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Abstract

For a positive integer ` ≥ 3, the C`-Contractibility problem takes as input an undi-
rected simple graph G and determines whether G can be transformed into a graph isomor-
phic to C` (the induced cycle on ` vertices) using only edge contractions. Brouwer and
Veldman [JGT 1987] showed that C4-Contractibility is NP-complete in general graphs.
It is easy to verify that that C3-Contractibility is polynomial-time solvable. Dabrowski
and Paulusma [IPL 2017] showed that C`-Contractibility is NP-complete on bipartite
graphs for ` = 6 and posed as open problems the status of the problem when ` is 4 or
5. In this paper, we show that both C5-Contractibility and C4-Contractibility are
NP-complete on bipartite graphs.

1 Introduction

Operations on graphs produce new graphs from existing ones. Elementary editing operations
include deleting vertices, deleting and/or adding edges, subdividing edges and contracting edges.
Due to the ubiquitous presence of graphs in modeling real-world networks, many problems of
practical importance may be posed as editing problems on graphs. In this work, we focus
on modifying a graph by only performing edge contractions. Contracting an edge in a graph
results in the addition of a new vertex adjacent to the neighbors of its endpoints followed by the
deletion of the endpoints. As graphs typically represent binary relationships among a collection
of objects, edge contractions naturally correspond to merging two objects into a single entity
or to treating two objects as indistinguishable. Contractions can therefore be seen as a way
of ‘simplifying’ the graph and they have applications in clustering, compression, sparsification
and computer graphics [1, 3, 6, 7, 14, 20]. Edge contractions also play an imporant role in
Hamiltonian graph theory, planar graph theory and graph minor theory [5, 16, 25].

Given graphs G and H, the Graph Contractibility problem decides whether G can
be transformed into a graph isomorphic to H using only edge contractions. Graph Con-
tractibility is known to be NP-complete [11, GT51]. This led to the study of the problem
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on special graph classes and for restricted choices of H. When H is a fixed graph, the Graph
Contractibility problem is called H-Contractibility. Intuitively, this problem of deter-
mining whether G is contractible to H may be seen as the task of determining if the ‘underlying
structure’ of G is H. One of the related graph parameters in this context is cyclicity. The cyclic-
ity of a graph is the largest integer ` for which the graph is contractible to the induced cycle on
` vertices (denoted as C`). This parameter was introduced in the study of another important
graph invariant called circularity [4]. Ever since, there have been efforts towards understanding
the complexity of computing cyclicity and expressing it in terms of some structural property of
the graph. Brouwer and Veldman [5] showed that C4-Contractibility is NP-complete, hence
proving that determining cyclicity is NP-hard in general. This result led to the study of the
problem on special graph classes including bipartite graphs, claw-free graphs and planar graphs
[8, 10, 12].

Hammack [12] showed that the cyclicity of planar graphs can be computed in polynomial
time and in another work [13], he showed that C`-Contractibility is NP-complete for every
` ≥ 5 in general. Later, Kaminski et al. [19] showed that H-Contractibility is polynomial-
time solvable on planar graphs for any H. Levin et al. [22] showed that H-Contractibility
is polynomial-time solvable on general graphs if H is a graph on at most 5 vertices containing a
universal vertex. However, the presence of a universal vertex in H (on more than 5 vertices) does
not guarantee that the H-Contractibility can be solved in polynomial time [17]. Fiala et
al. [10] showed that C`-Contractibility is NP-complete for claw-free graphs for every ` ≥ 6.
Heggernes et al. [15] proved that P`-Contractibility is polynomial-time solvable on chordal
graphs for every ` ≥ 1, where P` denotes the induced path on ` vertices. Later, Belmonte et al.
[2] proved that H-Contractibility is polynomial-time solvable on chordal graphs for every H.
Dabrowski and Paulusma [8] showed that C6-Contractibility is NP-complete for bipartite
graphs. It is easy to verify that that C3-Contractibility is polynomial-time solvable in general
graphs. In this paper, we show that both C5-Contractibility and C4-Contractibility are
NP-complete on bipartite graphs.

Theorem 1. C5-Contractibility is NP-complete on bipartite graphs.

Theorem 2. C4-Contractibility is NP-complete on bipartite graphs.

Theorems 1 and 2 involve reductions from the Positive Not All Equal SAT (Positive
NAE-SAT) problem where given a formula ψ in conjunctive normal form with no negative
literals, the objective is to determine if there is an assignment of True or False to each of the
variables such that for each clause at least one but not all variables in it are set to True. Such an
assignment is called a not-all-equal satisfying assignment. Positive NAE-SAT (also referred
to as Monotone NAE-SAT) is known to be NP-complete [26]. Also, a straight-forward reduc-
tion from Set Splitting or Hypergraph 2-Colorability [11, SP4] to Positive NAE-SAT
ascertains this fact.

2 Preliminaries

For a positive integer q, [q] denotes the set {1, 2, . . . , q}. N denotes the collection of all non-
negative integers. A partition of a set S is a set of disjoint subsets of S whose union is S.

For standard graph-theoretic terminology not stated here, we refer the reader to the book by
Diestel [9]. In this work, we only consider simple undirected graphs. Unless otherwise specified,
we use n to denote the number of vertices in the graph under consideration G. For an undirected
graph G, its sets of vertices and edges, are denoted by V (G) and E(G), respectively. An edge
between vertices u and v is denoted as uv. Two vertices u, v in V (G) are adjacent if there is
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an edge uv in G. The open neighborhood of a vertex v, denoted by NG(v), is the set of vertices
adjacent to v and the closed neighborhood of v, denoted by NG[v], is NG(v) ∪ {v}. A vertex u
is a pendant vertex if |NG(v)| = 1. The notion of neighborhood is extended to a set S ⊆ V (G)
of vertices by defining NG[S] as

⋃
v∈S N [v] and NG(S) as N [S] \ S. We omit the subscript in

the notation for neighborhood if the graph under consideration is clear.
A set S ⊆ V (G) of vertices is a dominating set if V (G) = N [S]. For a subset F of edges,

V (F ) denotes the set of endpoints of edges in F . For a subset S of V (G) (resp. a subset F of
E(G)), G−S (resp. by G−F ) denotes the graph obtained by deleting S (resp. deleting F ) from
G. The subgraph of G induced on the set S ⊆ V (G) is denoted by G[S]. For two subsets S1, S2
of V (G), E(S1, S2) denotes the set of edges with one endpoint in S1 and the other endpoint
in S2. With a slight abuse of notation, we use E(S) to denote E(S, S). We say thats the sets
S1, S2 are adjacent if E(S1, S2) 6= ∅.

A path P in G is a sequence (v1, . . . , vk) of distinct vertices such that for each i ∈ [k − 1],
vivi+1 ∈ E(G). A cycle C in G is a sequence (v1, . . . , vk) of distinct vertices such that (v1, . . . , vk)
is a path and vkv1 ∈ E(G). A cycle C = (v1, . . . , vk) is called an induced (or chordless) cycle if
there is no edge in G that is between two non-consecutive vertices of C with the exception of
the edge vkv1. The length of a path or cycle X is the number of vertices in it and is denoted by
|X|. An induced cycle of length q is called a q-cycle and denoted by Cq. The distance between
any two vertices u, v in V (G) is the length of a shortest path from u to v in G. The diameter
of G is the maximum length of a shortest path between two vertices in G. A graph is connected
if there is a path between every pair of distinct vertices. A subset S of V (G) is said to be a
connected set if G[S] is connected. A spanning tree of a connected graph is a connected acyclic
subgraph which includes all the vertices of the graph. A spanning forest of a disconnected graph
is a collection of spanning trees of its components.

A set of vertices Y is said to be an independent set if no two vertices in Y are adjacent. A
graph G is a bipartite graph if its vertex set can be partitioned into two sets X and Y such that
every edge in the graph has one endpoint in X and the other endpoint in Y . Such a partition
{X,Y } of a bipartite graph is called a bipartition. The subdivision of the edge uv in G results
in another graph that is obtained from G by deleting the edge uv and adding a new vertex
w adjacent to u and v. Observe that subdividing all edges of an arbitrary graph results in a
bipartite graph. A complete bipartite graph with bipartition {X,Y } is a bipartite graph where
every vertex of X is adjacent to every vertex of Y .

The contraction of an edge e = uv in G results in another graph denoted by G/e that
is obtained from G by deleting vertices u and v from G, and adding a new vertex which is
adjacent to the vertices that are adjacent to either u or v in G. This process does not introduce
self-loops or parallel edges. Formally G/e is defined as V (G/e) = (V (G) ∪ {w})\{u, v} and
E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈ E(G)} ∪ {wx | x ∈ NG(u) ∪ NG(v)} where w is a
new vertex. Observe that contracting an edge reduces the number of vertices in the graph by
exactly one and reduces the number of edges by at least one. For a subset F of edges in G,
G/F denotes the graph obtained from G by contracting all the edges (in some order) in F . We
now formally define the notion of graph contractibility.

Definition 2.1. G is said to be contractible to H if there is a surjective function ψ : V (G) →
V (H) such that the following properties hold.

1. For each h ∈ V (H), ψ−1(h), called the witness set corresponding to h, is connected.
2. For each h, h′ ∈ V (H), hh′ ∈ E(H) if and only if E(ψ−1(h), ψ−1(h′)) 6= ∅.

Then, we say that G is contractible to H via the function ψ and that G has a H-witness
structure W = {ψ−1(h) | h ∈ V (H)} which is the collection of all witness sets.

In Definition 2.1, a witness set that contains more than one vertex is called a big witness set
and the one that is a singleton set is called a small witness set or singleton witness set. Note
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that a witness structure W is a partition of V (G). Also, if a vertex v is in some big witness set
W , then at least one neighbor of v is also in W . Recall that the H-Contractibility problem
takes as input a graph G and decides whether G is contractible to H or not. Observe that this
task is equivalent to determining if G has a H-witness structure or not.

Now, we proceed to proving Theorems 1 and 2 in Sections 3 and 4, respectively.

3 C5-Contractibility on Bipartite Graphs

In this section, we prove Theorem 1. It is easy to verify that C5-Contractibility is in
NP. Given an instance ψ of Positive NAE-SAT with N variables and M clauses, we give a
polynomial-time algorithm that outputs a bipartite graph G equivalent to ψ. For the sake of
simplicity, we describe the algorithm in two steps. In the first step, the algorithm constructs
a non-bipartite graph H equivalent to ψ (Lemmas 3 and 4) and then in the second step, the
algorithm constructs a bipartite graph G that is equivalent to H (Lemma 1). We remark that
G is obtained from H by dividing some (and not all) of the edges of H.

3.1 Construction of H and G

Let {X1, X2, . . . , XN} and {C1, C2, . . . , CM} be the sets of variables and clauses, respectively,
in ψ. The non-bipartite graph H is constructed as follows. Refer to Figure 1 for an illustration.

1. Add a set Vα = {α0, α1, α2, α3, α4} of five vertices that induce the 5-cycle (α0, α1, α2, α3, α4).
This set forms the “base cycle” in the witness structure.

2. For every i ∈ [N ], add a set of five vertices that induce a 5-cycle Ci = (x0i , x
1
i , x

2
i , x

3
i , x

4
i )

and two sets of edges {x0iα0, x1iα
1, x2iα

2, x3iα
3, x4iα

4} and {x0iα1, x1iα
2, x2iα

3, x3iα
4, x4iα

0}.
The variable gadget is designed so that there are two choices for Ci to co-exist (in a C5-
witness structure) with the C5 induced by Vα. We will associate these two choices with a
True or False assignment to the corresponding variable.

3. For every j ∈ [M ], add vertices cj and bj and a set {cjα0, cjα
2, bjα

2, bjα
4} of edges. The

neighbours of cj and bj are defined so that cj will be in the same witness set as α1 (a
non-neighbor of cj) and bj will be in the same witness set as α3 (a non-neighbor of bj).

4. Finally, for every i ∈ [N ] and j ∈ [M ] such that Xi appears in Cj , add edges x1i cj and
x2i bj . This step is the one that encodes the clause-variable relationship. Relevant variables
are expected to help cj (and bj) to be connected to witness sets containing α1 (and α3).

This completes the construction of H.
For p ∈ {0, 1, 2, 3, 4}, define Xp := {xpi | i ∈ [N ]}. Also, define Y c := {cj | j ∈ [M ]}

and Y b := {bj | j ∈ [M ]}. For an edge uv ∈ E(H), let λ(u, v) denote the new vertex added
while subdividing uv in the construction of G. Let L = {α0, α2, α4} ∪ X1 ∪ X3 and R =
{α1, α3}∪X0 ∪X2 ∪X4 ∪Y c ∪Y b. Then, {L,R} is a partition of H into two parts where there
are certain edges with both endpoints in the same part. We subdivide exactly these edges to
obtain G.

5. Subdivide the edge α0α4.
6. For every i ∈ [N ], subdivide the edges x0ix

4
i , x

0
iα

1, x1iα
2, x2iα

3, and x3iα
4.

7. For every i ∈ [N ] and j ∈ [M ], subdivide the edge x2i bj if it exists.
This completes the construction of G.

We now argue that G is a bipartite graph. Observe that L and R are independent sets in G.
We will extend this partition {L,R} of H into a bipartition of G as follows: λ(α0, α4) ∈ R and
for every i ∈ [N ], λ(x0i , x

4
i ) ∈ L, λ(x0i , α

1) ∈ L, λ(x1i , α
2) ∈ R, λ(x2i , α

3) ∈ L and λ(x3i , α
4) ∈ R.

For every i ∈ [N ], j ∈ [M ], if x2i bj ∈ E(H), then λ(x2i , bj) ∈ L. See Figure 1 for an illustration.
It is easy to verify that {L,R} is a bipartition of G and hence G is a bipartite graph.
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Figure 1: (Left) The graph H with certain edges highlighted as purple (dotted) edges denote
setting variable Xi to True and as green (dashed) edges denote setting Xi to False, respec-
tively. (Right) The bipartite graph G where blue (round) and red (squares) vertices denote a
bipartition.

We remark that the natural bipartite graph obtained from H by subdividing all the edges
may not be equivalent to H in the context of C5-Contractiblity. In Lemma 1, we show that
the set of edges of H that are subdivided to obtain G are safe (in preserving contractiblity to
C5) to subdivide.

3.2 Equivalence of H and G

We show that G and H are equivalent in the context of C5-Contractiblity. As G is obtained
from H by subdividing some edges, one can obtain H from G by contracting some edges. Hence,
if one can obtain a C5 by contracting edges in H, then one can also obtain a C5 by contracting
edges in G by first contracting G to H and then contracting H to C5. To prove the converse, we
first argue that no vertex in V (G) \ V (H) is a singleton witness set in any C5-witness structure
W of G. Then, we show that deleting vertices of V (G) \ V (H) from W results in a C5-witness
structure W ′ of H.

Lemma 1. H is a Yes-instance of C5-Contractibility if and only if G is a Yes-instance
of C5-Contractibility.

Proof. As G is obtained from H by subdividing some edges, one can obtain H from G by
contracting some edges. Hence, if one can obtain a C5 by contracting edges in H, then one can
also obtain a C5 by contracting edges in G by first contracting G to H and then contracting H
to C5. Therefore, if H is a Yes-instance of C5-Contractibility then G is a Yes-instance of
C5-Contractibility.

Suppose G is a Yes-instance of C5-Contractibility and W = {W i | i ∈ [4] ∪ {0}} is a
C5-witness structure of G where E(W i,W j) 6= ∅ if and only if j = (i+1) mod 5. We first argue
that no vertex in V (G) \ V (H) is a singleton witness set in W. Suppose for some uv ∈ E(H),
λ(u, v) is a singleton witness set. Without loss of generality, let W 0 = {λ(u, v)}. As E(W 0,W 1)
and E(W 0,W 1) are non-empty sets in G and λ(u, v) is of degree two, either u ∈W 1 and v ∈W 4

or v ∈ W 1 and u ∈ W 4. In either case, as W is a C5-witness structure of G, any path from
u to v in G − {λ(u, v)} is of length at least three. We will now show that for any edge uv in
H which is subdivided while constructing G, the length of a shortest path between u and v in
G− {λ(u, v)} is two. This will lead to a contradiction which will enable us to conclude that no
vertex in V (G) \ V (H) is a singleton witness set in W.

Consider the following triples: (α0, α4, x4i ), (x0i , x
4
i , α

0), (xpi , α
p+1, xp+1

i ), and (x2i , bj , α
2) for

every i ∈ [N ], j ∈ [M ], and p ∈ {0, 1, 2, 3}. For any triple (u′, v′, w′), there is a path from u′

to v′ via w′ of length two in G that does not contain λ(u′, v′), i.e., w′ is a common neighbor of
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u′ and v′ in G. This implies that the vertex obtained by subdividing the edge u′v′ in H while
constructing G cannot be a singleton witness set inW. However, these triples represent all edges
of H that were subdivided while constructing G. Hence, there is no vertex in V (G)\V (H) which
is a singleton witness set in W. Equivalently, for any λ(u, v) ∈ V (G), if λ(u, v) is contained in
W ? ∈ W, then u ∈ W ? or v ∈ W ?. That is, for any edge uv ∈ E(H) which was subdivided
while constructing G, the vertices u, v are in the same witness set or in adjacent witness sets.

Let W ′ be the partition of V (H) obtained from W by removing vertices in V (G) \ V (H).
Formally, W ′ = {W ? \ (V (G) \ V (H)) | W ? ∈ W}. Since, no vertex in V (G) \ V (H) is a
singleton witness set in W, W ′ contains five non-empty sets. Also, the endpoints of any edge
uv ∈ E(H) \ E(G) are either in the same witness set or in witness sets that are adjacent in G.
In both the cases, each witness set ofW remains connected in H even after deleting the vertices
in V (G) \ V (H). This implies that W ′ is a C5-witness structure of H.

3.3 Properties of a C5-Witness Structure of H

Before we state properties of H, we mention the following observation.

Observation 1. In any partition {X,Y } of the vertices of an induced 5-cycle into 2 non-empty
parts, E(X,Y ) 6= ∅.

Now, we state certain properties of vertex subsets in H that we later use to show properties
of a C5-witness structure of H.

Observation 2. X0, X1, X2, X3, X4, Y c and Y b are independent sets and Vα is a dominating
set in H. Further, X0 ∪X4 ∪ Y c ⊆ N(α0), X1 ∪X0 ⊆ N(α1), X2 ∪X1 ∪ Y c ∪ Y b ⊆ N(α2),
X3 ∪X2 ⊆ N(α3) and X4 ∪X3 ∪ Y b ⊆ N(α4).

Next, we show a property of a C5-witness structure of H that will be crucial to proving the
correctness of the reduction. As we have indicated in the construction of H, we need a handle
on the base cycle of the C5-witness structure (for Yes-instances) which Lemma 2 provides.

Lemma 2. In any C5-witness structure of G, every pair of vertices in Vα are in different witness
sets.

Proof. Suppose W = {W i | i ∈ [4] ∪ {0}} is a C5-witness structure of H where E(W i,W j) 6= ∅
if and only if j = (i± 1) mod 5. We argue that Vα has a non-empty intersection with each W i.
Suppose Vα ⊆W i for some 0 ≤ i ≤ 4. Then, W (i+2) mod 5 = ∅ and W (i+3) mod 5 = ∅ leading to
a contradiction. Suppose Vα intersects exactly two witness sets. We will consider the cases when
these sets are W 0,W 1 and W 0,W 2. The other cases are similar to these cases. If Vα intersects
only with W 0 and W 1, then since Vα is a dominating set in H it follows that W 3 = ∅ and this
leads to a contradiction. Suppose Vα intersects only with W 0 and W 2. From Observation 1,
this implies that E(W 0,W 2) 6= ∅ leading to a contradiction. Suppose Vα intersects exactly four
witness sets, say W 0,W 1,W 2, and W 3. Without loss of generality, assume α0 ∈ W 0. As α1

and α4 are adjacent to α0, we have {α1, α4} ⊆ W 0 ∪W 1. Then, one of α2 or α3 is in W 2 and
the other is in W 3. However, as α1α2, α3α4 ∈ E(H), neither α2 nor α3 can be in W 3 implying
that W 3 = ∅ and leading to a contradiction.

Suppose Vα intersects exactly three witness sets. Without loss of generality, let α0 ∈ W 0.
We consider the following cases.

- Case (i) Vα intersects W 0,W 1 and W 2.
- Case (ii) Vα intersects W 0,W 1 and W 4.
- Case (iii) Vα intersects W 0,W 2 and W 3. This leads to contradiction as Observation 1

implies E(W 0,W 2 ∪W 3) 6= ∅.
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- Case (iv) Vα intersects W 0,W 2 and W 4. This leads to contradiction as Observation 1
implies E(W 2,W 0 ∪W 4) 6= ∅.

- Case (v) Vα intersects W 0,W 4 and W 3. This is similar to Case (i).
- Case (vi) Vα intersects W 0,W 1 and W 3. This is similar to Case (iv).

Consider Case (i). As α1 and α4 are adjacent to α0, we have {α1, α4} ⊆ W 0 ∪ W 1. Then,
at least one of α2 or α3 is in W 2 and since α2α3 ∈ E(H), neither α2 nor α3 can be in W 0.
Thus, we have {α2, α3} ⊆ W 1 ∪ W 2. Since E(W 0,W 3) = ∅ and E(W 1,W 3) = ∅, we have
W 3 ∩ N(α0) = ∅, W 3 ∩ N(α1) = ∅ and W 3 ∩ N(α4) = ∅. From Observation 2, this implies
that W 3 ⊆ X2. Similarly, since E(W 1,W 4) = ∅ and E(W 2,W 4) = ∅, we have W 4 ∩N(α2) = ∅
and W 4 ∩ N(α3) = ∅. From Observation 2, this implies W 4 ⊆ (X0 ∪ X4). However, by the
construction, E(X2, X0∪X4) = ∅ implying that E(W 3,W 4) = ∅ which leads to a contradiction.

Let us now consider Case (ii). Recall that α0 ∈ W 0. Then, either α1 ∈ W 0 ∪ W 1 or
α1 ∈ W 0 ∪W 4. As both these cases are similar, we consider the case when α1 ∈ W 0 ∪W 1.
Suppose α1 ∈ W 1. Then, we have {α1, α2} ⊆ W 0 ∪W 1 since α1α2 ∈ E(H). We will show
that this leads to a contradiction. At least one of α3 or α4 is in W 4 and since α3α4 ∈ E(H),
neither α3 nor α4 can be in W 1. Thus, we have {α3, α4} ⊆ W 0 ∪W 4. Since E(W 0,W 3) = ∅
and E(W 1,W 3) = ∅, we have W 3 ∩N(α0) = ∅, W 3 ∩N(α1) = ∅ and W 3 ∩N(α2) = ∅. From
Observation 2, this implies W 3 ⊆ X3. Similarly, since E(W 0,W 2) = ∅ and E(W 4,W 2) = ∅,
we have W 2 ∩ N(α0) = ∅, W 2 ∩ N(α3) = ∅ and W 2 ∩ N(α4) = ∅. From Observation 2, this
implies W 2 ⊆ X1. However, by construction, E(X1, X3) = ∅ implying that E(W 2,W 3) = ∅
which leads to a contradiction.

Suppose α1 ∈ W 0. If α2 ∈ W 0, then one of α3 or α4 is in W 1 and the other is in W 4

resulting in an edge between W 1 and W 4. Thus, α2 ∈ W 1 or α2 ∈ W 4. As these cases are
similar, we only consider α2 ∈W 1. Then we once again have {α1, α2} ⊆W 0 ∪W 1 which leads
to a contradiction.

3.4 Equivalence of H and ψ

Now, we are ready to establish the equivalence of ψ and H.

Lemma 3. If ψ is a Yes-instance of Positive NAE-SAT then H is a Yes-instance of C5-
Contractibility.

Proof. Suppose π : {X1, X2, . . . , XN} 7→ {True, False} is a not-all-equal satisfying assignment
of ψ. Define the following partition of V (H).

W 0 := {α0} ∪ {x0i | i ∈ [N ], π(Xi) = True} ∪ {x4i | i ∈ [N ], π(Xi) = False},
W 1 := {α1} ∪ {x1i | i ∈ [N ], π(Xi) = True} ∪ {x0i | i ∈ [N ], π(Xi) = False}

∪ {cj | j ∈ [M ]},
W 2 := {α2} ∪ {x2i | i ∈ [N ], π(Xi) = True} ∪ {x1i | i ∈ [N ], π(Xi) = False},
W 3 := {α3} ∪ {x3i | i ∈ [N ], π(Xi) = True} ∪ {x2i | i ∈ [N ], π(Xi) = False}

∪ {bj | j ∈ [M ]},
W 4 := {α4} ∪ {x4i | i ∈ [N ], π(Xi) = True} ∪ {x3i | i ∈ [N ], π(Xi) = False},

Clearly W 0, W 2, and W 4 are connected sets. For any j ∈ [M ], there exists i ∈ [N ] such that
x1i ∈W 1 (since π sets at least one of the variables in Cj to True) and i′ ∈ [N ] such that x2i′ ∈W 3

(since π sets at least one of the variables in Cj to False). Also, cjx
1
i , bjx

2
i′ ∈ E(H). As for every

i ∈ [N ], α1 is adjacent to x1i and α3 is adjacent to x2i , it follows that W 1 and W 3 are connected
sets. Now, it is easy to verify that {W 0,W 1,W 2,W 3,W 4} is a C5-witness structure.
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In the proof of the converse of Lemma 3, we crucially use Lemma 2. That is, if H
is contractible to a 5-cycle, then in any C5-witness structure {W 0,W 1,W 2,W 3,W 4} with
E(W i,W j) 6= ∅ if and only if j = (i ± 1) mod 5, each of the five witness sets has a non-
empty intersection with Vα. This structure along with a couple of other properties translates
to a not-all-equal satisfying assignment of ψ.

Lemma 4. If H is a Yes-instance of C5-Contractibility then ψ is a Yes-instance of
Positive NAE-SAT.

Proof. SupposeW = {W 0,W 1,W 2,W 3,W 4} is a C5-witness structure ofH where E(W i,W j) 6=
∅ if and only if j = (i ± 1) mod 5. Then, by Lemma 2, Vα has a non-empty intersection with
each W i. Without loss of generality, let αp ∈ W p for every p ∈ {0, 1, 2, 3, 4}. We first argue
that for any i ∈ [N ], the set Si = {x0i , x1i , x2i , x3i , x4i } also has a non-empty intersection with
each W j . Suppose Si ∩W 0 = ∅. Then, as α0 is adjacent to x0i , x

4
i and x0ix

4
i ∈ E(H), either

{x0i , x4i } ⊆ W 1 or {x0i , x4i } ⊆ W 4. As α4x4i , α
1x0i ∈ E(H), both these cases contradict the

fact that E(W 1,W 4) = ∅. Using the similar arguments, it follows that Si has a non-empty
intersection with each W j .

Next, we claim that for each i ∈ [N ] and 0 ≤ p ≤ 4, xpi ∈ W p ∪W (p+1) mod 5. This is due
to the fact that xpi is adjacent with αp and αp+1 (mod 5). Now, we show that for each i ∈ [N ]

and 0 ≤ p ≤ 4, xpi ∈ W p if and only if x
(p+1) mod 5
i ∈ W (p+1) mod 5 and xpi ∈ W (p+1) mod 5

if and only if x
(p+1) mod 5
i ∈ W (p+2) mod 5. If x0i ∈ W 0 and x1i /∈ W 1, then E(W 0,W 2) ∪

E(W 0,W 3) ∪ E(W 2,W 4) 6= ∅ leading to a contradiction. If x0i ∈ W 1 and x1i /∈ W 2, then
E(W 1,W 3)∪E(W 0,W 2)∪E(W 1,W 4) 6= ∅ leading to a contradiction. Similar arguments hold
for x1i , x

2
i , x

3
i and x4i . This is indicated by the collections of purple (dotted) edges and green

(dashed) edges in Figure 1. We will associate these two choices with setting Xi to True and to
False, respectively.

We now construct an assignment π : {X1, X2, . . . , XN} 7→ {True, False}. Consider the
witness set W 1. For each i ∈ [N ], if x1i ∈ W 1 then set π(Xi) = True, otherwise (x1i ∈ W 2) set
π(Xi) = False. We argue that π is a not-all-equal satisfying assignment for ψ. We show that
for each j ∈ [M ], cj ∈ W 1 and bj ∈ W 3, further, the clause Cj has variables Xi and Xi′ such
that x1i ∈ W 1 and x2i′ ∈ W 3. Observe that cj (being adjacent with α0 and α2) is in the same
witness set that has α1 and bj (being adjacent with α2 and α4) is in the same witness set that
has α3. Thus, for each j ∈ [M ], cj ∈ W 1 and bj ∈ W 3. By the property of witness structures,
W 1 and W 3 are connected sets. As the only vertices outside Vα that are adjacent to cj are
vertices x1i corresponding to variables Xi appearing in Cj , it follows that Cj has a variable Xi

such that x1i ∈W 1. Similarly, as the only vertices outside Vα that are adjacent to bj are vertices
x2i corresponding to variables Xi appearing in Cj , it follows that Cj has a variable Xi′ such that
x2i′ ∈W 3.

4 C4-Contractiblity on Biparitite Graphs

In this section, we prove Theorem 2. It is easy to verify that C4-Contractibility is in
NP. Given an instance ψ of Positive NAE-SAT with N variables and M clauses, we give a
polynomial-time algorithm that outputs a bipartite graph G equivalent to ψ (Lemmas 7 and 8).

4.1 Construction of G

Let {X1, X2, . . . , XN} and {C1, C2, . . . , CM} be the sets of variables and clauses, respectively, in
ψ. The graph G with a partition {V, V ′} of its vertex set is constructed as follows. See Figure 2
for an illustration.
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1. Add vertices t, f to V , vertices t′, f ′ to V ′ and edges tt′, ff ′ to E(G). This set would
eventually form the “base cycle” in the witness structure.

2. For every i ∈ [N ], add vertices xi, yi, zi to V and x′i, y
′
i, z
′
i to V ′ corresponding to the

variable Xi. Further, make every vertex in {x′i, y′i, z′i} adjacent to every vertex in {xi, t, f}
and every vertex in {xi, yi, zi} adjacent to every vertex in {x′i, t′, f ′}. Let X = {xi | i ∈
[N ]}, X ′ = {x′i | i ∈ [N ]}, Y = {yi | i ∈ [N ]}, Y ′ = {y′i | i ∈ [N ]}, Z = {zi | i ∈ [N ]},
Z ′ = {z′i | i ∈ [N ]}. The neighborhood of X ′ is set so that every element of X ′ is in the
witness set containing t or f . This forces every element of X to be respectively in the
witness set containing t′ or f ′. These binary choices would be associated with setting the
corresponding variable to True or False. The sets Y , Y ′, Z, Z ′ are added for technical
reasons.

3. For every j ∈ [M ], add vertices cj , bj to V , c′j , b
′
j to V ′ and edges cjf

′, bjf
′, c′jt, b

′
jt

to E(G) corresponding to clause Cj . Let C = {cj | j ∈ [M ]}, C ′ = {c′j | j ∈ [M ]},
B = {bj | j ∈ [M ]}, B′ = {b′j | j ∈ [M ]}. Subsequently, we will add more vertices (sets
D and D′ defined subsequently) adjacent to vertices in C ∪B ∪C ′ ∪B′ so that no vertex
in B ∪ C is in a witness set that is non-adjacent to the one containing t and no vertex in
B′ ∪ C ′ is in a witness set that is non-adjacent to the one containing f ′.

4. For every i ∈ [N ] and j ∈ [M ], if Xi appears in Cj then add edges cjx
′
i, bjx

′
i, xic

′
j , and

xib
′
j to E(G). This step is the one that encodes the clause-variable relationship. Relevant

variables are expected to help clause vertices to be connected to witness sets containing
them.

5. Let D denote the following collection of pairs of vertices: {{t, f}, {t′, f ′}}
⋃
{{t, cj}, {t, bj},

{f ′, c′j}, {f ′, b′j} | j ∈ [M ]}. Note that for any pair of vertices in D, either both elements
of the pair are in V or both are in V ′. For every pair {u, v} of vertices in D that are in
V , add three vertices d′u,v,1, d

′
u,v,2, d

′
u,v,3 to V ′ and make them adjacent to both u, v. For

every pair {u, v} of vertices in D that are in V ′, add three vertices du,v,1, du,v,2, du,v,3 to V
and make them adjacent to both u, v. The pairs in D are the ones that should not be in
non-adjacent witness sets and the common neighbors are added to achieve this property.

This completes the construction of G.
As the reduction always adds edges with one of its endpoints in V and the other endpoint

in V ′, G is a bipartite graph with bipartition {V, V ′}. Let D = {du,v,p | {u, v} ∈ D, u, v ∈
V and p ∈ [3]} and D′ = {d′u,v,p | {u, v} ∈ D, u, v ∈ V ′ and p ∈ [3]}.

4.2 Properties of a Nice C4-Witness Structure of G

Now, we show that if G is contractible to a 4-cycle, then there is a C4-witness structure of G
satisfying certain nice properties. For this purpose, we introduce the following notion of a nice
C4-witness structure.

Definition 4.1. A C4-witness structure of G is a nice C4-witness structure if the following
properties hold.
(P1) For every pair {u, v} in D, u and v are in the same or adjacent witness sets.
(P2) Every vertex in D ∪D′ is in a big witness set. Further, every vertex in D′ is in the same
witness set as t and every vertex in D is in the same witness set as f ′.

Next, we show the existence of a nice C4-witness structure for Yes-instances.

Lemma 5. If G is contractible to a 4-cycle, then there is a nice C4-witness structure of G.

Proof. Let W = {W 0,W 1,W 2,W 3} be a C4-witness structure of G such that E(W i,W j) 6= ∅
if and only if j = (i+ 1) mod 4. We first show that W satisfies Property (P1). Assume for the
sake of contradiction that there is a pair {u, v} ∈ D such that u ∈ W i and v ∈ W (i+2) mod 4.
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Figure 2: (Left) The graph G where only three vertices each in D and D′ shown with purple
(dotted) edges denote setting variable Xi to True and green (dashed) edges denote setting Xi

to False. (Right) Adjacency relation between different subsets of vertices.

Recall there are three pairwise non-adjacent vertices du,v,1, du,v,2 and du,v,3 whose neighborhood
in G is {u, v}. It follows that each of these vertices is in W (i+1) mod 4 or in W (i+3) mod 4. Then,
one of these sets, say W j , contains du,v,1 and du,v,2. However, W j has no vertex that is adjacent
to either of these vertices contradicting the fact that W j is a connected set.

Next, we show that every vertex in D ∪D′ is in a big witness set. Assume for the sake of
contradiction that there is a vertex, say du,v,1 ∈ D ∪D′, which is in a singleton witness set W i.
As W i is adjacent to W (i+1) mod 4 and W (i+3) mod 4 while du,v,1 is adjacent to only u and v, it
follows that u ∈ W (i+3) mod 4 and v ∈ W (i+1) mod 4 Then, we get du,v,2, du,v,3 ∈ W (i+2) mod 4.
However, N(du,v,2) = N(du,v,3) = {u, v} ⊆ W (i+1) mod 4 ∪W (i+3) mod 4. This contradicts the
fact that W (i+2) mod 4 is a connected set.

Subsequently, we assume that W satisfies Property (P1) and every vertex in D ∪D′ is in a
big witness set. Without loss of generality assume t ∈W 0. Let µ(W) be the number of vertices
in D′ that are not in W 0. If µ(W) = 0 then it follows that every vertex in D′ is in the same
witness set as t. Suppose µ(W) ≥ 1. Let d′t,u,p be a vertex in D′ \W 0 for some u ∈ {f}∪C ∪B
and p ∈ [3]. As t is adjacent to d′t,u,p and t ∈W 0, d′t,u,p is either in W 1 or in W 3. Without loss
of generality, suppose d′t,u,p ∈W 1. As every vertex in D∪D′ is in a big witness set, W 1 is a big
witness set. As d′t,u,p is adjacent to only t and u, we have u ∈ W 1. Define W 0

? = W 0 ∪ {d′t,u,p}
and W 1

? = W 1 \ {d′t,u,p}. It is easy to verify that W? = {W 0
? ,W

1
? ,W

2,W 3} is a C4-witness
structure of G. Moreover, µ(W?) < µ(W). Hence, by repeating the this process at most |D′|
times, we obtain a C4-witness structure of G in which every vertex in D′ is in the same witness
set as t. Using identical arguments, we can obtain a witness structure which also satisfies the
property that every vertex in D is in the same witness set as f ′.

Now, we show a property of a nice C4-witness structure of G that will be crucial to proving
the correctness of the reduction.

Lemma 6. In any nice C4-witness structure of G, every pair of vertices in {t, t′, f, f ′} are in
different witness sets.

Proof. We first show that t, f ′ are in different witness sets. Assume, for the sake of contradiction,
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that t and f ′ are in the same witness set, say W 0. By construction, every vertex in V (G)\{t, f ′}
is adjacent to either t or f ′. That is, {t, f ′} is a dominating set in G implying that W 2 is empty
since every (non-empty) witness set containing any vertex in V (G) \ {t, f ′} is adjacent to W 0.
Hence, we conclude that t and f ′ are in different witness sets.

Next, we prove that t′, f are in different witness sets. Assume, for the sake of contradiction,
that t′, f are in the same witness set, say W 0. As W 2 is not adjacent to W 0, this implies
that W 2 ⊆ C ∪ B ∪ C ′ ∪ B′ ∪ D ∪ D′. By Property (P2) of a nice C4-witness structure of
G, we have W 2 ⊆ C ∪ B ∪ C ′ ∪ B′. As C ∪ B ∪ C ′ ∪ B′ is an independent set and W 2 is a
connected set, it follows that W 2 is a singleton set. Suppose W 2 = {cj} for some j ∈ [M ]. By
construction, N(cj) ⊆ {f ′} ∪X ′ ∪D′. As every vertex in X ′ ∪ {f ′} is adjacent to f ∈ W 0, we
have X ′ ∪ {f ′} ⊆ W 1 ∪W 3. Once again by Property (P2) of a nice C4-witness structure of G,
all the vertices in D are in the same witness set that contains f ′. As W 1 and W 3 are adjacent
to W 2, we have (D′ ∪X ′ ∪ {f ′}) ∩W 1 6= ∅ and (D′ ∪X ′ ∪ {f ′}) ∩W 3 6= ∅. By construction,
N(cj)∩ (X ′ ∪ {f ′}) = N(bj)∩ (X ′ ∪ {f ′}). This implies that bj is in W 0 as W 2 = {cj}. By our
assumption, W 0 \{bj} contains t′, f and hence is non-empty. However, as N(bj) ⊆W 1∪W 3, bj
is not adjacent with any other vertex in W 0. This contradicts the fact that W 0 is a connected
set. A similar argument holds if W 2 = {c′j} or W 2 = {bj} or W 2 = {b′j}. Thus, t′, f are in
different witness sets.

Now, we show that t, t′ are in different witness sets and f, f ′ are in different witness sets.
Assume, for the sake of contradiction, that t and t′ are in the same witness set, say W 0. As
W 2 is not adjacent with W 0, this implies that W 2 ⊆ {f, f ′} ∪C ∪B ∪D. Recall that the pairs
{t, f}, {t′, f ′}, {t, cj} and {t, bj} are in D for every j ∈ [M ]. As t, t′ ∈W 0, by Property (P1) of
a nice C4-witness structure of G, we have that f, f ′, cj , bj 6∈ W 2 for any j ∈ [M ]. By Property
(P2), we have (D ∪D′)∩W 2 = ∅. This contradicts the fact that W 2 is a nonempty set. Hence,
our assumption is wrong, and t, t′ are indeed in different set. Using a similar argument, it is
easy to see that f, f ′ are in different witness sets as well.

Finally, we show that t, f are in different witness sets and t′, f ′ are in different witness sets.
Assume, for the sake of contradiction, that t, f are in the same witness set, say W 0. As W 2 is
not adjacent to W 0, we have W 2 ⊆ X ∪ Y ∪ Z ∪ C ∪ B ∪D. As f ′ is adjacent to f , we have
f ′ ∈ W 1 ∪W 3, As {t, f ′} ∩W 2 = ∅, by Property (P2) of a nice C4-witness structure of G, we
have D∩W 2 = ∅. Hence, W 2 ⊆ X ∪Y ∪Z ∪C ∪B. Recall that for any j ∈ [M ], the pair {t, cj}
is in D. As t ∈W 0, by Property (P1) of a nice C4-witness structure of G, we get that cj 6∈W 2

for any j ∈ [M ]. Using symmetric arguments, we can conclude bj 6∈ W 2 for any j ∈ [M ] as
well. This implies that W 2 ⊆ X ∪ Y ∪ Z. By construction, X ∪ Y ∪ Z is an independent set in
G. As W 2 is a connected set, it follows that it is a singleton witness set. Suppose W 2 = {xi}
for some i ∈ [N ]. Recall that t′, f ′ are adjacent to t and f , respectively, and are adjacent to
xi. As t, f ∈ W 0 and xi ∈ W 2, we have t′, f ′ ∈ W 1 ∪W 3. However, the pair {t′, f ′} is in D.
By Property (P1) of a nice C4-witness structure of G, either {t′, f ′} ⊆ W 1 or {t′, f ′} ⊆ W 3.
Without loss of generality, suppose {t′, f ′} ⊆W 3. Recall that N(y′i) = N(z′i) = {t, f, xi}. Then,
t, f ∈W 0 and {xi} = W 2 imply that y′i, z

′
i ∈W 1 ∪W 3. As N(y′i) ⊆W 0 ∪W 2, if y′i ∈W 1, then

W 1 = {y′i}. A similar statement holds for z′i. This implies that either y′i or z′i is present in W 3.
Suppose z′i ∈W 3. Then, W 3\{z′i} contains t′, f ′, and hence is non-empty. As N(z′i) ⊆W 0∪W 2,
z′i is not adjacent with any other vertex in W 3. This contradicts the fact that W 3 is connected.
Hence, our assumption is wrong and t, f are in different witness sets. A similar argument holds
if W 2 = {yi} or W 2 = {zi}. Using a symmetric argument, it follows that t′, f ′ are in different
witness sets.

4.3 Equivalence of G and ψ

Now, we are ready to establish the equivalence of ψ and G.
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Lemma 7. If ψ is a Yes-instance of Positive NAE-SAT then G is a Yes-instance of C4-
Contractibility.

Proof. Suppose π : {X1, X2, . . . , XN} 7→ {True, False} is a not-all-equal satisfying assignment
of ψ. Define the following partition of V (G).

W 0 := {t} ∪ {x′i, y′i, z′i | i ∈ [N ] and π(Xi) = True} ∪D′,
W 1 := {t′} ∪ {xi, yi, zi | i ∈ [N ] and π(Xi) = True} ∪B′ ∪ C ′,
W 2 := {f ′} ∪ {xi, yi, zi | i ∈ [N ] and π(Xi) = False} ∪D, and

W 3 := {f} ∪ {x′i, y′i, z′i | i ∈ [N ] and π(Xi) = False} ∪B ∪ C.

As t is adjacent to every vertex in X ′ ∪ Y ′ ∪ Z ′ ∪ D′, and f ′ is adjacent to every vertex in
X ∪Y ∪Z ∪D, W 0 and W 2 are connected sets in G. Further, by construction, E(W 0,W 2) = ∅
and E(W 1,W 3) = ∅. W 1 is a connected set since X ∪ Y ∪ Z ⊆ N(t′) and for each j ∈ [M ],
there exists i ∈ [N ] such that xi ∈ W 1 (corresponding to a variable in Cj set to True) and
c′jxi, b

′
jxi ∈ E(G). Similarly, W 3 is also a connected set. The edges tt′ and ff ′, respectively,

ensure that W 0 is adjacent to W 1 and W 3 is adjacent to W 2. As for any i ∈ [N ], x′i is adjacent
with t and f and x′i ∈ W 0 ∪W 3, it follows that W 0 and W 3 are adjacent. Similarly, W 1 and
W 2 are adjacent. Hence, {W 0,W 1,W 2,W 3} is a C4-witness structure.

Now, we proceed to show the converse of Lemma 7. We crucially use the properties of a
nice C4-witness structure. This structure along with certain other properties help to obtain a
not-all-equal satisfying assignment of ψ.

Lemma 8. If G is a Yes-instance of C4-Contractibility then ψ is a Yes-instance of
Positive NAE-SAT.

Proof. Suppose W = {W 0,W 1,W 2,W 3} is a C4-witness structure of G where E(W i,W j) 6= ∅
if and only if j = (i ± 1) mod 4. From Lemmas 5 and 6, we may assume that W is a nice
C4-witness structure in which every pair of vertices in {t, t′, f, f ′} are in different witness sets.
As {t, f} and {t′, f ′} are in D, by Property (P1) of a nice C4-witness structure of G, t and f
are in adjacent witness sets and t′ and f ′ are in adjacent witness sets. Hence, without loss of
generality, we may assume that t ∈ W 0, t′ ∈ W 1, f ′ ∈ W 2, and f ∈ W 3. Also, by Property
(P2) of a nice C4-witness structure of G, we have D′ ⊆W 0 and D ⊆W 2.

For each i ∈ [N ], x′i is adjacent to t, f and xi is adjacent to t′, f ′. Therefore, xi /∈W 0 ∪W 3,
x′i /∈ W 1 ∪W 2 and we have X ′ ⊆ W 0 ∪W 3 and X ⊆ W 1 ∪W 2. Further, since xix

′
i ∈ E(G),

it follows that xi ∈ W 1 if and only if x′i ∈ W 0 and xi ∈ W 2 if and only if x′i ∈ W 3. Refer to
Figure 2 for an illustration where these two choices are indicated by the purple (dotted) edges
and green (dashed) edges. We will associate these two choices with setting the variable Xi to
True or False, respectively. Consider a vertex cj ∈ C for some j ∈ [M ]. As f ′ ∈ W 2 and
f ′cj ∈ E(G), it follows that cj /∈ W 0. Also, since t ∈ W 0 and {t, cj} is in D, by Property (P1)
of a nice C4-witness structure of G, it follows that cj is not in W 2. As N(cj) ⊆W 0 ∪W 2 ∪W 3

and t′ ∈ W 1, if cj ∈ W 1, then W 1 cannot be a connected set. Hence, cj ∈ W 3. As cj is an
arbitrary vertex of C in this reasoning, we have C ⊆ W 3. Similarly, B ⊆ W 3. This implies
C ∪B ⊆W 3. By a symmetric argument, we have C ′ ∪B′ ⊆W 1.

We now construct an assignment π : {X1, X2, . . . , XN} 7→ {True, False} using W. For
every i ∈ [N ], set π(Xi) = True if xi ∈W 1 (or equivalently x′i ∈W 0) and set π(Xi) = False if
x′i ∈ W 3 (or equivalently xi ∈ W 2). As mentioned before, xi ∈ W 1 if and only if x′i ∈ W 0 and
x′i ∈ W 3 if and only if xi ∈ W 2. As W 3 is connected and f, cj ∈ W 3, for every j ∈ [M ], there
exists i ∈ [N ], such that x′i ∈ W 3 and cjxi ∈ E(G). Similarly, as W 1 is connected, for every
j ∈ [M ], there exists i ∈ [N ] such that xi ∈W 1 and c′jxi ∈ E(G).
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5 Conclusion and Future Directions

In this work, we showed that C`-Contractibility is NP-complete on bipartite graphs for
` ∈ {4, 5} by giving polynomial-time reductions from Positive NAE-SAT.

Positive NAE-SAT (or equivalently, Hypergraph 2-Colorability) has been one of
the canonical NP-complete problems in many intractability results on C`-Contractibility
[5, 8, 10]. In general, in most contraction problems, it is a non-trivial task to forbid certain edges
from being contracted in a solution. The simultaneous property of requiring a variable to be
True and a variable to be False in every clause of a Yes-instance of Positive NAE-SAT helps
to encode that certain edges in the output graph of the reduction cannot be contracted, hence,
giving a handle on the required structure of the witness sets. This is one of the reasons that
makes Positive NAE-SAT an amenable choice in many reductions for graph contractibility
problems. However, the sophistication level of the gadgets involved in the reduction increases
with the restriction required on the input graph (eg. bipartite graphs, claw-free graphs). In
contrast, the sophistication decreases with increase in the size of the target graph, for instance,
the gadgets required for the NP-hardness of C4-Contractibility are more complex than
those needed for C5-Contractibility, which are more complex that what are required for
C6-Contractibility.

Continuing along the direction of solving cycle contractibility in restricted graph classes, we
can also show the following result.

Theorem 3. C4-Contractibility is NP-complete on K4-free graphs of diameter 2.

We postpone the proof of the theorem in Subsection 5.1. In the subsection, we also argue that
Theorem 3 can be generalized to show that Kp,q-Contractibility (the problem of determining
if a graph is contractible to the complete bipartite graph with p vertices in one part and q
vertices in the other part) is also NP-complete for each p, q ≥ 2 on K4-free graphs of diameter 2.
Our interest in this restricted case stems from its relationship with Disconnected Cut, the
problem of determining if a connected graph G contains a subset U ⊆ V (G) such that both G[U ]
and G − U are disconnected [18, 23, 24]. If the diameter of G is 2, then G has a disconnected
cut if and only if G is contractible to Kp,q for some p, q ≥ 2 [18, Proposition 1]. Martin et al.
proved that Disconnected Cut is polynomial-time solvable for H-free graphs when H 6= K4

is a graph on at most 4 vertices [24, Theorem 7]. Theorem 3 (and its generalization to p, q ≥ 2)
implies that (p, q)-Disconnected Cut (see [18]) is NP-complete for all p, q ≥ 2 on K4-free
graphs. Although this falls short of completing the dichotomy of [24, Theorem 7], we believe
that it strongly suggests that there is no polynomial-time algorithm for Disconnected Cut
on K4-free graphs.

Finally, determing the longest cycle to which an H-free graph (for a fixed H) is contractible
is another interesting future direction. A similar study on H-free graphs in the context of longest
paths is known [21]. Note that assuming P 6=NP, the complexities of contracting to a longest
path and longest cycle do not coincide on H-free graphs.

5.1 Proof of Theorem 3

It is easy to verify that the problem is in NP. To show NP-hardness, once again we give a
polynomial-time reduction from Positive NAE-SAT. Let {X1, X2, . . . , XN} and {C1, C2, . . . , CM}
be the sets of variables and clauses, respectively, in an instance ψ of Positive NAE-SAT. We
construct a K4-free diameter 2 graph G with a partition {X,S+, S−} of its vertex set as follows.

1. Add vertices t, t′ to S+ and vertices f, f ′ to S−. Let A denote {t, t′, f, f ′}.
2. For every i ∈ [N ], we add a vertex xi to X corresponding to variable Xi.
3. For every j ∈ [M ], we add vertices c+j , b

+
j to S+ and c−j , b

−
j to S− corresponding to clause

Cj .
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Figure 3: (Left) The graph G with different sets of edges highlighted. Here, purple (dotted)
edges denote setting the variable to True and the green (dashed) edges denote setting it to False

in a Yes-instance. (Right) Adjacency relation between subset of vertices where P̂ = S+ \ {t, t′}
and N̂ = S− \ {f, f ′}.

4. Make every vertex in S+ adjacent to every vertex in S−.
5. Make every vertex in X adjacent to both t and f .
6. For every i ∈ [N ] and j ∈ [M ] such that Xi appears in Cj , add edges xic

+
j , xib

+
j , xic

−
j ,

and xib
−
j .

This completes the construction of G. See Figure 3 for an illustration. It is easy to verify
that G is K4-free as the three sets S+, S−, X that partition V (G) are independent sets. Further,
the diameter of G is two as any pair of non-adjacent vertices have a common neighbor. We
now prove the correctness of the reduction. Suppose π : {X1, X2, . . . , XN} 7→ {True, False} is
a not-all-equal satisfying assignment of ψ. Then, let W 0 = {t′}, W 1 = {f ′}, W 2 = {t} ∪ {xi |
i ∈ [N ] and π(Xi) = True} ∪ (S+ \ {t′}) and W 3 = {t} ∪ {xi | i ∈ [N ] and π(Xi) = False} ∪
(S− \ {f ′}). It is easy to verify that {W 0,W 1,W 2,W 3} is a C4-witness structure of G.

Conversely, supposeW = {W 0,W 1,W 2,W 3} is a C4-witness structure ofG where E(W i,W j) 6=
∅ if and only if j = (i+1) mod 4. Then, we claim that every pair of vertices in A are in different
witness sets. Assume that the claim holds. Then, without loss of generality, we may assume
that t′ ∈ W 0, f ′ ∈ W 1, t ∈ W 2, and f ∈ W 3. Observe that as f and t are adjacent to every
vertex in X, it follows that for each i ∈ [N ], xi ∈ W 2 ∪ W 3. We now construct an assign-
ment π : {X1, X2, . . . , XN} 7→ {True, False} using W. For every i ∈ [N ], set π(Xi) = True if
xi ∈ W 2 and set π(Xi) = False if xi ∈ W 3. As every vertex in S+ is adjacent to f and f ′,
for every j ∈ [M ], we have c+j , b

+
j ∈ W 0 ∪W 2. Similarly, as every vertex in S− is adjacent to t

and t′, for every j ∈ [M ], we have c−j , b
−
j ∈ W 1 ∪W 3. If for some j ∈ [M ], c+j ∈ W 0, then as

W 0 has no neighbors of c+j , W 0 cannot be a connected set. Then, as N(b+j ) = N(c+j ), we have

S+ ⊆ W 2. Similarly, we have S− ⊆ W 3. Consider j ∈ [M ]. As t, c+j , b
+
j ∈ W 2 and these three

vertices form an independent set, it follows that there is an index i ∈ [N ] such that xi ∈ W 2

satisfying xic
+
j , xib

+
j ∈ E(G). Similarly, for each j ∈ [M ], there is an index i ∈ [N ] such that

xi ∈ W 3 satisfying xic
−
j , xib

−
j ∈ E(G). It now follows that for any j ∈ [M ], π sets at least one

of the variables in clause Cj to True and at least one of variables in Cj to False.
It now remains to show that in the C4-witness structure W of G, every pair of vertices in

A are in different witness sets. As S1 = {t, f}, S2 = {t′, f} and S3 = {t, f ′} are dominating
sets in G, for each i ∈ [3], the vertices in Si are in different witness sets. If for some i, the
two vertices Si are in the same witness set W j , then it follows that W (j+2) mod 4 is empty
leading to a contradiction. Now suppose f and f ′ are in the same witness set, say W 0. Then,
W 2 ⊆ S− \ {f, f ′} as every other vertex is adjacent to f or f ′. However, as S− \ {f, f ′} is an
independent set, it follows that W 2 is a singleton set, say {c−j }. Then, N(c−j ) ∩W 1 6= ∅ and
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N(c−j ) ∩W 3 6= ∅. As N(c−j ) = N(b−j ), we have b−j ∈ W 0. However, b−j , f, f
′ ∈ W 0 implies that

W 0 is not a connected set (as all neighbors of b−j are in W 1∪W 3) leading to a contradiction. A

similar argument holds if W 2 = {b−j }. A similar argument shows that t and t′ cannot be in the
same witness set as well. Finally, we show that t′ and f ′ are in different witness sets. Assume
on the contrary that t′ and f ′ are in the same witness set, say W 0. Then, as t and f cannot
be in W 0, we have t, f ∈W 1 ∪W 3. However, as t and f are in different witness sets, it follows
that E(W 1,W 3) 6= ∅ leading to a contradiction.

Remark: Observe that the base cycle (t′, f ′, t, f) in the above construction may be viewed as
a K2,2. Theorem 3 can be generalized to show that Kp,q-Contractibility is NP-complete for
each p, q ≥ 2 on K4-free graphs of diameter 2 by blowing up the graph G as follows: add p− 2
new vertices to S+ and q − 2 vertices to S− ensuring that every vertex in S+ is adjacent to
every vertex in S−. Now, we can show that ψ is a Yes-instance of Positive NAE-SAT if and
only if G is contractible to Kp,q.
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