deleting
all subtrees T,,. Because of this deletion, there might be pairs which do not start or end in 7,
but must be separated in T},. We take care of those by constructing a projection 7 which maps
the start and end point of the terminal pairs to the first vertex of the path which lies inside T7,.

Remark 5.3. The algorithm of Theorem 1.2 can, with an additional O(logw)-factor in the
runtime, find the minimum weight of a P-multicut in a tree with £ leaves, in time 20(£log ). p O(1)
We denote this algorithm by Aun-me.
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A distribution is a A-tuple (O1,...,0),) where for every i € [A], O; C Olu;]. Given a set
Q@ C Olul, the algorithm AP proceeds as follows.

1. If N, = () then return the weight of the set

Aun-me(Tu, Plr, U{(s,u) | (s5,1) € Q and s € V(T,,)}, wtly(p,))-

2. Initialize OPT = oo.
3. Set Ty, = T[V(Tu) \ Usepy V(Tu,)]-
4. Define the projection 7, : V(T') — V(T},) where for all v € V(7))

pi ifveV(Ty),
Tu(v) =< u ifveV(T)\V(T,),

v otherwise.

5. For every distribution 7 = (Oy,...,0p) do:

5.1. Let Pyr = (QUP|1,) \ Uiepy (Plr, U Oi).

5.2. Set Py, . = {(7u(8), 7u(t)) | (5,1) € Pux}.

5.3. Compute M = Aun-me(Ty,, Py WElv(77))

5.4. Set OPT = min{OPT, wt(M) + 3¢y Tab[u;, Os]}.

6. Return OPT.

eavy

Lemma 5.4. For every d-light vertex v with at least one d-heavy child, Af} s correct and

runs in time 2% . 20(*logt) ., O(1)

Proof. Let v be a d-light vertex in T" with at least one d-heavy child and let u be one such child of

v. Consider a set Q C Olu]. If N, = () then, denoting by M = Ayn-mc(Tu, Plr, U{(s,u) | (s,t) €

Q and s € V(Ty)},wt|y(r,)), it is clear that M is a subset of V(7)) of minimum weight such

that M is a P|p,-multicut and for every (s,t) € @, M intersects the (s,t)-path in 7. Thus,
Beavy indeed outputs the correct answer in this case.

Suppose next that N, = {u1,...,uy} for some X € [¢], and assume that for every i € [}\],
Tab[u;, ] is correctly filled. Let S C V(T,) be a set of minimum weight such that S is a
P|r,-multicut and for every (s,t) € @, S intersects the (s,¢)-path in T'. For every i € [\, let
S; = SNV(T,,) and let O; C O[u;] be the set of terminal pairs (s,¢) such that S; intersects the
(s,t)-path in T

Since the algorithm loops over every distribution, it considers at some point the distribution
7= (01,...,0)): let M* = Aunmc(Ty,, Py > wtly(ry)) where P, . and Ty, are as defined in the
algorithm. We aim to show that wt(S5) = wt(M™) + > ;) Tab[us, Os].

To this end, let us show that S* = S\ U,¢[y Si is a Py, r-multicut in Tj,. Consider a terminal
pair (s,t) € Py .. If (5,t) € Pyr NPy, then S* intersects the (s,t)-path in T}, since S is a
Plr,-multicut and s,t € V(Ty) \ U;epy V(Tu,)-

Suppose next that (s,t) € P;, .\ Pux. Then (s,t) corresponds to a terminal pair (a,b) €
Pu,x \ Py, such that 7,(a) = s and 7,(b) = t. Since by construction, S intersects the (a, b)-path
in T and for every i € [A], (a,b) ¢ O;, it follows that S* intersects the (a,b)-path in T" and, a
fortiori, the (s,t)-path in T},

Therefore, S* is a P, -multicut in T}, as claimed; in particular, wt(M*) < wt(S*) by min-
imality of M*. Now observe that for every i € [A], S; is a P|r, -multicut such that for every
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(s,t) € O, S; intersects the (s,t)-path in T, and thus, wt(S;) > Tab[u;, O;] as Tab[u;, -] is cor-
rectly filled by assumption. It follows that wt(M*) + 3.y Tablu;, O] < wt(S): indeed, since
wt(M*) < wt(S*) and wt(S™) = wt(S) — 30,0y wE(S54),

wt(M*) < wt(S) — Y wt(Si) < we(S) — Y Tabfu;, Oy].
i€ i€[A]

To prove the converse inequality, for every i € [A], let S} be a set of minimum weight such
that S’ is a P|r, -multicut and for every (s,t) € O;, S} intersects the (s,?)-path in 7. We
contend that M = M*UJ;¢(y 57 is a Py, -multicut such that for every (s, ?) € Q, M intersects
the (s,t)-path in T

Indeed, consider a terminal pair (s,t) € Plr, UQ. If (s,t) € Plg,, for some i € [A], then M
intersects the (s,?)-path in T since S} is a P|r, -multicut by definition. Similarly, if (s,t) € O;
for some i € [A], then M intersects the (s,t)-path in T" since S intersects this path by definition.
Thus, let us assume that (s,t) € Py . Suppose first that {s,t} NV (T,,) # 0 for some i € [A],
say s € V(T,) without loss of generality. If t € V(T,,) for some j € [A], then (p;,p;) € P, , and
so, M intersects the (s, t)-path in T' since M™* intersects the (p;, pj)-path in T}, by definition. If
t € V(Tu) \Ujepy V(Tu,), then (p;, t) € P, . and so, M intersects the (s, ?)-path in T" since M*
intersects the (p;,t)-path in T}, by definition. Finally, if ¢ € V(T)\ V(T,), then (p;,u) € P, ,
and so, M intersects the (s, t)-path in T since M* intersects the (p;, u)-path in T}, by definition.

Second, suppose that {s,t} NV (T,,) = 0 for every i € [A]. If s,t € V(T},), then M intersects
the (s,t)-path in 7" since M* intersects this path by definition. Otherwise, exactly one of s and
t belongs to V(T,), say s € V(T,,) without loss of generality, in which case (s,u) € P;, ; and so,
M intersects the (s,t)-path in T since M* intersects the (s,u)-path in 7; by definition. Thus,
M is as claimed.

By minimality of S, it follows that wt(M) > wt(S); but wt(M) = wt(M*)+3 o1y Tablui, Oi],
as for every i € [A], Tab[u;, -] is correctly filled, and thus, the converse inequality holds as well.
Combined with the above, we conclude that the algorithm .Azeavy is correct.

Finally, let us argue that the algorithm Azeavy runs in 24.2010g6) . nO()_time, First, Step 1.
can be done in 201080 . ,O(1)_time by Theorem 1.2 since, in this case, T, has at most ¢ leaves.
Otherwise, observe that for a fixed distribution, the most computationally demanding step is
the call to Aun-mc in Step 5.3., which takes 20(£log ) . 1, O(1)_time by Theorem 1.2, as T), has at
most ¢ leaves. Now note that there are at most 2% distributions to consider: indeed, |N,| < ¢
and for every i € [\], [200%]] < 2¢ as w; is d-light. Thus, Step 5. takes 2% 20(?log£) . 1, O(1) _time
in total and so, the algorithm indeed runs in the stated time. O

6 Future Directions

The natural question to ask is, whether the running times of our algorithms can be improved.
Faster algorithms for the arcless instances in [15], directly yield faster algorithms for twMC-
TREE parameterized by the number of leaves. Another interesting question is to determine
the parameterized complexity of the (bi-objective) WMC problem with respect to structural
parameters such as the number of leaves. There it seems difficult to use the flow augmentation
technique from [15], since such a step takes exponential time in the solution size, but the number
of the leaves in the input may be much smaller than the solution size.

Another interesting follow up question is to determine if one can use the directed flow aug-
mentation to resolve the parameterized complexity of WEIGHTED STEINER MULTICUT on trees,
where given a tree T', sets Py, ..., P, C V(T) each of size p > 1, a weight function wt : V(T') — N
and positive integers w, k, the goal is to determine if there exists a set S C V(T') such that
IS] < k, wt(S) < w and for each i € [q] there exists u;,v; € P; such that T — S has no
(u;, v;)-path. Observe that WMC-TREE is a special case of this problem when p = 2.
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