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Trading contact tracing efficiency 
for finding patient zero
Marcin Waniek 1, Petter Holme 2,3, Katayoun Farrahi 4, Rémi Emonet 5, Manuel Cebrian 6,7,8* & 
Talal Rahwan 1*

As the COVID-19 pandemic has demonstrated, identifying the origin of a pandemic remains a 
challenging task. The search for patient zero may benefit from the widely-used and well-established 
toolkit of contact tracing methods, although this possibility has not been explored to date. We fill 
this gap by investigating the prospect of performing the source detection task as part of the contact 
tracing process, i.e., the possibility of tuning the parameters of the process in order to pinpoint the 
origin of the infection. To this end, we perform simulations on temporal networks using a recent 
diffusion model that recreates the dynamics of the COVID-19 pandemic. We find that increasing the 
budget for contact tracing beyond a certain threshold can significantly improve the identification 
of infected individuals but has diminishing returns in terms of source detection. Moreover, disease 
variants of higher infectivity make it easier to find the source but harder to identify infected 
individuals. Finally, we unravel a seemingly-intrinsic trade-off between the use of contact tracing to 
either identify infected nodes or detect the source of infection. This trade-off suggests that focusing 
on the identification of patient zero may come at the expense of identifying infected individuals.

Determining the origin of the COVID-19 pandemic, and the majority of globally emergent pathogens, is a 
challenging task, despite large technical advances in genetic epidemiology. The methods based on this approach 
attempt to determine the exact source of the virus via sequencing the virus genome and tracing different viral 
lineages1. While such techniques can help chart the general evolution of the virus, they require collecting biologi-
cal samples in numerous locations and subjecting them to laborious analyses.

Alternative and complementary ways of seeking the source of a viral infection come from social network 
analysis2–5. These methods, called source detection algorithms, are designed to identify the origin of an infection 
with much greater granularity than the sequencing-based alternative. However, to work properly, these methods 
require extensive amounts of information, including the structure of the social connections and the infection 
state of the individuals at various points in time, which are often unavailable. In addition to the inadequacy 
of existing methods, there is another major obstacle facing the source-detection endeavour: the availability of 
limited resources that may be better spent on disease containment instead.

One strategy that got widely adopted worldwide to help curb the pandemic is contact tracing6 the practice 
of identifying people who came in close contact with a positive case. For years, contact tracing was used for 
disease control, in particular when it comes to sexually transmitted diseases and newly appearing pathogens7, 
e.g., it was successfully used to curb the spread of smallpox and SARS8. The effectiveness of contact tracing was 
further accelerated by the use of digital technologies9, and in this form, it was employed to curb the spread of 
COVID-196,10,11. Since it might be impossible to recover the actual network of contacts in which the spreading of 
the disease took place, one can use the communication network as a proxy for the purpose of contact tracing12.

While existing research on contact tracing was focused on using it to detect either current or future infections, 
we investigate the potential use of contact tracing to detect the source of infection, adding a new dimension 
to the utility of the contact tracing toolkit. To this end, we perform a wide variety of simulations on different 
kinds of temporal network structures, while using a spreading model of the COVID-19 disease13 to recreate the 
dynamics of the epidemic. It is worth noting that many existing source detection methods would benefit from the 
information gathered using a contact tracing process, e.g., in order to recreate the structure of the social network 
under consideration. What we are concerned with in this work is performing the source detection task, as part 
of the contact tracing process, and not as a prerequisite or an introduction to another source detection method. 
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We attempt to answer the question of whether it is possible to pinpoint patient zero by tuning the parameters 
of the contact tracing process. If this method proves to be effective, it might help us determine the origins of 
future diseases without hindering the efforts to keep those diseases at bay. Our analysis indicates that, depending 
on the parameterization of the contact tracing process, it is possible to identify the source of the infection, i.e., 
the network node that represents patient zero. The majority of our findings focus on an inherent compromise 
between identifying the source of infection and identifying the nodes that are currently infected when these 
two tasks share the same budget. In other words, getting closer to patient zero may divert the resources from 
obtaining information that can be used to improve our chances of containing the disease.

Our contributions regarding the effectiveness of the contact tracing process in terms of the task of identify-
ing infected nodes, and in terms of the task of finding the source, can be summarized as follows. First, we study 
how the effectiveness of contact tracing is influenced by the tracing window, i.e., the period for which infected 
individuals are asked to identify their close contacts. In other words, when people are asked to identify who they 
came in contact with, should this investigation focus on contacts made before these people got infected, after 
they got infected, or some time in between? Results indicate that shifting the tracing window has a negligible 
impact on the effectiveness of contact tracing in either task. Second, we study the impact of using depth-based 
or breadth-based search when tracing contacts. That is, when selecting the individuals whose close contacts 
will be traced, should the investigation prioritize those who were recently infected, or those whose infection is 
further into the past? We quantify the degree to which the former increases the chance of finding the infected 
nodes, the degree to which the latter increases the chance of identifying the source, and the trade-off between 
the two. Third, we study the relationship between the contact-tracing budget, i.e., the number of people whose 
contacts are traced, and the effectiveness of the investigation, measured by either the number of identified 
infections or the network distance to the source. We show that increasing the budget can significantly improve 
the former measure, but does not significantly improve the latter beyond a certain point due to the diminish-
ing returns. Fourth, we investigate how the effectiveness of contact tracing is affected by the delay between the 
introduction of the disease to the network and the start of the tracing process. We find that increasing the delay 
drops the number of identified infections sharply, but has a relatively small effect on source detection. Fifth, 
we analyze how changing the characteristics of the disease itself can alter the outcome of contact tracing. As it 
turns out, a greater transmission rate makes it harder to identify currently infected individuals, while a longer 
presymptomatic period improves the effectiveness of finding the source. Moreover, a greater R0 makes it easier to 
identify patient zero, but makes it more difficult to contain the disease since the infected individuals are harder 
to identify. Finally, we compare three strategies of selecting who to test for the virus: testing people at random, 
prioritizing close contacts of positive cases, or a mixture of the two. Our results indicate that prioritizing close 
contacts offers superior efficiency, especially if the process of contact tracing is performed during, and not after, 
the spread of the disease.

Results
Experimental procedure.  For a given temporal network, G we randomly select one of the nodes as the 
source node v† and start spreading the infection from it.

In our experiments, we generate the network structure using either the Barabási–Albert 14, Erdős–Rényi 15, 
or Watts–Strogatz16 model. We add a temporal structure of contacts to the network using the generative model 
by Holme17. In more detail, for any two nodes with an edge between them, they come into contact every one to 
seven days according to a truncated power-law distribution with exponent 2.2. To model the infection we use 
a model by Rusu et al.13, which at the moment of writing is the leading model of the COVID-19 disease. Even 
though it is slightly more complex than simple SIR or SEIR models, we selected it for a more accurate simulation 
of the disease. See " Materials and Methods" section for the technical details about the network generation and 
the diffusion model. We let the diffusion spread for T rounds, each round corresponding to a single day. Unless 
stated otherwise, we set T = 28 days in our simulations, making a single simulation run correspond to four weeks. 
We selected this value to represent the time necessary to discover the disease and assemble a source detection 
task force. Since we are only interested in detecting the source of a diffusion that spread successfully, we proceed 
only if at least 10% of the network got infected. We then perform the contact tracing process.

At the beginning of the contact tracing, the set of detected nodes D consists of 10 of the 5% most recently 
infected nodes (chosen uniformly at random). These nodes represent a small set of infections—those that are 
initially noticed by the authorities—which form the seed of the contact tracing process. It is worth noting that, 
in some cases, they might have already recovered. We have a limited budget b, which indicates the number of 
people for whom we can perform the contact tracing. The selection of nodes for which we perform contact trac-
ing is based on the values of the tracing breadth parameter βtr ∈ {1, . . . , b} . Intuitively, increasing the value of 
βtr makes us focus on the most recently infected nodes, while decreasing the value of βtr makes us reach further 
into the past.

We select βtr members of D that got infected at the earliest time. For every such node v∗ we trace their contacts 
within δ days. The choice of the days is determined by the tracing window offset parameter ωtr ∈ {0, . . . , δ − 1} . 
The contacts of the node v∗ are traced on the day min(τ (v∗)+ ωtr ,T) and six preceding days, where τ(v∗) is 
the day when v∗ got infected. Hence, the last day when the contacts are traced is the day τ(v∗)+ ωtr , unless it 
would fall after the day T (which we assume to be the last day before we start the contact tracing process), in 
which case taking the minimum causes the day T to be the last day. Intuitively, increasing the value of ωtr shifts 
the tracing window towards the future, while decreasing the value of ωtr shifts the tracing window towards the 
past. For example, for ωtr = 6 we will trace the contact of an infected node on days {τ(v∗), . . . , τ(v∗)+ 6} (i.e., 
during the week following the infection), while for ωtr = 0 we perform tracing on days {τ(v∗)− 6, . . . , τ(v∗)} 
(i.e., during the week preceding the infection). The probability that v∗ remembers the contact that took place at 
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time t is equal to P(t) = e−0.001(T−t)18. Intuitively, the probability that a member of the network remembers a 
given contact drops with the time that passed since that contact following an exponential function. For exam-
ple, a member of the network perfectly remembers their contacts taking place on the same day (in such a case 
t = T , hence P(t) = 1 ). However, the probability diminishes as they are asked about the contacts taking place 
further into the past (as the value of T − t increases, the value of P(t) decreases). We test for infection 10 (chosen 
uniformly at random) of the nodes with which v∗ remembered having a contact within the described window 
(note that the contacts that are not remembered by v∗ will not be perceived by the tracing process). Notice that 
this way the total number of performed tests is at most 10b, i.e., the parameter b reflects the amount of available 
resources both in terms of tracing contacts and performing the tests. We assume that the test is able to correctly 
identify an infection whether it is symptomatic, presymptomatic, or asymptomatic.

After tracing contacts for all βtr nodes we add the newly identified nodes that were infected at some point in 
time to D. We repeat the process until we run out of budget. The pseudocode of the experimental procedure is 
presented in Section S1 of the Supplementary Materials. Unless stated otherwise, in our simulations we consider 
the parameter values δ = 7 and ωtr = 3.

Figure 1 presents examples of tracing process for different values of βtr and ωtr . The infection process starts 
from the node A, which is the source (see how the infection time of node A is 0 in Fig. 1a). As a result of the 
diffusion, all nodes in the network other than the node I and the node J get infected (see how I and J are the only 
white nodes in Fig. 1a). At the beginning of the tracing process, the set of detected nodes consists only of the 
nodes G and H (see how they are the only nodes with a green rim in Fig. 1a). If βtr = 2 then the entire tracing 
budget b = 2 is used to trace contacts of the set of initially detected nodes (see how in the column for βtr = 2 only 
the contacts of G and H are traced in Fig. 1b). On the other hand, if βtr = 1 then first only the contacts of G are 
traced (as it was infected earlier than H). As a result, we obtain information about new infected nodes (i.e., node 
F for ωtr = 1 , or nodes F and E for ωtr = 0 ). We then trace the contacts of the earliest detected infected nodes 
(i.e., node F for ωtr = 1 , or node E for ωtr = 0 ). As for the ωtr parameter, notice how for ωtr = 1 the contacts 
are traced at the day of the infection and the subsequent day, while for ωtr = 0 they are traced on the day of the 
infection and the preceding day (see the green numbers over green rectangles in Fig. 1b). Finally, notice that 
changing the values of βtr and ωtr can significantly change the outcome of the tracing process, e.g., the actual 
source of the infection, node A, is detected only for βtr = 1 and ωtr = 0 (see how the line corresponding to A is 
green only for this combination of the parameters in Fig. 1b).

Simulation results.  We first evaluate how the parameters βtr and ωtr affect the performance of the tracing 
process. First, let us see what are the effects of adjusting the breadth parameter βtr.

The first row of Fig. 2 presents examples of the tracing process for varying values of βtr in a small network 
with 200 nodes, while the second row presents average results for large networks with 10,000 nodes. As can be 
seen from the figure, focusing on the breadth of the process results in detecting a greater number of currently 

Figure 1.   Examples of the tracing process for different values of tracing breadth βtr and tracing window offset 
ωtr . Panel (a) presents a temporal network at the end of the infection process started from the node A. Red 
numbers next to the nodes represent infection times, white nodes did not get infected. Numbers on the edges 
represent contact times. At the beginning of the tracing process only the nodes with green rim are detected. 
Panel (b) presents the results of the tracing process for varying βtr and ωtr , with tracing budget b = 2 , and 
tracing window size δ = 2 . In every plot horizontal lines represent nodes, with red lines corresponding to 
infected nodes that did not get detected, green lines to detected infected nodes, and black lines to nodes that did 
not get infected. Black arcs between lines indicate contacts, with time of the contact represented by the position 
on the x-axis of the plot. Red rhombuses indicate infection times of the nodes. Green rectangles indicate 
windows in which contacts of different nodes got traced for the given values of βtr and ωtr.
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infected nodes but a smaller chance of identifying the source of infection, while focusing on the depth of the 
process makes it easier to identify the source, but decreases the number of currently infected nodes we discover.

Let us now more broadly investigate the effects of changing tracing parameters. Figure 3 presents the results 
of the simulations with varying values of βtr and ωtr . As can be seen from the plots, greater values of the tracing 
breadth parameter βtr result in more effective detection of the currently infected nodes (see colors closer to red 
in the first row of the figure). On the other hand, smaller values of βtr result in closer identifying the source of 
the infection (see colors closer to blue in the second row of the figure). These findings confirm our observations 
based on simpler experiments, the results of which were presented in Fig. 2. The value of the ωtr parameter seems 
to have little effect on the outcome of the tracing process, i.e., it seems that whether we investigate contacts of the 
infected person before or after the infection does not make much difference in terms of detection effectiveness. 
It might be caused by the fact that contacts between a pair of nodes occur regularly in most cases. Hence, even 
if we do not notice the contact over which the infection spread, we might observe a different contact between 
the same two nodes. In Fig. 3 we focus on the outcomes of the contact tracing process. To get more insight into 
the course of the infection itself, see Fig. S2 in the Supplementary Materials, which presents the infection curves 
from our experiments. In the main article, we focus our attention on experiments with large, randomly generated 
networks. Nevertheless, to verify our results, we also run simulations on real-life temporal networks. The results 
of these experiments can be found in Section S2 of the Supplementary Materials. Broadly speaking, the trends 
observed for real-life networks are the same as those described above for large, randomly generated networks.

Our analysis indicates the existence of a trade-off between identifying the source of the infection process 
and detecting the nodes that got infected. Figure 4a further investigates this compromise. As it can be seen, for a 
network with 10,000 nodes getting one step closer to identifying the source (in terms of network distance) costs 

n=
20
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00

Detected infected Detected recovered Hidden infected Hidden recovered

Depth Breadth

Figure 2.   Tracing process for different values of the breadth parameter βtr in Watts–Strogatz networks. The first 
row presents an example of a single simulation of a tracing process in a network with 200 nodes and a budget 
of b = 10 . The columns correspond to βtr = 1 , βtr = 5 , and βtr = 10 . The source is represented as the square 
node in the center. The four inner rings of nodes contain nodes that got infected in the first, second, third, and 
fourth week, with rings further from the middle corresponding to infections later. Red nodes are infected after 
28 days. Blue nodes are recovered. A vivid color indicates that the node got detected by the tracing process 
for the given value of βtr , and a muted color indicates that the node never got detected (see the legend of the 
figure). The outer ring contains nodes that never got infected (marked white). The second row presents results 
for networks with 10,000 nodes and tracing budget b = 100 , aggregated over 1000 simulation runs. The middle 
circle represents the diffusion source, while the colored rings represent nodes in the first, second, third, and 
fourth week, with rings further from the middle corresponding to infections later. The columns correspond to 
βtr = 1 , βtr = 30 , and βtr = 100.
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between 4 and 12 identified infections, depending on the structure of the network, with the cost being the greatest 
in Watts–Strogatz networks, and the smallest in the Barabási–Albert networks. It is worth noting that the total 
number of detected nodes varies between 15 in Barabási–Albert networks to 40 in Watts–Strogatz networks. 
Hence the cost of getting one step closer to the source can constitute about one-quarter of all detected infections.

Figure 4b,c present the results concerning the effects of increasing tracing budget and infection spreading 
time. In Fig. 4b we vary the budget b available to the party performing the contact tracing process. Our results 
suggest that increasing the budget gives a significant advantage in detecting more infected nodes. However, when 
it comes to identifying the source, the process quickly reaches the state of diminishing returns, where increasing 
the budget does not provide much better performance. On the other hand, in Fig. 4c we vary the time T that 
the infection process is allowed to run before the contact tracing efforts begin. As can be seen, the percentage 
of detected infected nodes drops significantly when the infection is allowed to run for a long time. Moreover, 
identifying the source is getting slightly more difficult as the infection time goes on, although the increase is 
sublinear with changing T.

When it comes to the effectiveness of identifying the source, it might be interesting to compare the consid-
ered contact tracing approach to existing dedicated source detection algorithms. In particular, we consider a 
class of source detection algorithms based on centrality measures, namely Betweenness2, Closeness2, Degree2, 
Eigenvector2, and Rumor3 algorithms. As these algorithms work based on the structure of the network, and the 
set of known infected nodes, we supply them with the information gathered by the contact tracing process. In 
particular, the network consists of the connections that got successfully traced (i.e., the contacts remembered 
by the nodes for which we performed the tracing), while the set of known infected nodes is the set of detected 
infections, D. Figure S3 in the Supplementary Materials presents the results of our simulations. As can be seen, the 
direct use of information gathered during the contact tracing process is consistently more effective in identifying 
the source than feeding them into existing source detection algorithms. The reason might be the fact that these 
algorithms were designed to process a different type of information—they expect the entire structure of the net-
work and the complete set of infected nodes, while in reality, the available information is necessarily incomplete.

Figure 5 presents the results of simulations with changing characteristics of the infection process. More 
precisely, we consider the infection model described in the "Materials and Methods" section with varying 

Figure 3.   The effectiveness of tracing for varying βtr and ωtr . In each plot, the x-axis corresponds to the tracing 
breadth parameter βtr (with greater values indicating more focus on the breadth). The y-axis corresponds to the 
tracing window offset parameter ωtr (with greater values indicating the window shifted to the future). The plots 
in the first row present the number of infected detected by the tracing process, colours closer to red indicate 
more effective detection. The plots in the second row present the number of edges between the earliest detected 
infection and the actual source. The colour closer to blue indicates more effective detection. Each column shows 
results for networks with 10,000 nodes generated using different models, either Barabási–Albert, Erdős–Rényi, 
or Watts–Strogatz, with tracing budget b = 10 . The results are presented as an average of over 1000 simulations, 
with a new network generated for every simulation.
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Figure 4.   (a) Tracing parametrization. The scatter plot presents the number of detected infections and the 
distance to the real source in settings with varying βtr and ωtr parameters (each point is an average value for 
a specific combination of βtr and ωtr ). The lines represent the best fit. The bar plot presents the slopes of the 
lines, i.e., how much we lose in terms of the number of detected infections when getting one step closer to the 
source. (b) Changing tracing budget. In each plot, the x-axis corresponds to the tracing budget b, while the 
y-axis corresponds to either the number of detected infected nodes, or the number of edges between the earliest 
detected infection and the real source. (c) Changing infection time. In each plot, the x-axis corresponds to the 
infection spreading time T, while the y-axes are the same as in subfigure (b). The results in all subfigures are 
presented as an average of over 1000 simulations for networks with 10,000 nodes, with a new network generated 
for every simulation using either Barabási–Albert, Erdős–Rényi, or Watts–Strogatz model. The tracing budget 
is b = 10 in subfigure (a) and b = 100 in subfigure (c). Error bars and colored areas represent 95% confidence 
intervals.

Figure 5.   The effectiveness of tracing when changing infection characteristics. In each heatmap, the x-axis 
corresponds to the presymptomatic period µp of the infection expressed in days, while the y-axis corresponds 
to the transmission rate α expressed as a probability. In each scatter plot, the x-axis corresponds to the basic 
reproduction number computed after a week of the infection, while the y-axis corresponds to either the 
percentage of infected nodes that got detected or the distance to the real source. Each point in a given plot 
corresponds to a different parameterization of the diffusion process (same as in the heatmaps), with the size of 
each point corresponding to the number of people that ever got infected. The results are presented for networks 
with 10,000 nodes generated using different models, either Barabási–Albert, Erdős–Rényi, or Watts–Strogatz, 
with tracing budget b = 100 , tracing breadth βtr = 10 . The results are presented as an average of over 1000 
simulations, with a new network generated for every simulation.
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presymptomatic period µp and transmission rate α (all other model parameters remain the same). As can be 
seen, the increasing transmission rate makes it significantly more challenging to identify currently infected 
nodes. Similarly, decreasing the presymptomatic period deteriorates the effectiveness of identifying the source. 
A value that allows encapsulating the severity of the infection is the basic reproduction number R0 , indicating the 
average number of people infected by a single spreader. As evident from both the percentage of identified infec-
tions and the distance to the real source drop with the basic reproduction number, indicating that more severe 
disease strains are more difficult to contain by identifying the infected members of the population but give more 
hope of discovering the patient zero. Let us now briefly comment on the general trends in how characteristics of 
the infection (either the presymptomatic period and the transmission rate, or the basic reproduction number) 
affect the tracing process. For a more virulent, faster-spreading infection it is easier to identify the source, likely 
due to the fact that the average distance between the source and a given node is much shorter. Intuitively, if any 
contact with an infected individual resulted in becoming infected, the infection would spread from the source 
to all nodes along the shortest temporal paths. Similarly, if a larger percentage of the nodes becomes infected, a 
limited budget available to the party running the contact tracing process is not enough to thoroughly identify 
all infections. We also perform an analysis of how the outcome of the contact tracing process is affected by the 
infectious period of the disease. The results of our simulations are presented in Fig. S4 in the Supplementary 
Materials. When it comes to detecting infections, the situation becomes the most dire for infectious periods 
between 3 and 4 days (depending on the network model under consideration), as the percentage of detected 
infections is then minimal. Interestingly, increasing the infectious period makes it easier to identify the source, 
as it is seemingly more straightforward to backtrack a quickly progressing infection.

Figure 6 presents the results of our experiments with a slightly modified experimental setting. Instead of 
performing the entire tracing process at a single moment after T rounds, we allow the diffusion to continue for 
another T rounds. During each of these rounds, we assume a budget of b = 100 . We spend a percentage p of this 
budget on testing randomly selected nodes, and the remaining 1− p percentage of the budget on testing traced 
contacts as before. We do not test a node if it has been tested in the last 7 rounds. As a baseline, we consider a 
case in which the same budget is spent in its entirety at the end of the 2T rounds period. As can be seen from 
the figure, we detect a greater number of currently infected nodes when we devote a smaller part of the budget 
to random testing. It suggests that focusing on contact tracing rather than random testing can not only bring 
us closer to finding the source of infection, but also help us identify people that are infected at the moment. 
Moreover, performing contact tracing throughout the process is much more effective than doing it entirely at 
the end of the considered period.

Discussion
In this work, we explored using contact tracing to identify the source of a diffusion process, focusing on a dif-
fusion model of the COVID-19 disease as the subject of our investigation. We found that the effectiveness of 
contact tracing is only marginally affected by shifting the tracing window, i.e., changing the exact days for which 
we trace contacts. In contrast, the choice between depth-based and breadth-based search has a significant impact 

Figure 6.   The effectiveness of tracing when ran during the infection process. Panel a presents the number of 
detected infected nodes based on the percentage of the budget devoted to random testing. Panel b presents the 
number of detected infected nodes and the distance to the real source in settings with varying percentages of 
the budget devoted to random testing (represented by point size). The results are presented as an average of over 
1000 simulations for networks with 100,000 nodes, with a new network generated for every simulation using 
either Barabási–Albert, Erdős–Rényi, or Watts–Strogatz model, with tracing budget b = 100 in each round. 
Colored areas represent 95% confidence intervals.
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on the effectiveness of contact tracing. The former is beneficial when identifying the source of diffusion, and 
the latter allows for finding more currently-infected nodes. We also showed that investing more resources into 
contact tracing can dramatically improve the number of discovered infections but has diminishing returns in 
terms of source detection. Moreover, we found that letting the diffusion spread for a longer time before starting 
contact tracing slightly reduces the chances of finding the source but has a highly detrimental effect on identifying 
infected nodes. We also investigated how the contact tracing results are affected by changing characteristics of the 
spreading infection process, modeling different potential strains of the disease. While it is easier to pinpoint the 
source of disease with a greater basic reproduction number, the total number of identified infected individuals is 
smaller for such strains. Finally, we analyzed the outcomes of mixing contact tracing and random testing during 
the diffusion process, with our results indicating that the former offers superior performance. Altogether, our 
analysis reveals that the effectiveness of contact tracing in identifying infections and finding the source follow 
very different trends, and, in many cases, we can observe a direct trade-off between these two objectives.

Our work is related to a growing body of literature on source detection in social networks. Typical source 
detection algorithms allow inferring which node was the source of the diffusion process based on the structure 
of the social network and the information about which nodes are infected2–5. Typically these algorithms allow 
to trace back the origins of diffusion starting from a single node, although there also exist techniques that can 
detect multiple sources19. Other source detection techniques are specifically designed to find the source of diffu-
sion in tree networks20–22, or analyze the readings of sensors placed throughout the network before the diffusion 
takes place23–25. However, all of these source detection solutions require information that may not be readily 
available when tracing the origins of infectious diseases, most notably the structure of the underlying network. 
The technique based on contact tracing considered in this work overcomes this difficulty by reconstructing the 
connections between nodes during the tracing process without the need for any preexisting knowledge about 
the network structure.

The main policy implication of our work comes from the observed trade-off between the effectiveness of 
contact tracing in terms of finding the source and identifying the infected nodes. Our simulations indicate 
that, while it is possible to conduct both tasks simultaneously, a performance increase in one of them comes at 
the cost of a performance decrease in the other. Hence, if the primary goal of the contact tracing process is to 
curb the spreading of a disease, the emphasis should be on the breadth of the search rather than depth. Such 
an approach would allow us to maximize the effectiveness of containing the infection while, at the same time, 
letting us slowly work towards the secondary goal of identifying patient zero. Our results suggest that another 
key factor is the promptness with which the contact tracing process is started. This finding indicates the need 
to implement procedures to initiate the process as soon as the first signs of a major infection event are detected. 
Altogether, a promptly initiated and properly guided contact tracing process can be a crucial tool for combating 
the next global pandemic.

Table 1.   Transition probabilities for the diffusion model.

Transition Probability

S → E α(KIs + KIp + KIa )

E → Ip ǫ

Ip → Ia µppa

Ip → Is µp(1− pa)

Ia → R γ

Is → R γ (1− pH )

Is → H γ pH

H → R �H−R

H → D �H−D

Table 2.   The spreading model parameters summary.

Parameter Value Description

α .0791 Transmission rate

KX ∈ N Number of contacts in state X

ǫ−1 3.7 Latency period

µ−1
p 1.5 Presymptomatic period

pa .5 Probability of being asymptomatic

γ−1 2.3 Infectious period

pH .1 Probability of being hospitalized

�H−R .083 Recovery rate

�H−D .0031 Death rate
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Temporal networks.  Let 〈T〉 denote a time interval of T discrete time steps, i.e., �T� = {0, . . . ,T − 1} . 
We will sometimes refer to a particular t ∈ �T� as the moment t. We denote by G = (V ,K ,T) ∈ G a tempo-
ral network, where V is the set of n nodes, K ⊆ V × V × �T� is the set of contacts, and T is the duration of 
the time interval during which the contacts in K take place. We denote a contact between nodes v and w at 
moment t by (v,  w,  t). In this work we only consider undirected temporal networks, i.e., we do not discern 
between contacts (v, w, t) and (w, v, t). Moreover, we assume that networks do not contain self-contacts, i.e., 
∀v∈V∀t∈�T�(v, v, t) /∈ K . We denote all contacts of a given node v at time t by KG(v, t) . To make the notation 
more readable, we will often omit the temporal network itself from the notation whenever it is clear from the 
context, e.g., by writing K(v, t) instead of KG(v, t).

We consider the following network generation models:

•	 Barabási–Albert model14—model generating preferential-attachment networks.
•	 Erdős–Rényi model15—model generating uniform random networks.
•	 Watts–Strogatz model16—model generating small-world networks. In our simulations we set the rewiring 

probability to 0.25.

After generating the structure of the network connections we add contact times to them using the generative 
model for contact sequences by Holme17, with kmin = 1 , kmax = 7 , γ = 2.2 , and µ = 0.9.

Spreading model.  We use a spreading model of the COVID-19 disease by Rusu et al.13 In this model, every 
node in the network is in one of the following states: susceptible S, exposed but not infectious E; infectious 
presymptomatic Ip , infectious asymptomatic Ia , infectious symptomatic Is , hospitalized H, recovered R, or dead 
D. The probabilities of transitions between states in a given round are presented in Table 1, while the descriptions 
of the model parameters and the values used in our simulations are summarized in Table 2.

Data availability
The datasets generated and/or analysed during the current study are available in an online repository, https://​
figsh​are.​com/​artic​les/​datas​et/​Conta​ct_​traci​ng_​data/​21790​001.

Code availability
The code allowing to recreate the results of the current study is available online as a Java Eclipse project, https://​
github.​com/​mjwan​iek/​Conta​ctTra​cing.
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