
ar
X

iv
:2

20
6.

13
48

1v
1

 [
cs

.D
S]

 2
7

Ju
n

20
22

Faster Exponential-Time Approximation Algorithms Using

Approximate Monotone Local Search

Barış Can Esmer1, Ariel Kulik1, Dániel Marx∗1, Daniel Neuen2, and Roohani Sharma3

1CISPA Helmholtz Center for Information Security, Saarbrücken, Germany.
{baris-can.esmer|ariel.kulik|marx}@cispa.de

2Simon Fraser University, Burnaby, Canada. dneuen@sfu.ca
3Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.

rsharma@mpi-inf.mpg.de

Abstract

We generalize the monotone local search approach of Fomin, Gaspers, Lokshtanov and Saurabh
[J.ACM 2019], by establishing a connection between parameterized approximation and exponential-
time approximation algorithms for monotone subset minimization problems. In a monotone subset
minimization problem the input implicitly describes a non-empty set family over a universe of size
n which is closed under taking supersets. The task is to find a minimum cardinality set in this
family. Broadly speaking, we use approximate monotone local search to show that a parameterized
α-approximation algorithm that runs in ck · nO(1) time, where k is the solution size, can be used
to derive an α-approximation randomized algorithm that runs in dn · nO(1) time, where d is the

unique value in d ∈
(

1, 1 + c−1
α

)

such that D
(

1
α

∥

∥

∥

d−1
c−1

)

= ln c

α
and D (a‖b) is the Kullback-Leibler

divergence. This running time matches that of Fomin et al. for α = 1, and is strictly better when
α > 1, for any c > 1. Furthermore, we also show that this result can be derandomized at the
expense of a sub-exponential multiplicative factor in the running time.

We use an approximate variant of the exhaustive search as a benchmark for our algorithm. We
show that the classic 2n · nO(1) exhaustive search can be adapted to an α-approximate exhaustive
search that runs in time

(

1 + exp
(

−α · H
(

1
α

)))n ·nO(1), where H is the entropy function. Further-
more, we provide a lower bound stating that the running time of this α-approximate exhaustive
search is the best achievable running time in an oracle model. When compared to approximate
exhaustive search, and to other techniques, the running times obtained by approximate monotone
local search are strictly better for any α ≥ 1, c > 1.

We demonstrate the potential of approximate monotone local search by deriving new and faster
exponential approximation algorithms for Vertex Cover, 3-Hitting Set, Directed Feedback
Vertex Set, Directed Subset Feedback Vertex Set, Directed Odd Cycle Transver-
sal and Undirected Multicut. For instance, we get a 1.1-approximation algorithm for Ver-
tex Cover with running time 1.114n · nO(1), improving upon the previously best known 1.1-
approximation running in time 1.127n · nO(1) by Bourgeois et al. [DAM 2011].

∗Research supported by the European Research Council (ERC) consolidator grant No. 725978 SYSTEMATICGRAPH.

http://arxiv.org/abs/2206.13481v1

1 Introduction

A lot of interesting problems are computationally hard as they do not admit polynomial-time algo-
rithms. Still, many of them can be solved significantly faster than exhaustive search. The area of exact
exponential algorithms studies the design of such techniques. Typically, for subset problems, where
the goal is to find a subset of a given n-sized universe U that satisfies some property Π, a solution can
be found by enumerating all 2n subsets of U . Therefore, the goal is to design algorithms that beat
this exhaustive search and run in time O∗ (cn)1 for as small 1 < c < 2 as possible.

Exact Monotone Local Search. In a seminal work Fomin, Gaspers, Lokshtanov and Saurabh [13]
showed that one can derive faster exact exponential algorithms for subset problems using a param-
eterized extension algorithm for the problem at hand. A parameterized extension algorithm for a
subset problem additionally takes as input a parameter k and a set X ⊆ U , runs in time O∗(f(k)),
and outputs a set S ⊆ U of size at most k such that S ∪X is a solution, if such a set exists. Fomin et
al. [13, Theorem 1.1] showed that if a subset problem admits a parameterized extension algorithm that
runs in time O∗(ck) for some absolute constant c > 1, then it admits a randomized exact exponential
algorithm that runs in time O∗ ((emls(c))n), where emls(c) = 2 − 1

c . Their algorithm, called Exact
Monotone Local Search (Exact-MLS), is simple and is based on monotone local search: it samples a
set X of t elements at random, and then extends the set X to an optimum solution using the pa-
rameterized extension algorithm. The non-trivial part of the proof of [13, Theorem 1.1] is to analyze
the value of t that optimizes the running time. This simple algorithm outperforms the exhaustive
search for all subset problems that have parameterized extension algorithms running in O∗(ck) time.
Moreover, given the existence of a large number of problems that admit the desired parameterized ex-
tension algorithm, it yields the state-of-the-art exact exponential algorithms for several problems [13,
Table 1].

Exponential Approximation. Another important algorithmic paradigm which deals with NP-
hardness is the design of approximation algorithms, which are typically polynomial-time algorithms
that compute a solution which is not necessarily optimum but has a worst-case guarantee on its qual-
ity. Though several NP-hard problems admit such algorithms with constant approximation ratios [30],
there are many that do not, under reasonable complexity assumptions, for example Directed Feed-
back Vertex Set [28]. Also, there are many for which the approximation guarantees cannot be
improved beyond a fixed constant. For example, Vertex Cover admits a 2-approximation but no
(2− ε)-approximation under the Unique Games Conjecture [17].

For problems where some hardness of approximation has been established, a natural question is to
determine the smallest c such that the barriers of this hardness can be broken by taking O∗(cn) time.
Such algorithms are called exponential approximation algorithms and this topic has received attention
in, e.g., [2, 3, 4, 8, 25].

Consider subset minimization problems where the goal is to find a subset of the n-sized universe
U of minimum cardinality, also called an optimum solution, that satisfies some additional property
Π. For any approximation ratio α ≥ 1, we say that a subset S ⊆ U satisfying the property Π is an
α-approximate solution if |S| ≤ α · |OPT|, where OPT ⊆ U is an optimum solution. An exponential
α-approximation algorithm for a subset minimization problem returns an α-approximate solution and
runs in O∗(cn) time for some 1 < c < 2.

Parameterized Approximation. A parameterized α-approximation algorithm for a subset mini-
mization problem additionally takes as input the parameter k, runs in time O∗(f(k)), and outputs a
solution of size at most α · k, if there exists a solution of size at most k. Analogous to parameterized
algorithms, one can define the notion of extension algorithms here (see Section 2). The design of
parameterized α-approximation algorithms has been an active area of research in the last few years,
yielding a plethora of results for problems that exhibit some hardness either in the parameterized
setting or in the approximation setting [5, 6, 9, 10, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24, 26, 27, 29].

1The O
∗ notation hides polynomial factors in the expression.

1

Approximate Monotone Local Search (Approximate-MLS). In this paper, we show that one
can extend the idea of Exact-MLS [13] to derive faster exponential approximation algorithms from
parameterized approximation algorithms. Let amls(α, c) be the unique value in

(

1, 1 + c−1
α

)

such

that D
(

1
α

∥

∥

∥

amls(α,c)−1
c−1

)

= ln c
α where D (a‖b) is the Kullback-Leibler divergence defined as D (a‖b) =

a ln
(

a
b

)

+ (1− a) ln
(

1−a
1−b

)

(see, e.g., [7]). Our main result can be informally stated as follows.

If a monotone subset minimization problem admits a parameterized extension α-approximation
algorithm that runs in O∗(ck), then one can derive a randomized α-approximation algorithm that
runs in time O∗((amls(α, c))n) (see Theorem 2.1).

Since amls(1, c) = emls(c) = 2− 1
c for every c > 1, our running time matches that of Exact-MLS

when α = 1.
Recall the Exact-MLS algorithm described earlier. The non-trivial part of the proof of [13, Theo-

rem 1.1] is the analysis of the probability that the sampled set is contained in an optimum solution.
To obtain our result, we use the same algorithm and show that if we allow the sampled set to also con-
tain some items from outside the optimum solution, then one can speed-up the resulting exponential
α-approximation algorithm. Since our analysis need to take into account the calculations for error in
the sampled set, this makes analyzing the choice of t more difficult.

In order to better appreciate the running time of our algorithm, that does not seem to have a closed-
form formula, we give a mathematical comparison of amls(α, c) with various benchmark exponential
approximation algorithms, showing that our algorithm outperforms all of them.

Benchmark 1: Brute-Force for Exponential Approximation. Since exhaustive search is a
trivial benchmark against which the running times of (exact) exponential algorithms are measured, an
important question to address is: how much time does exhaustive search take to find an α-approximate
solution?

Consider a subset minimization problem that is also monotone, that is, for every S ⊆ T ⊆ U , if S
is a solution, then T is also a solution. We show that for monotone subset minimization problems, the
classic brute-force approach can be generalized to an α-approximation brute-force algorithm running

in time O∗(brute(α)n), where brute(α) = 1+ (α−1)α−1

αα = 1+exp
(

−α · H
(

1
α

))

and H(α) = −α lnα−
(1 − α) ln(1 − α) denotes the entropy function2. The running time essentially follows by showing
that a uniformly sampled set of α · |OPT| items is an α-approximate solution with probability at least
brute(α)−n (up to polynomial factors, see Theorem 5.1). We complement this result by showing that
this running time is best possible, given only membership oracle access to the problem (Theorem 5.1).
For example, for α = 2, this brute-force algorithm runs in time O∗(1.25n). For α = 1.1, it runs in
time O∗(1.716n) (see also Figure 2).

Benchmark 2: Naive conversion from parameterized approximation to exponential ap-
proximation. Yet another upper bound on the running time of exponential approximation algo-
rithms can be given as follows. Suppose there is a parameterized α-approximation for a monotone
subset minimization problem that runs in O∗(ck) time. Run the parameterized algorithm for every
value of the parameter k between 0 to n

α , and return the solution of minimum cardinality among
the solutions returned by the parameterized algorithm. If no solution was found by the parameter-
ized algorithm, then return the whole universe. It can be easily verified that this indeed yields an
α-approximation algorithm with running time O∗((naive(α, c))n), where naive(α, c) = c

1
α . Observe

that for large values of c and appropriate α, naive(α, c) could be much larger than even 2. But for
smaller values of c, it could sometimes beat the brute-force approximation (see Section 2.4).

Benchmark 3: Exact-MLS in the approximate setting. From the description of the Exact-MLS
algorithm, it is not difficult to deduce that given a parameterized extension α-approximation for
a monotone subset minimization problem that runs in time O∗(ck), one can derive an exponential

2We adopt the convention that 00 = 1.

2

α-approximation for the problem that runs in time O∗((emls(c))n). This trivial generalization of
Exact-MLS to the approximate setting already performs better than the naive conversion in cases
when c is small. For example, Vertex Cover has a parameterized (extension) 1.1-approximation
algorithm that runs in time O∗(1.1652k) [4]. Exact-MLS gives a 1.1-approximation running in time
O∗(1.1417n) whereas the naive conversion gives a running time of O∗(1.1462n).

Comparisons. As stated earlier, we show that (see Lemma 1.1) Approximate-MLS is strictly faster
than the brute-force algorithm (Benchmark 1) or the naive-conversion approach (Benchmark 2) de-
scribed earlier, for every α ≥ 1 and c > 1. In fact, Lemma 1.1 shows that amls(α, c) converges to
brute(α) as c →∞, which would be the expected behavior, because as the parameterized algorithm
becomes “less useful”, the running time of our algorithm gets closer to the running time possible with-
out the use of any problem-specific algorithm. Since amls(1, c) = emls(c) = 2 − 1

c , Lemma 1.1 also
shows that the running time is strictly better than that of Exact-MLS (Benchmark 3) when α > 1.

Lemma 1.1 (⋆3). For every c > 1 the following holds:

1. amls(α, c) < min{brute(α), naive(α, c)} for every α ≥ 1. In fact, amls(α, c) −−−→
c→∞

brute(α).

2. amls(α, c) < emls(c) for every α > 1. In fact, amls(α, c) is a strictly decreasing function of α.

Applications and Derandomization. We show in Section 2.4 that Approximate-MLS can be used
to derive new and faster exponential approximation algorithms for Vertex Cover, 3-Hitting Set,
Directed Feedback Vertex Set, Directed Subset Feedback Vertex Set, Directed Odd
Cycle Transversal and Undirected Multicut. We also show in Section 4 that, as in [13],
our algorithm can be derandomized at the expense of a multiplicative sub-exponential factor in the
running time.

2 Definitions and Our Results

2.1 Formal Definitions

We now give some formal definitions that will be required to formally state and describe our main
results. An implicit set system is a function Φ that takes as input a string I ∈ {0, 1}⋆, called an
instance, and returns a set system (UI ,FI) where UI is a universe and FI is a collection of subsets
of UI . We use n to denote the size of the universe, that is, n := |UI |. We say that an implicit set
system Φ is polynomial-time computable if there are two polynomial-time algorithms, the first one,
given I ∈ {0, 1}⋆, computes the set UI , and the second one, given S ⊆ UI , correctly decides if S ∈ FI .
A family F ⊆ 2U is called monotone if U ∈ F and for every S ⊆ T ⊆ U , if S ∈ F , then T ∈ F . We
say that an implicit set system Φ is monotone if FI is monotone for every input I. Throughout the
remainder of this work, we only deal with implicit set systems that are polynomial-time computable
and monotone. So for the sake of convenience, we refer to a polynomial-time computable and monotone
implicit set system simply as an implicit set system.

For an implicit set system Φ, the problem Φmin-Subset takes as input a string I ∈ {0, 1}⋆ and
asks to find S ∈ FI such that |S| is minimum. We refer to the sets in FI as solutions of I and we call
the sets in FI of minimum cardinality as minimum solutions or optimal solutions of I. For α ≥ 1, we
say that an algorithm is a (randomized) α-approximation algorithm for Φmin-Subset if on input I, it
returns a set S ∈ FI such that |S| ≤ α · |OPT| (with a constant probability), where OPT is an optimum
solution of Φmin-Subset.

One can observe that many fundamental graph problems, such as Vertex Cover, Feedback
Vertex Set, Directed Feedback Vertex Set, etc., can be cast as a Φmin-Subset problem.
Consider for example the Vertex Cover problem. Given a graph G = (V,E) we say a subset S ⊆ V
is a vertex cover if for every (u, v) ∈ E it holds that u ∈ S or v ∈ S. The input for the Vertex Cover
problem is a graph G and the objective is to find a vertex cover S of G such that |S| is minimum.

3The proofs of statements marked with ⋆ appear in the Appendix.

3

We can cast Vertex Cover as a Φmin-Subset problem for the implicit set system ΦVC defined as
follows. The instance of the problem is interpreted as a graph G = (V,E). We define the universe UG

as the set of vertices V and the set of solutions FG = {S ⊆ V | S is a vertex cover of G} is the set of
all vertex covers of G. Finally, we define ΦVC(G) = (UG,FG). It can be easily verified that ΦVC is an
implicit set system (i.e., it is polynomial-time computable and monotone).

We say an algorithm is a parameterized (randomized) α-approximate Φ-extension if, given an
instance I ∈ {0, 1}⋆, X ⊆ UI and a parameter k ∈ N, it returns a set Y ⊆ UI which satisfies the
following property (with a constant probability): if there exists a set S ⊆ UI such that S∪X ∈ FI and
|S| ≤ k, then it holds that Y ∪X ∈ FI and |Y | ≤ α · k. We use the shorthand (randomized) (α,Φ)-
extension algorithm to refer to a parameterized (randomized) α-approximate Φ-extension algorithm.
Observe that a parameterized α-approximation algorithm for Vertex Cover can be turned into
an (α,ΦVC)-extension algorithm with the same running time, by taking the instance (G,X, k) of
the (α,ΦVC)-extension algorithm, and running the parameterized α-approximation algorithm on the
instance (G−X, k). Observe that this way of converting parameterized α-approximation algorithms to
(α,Φ)-extension algorithms holds for various implicit set systems Φ, for example, when Φ corresponds
to a vertex deletion problem to a hereditary graph class.

2.2 Our results

Given an (α,Φ)-extension algorithm with running time O∗(ck) we design an α-approximation algo-
rithm for Φmin-Subset with running time O∗(amls(α, c)n) where amls is defined as the unique value

γ ∈
(

1, 1 + c−1
α

)

such that D
(

1
α

∥

∥

∥

γ−1
c−1

)

= ln c
α . Note that amls(α, c) is indeed well-defined because for

every α ≥ 1, the function f(δ) := D
(

1
α

∥

∥δ
)

is monotonically decreasing in the interval δ ∈
(

0, 1
α

)

as
well as f(δ) −−−→

δ→0
∞ and f(δ) −−−→

δ→ 1
α

0.

Theorem 2.1 (Approximate Monotone Local Search). Let Φ be an implicit set system and α ≥ 1. If
there is a randomized (α,Φ)-extension algorithm that runs in time O∗(ck), then there is a randomized
α-approximation algorithm for Φmin-Subset that runs in time O∗((amls(α, c))n).

The formula for amls(α, c) (which describes the running time of Theorem 2.1) is not a closed-form
formula, and we do not expect a closed-form formula for general α, c to exist. However, it represents a
tight analysis of our algorithm. Despite being represented as an implicit formula, its basic properties
can be deduced (see Lemma 1.1). Also, amls can be easily evaluated for every α, c > 1. Indeed, for

every α ≥ 1, the function f(γ) = D
(

1
α

∥

∥

∥

γ−1
c−1

)

is monotonically decreasing in the interval
(

1, 1 + c−1
α

)

.

This means that amls(α, c) can be evaluated to an arbitrary precision, for every α ≥ 1 and c > 1,
using binary search. In particular, the running time implied by Theorem 2.1 can be evaluated.

Theorem 2.1 can be used to obtain faster (than the state-of-art) exponential approximation algo-
rithms for some Φmin-Subset problems. For example, the brute-force 1.1-approximation algorithm
runs in time O∗(brute(1.1)n) = O∗(1.716n). The best parameterized 1.1-approximation for Vertex
Cover runs in time O∗(1.1652k) [19], where k is the parameter. Using the naive conversion, this al-
gorithm can be naively converted to a 1.1-approximation that runs in time O∗(naive(1.1, 1.1652)n) =
O∗(1.149n). The previously known fastest 1.1-approximation algorithm for Vertex Cover runs in
time O∗(1.127n) [4]. Using Theorem 2.1 in conjunction with the O∗(1.1652k) algorithm of [19], we
get a 1.1-approximation algorithm for Vertex Cover with running time O∗(1.114n), improving over
all of the above. We provide additional applications in Section 2.4.

In Section 4, we show that the algorithm of Theorem 2.1 can be derandomized, at the cost of a
sub-exponential factor in the running time, by generalizing the construction of set inclusion families
from [13].

Theorem 2.2 (Derandomization Approximate Monotone Local Search). Let Φ be an implicit set
system and α ≥ 1. If there is an (α,Φ)-extension algorithm that runs in time O∗(ck), then there is an

α-approximation algorithm for Φmin-Subset that runs in time O∗
(

(amls(α, c))n+o(n)
)

.

4

2.3 Approximate Monotone Local Search

We now present the algorithm underlying Theorem 2.1 and give a sketch for its analysis. Recall Φ
is the implicit set family and α ≥ 1 is the approximation ratio. Let Aext denote the (α,Φ)-extension
algorithm that runs in time O∗(ck) where k is the parameter. Given an instance I ∈ {0, 1}⋆, let
Φ(I) = (UI ,FI). The algorithm for Theorem 2.1 is described in Algorithm 2, and it is denoted by
Approximate-MLS. It uses the subroutine Sample (Algorithm 1) which samples a random set from
UI , which is subsequently extended, using Aext, to yield the solution. Algorithm 2 coincides with the
algorithm of [13, Theorem 1.1] when α = 1.

Algorithm 1 Sample(I, k, t)

Input: I ∈ {0, 1}⋆, k ∈ N, t ∈ N

1: Sample a set X of size t from UI uniformly at random.
2: Y ← Aext

(

I,X, k −
⌈

t
α

⌉)

.
3: Z ← X ∪ Y .
4: If Z ∈ FI and |Z| ≤ α · k, then return Z, otherwise return UI .

Let OPT be an optimum solution of the instance I of Φmin-Subset. Consider the execution of
Sample on the instance (I, k, t) where k = |OPT|. In Step 1 of Sample if |X∩OPT| ≥ t

α then |OPT\X| ≤
k− t

α . Therefore, in Step 2 Aext must return a set Y such thatX∪Y ∈ FI and |Y | ≤ α·(k− t
α) = αk−t.

Thus, the set Z = X∪Y computed in Step 3 is an α-approximate solution of I. Let hyper(n, k, t, x) be
the probability that a uniformly random set X of t items out of [n] := {1, . . . , n} satisfies |X∩ [k]| ≥ x.
The distribution of |X ∩ [k]| is commonly referred as hyper-geometric. Since Pr

(

|X ∩ OPT| ≥ t
α

)

=
hyper(n, k, t, t

α), Sample returns an α-approximate solution of I with probability hyper(n, k, t, t
α).

Observe that the running time of the Sample subroutine is proportional (up to polynomial factors) to

the running time of the call to Aext in Step 2. Thus, the Sample subroutine runs in time O∗(ck−
t
α).

Algorithm 2 Approximate-MLS(I)

Input: I ∈ {0, 1}⋆
1: Define n = |UI | and S ← ∅.
2: for k from 0 to n

α do

3: t← argmin
t∈[0,αk]∩N

(

ck−
t
α

hyper
(

n, k, t, t
α

)

)

.

4: Run S = S ∪ {Sample(I, k, t)} for
(

hyper
(

n, k, t, t
α

))−1
times.

5: Return a minimum sized set in S.

Consider the execution of Approximate-MLS with the input I. The analysis of Approximate-MLS
focuses on the iteration of Step 2 when k = |OPT|. In this iteration, each call to Sample(I, k, t) returns
an α-approximate solution with probability hyper(n, k, t, t

α) (as argued above). Since in Step 4, Sample

is invoked
(

hyper(n, k, t, t
α)
)−1

times, at the end of the execution of Step 4, the set S contains an
α-approximate solution of I with a constant probability.

The running time of a fixed iteration in Step 2 of Approximate-MLS is (hyper(n, k, t, t
α))

−1 times

the running time of Sample, that is, ck−
t
α

hyper(n,k,t, t
α
)
. Let us denote iterationn,k,c(t) = ck−

t
α

hyper(n,k,t, t
α
)
.

Observe that the value of t selected in Step 3 minimizes iterationn,k,c(t). From the algorithmic
perspective the selection of the optimal value of t is straightforward as iterationn,k,c(t) can be
computed in polynomial time for each value of t (given n and k). However, the asymptotic analysis
of iterationn,k,c(t), and hence the overall running time, requires an in-depth understanding of the
random process and serves as the main technical contribution of this paper.

As described earlier, when α = 1, Algorithm 2 coincides with the algorithm of [13, Theorem 1.1].
The analysis of [13, Theorem 1.1] lower bounds the probability that the set X sampled on Step 1 of

Sample satisfiesX ⊆ OPT. The analysis of our algorithm lower bounds the probability that |X∩OPT|
|X| ≥ 1

α .
In particular, the sampling step may select items which are not in OPT, though the number of such

5

items is restricted. This allows for an improved running time in comparison to that of [13] (see
Lemma 1.1), but renders the analysis of the running time to be more involved.

For the analytical estimation of t, which is selected in Step 3 of Approximate-MLS, the question
that one needs to understand is that how many items should the algorithm sample before it decides to
use Aext to extend the sampled set. Assume that the algorithm already sampled a set X of t items
such that |X∩OPT| ≈ t

α . Let ε > 0 be some small number. Observe that UI \X contains ≈ k− t
α items

from OPT, and thus |(UI\X)∩OPT|
|UI\X| ≈ k− t

α

n−t . The algorithm now has two options: it can either further

sample a set A of additional ε · n items or, use Aext with the parameter k − t
α to extend X to a final

solution. In the first case, the time taken to sample a set A of ε ·n items such that |A∩OPT| ≥ |A|
α = ε·n

α

holds with constant probability, is
(

Pr
(

|A ∩ OPT| ≥ ε·n
α

))−1
. In the second case, the algorithm spends

an additional factor of c
ε·n
α time to extend the set X, instead of X ∪A, to the final solution. Thus, if

Pr
(

|A ∩ OPT| ≥ ε·n
α

)

> c−
ε·n
α , it is better to continue sampling, and otherwise, it is better to run Aext

on the instance (I,X, k − t
α). Therefore, to understand the analytics of the chosen t, one needs to

upper bound Pr
(

|A ∩ OPT| ≥ ε·n
α

)

.
We view the sampling of A as an iterative process in which the items are sampled one after the

other. When sampling the ℓ-th item, the ratio between the remaining items in OPT and the available

items is ≈ k− t
α
−∆

n−t−ℓ , where ∆ is the number of items from OPT sampled in previous iterations and

0 ≤ ∆ ≤ ℓ ≤ ε · n. As ε · n is small, we estimate
k− t

α
−∆

n−t−ℓ ≈
k− t

α

n−t . Therefore, the probability that the

ℓ-th sampled item is in OPT is roughly
k− t

α

n−t . Thus, |A ∩ OPT| can be estimated as the sum of ε · n
Bernoulli random variables x1, . . . , xε·n with probability

k− t
α

n−t . Thus,

Pr
(

|A ∩ OPT| ≥ ε · n
α

)

≈ Pr

(

ε·n
∑

i=1

xi ≥
ε · n
α

)

≈ exp

(

−ε · n · D
(

1

α

∥

∥

∥

∥

k − t
α

n− t

))

,

where the last estimation follows from a large deviation property of binomial distributions [7, Theo-
rem 11.1.4] and assumes |OPT| ≤ n

α .
Therefore, the (optimal) selection of t which minimizes iterationn,k,c(t) is the largest t which

satisfies exp
(

−ε · n · D
(

1
α

∥

∥

∥

k− t
α

n−t

))

> c−
ε·n
α , or equivalently, D

(

1
α

∥

∥

∥

k− t
α

n−t

)

≈ ln c
α . We use this value of t

to bound the running time of an iteration of Step 2, that is, to upper bound min
t∈[0,αk]∩N

iterationn,k,c(t).

This analytical estimation of t forms the crux in analyzing the overall running time of Algorithm 2.

2.4 Applications of Approximate-MLS

In this section we use Theorem 2.1 to get faster randomized exponential approximation algorithms
for Vertex Cover, 3-Hitting Set, Directed Feedback Vertex Set (DFVS), Directed
Subset Feedback Vertex Set (Subset DFVS),Directed Odd Cycle Transversal (DOCT)
and Undirected Multicut. These problems are defined in Appendix D. One can observe that
all these problems can be described as some Φmin-Subset problem. Since all these problems can
be interpreted as vertex deletion problems to some hereditary graph class, any parameterized α-
approximation algorithm for these problems can be used as an (α,Φ)-extension algorithm, for the
respective Φ.

Vertex Cover (VC): In [4] Bourgeois, Escoffier and Paschos designed several exponential approx-
imation algorithms for VC for approximation ratios in the range (1, 2). For any α ∈ (1, 2) the best
known running time of a parameterized randomized α-approximation algorithm for VC is attained
in [19] if α & 1.03, and in [6] if α . 1.03. We use these algorithms in conjunction with Theorem 2.1
to obtain faster randomized exponential α-approximation algorithms for VC for values of α in the
range (1, 2). We compare our running times to the running times obtained by the naive conversion
(Benchmark 2) and to the running times in [4].4 We present the running time for selected approxima-

4The result of [4] provides an α-approximation algorithm for every α ∈ (1, 2). As the evaluation of these running
times is not trivial, we only provide the running times which were explicitly given in [4] for selected approximation ratios.

6

(a) Vertex Cover

1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

approximation ratio

ex
p
on

en
t
b
as
e

BEP [4]

[19, 6]+ naive conversion

[19, 6]+Theorem 2.1

(b) 3-Hitting Set

1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

brute

[12, 19]+naive conversion

[12, 19]+Theorem 2.1

Figure 1: Results for Vertex Cover and 3-Hitting Set. A dot at (α, d) means that the respective
algorithm outputs an α-approximation in time O∗(dn).

tion ratios in Figure 2 and give a graphical comparison in Figure 1a.

Vertex Cover
ratio 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

brute(α) 1.716 1.583 1.496 1.433 1.385 1.347 1.317 1.291 1.269
BEP [4] 1.127 1.099 1.083 1.069 1.056 1.043 1.032 1.021 1.01

[19]+Naive Conv. 1.149 1.079 1.044 1.0236 1.0110 1.00469 1.00162 1.000406 1.0000432
[19]+Theorem 2.1 1.114 1.064 1.036 1.0203 1.0099 1.00435 1.00156 1.000397 1.0000428

3-Hitting Set
ratio 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

brute(α) 1.583 1.433 1.347 1.291 1.251 1.220 1.196 1.177 1.162
[19]+ Naive Conv. 1.471 1.196 1.105 1.0582 1.0326 1.0173 1.00831 1.00324 1.000903
[19]+Theorem 2.1 1.240 1.119 1.0698 1.0417 1.0248 1.0140 1.00711 1.00292 1.000853

Figure 2: Results for Vertex Cover and 3-Hitting Set. A value d at the column of an approxi-
mation ratio α means that the respective algorithm outputs an α-approximation in time O∗(dn).

3-Hitting Set (3-HS): The problem admits a simple polynomial-time 3-approximation algorithm
which cannot be improved assuming UGC [17]. For any α ∈ (1, 3) the best known running time of
a parameterized α-approximation algorithm for 3-HS is attained by either [12] if α . 1.08, or [19] if
α & 1.08. Using these algorithms as parameterized extension algorithms, we calculate the running
times of α-approximation algorithms for 3-HS attained using the naive conversion (Benchmark 2) and
Theorem 2.1, for values of α ∈ (1, 3). We provide the running times for selected approximation ratios
in Figure 2 and a graphical comparison in Figure 1b.

DFVS, Subset DFVS, DOCT, Undirected Multicut: For all these problems [22] gave param-
eterized 2-approximation algorithms that run in time O∗(ck), for some constant c > 1. One can easily
observe from the description of the DFVS algorithm in [22] that it runs in time O∗(1024k). Using
Theorem 2.1 we get that DFVS admits an exponential 2-approximation algorithm that runs in time
O∗(1.2498n). This running time is significantly better than the running time derived using the naive
conversion (Benchmark 2) of the algorithm of [22], which does not give anything meaningful for this

7

problem. It is also significantly better than using Exact-MLS with the algorithm of [22], which gives
O∗((emls(1024))n) = O∗(1.9991n). It is also qualitatively better than the brute-force 2-approximation
algorithm (Benchmark 1), which runs in time O∗(1.25n).

Using Lemma 1.1, we can show that we get faster 2-approximation algorithms for all mentioned
problems compared to the brute-force 2-approximation algorithm, or the naive conversion of the
parameterized algorithms in [22] or the application of Exact-MLS with the algorithms of [22]. Note
that even though the algorithms derived from Theorem 2.1 are only qualitatively better than brute-
force approximation, we emphasize that Approximate-MLS is always strictly better than brute-force
approximation (and the other benchmarks described earlier). Also, it reflects Part 1 of Lemma 1.1,
that as c increases (that is, as the parameterized extension algorithm becomes slower), our algorithm
converges to the brute-force approximation.

3 Analysis of Approximate Monotone Local Search

This section is dedicated to the proof of Theorem 2.1. As explained earlier, the algorithm promised in
Theorem 2.1 is Approximate-MLS (Algorithm 2). In Lemma 3.1 we prove the correctness of Algorithm 2
and in Lemma 3.2 we provide a formula for its running time. Finally, in Lemma 3.4 we upper
bound the running time of the formula obtained in Lemma 3.2 with O∗(amls(α, c)n), thereby proving
Theorem 2.1.

Lemma 3.1 (Correctness). Approximate-MLS (Algorithm 2) is a randomized α-approximation algo-
rithm for Φmin-Subset.

Proof. Let I ∈ {0, 1}⋆ be an instance and OPT be a minimum solution of I. Consider an execution of
Sample(I, k, t) (Algorithm 1) in which k = |OPT| and 0 ≤ t ≤ α · k. If the algorithm selects a set X in
Step 1 such that |OPT∩X| ≥ t

α , then |OPT\X| ≤ k− t
α . Furthermore, it holds that (OPT\X)∪X ∈ FI ,

because OPT ∪ X ⊇ OPT ∈ FI and Φ is monotone by assumption. Since Aext is an (α,Φ)-extension
algorithm, given the input (I,X, k −

⌈

t
α

⌉

) it returns a set Y such that |Y | ≤ α · (k − t
α) = αk − t

with constant probability γ ∈ (0, 1]. Let Z = X ∪ Y ∈ FI as in Step 3 of Algorithm 1 and we get
|Z| = |X|+ |Y | ≤ αk. It follows that

Pr (Sample(I, |OPT|, t) returns a set of size at most α · |OPT|)

≥ γ · Pr
(

|X ∩ OPT| ≥ t

α

)

= γ · hyper(n, |OPT|, t, t/α),
(1)

where hyper is the function defined in Section 2.
Now, consider the execution of Algorithm 2 with I as its input and let S be the set returned by

Algorithm 2. It can be easily verified that S ∈ FI . Also, if |OPT| ≥ n
α then |S| ≤ n ≤ α · |OPT| and

therefore the algorithm returns an α-approximate solution in this case. We henceforth assume that
|OPT| < n

α . Consider the iteration of the loop in Step 2 of Algorithm 2 in which k = |OPT|. By (1),
at least one of the calls to Algorithm 1 in this iteration returns a set of size α · |OPT| or less with
probability at least

1− (1− γ · hyper(n, k, t, t/α))1/hyper(n,k,t,t/α) ≥ 1− exp(−γ) > 0,

where t is the value selected in Step 3.
Let S be as in Algorithm 2 at the end of the iteration in which k = |OPT|. The minimum cardinality

set in S has size at most α·|OPT| with probability 1−exp(−γ), thus the set S returned by the algorithm
satisfies |S| ≤ α · |OPT| with a constant probability.

Lemma 3.2 (Running time). Approximate-MLS (Algorithm 2) runs in time fα,c(n) · nO(1) where

fα,c(n) :=

⌊nα⌋
∑

k=0

min
t∈[0,αk]∩N

ck−
t
α

hyper
(

n, k, t, t
α

) . (2)

8

Proof. For each choice of k, Algorithm 2 chooses in Step 3 a number t that minimizes c
k−⌈ t

α⌉
hyper(n,k,t, tα)

which takes time nO(1). Then the algorithm calls Algorithm 1 hyper
(

n, k, t, t
α

)−1
times which takes

ck−
t
α

hyper(n,k,t, t
α
)
·nO(1) time in total. So overall, the running time is upper bounded by fα,c(n) ·nO(1).

We now proceed with the main part of the analysis which is to bound fα,c(n) by amls(α, c)n up
to some polynomial factors. We remark at this point (without giving a proof) that our analysis is in
fact tight, that is, it can be shown that fα,c(n) is equal to amls(α, c)n up to some polynomial factors
in n.

Recall that H(p) = −p ln p−(1−p) ln(1−p) denotes the entropy function. We will use the following
bound on binomial coefficients (see, e.g., [7, Example 11.1.3]):

1

n+ 1
· exp

(

n · H
(

k

n

))

≤
(

n

k

)

≤ exp

(

n · H
(

k

n

))

(3)

for all n, k ∈ N such that 0 ≤ k ≤ n.
Moreover, we also need the following technical lemma. Intuitively speaking, it says that small

perturbations to the values of a and b do not change the value of a · H
(

b
a

)

by a large amount.

Lemma 3.3 (⋆). For 0 ≤ b ≤ a ≤ n and ε, δ ∈ [−1, 1] such that a+ ε ≥ 0 and 0 ≤ b+ δ ≤ a+ ε, we
have

∣

∣

∣

∣

a · H
(

b

a

)

− (a+ ε) · H
(

b+ δ

a+ ε

)
∣

∣

∣

∣

= O(log(n)).

Finally, recall that D (a‖b) = a ln a
b + (1 − a) ln 1−a

1−b denotes the Kullback-Leibler divergence (see,
e.g., [7]).

Lemma 3.4. It holds that

fα,c(n) = O∗(amls(α, c)n).

Proof. Recall that hyper
(

n, k, t, t
α

)

denotes the probability that a uniformly random set X of t ele-
ments out of [n] satisfies that |X ∩ [k]| ≥ t

α . Thus, we have that

hyper

(

n, k, t,
t

α

)

=
∑

y≥⌈ t
α⌉

(k
y

)(n−k
t−y

)

(n
t

) ≥
(k
⌈ t

α⌉
)(n−k

t−⌈ t
α⌉
)

(n
t

) =

(t
⌈ t

α⌉
)(n−t

k−⌈ t
α⌉
)

(n
k

) , (4)

where the last equality holds since the distribution of |X ∩ [k]|, where X ⊆ [n] is a uniformly random
set of cardinality t, is identical to the distribution of |Y ∩ [t]| where Y ⊆ [n] is a uniformly random set
of cardinality k.

Using (4) we have

fα,c(n) =

⌊nα⌋
∑

k=0

min
t∈[0,αk]∩N

ck−
t
α

hyper
(

n, k, t, t
α

) ≤
⌊ nα⌋
∑

k=0

min
t∈[0,αk]∩N

ck−
t
α ·
(n
k

)

(t
⌈ t

α⌉
)(n−t

k−⌈ t
α⌉
)

≤ nO(1) ·
⌊ nα⌋
∑

k=0

(

n

k

)

exp

(

min
t∈[0,αk]∩N

(

(

k − t

α

)

ln(c)− t · H
(

⌈

t
α

⌉

t

)

− (n− t) · H
(

k −
⌈

t
α

⌉

n− t

)))

≤ nO(1) ·
⌊ nα⌋
∑

k=0

(

n

k

)

exp

(

min
t∈[0,αk]∩N

((

k − t

α

)

ln(c)− t · H
(

1

α

)

− (n − t) · H
(

k − t
α

n− t

))

)

(5)
where the second inequality follows from (3) and the third inequality follows from Lemma 3.3.

9

Define

gn,k(t) :=

(

k − t

α

)

ln(c)− t · H
(

1

α

)

− (n − t) · H
(

k − t
α

n− t

)

.

By Lemma 3.3 it holds that |gn,k(t)−gn,k(t−ε)| = O(log n) for any t ∈ [0, αk] and 0 ≤ ε ≤ min{1, t}.
Using this observation and (5) we get

fα,c(n) ≤ nO(1) ·
⌊nα⌋
∑

k=0

(

n

k

)

exp

(

min
t∈[0,αk]∩N

gn,k(t)

)

≤ nO(1) ·
⌊nα⌋
∑

k=0

(

n

k

)

exp

(

min
t∈[0,αk]

gn,k(t)

)

. (6)

Observe that in the last term the range of t is not restricted to integral values.
Let δ∗ = amls(α,c)−1

c−1 . By the definition of amls it holds that δ∗ ∈ (0, 1
α) and D

(

1
α

∥

∥δ∗
)

= ln(c)
α .

Define t∗(n, k) := k−nδ∗
1
α
−δ∗

, thus
k− t∗(n,k)

α

n−t∗(n,k) = δ∗ and D
(

1
α

∥

∥

∥

∥

k− t∗(n,k)
α

n−t∗(n,k)

)

= ln c
α for every n ∈ N and k ∈ N.

It can be verified that gn,k(t) is convex and has a global minimum at t∗(n, k), though this observation
is not directly used by our proof.

For any n ∈ N and k ∈
[

0, n
α

]

∩ N it holds that t∗(n, k) =
αk(1

α
−δ∗)+αkδ∗−nδ∗

1
α
−δ∗

≤ αk since αk ≤ n.

Furthermore, t∗(n, k) ≥ 0 if and only if k ≥ nδ∗. Following this observation we partition the summation
in (6) into two parts. Define

A(n) =

⌊n·δ∗⌋
∑

k=0

(

n

k

)

exp

(

min
t∈[0,αk]

gn,k(t)

)

and B(n) =

⌊nα⌋
∑

k=⌊n·δ∗⌋+1

(

n

k

)

exp

(

min
t∈[0,αk]

gn,k(t)

)

.

Thus, fα,c(n) ≤ nO(1) · (A(n) +B(n)). We bound each of the sums A(n) and B(n) separately.
In order to bound B(n) we use the following algebraic identity.

Claim 3.5. It holds that

gn,k(t) =

(

k − t

α

)

ln(c) + t · D
(

1

α

∥

∥

∥

∥

k − t
α

n− t

)

+ k · ln
(

k − t
α

n− t

)

+ (n− k) · ln
(

1− k − t
α

n− t

)

.

Proof. We have

gn,k(t) =

(

k − t

α

)

ln(c) − t · H
(

1

α

)

− (n− t) · H
(

k − t
α

n− t

)

=

(

k − t

α

)

ln(c)− t · H
(

1

α

)

+

(

k − t

α

)

ln

(

k − t
α

n− t

)

+

(

n− k − t

(

1− 1

α

))

ln

(

1− k − t
α

n− t

)

=

(

k − t

α

)

ln(c) + t ·
(

−H
(

1

α

)

− 1

α
· ln
(

k − t
α

n− t

)

−
(

1− 1

α

)

· ln
(

1− k − t
α

n− t

))

+ k · ln
(

k − t
α

n− t

)

+ (n − k) · ln
(

1− k − t
α

n− t

)

=

(

k − t

α

)

ln(c) + t · D
(

1

α

∥

∥

∥

∥

k − t
α

n− t

)

+ k · ln
(

k − t
α

n− t

)

+ (n− k) · ln
(

1− k − t
α

n− t

)

.

The second equality is a rearrangement of the terms. The last equality uses the identity

D (x‖y) = x ln

(

x

y

)

+ (1− x) ln

(

1− x

1− y

)

= −H(x)− x ln(y)− (1− x) ln(1− y).

y

10

For any n ∈ N and k ∈
[

nδ∗, nα
]

∩N it holds that 0 ≤ t∗(n, k) ≤ αk. Thus,

min
t∈[0,αk]

gn,k(t) ≤ gn,k (t
∗(n, k))

=

(

k − t∗(n, k)
α

)

ln(c) + t∗(n, k) · D
(

1

α

∥

∥

∥

∥

δ∗
)

+ k · ln(δ∗) + (n− k) · ln(1− δ∗)

= k · ln(c) + k · ln(δ∗) + (n− k) · ln(1− δ∗)

= k · ln
(

c · δ∗
1− δ∗

)

+ n · ln(1− δ∗),

where the first equality uses Claim 3.5 and the second equality follows from D
(

1
α

∥

∥δ∗
)

= ln(c)
α . There-

fore,

B(n) =

⌊ nα⌋
∑

k=⌈nδ∗⌉+1

(

n

k

)

· exp
(

min
t∈[0,αk]

gn,k(t)

)

≤
n
∑

k=0

(

n

k

)(

c · δ∗
1− δ∗

)k

(1− δ∗)n

= (1− δ∗)n
(

c · δ∗
1− δ∗

+ 1

)n

= ((c− 1)δ∗ + 1)n

(7)

using the Binomial Theorem.
We now proceed to bound A(n). For every n ∈ N and 0 ≤ k ≤ δ∗n it holds that

min
t∈[0,αk]

gn,k(t) ≤ gn,k(0) = k · ln(c)− n · H
(

k

n

)

≤ k · ln c− ln

(

n

k

)

,

where the last inequality follows from (3). Therefore,

A(n) =

⌊nδ∗⌋
∑

k=0

(

n

k

)

· exp
(

min
t∈[0,αk]

gn,k(t)

)

≤
⌊nδ∗⌋
∑

k=0

ck ≤ n · (cδ∗)n. (8)

Finally, by using (7) and (8), we get

fα,c(n) ≤ nO(1) · (A(n) +B(n)) ≤ nO(1) ·
(

(cδ
∗

)n + ((c− 1)δ∗ + 1)n
)

≤ nO(1) · ((c− 1)δ∗ + 1)n ,

where the third inequality uses cδ
∗ ≤ (c − 1)δ∗ + 1 which holds because f(x) := cx − (c − 1)x − 1 is

convex and has two roots at 0 and 1. By the definition of δ∗ it holds that (c − 1)δ∗ + 1 = amls(α, c)
and thus, fα,c(n) ≤ nO(1) · amls(α, c)n.

Finally, Theorem 2.1 is implied by Lemmas 3.1, 3.2 and 3.4.

4 Derandomization

In this section, we show how to derandomize Algorithm 2. In particular, we prove Theorem 2.2. As
usual, let (UI ,FI) be a set system and let k, t, n ∈ N be the variables from Algorithm 2 and let α ≥ 1.
In order to derandomize the algorithm, it is sufficient to find a collection C of subsets of UI of size t
such that, for every possible solution set S ⊆ UI of size k, there is some set X ∈ C such that

|X ∩ S| ≥ t

α
.

We refer to such a family C as an (n, k, t, t
α)-set-intersection-family which is formally defined below.

Definition 4.1. Let U be a universe of size n and let p, q, r ≥ 1 such that n ≥ p ≥ r and n− p+ r ≥
q ≥ r. A family C ⊆

(U
q

)

is a (n, p, q, r)-set-intersection-family if for every T ∈
(U
p

)

there is some
X ∈ F such that |T ∩X| ≥ r.

11

Given a (n, k, t, t
α)-set-intersection-family C we can derandomize Algorithm 2 by iterating over

all choices X ∈ C instead of repeatedly sampling a set X uniformly at random. Observe that the
derandomized algorithm (for a fixed k, t) runs in time O∗(|C| · ck− t

α). Now, we define

κ(n, p, q, r) :=

(n
q

)

(

p
r

)

·
(

n−p
q−r

) .

The following theorem computes the desired set-intersection-family of small size.

Theorem 4.2 (⋆). There is an algorithm that, given a set U of size n and numbers p, q, r ≥ 1 such that
n ≥ p ≥ r and n−p+r ≥ q ≥ r, computes an (n, p, q, r)-set-intersection-family of size κ(n, p, q, r)·2o(n)
in time κ(n, p, q, r) · 2o(n).

For the proof of Theorem 4.2 we extend the arguments from [13] which provide such a result for
the special case when q = r (which corresponds to the case α = 1).

Proof of Theorem 2.2. We proceed analogously to the proof of Theorem 2.1 with the following changes.
In Algorithm 2, Step 3 we define

t := argmin
t∈[0,αk]∩N

κ

(

n, k, t,

⌈

t

α

⌉)

ck−
t
α

and then compute an (n, k, t, t
α)-set-intersection-family C of size κ(n, p, q, r) · 2o(n) using Theorem 4.2.

Afterwards, we repeatedly execute Algorithm 1 for every X ∈ C (instead of sampling X uniformly at
random). Repeating the analysis of Lemma 3.2 the running time is bounded by O∗(fα,c(n)) where,

fα,c(n) =

⌊nα⌋
∑

k=0

min
t∈[0,αk]∩N

κ

(

n, k, t,

⌈

t

α

⌉)

ck−
t
α · 2o(n).

As we already proved in Lemma 3.4 it holds that

⌊nα⌋
∑

k=0

min
t∈[0,αk]∩N

κ

(

n, k, t,

⌈

t

α

⌉)

ck−
t
α =

⌊nα⌋
∑

k=0

min
t∈[0,αk]∩N

ck−⌈ t
α⌉ ·

(n
t

)

(k
⌈ t

α⌉
)(n−k

t−⌈ t
α⌉
)

=

⌊nα⌋
∑

k=0

min
t∈[0,αk]∩N

ck−⌈ t
α⌉ ·

(n
k

)

(t
⌈ t

α⌉
)(n−t

k−⌈ t
α⌉
) ≤ amls(α, c)n · nO(1)

which results in the running time stated in the theorem.

5 The Brute-Force Approximation Algorithm

In this section we show that one can design an α-approximate variant of exhaustive search that runs
in time O∗ ((brute(α))n), where brute(α) = 1 + exp(−α · H

(

1
α

)

). We complement this result by
showing that O∗ ((brute(α))n) is the best possible running time of an α-approximation algorithm for
a subset minimization problem in the oracle model defined below.

A (randomized) oracle α-approximation minimum subset algorithm takes as input a universe U
and receives a membership oracle to a monotone family F ⊆ 2U . The algorithm returns a set S ∈ F
such that |S| ≤ α ·min

{

|T |
∣

∣ T ∈ F
}

(with constant probability).

Theorem 5.1. For any α ≥ 1, there is a deterministic oracle α-approximation minimum subset algo-
rithm which runs in time O∗((brute(α))n). Moreover, there is no randomized oracle α-approximation
minimum subset algorithm which uses O∗(cn) oracle queries for any c < brute(α).

The proof of Theorem 5.1 utilizes the technical bound proved in Lemma 5.2. The proof of
Lemma 5.2 uses arguments that similar to the ones used in the proof of Lemma 3.4.

12

Lemma 5.2. For any n ∈ N and α ≥ 1 it holds that

n−O(1) · (brute(α))n ≤ max
k∈[0,nα)∩N

(n
k

)

(⌊αk⌋
k

)
≤ nO(1) · (brute(α))n

Proof. We first establish the upper bound. Observe that

max
k∈[0,nα)∩N

(

n
k

)

(⌊αk⌋
k

)
≤ nO(1) · max

k∈[0,nα)∩N

(

n

k

)

· exp
(

−⌊α · k⌋ · H
(

k

⌊αk⌋

))

≤ nO(1) · max
k∈[0,nα)∩N

(

n

k

)

· exp
(

−α · k · H
(

1

α

))

≤ nO(1) ·
n
∑

k=0

(

n

k

)

· exp
(

−α · k · H
(

1

α

))

= nO(1)

(

1 + exp

(

−α · H
(

1

α

)))n

= nO(1) · (brute(α))n ,

where the first inequality is by (3), and the second inequality is by Lemma 3.3.
The lower bound is established similarly, though it requires some additional sophistication. By (3)

and Lemma 3.3 we have

max
k∈[0,nα)∩N

(n
k

)

(⌊αk⌋
k

)
≥ n−O(1) · max

k∈[0,nα)∩N
exp

(

n · H
(

k

n

)

− ⌊α · k⌋ · H
(

k

⌊α · k⌋

))

≥ n−O(1) · max
k∈[0,nα)∩N

exp

(

n · H
(

k

n

)

− α · k · H
(

1

α

))

,

Define g(λ) = H(λ) − λ · α · H
(

1
α

)

. As the entropy function is concave it follows that g is concave.
Furthermore, g(0) = g

(

1
α

)

= 0, thus g has a global maximum in the interval
[

0, 1
α

]

. Therefore,

max
k∈[0,nα)∩N

(n
k

)

(⌊αk⌋
k

)
≥ n−O(1) · max

k∈[0,nα)∩N
exp

(

n · g
(

k

n

))

≥ n−O(1) · max
k∈[0,n]∩N

exp

(

n · g
(

k

n

))

= n−O(1) · max
k∈[0,n]∩N

exp

(

n · H
(

k

n

)

− k · α · H
(

1

α

))

≥ n−O(1) · max
k∈[0,n]∩N

(

n

k

)

· exp
(

−k · α · H
(

1

α

))

≥ n−O(1) · 1
n
·

n
∑

k=0

(

n

k

)

· exp
(

−k · α · H
(

1

α

))

= n−O(1) ·
(

1 + exp

(

−α · H
(

1

α

)))n

= n−O(1) · brute(α)n.

The third inequality is by (3) and the forth holds since the maximum is at least the average.

To obtain the claimed algorithm of Theorem 5.1 the basic idea is to sample O∗((brute(α))n)
random sets (of some size k) and show that the desired approximate solution is found with constant
probability. This algorithm can be derandomized by using Theorem 4.2 for the special case when
p = r. However, this introduces another sublinear term in the exponent of the running time. Instead,
in this special case, we can rely on existing results on covering families [20].

13

Let k < t < n be natural numbers and recall [n] := {1, 2, . . . , n}. An (n, t, k)-covering is a family
C ⊆ {X | X ⊆ [n], |X| = t} such that, for every S ⊆ [n] of size |S| = k, there is some X ∈ C
such that S ⊆ X. To construct the algorithm for Theorem 5.1, we exploit known constructions of
(n, t, k)-coverings of almost optimal size.

Theorem 5.3 (Kuzjurin [20]). There is an algorithm that, given k < t < n, computes an (n, t, k)-
covering C of size

(1 + o(1)) ·
(n
k

)

(t
k

)

in time |C| · nO(1).

Proof of Theorem 5.1. We first show the algorithmic part. By renaming elements, we may assume
without loss of generality that U = [n]. For every k ≤ n/α the algorithm computes an (n, ⌊αk⌋, k)-
covering Ck using Theorem 5.3 and checks for every set X ∈ Ck whether it is contained in F using the
oracle. Finally, the algorithm returns the smallest set it finds that is contained in F . If no such set is
found, the algorithm returns the entire universe.

It is easy to see that this algorithm is an α-approximation algorithm. Indeed, let OPT ⊆ U be
a solution set of minimum cardinality and let k := |OPT|. If k ≥ n/α, then the algorithm is clearly
correct since even returning the entire universe gives the desired approximation ratio. So suppose
that k ≤ n/α. By definition of an (n, ⌊αk⌋, k)-covering there is some X ∈ Ck such that OPT ⊆ X and
|X| = ⌊αk⌋ ≤ αk. Since F is monotone we get that X ∈ F and the algorithm returns a solution set
of size at most |X| ≤ αk.

Finally, using Theorem 5.3, observe that the algorithm runs in time

max
k∈[0,nα)∩N

(

n
k

)

(⌊αk⌋
k

)
· nO(1).

From Lemma 5.2 we get that the running time is bounded by (brute(α))n · nO(1).

Next, we prove the lower bound. For any n ∈ N define κ(n) = argmax
k∈[0,nα)∩N

(

n

k

)

·
(⌊αk⌋

k

)−1

. For

any n ∈ N define Fadv(n) = {S ⊆ [n] | |S| > ακ(n)}. For any n ∈ N and X ⊆ [n] define a family
F(n,X) = {S ⊆ [n] | X ⊆ S} ∪ Fadv(n). It can be easily observed that F(n,X) and Fadv(n) are
monotone set families. Our bound is based on the difficulty that algorithms have to distinguish
between Fadv(n) and F(n,X).

Let A be a randomized oracle α-approximation minimum subset algorithm. Without loss of gen-
erality we assume A only returns a set S if it queried the oracle with that set (and got back a positive
answer). Let q(n) be the maximal number of oracle queries the algorithm uses given a universe of
size n. As the algorithm is randomized, we use R to denote the random sequence of bits used by the
algorithm.

Fix n ∈ N. For any j ∈ [q(n)] the j-th query to the oracle is a function of the previous answers
the algorithm received from the oracle and the sequence of random bits the algorithm uses. Thus,
there is a function Sj(R) which returns the j-th query the algorithm sends to the oracle, given that
the algorithm gets an oracle to Fadv(n). If the algorithm does not issue the j-th query given R we
arbitrarily define Sj(R) = ∅.

Let X ⊆ [n] be a random set of size κ(n) which is sampled uniformly (and independently of R).
Consider the execution of A with the universe [n] and an oracle for F(n,X). Define

C(R) =

q(n)
⋃

j=1

{

{T ⊆ [n] | |T | = κ(n), T ⊆ Sj(R)} if |Sj(R)| ≤ α · κ(n)
∅ otherwise

. (9)

If X /∈ C(R) then the answers the algorithm receives to its queries are identical to the answers it would
have received if it was given an oracle Fadv(n). It therefore asks the same queries, and must return
a set S ∈ Fadv(n). As A is a randomized α-approximation algorithm, there is γ ∈ (0, 1] such that

14

A returns a set S ∈ F(n,X) which satisfies |S| ≤ α · |X| = α · κ(n) with probability at least γ. As
all the sets in Fadv have cardinality greater than α · κ(n) it follows that Pr(X /∈ C(R)) ≤ 1 − γ, or
equivalently, Pr(X ∈ C(R)) ≥ γ.

By the definition of C(R) (9), each query Sj(R) adds at most
(⌊α·κ(n)⌋

κ(n)

)

sets to C(R). Thus C(R) ≤
q(n) ·

(⌊α·κ(n)⌋
κ(n)

)

. Since X is independent of R we have,

γ ≤ Pr(X ∈ C(R)) ≤
q(n) ·

(⌊α·κ(n)⌋
κ(n)

)

(n
κ(n)

) ,

and hence

q(n) ≥ γ ·
(n
κ(n)

)

(⌊α·κ(n)⌋
κ(n)

)
= γ · max

k∈[0,nα)∩N

(

n
k

)

(⌊αk⌋
k

)
≥ n−O(1) · (brute(α))n ,

where the equality follows from the definition of κ(n) and the last inequality follows from Lemma 5.2.
In particular, this implies that A does not use O∗(cn) oracle queries for any c < brute(α).

6 Concluding Remarks

We introduced and analyzed approximate monotone local search Approximate-MLS which can be used
to obtain faster exponential approximation algorithms from parameterized (extension) approximation
algorithms for monotone subset minimization problems. In particular, we obtain faster exponential
approximation algorithms for Vertex Cover, 3-Hitting Set, DFVS, Subset DFVS, DOCT and
Undirected Multicut (for some approximation ratios).

The significance of Exact-MLS stems from the abundance of existing parameterized (extension)
algorithms which can be used to obtain the state-of-art exponential algorithms for multiple problems.
Approximate-MLS has a similar potential in the context of exponential approximation algorithms.
Thus, our result further emphasizes the importance of the already-growing field of parameterized
approximation, by exhibiting its strong connections with exponential-time approximations.

Some interesting follow-up questions of our work are the following.

Problem 1. Can an α-approximate algorithm running in time O∗((brute(α) − ε)n) be derived from
a parameterized extension β-approximation algorithm for any β > α?

For example, for Directed Feedback Vertex Set only a parameterized 2-approximation algo-
rithm running in timeO∗(ck) [22] is currently available. The question is whether this algorithm can also
be used to obtain an exponential 1.1-approximation algorithm that runs in time O∗((brute(1.1)−ε)n),
for some ε > 0?

We also described and showed that the exhaustive search analog in the α-approximate setting
achieves the best possible running time of O∗((brute(α))n) when one only has access to a membership
oracle for the problem. Observe that for α = 1, SETH asserts that (brute(1))n = 2n is tight.

Problem 2. Does there exist a monotone subset minimization problem for which there is no α-
approximation algorithm that runs in time O∗ ((brute(α)− ε)n), assuming SETH?

Recall that the Approximate-MLS algorithm only uses random sampling and the given parameter-
ized α-approximation extension algorithm. Another interesting lower bound question is the following.

Problem 3. Can one show that the running time of Approximate-MLS is tight (up to polynomial
factors) when one is only given access to a membership oracle and a parameterized α-approximation
extension algorithm as a black-box?

References

[1] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. J. Algorithms, 7(4):567–583, 1986.

15

[2] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games and
related problems. J. ACM, 62(5):42:1–42:25, 2015.

[3] Nikhil Bansal, Parinya Chalermsook, Bundit Laekhanukit, Danupon Nanongkai, and Jesper Ned-
erlof. New tools and connections for exponential-time approximation. Algorithmica, 81(10):3993–
4009, 2019.

[4] Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. Approximation of max independent
set, min vertex cover and related problems by moderately exponential algorithms. Discret. Appl.
Math., 159(17):1954–1970, 2011.

[5] Ljiljana Brankovic and Henning Fernau. Parameterized approximation algorithms for hitting set.
In Roberto Solis-Oba and Giuseppe Persiano, editors, Approximation and Online Algorithms -
9th International Workshop, WAOA 2011, Saarbrücken, Germany, September 8-9, 2011, Revised
Selected Papers, volume 7164 of Lecture Notes in Computer Science, pages 63–76. Springer, 2011.

[6] Ljiljana Brankovic and Henning Fernau. A novel parameterised approximation algorithm for
minimum vertex cover. Theor. Comput. Sci., 511:85–108, 2013.

[7] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience, 2nd
edition, 2006.

[8] Marek Cygan, Lukasz Kowalik, and Mateusz Wykurz. Exponential-time approximation of
weighted set cover. Inf. Process. Lett., 109(16):957–961, 2009.

[9] Pavel Dvorák, Andreas Emil Feldmann, Dusan Knop, Tomás Masaŕık, Tomás Toufar, and Pavel
Veselý. Parameterized approximation schemes for Steiner trees with small number of Steiner
vertices. SIAM J. Discret. Math., 35(1):546–574, 2021.

[10] Uriel Feige and Mohammad Mahdian. Finding small balanced separators. In Jon M. Kleinberg,
editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA,
USA, May 21-23, 2006, pages 375–384. ACM, 2006.

[11] Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020.

[12] Michael R. Fellows, Ariel Kulik, Frances A. Rosamond, and Hadas Shachnai. Parameterized
approximation via fidelity preserving transformations. J. Comput. Syst. Sci., 93:30–40, 2018.

[13] Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. J. ACM, 66(2):8:1–8:23, 2019.

[14] Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for k-cut.
In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 113–123. IEEE Computer Society, 2018.

[15] Anupam Gupta, Euiwoong Lee, and Jason Li. An FPT algorithm beating 2-approximation for
k-cut. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2821–
2837. SIAM, 2018.

[16] Ken-ichi Kawarabayashi and Bingkai Lin. A nearly 5/3-approximation FPT algorithm for min-
k-cut. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 990–999. SIAM,
2020.

[17] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-ε. J.
Comput. Syst. Sci., 74(3):335–349, 2008.

16

[18] Steven G. Krantz and Harold R. Parks. The implicit function theorem: history, theory, and
applications. Birkhäuser Boston, Inc., Boston, MA, 2002.

[19] Ariel Kulik and Hadas Shachnai. Analysis of two-variable recurrence relations with application
to parameterized approximations. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
762–773. IEEE, 2020.

[20] Nikolai N. Kuzjurin. Explicit constructions of Rödl’s asymptotically good packings and coverings.
Comb. Probab. Comput., 9(3):265–276, 2000.

[21] Euiwoong Lee. Partitioning a graph into small pieces with applications to path transversal. Math.
Program., 177(1-2):1–19, 2019.

[22] Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi.
FPT-approximation for FPT problems. In Dániel Marx, editor, Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13,
2021, pages 199–218. SIAM, 2021.

[23] Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approximation
scheme for min k-cut. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 798–809. IEEE,
2020.

[24] Pasin Manurangsi. A note on max k-vertex cover: Faster fpt-as, smaller approximate kernel
and improved approximation. In Jeremy T. Fineman and Michael Mitzenmacher, editors, 2nd
Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA,
volume 69 of OASIcs, pages 15:1–15:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[25] Pasin Manurangsi and Luca Trevisan. Mildly exponential time approximation algorithms for ver-
tex cover, balanced separator and uniform sparsest cut. In Eric Blais, Klaus Jansen, José D. P.
Rolim, and David Steurer, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton,
NJ, USA, volume 116 of LIPIcs, pages 20:1–20:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2018.

[26] Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1):60–78,
2008.

[27] Dániel Marx and Igor Razgon. Constant ratio fixed-parameter approximation of the edge multicut
problem. Inf. Process. Lett., 109(20):1161–1166, 2009.

[28] Igor Razgon. Computing minimum directed feedback vertex set in O*(1.9977n). In Giuseppe F.
Italiano, Eugenio Moggi, and Luigi Laura, editors, Theoretical Computer Science, 10th Italian
Conference, ICTCS 2007, Rome, Italy, October 3-5, 2007, Proceedings, pages 70–81. World Sci-
entific, 2007.

[29] Piotr Skowron and Piotr Faliszewski. Chamberlin-Courant rule with approval ballots: approxi-
mating the MaxCover problem with bounded frequencies in FPT time. J. Artificial Intelligence
Res., 60:687–716, 2017.

[30] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

17

A Properties of amls(α, c)

In this section we prove Lemma 1.1. Recall that amls(α, c) is the unique value γ ∈
(

1, 1 + c−1
α

)

such

that D
(

1
α

∥

∥

∥

γ−1
c−1

)

= ln c
α . The proof of Lemma 1.1 follows from Lemmas A.1, A.4, A.5 A.6 and A.7.

First, Lemma A.1 shows that Approximate-MLS is strictly faster than the trivial generalization
of Exact-MLS (Benchmark 3) when α 6= 1. We remark that Lemma A.1 can also be proved via
Lemma A.4 and the fact that amls(1, c) = emls(α). However, we give a separate proof containing
simpler arguments.

Lemma A.1. For every α, c > 1, amls(α, c) < emls(c) < 2. In particular, amls(α, c) is bounded as a
function of c.

Proof. Recall that emls(c) = 2− 1
c . Without loss of generality, we can assume that emls(c) ≤ 1+ c−1

α
which implies c ≥ α, otherwise the claim is trivially satisfied. SinceD

(

1
α

∥

∥r
)

is decreasing for r ∈ (0, 1
α),

we have amls(α, c) < emls(c) if and only if

ln(c)

α
= D

(

1

α

∥

∥

∥

∥

amls(α, c) − 1

c− 1

)

> D
(

1

α

∥

∥

∥

∥

emls(α, c) − 1

c− 1

)

= D
(

1

α

∥

∥

∥

∥

∥

1− 1
c

c− 1

)

.

Since c ≥ α, we have α−1
α · c

c−1 ≤ 1. Thus,

D
(

1

α

∥

∥

∥

∥

∥

1− 1
c

c− 1

)

− ln(c)

α
= D

(

1

α

∥

∥

∥

∥

1

c

)

− ln(c)

α
=

1

α
· ln
(

1

α

)

+

(

1− 1

α

)

· ln
(

α− 1

α
· c

c− 1

)

< 0.

Next we show another upper bound to amls(α, c) which will be used in the proofs of the upcoming
lemmas.

Lemma A.2. For all α, c > 1,

amls(α, c) <
αc

1 + (α− 1)c
.

Proof. Let φ := αc
1+(α−1)c = 1+(α−1)c+(c−1)

1+(α−1)c = 1+ c−1
1+(α−1)c < 1+ c−1

α where the inequality holds because

c > 1. Since D
(

1
α

∥

∥r
)

is decreasing for r ∈ (0, 1
α), we get that amls(α, c) < φ if and only if

ln(c)

α
= D

(

1

α

∥

∥

∥

∥

amls(α, c) − 1

c− 1

)

> D
(

1

α

∥

∥

∥

∥

φ− 1

c− 1

)

= D
(

1

α

∥

∥

∥

∥

1

1 + (α− 1)c

)

.

Also, we have

D
(

1

α

∥

∥

∥

∥

1

1 + (α− 1)c

)

− ln(c)

α
=

1

α
· ln
(

1 + (α− 1) c

α

)

− ln(c)

α
+

(

1− 1

α

)

· ln
(

1− 1
α

1− 1
1+(α−1)c

)

=
1

α
· ln
(

1 + (α− 1) c

cα

)

+

(

1− 1

α

)

· ln
(

1− 1
α

1− 1
1+(α−1)c

)

=
1

α
· ln
(

1 + (α− 1) c

cα

)

+

(

1− 1

α

)

· ln
(

1 + (α− 1) c

cα

)

= ln

(

1 + (α− 1) c

cα

)

= ln

(

αc− c+ 1

cα

)

< 0

where the last inequality holds because c > 1. In combination, this proves the lemma.

The next lemma is about the partial derivatives of amls(α, c), which is required to show the
monotonicity of amls in Lemma A.4.

Lemma A.3. For every fixed α > 1, amls(α, c) is differentiable as a function of c for c > 1. Similarly,
for every fixed c > 1, amls(α, c) is differentiable as a function of α for α > 1.

18

Proof. Let us fix some α > 1. We set Ωα = {(c, y) | 1 < c, 1 < y < 1 + c−1
α } and define f : Ωα → R

such that

f (c, y) := D
(

1

α

∥

∥

∥

∥

y − 1

c− 1

)

− ln(c)

α
.

Since f is twice differentiable, in particular it is continuously differentiable, and hence its partial
derivative with respect to y is given by ∂f(c,y)

∂y = α(y−1)−c+1
(c−y)α(y−1) (generated automatically).

Let c0 > 1 and set y0 = amls(α, c0). Then (c0, y0) ∈ Ωα and therefore ∂f(c0,y0)
∂y 6= 0. By the

Implicit Function Theorem (see, e.g., [18, Theorem 1.3.1]), there exists a neighborhood U that contains
c0 and a continuously differentiable function h : U → R such that h(c0) = y0 = amls(α, c0) and

D
(

1
α

∥

∥

∥

h(c)−1
c−1

)

= ln c
α , i.e., h(c) = amls(α, c) for all c ∈ U . In particular this means that amls(α, c) is

differentiable at c0. Since c0 > 1 was arbitrary, this implies that amls(α, c) is differentiable on (1,∞)
as a function of c.

For the second part of the lemma, let us fix some c > 1. We set Φc = {(α, y) | 1 < α, 1 < y <
1 + c−1

α } and define g : Φc → R such that

g (α, y) := D
(

1

α

∥

∥

∥

∥

y − 1

c− 1

)

− ln(c)

α

Again, since g is twice differentiable, in particular it is continuously differentiable, and hence its
partial derivative with respect to y is given by ∂g(α,y)

∂y = ∂f(c,y)
∂y = α(y−1)−c+1

(c−y)α(y−1) .

Let α0 > 1 and set y0 = amls(α0, c). Then (α0, y0) ∈ Φc and therefore ∂g(α0,y0)
∂y 6= 0. By

the Implicit Function Theorem, there exists a neighborhood U that contains α0 and a continuously

differentiable function h : U → R such that h(α0) = y0 = amls(α0, c) and D
(

1
α

∥

∥

∥

h(α)−1
c−1

)

= ln c
α , i.e.,

h(α) = amls(α, c) for all α ∈ U . In particular this means that amls(α, c) is differentiable at α0. Since
α0 > 1 was arbitrary, this implies that amls(α, c) is differentiable on (1,∞) as a function of α.

Lemma A.4. For every fixed α > 1, the function amls(α, c) is strictly increasing for c ∈ (1,∞).
Also, for every fixed c > 1, the function amls(α, c) is strictly decreasing for α ∈ (1,∞).

Proof. Let us fix some α > 1. By Lemma A.3, amls(α, c) is differentiable as a function of c for c > 1.

By using the chain rule for differentiation on D
(

1
α

∥

∥

∥

amls(α,c)−1
c−1

)

− ln c
α = 0 we get (by generating the

derivative automatically), for c > 1,

∂amls(α, c)

∂c
= −((1 + (α− 1) c) · amls(α, c) − αc) (amls(α, c) − 1)

c (c− 1) (−α · amls(α, c) + c+ α− 1)
. (10)

Since amls(α, c) < 1+ c−1
α using Lemma A.2 and c > 1, the denominator of (10) is positive. Therefore

∂amls(α,c)
∂c > 0 if and only if ((1 + (α− 1) c) · amls(α, c) − αc) < 0 which is same as

amls(α, c) <
αc

1 + (α− 1) c

which holds by Lemma A.2. This proves the first part of the lemma.
For the second part consider a fixed c > 1. Again, by Lemma A.3 we know that amls(α, c) is

differentiable as a function of α for α ∈ (1,∞). Similarly, by using the chain rule for differentiation

on D
(

1
α

∥

∥

∥

amls(α,c)−1
c−1

)

− ln c
α = 0 we get (by generating the derivative automatically), for α > 1,

∂amls(α, c)

∂α
=

(amls(α, c) − 1) (−c+ amls(α, c)) ln
(

(α−1)(amls(α,c)−1)c
c−amls(α,c)

)

α (α · amls(α, c) − α− c+ 1)

Since amls(α, c) < 1 + c−1
α < c we have that ∂amls(α,c)

∂α < 0 if and only if

ln

(

(α− 1) (amls(α, c) − 1) c

c− amls(α, c)

)

< 0 ⇐⇒ amls(α, c) <
αc

αc− c+ 1

which again holds by Lemma A.2.

19

The following lemma shows that the running time of Approximate-MLS converges to that of random
sampling when c goes to infinity.

Lemma A.5. For every α > 1, lim
c→∞

amls(α, c) = brute(α).

Proof. Let us fix some α > 1. Since amls(α, c) ≤ 2 (Lemma A.1) and amls(α, c) monotonically increas-

ing (Lemma A.4), there is some L ∈ [1, 2] such that limc→∞ amls(α, c) = L. UsingD
(

1
α

∥

∥

∥

amls(α,c)−1
c−1

)

=
ln c
α we have,

0 = lim
c→∞

(

D
(

1

α

∥

∥

∥

∥

amls(α, c) − 1

c− 1

)

− ln c

α

)

= lim
c→∞

(

−H
(

1

α

)

− 1

α
ln

(

amls(α, c) − 1

c− 1

)

−
(

1− 1

α

)

ln

(

c− amls(α, c)

c− 1

)

− 1

α
ln c

)

= −H
(

1

α

)

+ lim
c→∞

(

− 1

α
ln (amls(α, c) − 1)−

(

1− 1

α

)

ln

(

1 +
1− amls(α, c)

c− 1

)

− 1

α
ln

(

1 +
1

c− 1

))

= −H
(

1

α

)

− 1

α
ln (L− 1) .

Hence, ln(L− 1) = −α · H
(

1
α

)

and

L = 1 + exp

(

−α · H
(

1

α

))

= brute(α).

That is, limc→∞ amls(α, c) = L = brute(α).

Lemma A.6. For every α ≥ 1 and c > 1, amls(α, c) < brute(α).

Proof. For α = 1 we have amls(1, c) = (2 − 1
c) < 2 = brute(1), for all c > 1. Lemma A.5 and

Lemma A.4 together imply that amls(α, c) ≤ brute(α) for all α, c > 1. Moreover, it holds that
amls(α, c) < amls(α, c + 1) ≤ brute(α).

The lemma above means that Approximate-MLS always provides a running time which is strictly
better than that of random sampling. Now we will prove the same result for the naive conversion.

Lemma A.7. For every α ≥ 1 and c > 1, amls(α, c) < naive(α, c).

Proof. For α = 1 we have that amls(1, c) < naive(1, c) because amls(1, c)−naive(1, c) = 2−c− 1
c < 0

where the last inequality follows from the fact that x+ 1
x > 2 for x > 1.

The proof follows from the fact that amls(α, c) < αc
1+(α−1)c = 1+ c−1

1+(α−1)c ≤ c
1
α . The first inequality

follows from Lemma A.2. To prove the second inequality let us consider c
1
α− αc

1+(α−1)c . Since 1+x ≤ ex

for all x ∈ R, c
1
α = eln(c)·

1
α ≥ 1 + ln(c)

α ≥ 1 + c−1
αc where the last inequality holds because ln(x) ≥ x−1

x
for x ≥ 1. Since c > 1, this implies that

c
1
α − αc

1 + (α− 1)c
≥ c− 1

αc
− c− 1

1 + (α− 1)c
≥ 0.

B Proof of Lemma 3.3

We first prove the following technical lemma.

Lemma B.1. Let x ≥ 0, ε ∈ [−1, 1] such that x+ ε ≥ 0. Then

|x ln(x)− (x+ ε) ln(x+ ε)| ≤ 7 + ln(x+ 1)

20

Proof. We consider two cases depending on whether x+ ε is less than 2 or not.

Case 1. If x+ ε ≤ 2 then x ≤ 3 and we have

|x ln(x)− (x+ ε) ln(x+ ε)| = |x ln(x)|+ |(x+ ε) ln(x+ ε)| ≤ 2 max
y∈[0,3]

|y ln(y)| ≤ 7

Case 2. In this case x + ε > 2 which implies x > 1. Consider the function f(y) = y ln(y) which is
convex. Hence, we can use the first-order estimate to bound f , i.e., f(y′) ≥ f(y) + f ′(y) · (y′ − y) for
all y, y′ > 0. Note that f ′(y) = 1 + ln(y). We use this fact to bound |x ln(x) − (x + ε) ln(x + ε)| as
follows.

• By setting y := x and y′ := x+ ε we get

x ln(x)− (x+ ε) ln(x+ ε) ≤ x ln(x)−
(

x ln(x) + ε(1 + ln(x))
)

= −ε(1 + ln(x)) ≤ (1 + ln(x+ 1)).

• On the other hand, by setting y := x+ ε and y′ := x we get

x ln(x)− (x+ ε) ln(x+ ε) ≥ (x+ ε) ln(x+ ε)− ε(1 + ln(x+ ε)) − (x+ ε) ln(x+ ε)

= −ε(1 + ln(x+ ε)) ≥ −(1 + ln(x+ ε)) ≥ −(1 + ln(x+ 1)).

By combining all the bounds above we obtain the lemma.

Proof of Lemma 3.3.
∣

∣

∣

∣

a · H
(

b

a

)

− (a+ ε) · H
(

b+ δ

a+ ε

)
∣

∣

∣

∣

=
∣

∣

∣
− b ln(b)− (a− b) ln(a− b) + a ln(a) + (b+ δ) ln(b+ δ)

+ (a+ ε− b− δ) ln(a+ ε− b− δ)− (a+ ε) ln(a+ ε)
∣

∣

∣

≤ |b ln(b)− (b+ δ) ln(b+ δ)|+ |(a− b)|+ |a ln(a)− (a+ ε) ln(a+ ε)|
+ |(a− b) ln(a− b)− (a− b+ (ε− δ)) ln (a− b+ (ε− δ))|

= O(log(n))

where last step uses Lemma B.1.

C Derandomization: Proof of Theorem 4.2

In the section, we give a proof of Theorem 4.2. Towards this end, we first extend the definition of
set-intersection-families to differentiate between a weak and a strong version. Then, the basic strategy
to prove Theorem 4.2 is to first provide a simple, but slow algorithm that computes a strong set-
intersection-family with the desired parameters. Afterwards, we prove Theorem 4.2 by executing the
slow algorithm on subsets of the domain and combining the results in a suitable way.

Definition C.1. Let U be a universe of size n and let p, q, r ≥ 1 such that n ≥ p ≥ r and n− p+ r ≥
q ≥ r. A family C ⊆

(

U
q

)

is a strong (n, p, q, r)-set-intersection-family if for every T ∈
(

U
p

)

there is

some X ∈ C such that |T∩X| = r. Also, a family C ⊆
(U
q

)

is a (weak) (n, p, q, r)-set-intersection-family

if for every T ∈
(U
p

)

there is some X ∈ C such that |T ∩X| ≥ r.

Recall that we defined

κ(n, p, q, r) :=

(n
q

)

(p
r

)

·
(n−p
q−r

) .

As indicated above, we start by proving the existence of a strong (n, p, q, r)-set-intersection-family
of size κ(n, p, q, r) · nO(1) and give a simple, but slow algorithm to compute such a family.

21

Lemma C.2. Let U be a universe of size n and let p, q, r ≥ 1 such that n ≥ p ≥ r and n−p+r ≥ q ≥ r.
Then there is a strong (n, p, q, r)-set-intersection-family C ⊆

(U
q

)

such that |C| ≤ κ(n, p, q, r) · nO(1).
Moreover, such a family can be computed in time O(8n).

Proof. Let s := κ(n, p, q, r)·(p+1)·ln(n). Pick C = {X1, . . . ,Xs} where each set Xi is chosen uniformly
and independently at random from the set

(U
q

)

. Let T ∈
(U
p

)

be a target set and fix some i ∈ [s]. Then

Pr(|T ∩Xi| = r) =
1

κ(n, p, q, r)
.

Since the sets Xi are chosen uniformly and independently at random it follows that

Pr(∀i ∈ [s] : |T ∩Xi| 6= r) =

(

1− 1

κ(n, p, q, r)

)s

≤ e−(p+1)·ln(n) =
1

np+1
.

Using the union bound, we conclude that

Pr(C is not a strong (n, p, q, r)-set-intersection-family)

≤
∑

T∈(Up)

Pr (∀i ∈ [s] : |T ∩Xi| 6= r)

≤
(

n

p

)

· 1

np+1

≤ 1

n
.

In particular, the probability that C is a strong (n, p, q, r)-set-intersection-family is strictly positive
and hence, there exists a strong (n, p, q, r)-set-intersection-family C of size

|C| ≤ κ(n, p, q, r) · (p+ 1) · ln(n).

To compute a strong (n, p, q, r)-set-intersection-family, we make use of a simple approximation
algorithm for the Set Cover problem. In the Set Cover problem, the input consists of a universe
V and a collection of subsets S ⊆ 2V . We say C ⊆ S is a Set Cover if

⋃

S∈C S = V, and the objective
is to find a Set Cover of minimal size. It is well known that a simple greedy algorithm attains a
(1 + ln |V|)-approximation for Set Cover in time O

(

|V| ·∑S∈S |S|
)

(see, e.g., [30, Chapter 2]). Let

V :=
(U
p

)

and

S :=

{

{

T ∈
(

U

p

)

∣

∣

∣
|X ∩ T | = r

}

∣

∣

∣

∣

∣

X ∈
(

U

q

)

}

.

The Set Cover instance (V,S) has a solution of size κ(n, p, q, r) · (p + 1) · ln(n) by the argument
above. Since |V| ≤ 2n and

∑

S∈S |S| ≤ 2n · 2n, we can compute a Set Cover for (V,S) of size

t = O(κ(n, p, q, r) · (p+ 1) · n · ln(n))

in time O(|V| ·∑S∈S |S|) = O(8n) using the greedy algorithm.

To speed up the computation of the set-intersection-family, the basic idea is apply Lemma C.2 to
domains of smaller size. This can be achieved via families of pairwise independent functions.

Let U be a universe of size n and let b be a positive integer. A family X of functions f : U → [b]
is pairwise independent if for every i, j ∈ [b] and every u 6= v ∈ U it holds that

Pr
f∈X

(f(u) = i ∧ f(v) = j) =
1

b2
,

where f is chosen uniformly at random.

Theorem C.3 ([1]). There is a polynomial-time algorithm that, given U and b, computes a pairwise
independent family X of functions f : U → [b] such that |X | = O(|U |2).

22

We also utilize the following auxiliary lemma.

Lemma C.4. Let n, n′, k, k′, d ∈ N such that |n− n′| ≤ d, |k − k′| ≤ d, k ≤ n and k′ ≤ n′. Then

(

n

k

)

· (n+ n′)−3d ≤
(

n′

k′

)

≤
(

n

k

)

· (n+ n′)3d.

Proof. Let A ∈
([n′]
k′

)

. It holds that,

∣

∣

∣

∣

∣A ∩ [n]
∣

∣− k′
∣

∣

∣
=
∣

∣

∣

∣

∣A ∩ [n]
∣

∣− |A|
∣

∣

∣
=
∣

∣

∣
A ∩

(

[n′] \ [n]
)

∣

∣

∣
≤
∣

∣[n′] \ [n]
∣

∣ ≤ |n′ − n| ≤ d,

and thus
∣

∣

∣

∣

∣A ∩ [n]
∣

∣− k
∣

∣

∣
=
∣

∣

∣

∣

∣A ∩ [n]
∣

∣− k′ + k′ − k
∣

∣

∣
≤
∣

∣

∣

∣

∣A ∩ [n]
∣

∣− k′
∣

∣

∣
+
∣

∣k′ − k
∣

∣ ≤ 2d.

Therefore, there is some C ∈
([n]
k

)

such that
∣

∣

∣

(

A ∩ [n]
)

△C
∣

∣

∣
≤ 2d (we use △ to denote he symmetric

difference between two sets).
It follows that A can be written as A = (C△D)∪E whereD =

(

A∩[n]
)

△C and E = A∩([n′] \ [n]).
Thus every set A ∈

([n′]
k′

)

can be written as A = (C△D) ∪ E where C ∈
([n]
k

)

, D ⊆ [n] with |D| ≤ 2d
and E ⊆ [n′] with |E| ≤ d. Hence,

(

n′

k′

)

≤
(

n

k

)

· n2d ·
(

n′)d ≤
(

n

k

)

(n+ n′)3d. (11)

As the above argument also holds if we replace the roles of n and k with that of n′ and k′, we also
have

(

n

k

)

≤
(

n′

k′

)

(n+ n′)3d. (12)

The statement of the lemma immediately follows from (11) and (12).

Finally, reformulating Equation (3), we use that

1

n+ 1

[

(

k

n

)− k
n
(

1− k

n

)
k
n
−1
]n

≤
(

n

k

)

≤
[

(

k

n

)− k
n
(

1− k

n

)
k
n
−1
]n

(13)

for all n, k ∈ N such that 0 ≤ k ≤ n.
Now, we are ready to prove Theorem 4.2 which we restate for the readers convenience.

Theorem C.5 (Theorem 4.2 restated). There is an algorithm that, given a set U of size n and numbers
p, q, r ≥ 1 such that n ≥ p ≥ r and n − p + r ≥ q ≥ r, computes an (n, p, q, r)-set-intersection-family
of size κ(n, p, q, r) · 2o(n) in time κ(n, p, q, r) · 2o(n).

Proof. Suppose that n is sufficiently large. Let b := ⌈log n⌉ and λ := r
p . The algorithm first constructs a

pairwise independent family X of functions f : U → [b] using Theorem C.3. Observe that |X | = O(n2).
Let f ∈ X and i ∈ [b]. We define Uf,i := {u ∈ U | f(u) = i} and nf,i := |Uf,i|. We say that f ∈ X is
good if

∣

∣

∣
nf,i −

n

b

∣

∣

∣
≤ √n · b

for all i ∈ [b]. For every good f ∈ X , every i ∈ [b], and every p′, q′, r′ such that nf,i ≥ p′ ≥ r′ and
nf,i − p′ + r′ ≥ q′ ≥ r′, we compute a strong (nf,i, p

′, q′, r′)-set-intersection-family C(f, i, p′, q′, r′) over
universe Uf,i using Lemma C.2. Observe that

|C(f, i, p′, q′, r′)| ≤ κ(nf,i, p
′, q′, r′) · nO(1).

Also note that all families can be computed in time nO(1) · 2O(n/ logn) = 2o(n).
A tuple t̄ = (f, (pi)i∈[b], (qi)i∈[b]) is valid if

(I) f ∈ X is good,

23

(II)
∣

∣pi − p
b

∣

∣ ≤ √n · b and pi ≤ nf,i for all i ∈ [b],

(III)
∣

∣qi − q
b

∣

∣ ≤ 3 · √n · b for all i ∈ [b], and

(IV) nf,i − pi + ri ≥ qi ≥ ri where ri := ⌈λpi⌉.
For every valid tuple t̄ = (f, (pi)i∈[b], (qi)i∈[b]) we define a set family C(t̄) which contains all sets of the
form Y = Y1 ∪ · · · ∪ Yb where

Yi ∈ C(f, i, pi, qi, ri)
and ri := ⌈λpi⌉ for all i ∈ [b]. Observe that |Y | =∑i∈[b] qi.

Claim C.6. Let t̄ = (f, (pi)i∈[b], (qi)i∈[b]) be a valid tuple. Then |C(t̄)| = κ(n, p, q, r) · 2o(n).

Proof. We have that

|C(t̄)| ≤
∏

i∈[b]
|C(f, i, pi, qi, ri)|

≤
∏

i∈[b]
κ(nf,i, pi, qi, ri) · nO(1)

=
∏

i∈[b]

(nf,i

qi

)

(

pi
ri

)

·
(nf,i−pi

qi−ri

) · nO(1)

= nO(logn) ·
∏

i∈[b]

(nf,i

qi

)

(

pi
ri

)

·
(nf,i−pi

qi−ri

) .

As t̄ is valid it holds that
∣

∣

∣

∣

∣

∣

∑

i∈[b]
nf,i − n

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i∈[b]

(

nf,i −
n

b

)

∣

∣

∣

∣

∣

∣

≤
∑

i∈[b]

∣

∣

∣
nf,i −

n

b

∣

∣

∣
≤ √n · b2,

and
∣

∣

∣

∣

∣

∣

∑

i∈[b]
qi − q

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i∈[b]

(

qi −
q

b

)

∣

∣

∣

∣

∣

∣

≤
∑

i∈[b]

∣

∣

∣
qi −

q

b

∣

∣

∣
≤ √n · b2.

Using the above we have that

∏

i∈[b]

(

nf,i

qi

)

≤
(∑

i∈b nf,i
∑

i∈b qi

)

≤
(

n

q

)

· nO(
√
n·b2) =

(

n

q

)

· 2o(n),

where the first inequality is a simple combinatorial inequality and the second inequality is due to
Lemma C.4.

Also,

ri ≤ λpi + 1 ≤ λ
(p

b
+
√
n · b

)

+ 1 ≤ λp

b
+ 2 · √n · b

and

ri ≥ λpi ≥ λ
(p

b
−√n · b

)

≥ λp

b
−√n · b.

So, using Lemma C.4 and Equation (13), we get that

∏

i∈[b]

(

pi
ri

)

≥
∏

i∈[b]

[(⌈p/b⌉
⌈λ(p/b)⌉

)

· n−O(
√
n·b)
]

≥
∏

i∈[b]

[

(

λ−λ · (1− λ)λ−1
)p/b

]

· 2−o(n)

=
(

λ−λ · (1− λ)λ−1
)p
· 2−o(n)

≥
(

p

r

)

· 2−o(n).

24

Now let µ := q−r
n−p . Then, by similar arguments,

∏

i∈[b]

(

nf,i − pi
qi − ri

)

≥
∏

i∈[b]

[(⌈(n − p)/b⌉
⌈(q − λ · p)/b⌉

)]

=
∏

i∈[b]

[(⌈(n− p)/b⌉
⌈µ((n − p)/b)⌉

)

· n−O(
√
n·b)
]

≥
∏

i∈[b]

[

(

µ−µ · (1 − µ)µ−1
)(n−p)/b

]

· 2−o(n)

=
(

µ−µ · (1− µ)µ−1
)n−p

· 2−o(n)

≥
(

n− p

q − r

)

· 2−o(n).

Overall, combining all the inequalities proved above, we get that

|C(t̄)| ≤
(

n
q

)

(

p
r

)

·
(

n−p
q−r

) · 2o(n)

as desired. y

Now, we let C be the following set family. For every valid tuple t̄ = (f, (pi)i∈[b], (qi)i∈[b]) and every
set Y ∈ C(t̄) we do the following. If |Y | ≤ q then we add an arbitrary extension Y ′ ⊇ Y to C such that
|Y ′| = q. Otherwise, |Y | ≥ q and we add every subset Y ′ ⊆ Y to C such that |Y ′| = q. Since there at
most nO(logn) many valid tuples, the last claim implies that there are at most κ(n, p, q, r) · 2o(n) many
choices for the set Y . Also,

||Y | − q| ≤ 3 · √n · b2 = o

(

n

log n

)

.

Hence, for each set Y , we add only 2o(n) many sets to the family C. Overall, this ensures that C has
size at most κ(n, p, q, r) · 2o(n). Also, by the same arguments, the family C can be computed in the
same time. It remains to prove that C is indeed a (n, p, q, r)-set-intersection-family.

Claim C.7. Let T ⊆ U such that |T | = p. Then there is some f ∈ X such that

∣

∣

∣
|Uf,i| −

n

b

∣

∣

∣
≤ √n · b and

∣

∣

∣
|Uf,i ∩ T | − p

b

∣

∣

∣
≤ √n · b

for every i ∈ [b].

Proof. Let us fix some i ∈ [b] and consider a random function f uniformly sampled from X . For every
u ∈ U let Xu denote the indicator variable that f(u) = i. Then Prf∈X (Xu = 1) = 1

b . So

Ef∈X (|Uf,i|) = Ef∈X

(

∑

u∈U
Xu

)

=
∑

u∈U
Ef∈X (Xu) =

n

b

and

Ef∈X (|Uf,i ∩ T |) = Ef∈X

(

∑

u∈T
Xu

)

=
∑

u∈T
Ef∈X (Xu) =

p

b
.

Since X is pairwise independent the covariance between any pair of distinct indicator variables is 0.
Hence,

Varf∈X (|Uf,i|) = Varf∈X

(

∑

u∈U
Xu

)

=
∑

u∈U
Varf∈X (Xu) ≤ n

25

and

Varf∈X (|Uf,i ∩ T |) = Varf∈X

(

∑

u∈T
Xu

)

=
∑

u∈T
Varf∈X (Xu) ≤ n.

By Chebyshev’s inequality, we conclude that

Pr
f∈X

(
∣

∣

∣
|Uf,i| −

n

b

∣

∣

∣
≥ √n · b

)

≤ 1

b2

and

Pr
f∈X

(∣

∣

∣
|Uf,i ∩ T | − p

b

∣

∣

∣
≥ √n · b

)

≤ 1

b2
.

Hence, by the union bound,

Pr
f∈X

(

∃i ∈ [b] :
∣

∣

∣
|Uf,i| −

n

b

∣

∣

∣
≥ √n · b or

∣

∣

∣
|Uf,i ∩ T | − p

b

∣

∣

∣
≥ √n · b

)

≤ 2b · 1
b2

=
2

b
< 1.

This means there exists some function f ∈ X with the desired properties. y

Now, let us fix some T ⊆ U such that |T | = p, and let f ∈ X be the function from the last claim.
Let Ti := Uf,i ∩ T and pi := |Ti| for all i ∈ [b]. Also let ri := ⌈λpi⌉.
Claim C.8. There are positive integers q1, . . . , qb such that t̄ = (f, (pi)i∈[b], (qi)i∈[b]) is valid.

Proof. First observe that f is good by Claim C.7. Also, pi ≤ nf,i by definition and
∣

∣pi − p
b

∣

∣ ≤ √n · b
by Claim C.7 for all i ∈ [b]. So we need to argue that there numbers q1, . . . , qb that satisfy Conditions
(III) and (IV). Let i ∈ [b]. We have that

nf,i − pi + ri ≥ nf,i − pi + λpi

≥
(n

b
−√n · b

)

−
(p

b
+
√
n · b

)

+ λ
(p

b
−√n · b

)

≥ n− p+ λp

b
− 3 · √n · b

≥ n− p+ r

b
− 3 · √n · b

≥ q

b
− 3 · √n · b,

(14)

where the last inequality holds by the conditions of the Theorem 4.2. As in Condition (IV), we define
ri = ⌈λ · ri⌉. It holds that

ri ≤ λpi + 1

≤ λ
(p

b
+
√
n · b

)

+ 1

≤ λp

b
+ 2 · √n · b

=
r

b
+ 2 · √n · b

≤ q

b
+ 2 · √n · b.

(15)

Define qi = max
{

ri, ⌈ qb − 3
√
n · b⌉

}

. By definition we have qi ≥ ri. Since nf,i ≥ pi it holds that
nf,i− pi + ri ≥ ri. Using the last inequality and (14) we have qi ≤ nf,i− pi + ri. By (15) it holds that
qi ∈

(q
b − 3

√
n · b, q

b + 3
√
n · b

)

. Overall, it holds that qi satisfies Conditions (III) and (IV). y

Let t̄ denote the valid tuple from the last claim. For every i ∈ [b] there is a set Yi ∈ C(f, i, pi, qi, ri)
such that |Ti ∩ Yi| = ri. Let Y := Y1 ∪ · · · ∪ Yb. Then Y ∈ C(t̄). Also

|Y ∩ T | =
∑

i∈[b]
|Ti ∩ Yi| =

∑

i∈[b]
ri ≥

∑

i∈[b]
λpi = λp = r.

26

To complete the proof, observe that by construction there is some Y ′ ∈ C

|Y ′ ∩ T | ≥ r

since r ≤ q.

D Problem Definitions

In this section, we give the problem definitions of all the problems discussed in the paper.

Vertex Cover (VC)
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S has no edges.

3-Hitting Set (3-HS)

Input: A universe U and set family F ⊆
(

U
≤3

)

.
Question: Find a minimum set S ⊆ U such that for each F ∈ F , S ∩ F 6= ∅.

Directed Feedback Vertex Set (DFVS)
Input: A directed graph G.
Question: Find a minimum set S of vertices of G such that G− S is a directed acyclic graph.

Directed Subset Feedback Vertex Set (Subset DFVS)
Input: A directed graph G and a set T ⊆ V (G).
Question: Find a minimum set S of vertices of G such that G − S has no directed cycle that
contains at least one vertex of T .

Directed Odd Cycle Transversal (DOCT)
Input: A directed graph G.
Question: Find a minimum set S of vertices of G such that G− S has no directed cycle of odd
length.

Undirected Multicut
Input: An undirected graph G and a set P ⊆ V (G)× V (G).
Question: Find a minimum set S of vertices of G such that G − S has no path from u to v for
any (u, v) ∈ P

27

	1 Introduction
	2 Definitions and Our Results
	2.1 Formal Definitions
	2.2 Our results
	2.3 Approximate Monotone Local Search
	2.4 Applications of Approximate-MLS

	3 Analysis of Approximate Monotone Local Search
	4 Derandomization
	5 The Brute-Force Approximation Algorithm
	6 Concluding Remarks
	A Properties of amls(,c)
	B Proof of Lemma 3.3
	C Derandomization: Proof of Theorem 4.2
	D Problem Definitions

