
ar
X

iv
:2

20
8.

02
85

0v
1

 [
cs

.D
S]

 4
 A

ug
 2

02
2

Domination and Cut Problems on Chordal Graphs with

Bounded Leafage

Esther Galby1, Dániel Marx1, Philipp Schepper1, Roohani Sharma2, and
Prafullkumar Tale1

1CISPA Helmholtz Center for Information Security, Germany
2Max Planck Institute for Informatics, SIC, Saarbrücken, Germany

Abstract

The leafage of a chordal graph G is the minimum integer ℓ such that G can be real-
ized as an intersection graph of subtrees of a tree with ℓ leaves. We consider structural
parameterization by the leafage of classical domination and cut problems on chordal
graphs. Fomin, Golovach, and Raymond [ESA 2018, Algorithmica 2020] proved, among
other things, that Dominating Set on chordal graphs admits an algorithm running
in time 2O(ℓ2) · nO(1). We present a conceptually much simpler algorithm that runs in
time 2O(ℓ) · nO(1). We extend our approach to obtain similar results for Connected
Dominating Set and Steiner Tree. We then consider the two classical cut prob-
lems MultiCut with Undeletable Terminals and Multiway Cut with Un-
deletable Terminals. We prove that the former is W[1]-hard when parameterized
by the leafage and complement this result by presenting a simple nO(ℓ)-time algorithm.
To our surprise, we find that Multiway Cut with Undeletable Terminals on
chordal graphs can be solved, in contrast, in nO(1)-time.

1 Introduction

The intersection graph of a family F of nonempty sets is the graph whose vertices are the
elements ofF with two vertices being adjacent if and only if their corresponding sets intersect.
The most natural and famous example of such intersection graphs are interval graphs where F
is a collection of subpaths of a path. Due to their applicability in scheduling, interval graphs
have received a considerable attention in the realm of algorithmic graph theory. One useful
characterization of an interval graph is that its maximal cliques can be linearly ordered such
that for every vertex, the maximal cliques containing that vertex occur consecutively [24].
This property proves very useful for the design of polynomial-time dynamic programming
based or greedy algorithms on interval graphs.

1

http://arxiv.org/abs/2208.02850v1

Consider the generalization where F is a collection of subtrees of a tree instead of sub-
paths of a path. In this case, the corresponding class of intersection graphs is exactly that
of chordal graphs [9, 23, 45]. Recall that a graph is chordal if every cycle of length at least 4
has a chord. Often, the algorithms of the types mentioned in the previous paragraph fail to
generalize to this superclass as witnessed by the following problems that admit polynomial-
time algorithms on interval graphs but are NP-complete on chordal graphs: Dominating
Set [7, 11], Connected Dominating Set [3, 46], Steiner Tree [3, 46], Multicut
with Undeletable Terminals [27, 42], Subset Feedback Vertex Set (Subset
FVS) [20, 43], Longest Cycle [26, 32]1, Longest Path [31], Component Order Con-
nectivity [18], s-Club Contraction [25], Independent Set Reconfiguration [5],
Bandwidth [34], Cluster Vertex Deletion [33]. Also, Graph Isomorphism on
chordal graphs is polynomial-time equivalent to the problem on general graphs whereas it
admits a linear-time algorithm on interval graphs [38].

The problems above remain hard even on split graphs, another well-studied subclass of
chordal graphs. A graph is a split graph if its vertex set can be partitioned into a clique
and an independent set. The collection of split graphs is a (proper) subset of the class
of intersection graphs where F is a collection of substars of a star. As interval graphs
are intersection graphs of subpaths of a path (a tree with two leaves) and split graphs are
intersection graphs of substars of a star (a tree with arbitrary number of leaves), a natural
question to consider is what happens to these problems on subclasses of chordal graphs that
are intersection graphs of subtrees of a tree with a bounded number of leaves. Motivated by
such questions, we consider the notion of leafage introduced by Lin et al. [37]: the leafage of
a chordal graph G is the minimum integer ℓ such that G can be realized as an intersection
graph of a collection F of subtrees of a tree that has ℓ leaves. Note that the leafage of
interval graphs is at most 2 while split graphs have unbounded leafage. Thus the leafage
measures, in some sense, how close a chordal graph is to an interval graph. Alternately, an
FPT or XP algorithm parameterized by the leafage can be seen as a generalization of the
algorithm on interval graphs.

Related Work. Habib and Stacho [28] showed that we can compute the leafage of a
connected chordal graph in polynomial time. Their algorithm also constructs a corresponding
representation tree2 T with the minimum number of leaves. In recent years, researchers
have studied the structural parameterization of various graph problems on chordal graphs
parameterized by the leafage. Fomin et al. [19] and Arvind et al. [2] proved, respectively,
that the Dominating Set and Graph Isomorphism problems on chordal graphs are
FPT parameterized by the leafage. Barnetson et al. [4] and Papadopoulos and Tzimas [44]
presented XP-algorithms running in time nO(ℓ) for Fire Break and Subset FVS on chordal
graphs, respectively. Papadopoulos and Tzimas [44] also proved that Subset FVS is W[1]-
hard when parameterized by the leafage. Hochstättler et al [30] showed that we can compute
the neighborhood polynomial of a chordal graph in nO(ℓ)-time.

1See Exercise 2 in Chapter 6 in [26].
2We present formal definitions of the terms used in this section in Section 2.

2

It is known that the size of asteroidal set in a chordal graph is upper bounded by its
leafage [37]. See [1, 29] for the relationship between leafage and other structural properties
of chordal graphs. Kratsch and Stewart [35] proved that we can effectively 2ℓ-approximate
bandwidth of chordal graphs of leafage ℓ. Chaplick and Stacho [12] generalized the notion of
leafage to vertex leafage and proved that, unlike leafage, it is hard to determine the optimal
vertex leafage of a given chordal graph. Figueiredo et al. [16] proved that Dominating
Set, Connected Dominating Set and Steiner Tree are FPT on chordal graphs when
parameterized by the size of the solution plus the vertex leafage, provided that a tree repre-
sentation with optimal vertex leafage is given as part of the input.

Our Results. We consider well-studied domination and cut problems on chordal graphs.
As our first result, we prove that Dominating Set on chordal graphs of leafage at most ℓ
admits an algorithm running in time 2O(ℓ) ·nO(1). This improves upon the existing algorithm
by Fomin et al. [19, Theorem 9] which runs in time 2O(ℓ2) · nO(1). Despite being significantly
simpler than the algorithm in [19], our algorithm in fact solves the Red-Blue Dominating
Set problem, a well-known generalization of Dominating Set. In this generalized version,
an input is a graph G with a partition (R,B) of its vertex set and an integer k, and the
objective is to find a subset D of R that dominates every vertex in B, i.e., B ⊆ N(D). We
further use this algorithm to solve other related domination problems.

Theorem 1.1. Dominating Set, Connected Dominating Set, and Steiner Tree
can be solved in 2O(ℓ) · nO(1) on chordal graphs of leafage at most ℓ.

The reductions in [7] and [46] used to prove that these problems are NP-complete on
chordal graphs imply that these problems do not admit 2o(n), and hence 2o(ℓ)·nO(1), algorithms
unless the ETH fails.

Arguably, the two most studied cut problems are MultiCut and Multiway Cut. In
the MultiCut problem, an input is graph G, a set of terminal pairs P ⊆ V (G) × V (G)
and an integer k, and the objective is to find a subset S ⊆ V (G) of size at most k such
that no pair of vertices in P is connected in G − S. In the Multiway Cut problem,
instead of terminal pairs, we are given a terminal set P and the objective is to find a subset
S ⊆ V (G) of size at most k such that no two vertices in P are connected in G− S. These
problems and variations of them have received a considerable attention which lead to the
development of new techniques [8, 13, 14, 39, 40]. Misra et al. [41] studied the parameterized
complexity of these problems on chordal graphs. Guo et al. [27] proved that MultiCut
with Deletable Terminals is NP-complete on interval graphs, thereby implying that
this problem is paraNP-hard when parameterized by the leafage. We consider theMultiCut
with Undeletable Terminals problem and prove the following result.

Theorem 1.2. MultiCut with Undeletable Terminals on chordal graphs is W[1]-
hard when parameterized by the leafage ℓ and assuming the ETH, does not admit an algorithm
running in time f(ℓ) · no(ℓ) for any computable function f . However, it admits an XP-
algorithm running in time nO(ℓ).

3

Next, we focus on the Multiway Cut with Undeletable Terminals problem. We
find it somewhat surprising that the classical complexity of this problem on chordal graphs
was not known. Bergougnoux et al. [6], using the result in [19], proved that the problem
admits an XP-algorithm when parameterized by the leafage3. Our next result significantly
improves upon this and [41, Theorem 2] which states that the problem admits a polynomial
kernel when parameterized by the solution size.

Theorem 1.3. Multiway Cut with Undeletable Terminals can be solved in nO(1)-
time on chordal graphs.

A well-known trick to convert an instance of Multiway Cut with Deletable Ter-
minals into an instance of Multiway Cut with Undeletable Terminals is to add
a pendant vertex to each terminal, remove that vertex from the set of terminals, and make
the newly added vertex a terminal. As this reduction converts a chordal graph into another
chordal graph, Theorem 1.3 implies that Multiway Cut with Deletable Terminals is
also polynomial-time solvable on chordal graphs. Another closely related problem is Subset
FVS which is NP-complete on split graphs [43]. To the best of our knowledge, this is the
first graph class on which the classical complexity of these two problems differ.

Next, we revisit the problems on chordal graphs with bounded leafage and examine how
far we can generalize this class. An asteroidal triple of a graph G is a set of three vertices
such that each pair is connected by some path that avoids the closed neighborhood of the
third vertex. Lekkerkerker and Boland [36] showed that a graph is an interval graph if and
only if it is chordal and does not contain an asteroidal triple. They also listed all minimal
chordal graphs that contain an asteroidal triple (see, for instance, [10, Figure 1]). Among
this list, we found the net graph to be the most natural to generalize. For a positive integer
ℓ ≥ 3, we define Hℓ as a split graph on 2ℓ vertices with split partition (C, I) such that the
only edges across C, I are a perfect matching. Note that H3 is the net graph. As interval
graphs are a proper subset of the collection of chordal graphs that do not contain a net
graph as an induced subgraph, the collection of the chordal graph of leafage ℓ is a proper
subset of the collection of chordal graphs that do not contain Hℓ+1 as an induced subgraph
(see Observation 6.1). We show that, although the considered domination problems are
polynomial-time solvable for constant ℓ, the fixed-parameter tractability results are unlikely
to extend to this larger class.

Theorem 1.4. Dominating Set, Connected Dominating Set and Steiner Tree
on Hℓ-induced-subgraph-free chordal graphs are W[1]-hard when parameterized by ℓ and as-
suming the ETH, do not admit an algorithm running in time f(ℓ) · no(ℓ) for any computable
function f . However, they all admit XP-algorithms running in time nO(ℓ).

We observe a similar trend with respect toMultiCut with Undeletable Terminals
as its parameterized complexity jumps from W[1]-hard on chordal graph of leafage ℓ to
paraNP-hard on Hℓ-induced-subgraph-free chordal graphs when parameterized by ℓ.

3See the discussion after Corollary 2 on page 1388 in [6].

4

Input graph Dom Set, ConnDom
Set, Steiner Tree

MultiCut with Un-
Del Term

MultiwayCut

Interval Graphs Poly-time [3, 11] Poly-time [27] Poly-time [6]

Chordal graphs of
leafage ℓ

2O(ℓ2) · nO(1) algo [19]
2O(ℓ) · nO(1) algo
(Thm 1.1)

W[1]-hard
nO(ℓ) algo (Thm 1.2)

nO(ℓ) algo [6]
Poly-time
(Thm 1.3)

Hℓ-induced
subgraph-free
chordal

W[1]-hard;
nO(ℓ) algo (Thm 1.4)

NP-hard for ℓ ≥ 3
(Thm 1.5)

Poly-time
(Thm 1.3)

Chordal graphs NP-complete [7] NP-complete [46] Poly-time
(Thm 1.3)

Table 1: Overview of the known results and our contributions. Every graph class mentioned
in the first column is a proper subset of the graph class mentioned below.

Theorem 1.5. MultiCut with Undeletable Terminals is NP-hard even when re-
stricted to H3-induced-subgraph-free chordal graphs.

Table 1 summarises our results.

Our Methods. We briefly discuss the methods used in our two main algorithms, namely
the algorithm for Dominating Set and the one for Multiway Cut.

Red-Blue Dominating Set in Chordal Graphs. As mentioned earlier, the linear
ordering of cliques in interval graphs is particularly useful for the design of polynomial-time
algorithms. Such an ordering is not possible even if G is a chordal graph whose representation
tree T is a star. Consider the case where the model of every red vertex in G includes the
center of the star T (and possibly some leaves) and the model of every blue vertex is (only)
a leaf. We can solve this instance by converting it to an instance of Set Cover and solving
it using the FPT algorithm parameterized by the size of the universe. In this case, the size
of the universe is at most the number of leaves which is upper bounded by the leafage. In
the other case where the properties of red vertices and blue vertices are reversed, we obtain
a similar result by creating an equivalent instance of Hitting Set.

These ideas can be used in a more general setting as long as the following two properties
are satisfied: (1) the model of each vertex is local, that is, it contains at most one branching
node, and (2) each branching node is contained only in models of either red vertices or blue
vertices. Based on this observation, we introduce a restricted version of the problem in
which the input graph is required to satisfy these two conditions. We then show that the
general case reduces to this restricted version: indeed, we prove that there is a branching

5

algorithm that constructs 2O(ℓ) many instances (where ℓ is the leafage of the input graph)
of the restricted version of the problem such that the input instance is a Yes-instance if
and only if one of these newly created instances is a Yes-instance. These two properties
ensure that the graph induced by the red and blue vertices whose model intersect the subtree
rooted at a farthest branching node (from some fixed root) satisfies the premise of at least
one of the cases mentioned in the previous paragraph. We then present a greedy procedure,
based on solving the Set Cover and Hitting Set problems, that identifies some part
of an optimum solution. Apart from this greedy selection procedure, all other steps of the
algorithm run in polynomial time.

Multiway Cut in Chordal Graphs. We give a polynomial-time algorithm for Mul-
tiway Cut on chordal graphs by solving several instances of the (s, t)-Cut problem (not
necessarily with unit capacities). Our strategy is based on a bottom-up dynamic program-
ming (DP) on a tree representation of a chordal graph. An interesting aspect of our DP is
that we need to look-up all DP table values that are already computed to compute a new
entry. This is in contrast to typical DP-based algorithms that do computations only based
on local entries.

We remark that we do not expect to design an algorithm for Multiway Cut on chordal
graphs using much simpler arguments (like a simple dynamic programming procedure etc.)
as the problem generalizes some well-studied cut-flow based problems. As an example, recall
the Vertex Cover problem on bipartite graphs where given a bipartite graph G with
bipartition (A,B), the goal is to find A′ ⊆ A and B′ ⊆ B such that |A′∪B′| is minimum and
N(A\A′) ⊆ B′. The set A′∪B′ is called a vertex cover of G. The Vertex Cover problem
on bipartite graphs reduces to the Multiway Cut problem on chordal graphs: indeed, let
G′ be the graph obtained from G by making B a clique, adding new pendant vertex ta to each
vertex a ∈ A, and further adding another new vertex t that is adjacent to all vertices of B.
Then G′ is a chordal graph and letting T = t∪ {ta | a ∈ A}, it is easy to see that S ⊆ V (G)
is a vertex cover of G if and only if S is a T -multiway-cut in G′. As mentioned earlier, our
algorithm solves several instances of the (s, t)-Cut problem, which also sits at the heart of
some algorithms for Vertex Cover on bipartite graphs. The above reduction suggests
that an algorithm for Multiway Cut on chordal graphs using much simpler techniques,
would imply an algorithm for Vertex Cover on bipartite graphs that uses much simpler
techniques as well.

Note that a similar reduction would work from the weighted variant of the Vertex
Cover problem on bipartite graphs. This can be achieved by further replacing each vertex
of the graph G by a clique of size proportional to the weight of this vertex and making each
vertex of the clique adjacent to all the neighbors of this vertex. This reduction still preserves
the chordality of the resulting graph.

Organization of the Paper. In Section 2, we define the notations and terminology used
throughout the paper. In Section 3, we present the FPT algorithm for the generalized Red-
Blue Dominating Set problem parameterized by the leafage. In Section 4, we consider

6

the Multicut problem and provide the proof of Theorem 1.2. We present the polynomial-
time algorithm for Multiway Cut on chordal graphs in Section 5. In Section 6, we revisit
the aforementioned problems by restricting the input to Hℓ-induced-subgraph-free chordal
graphs and prove Theorem 1.4 for Dominating Set as well as Theorem 1.5. Finally in
Section 7, we consider the Connected Dominating Set and the Steiner Tree problems
and complete the proofs of Theorem 1.1 and Theorem 1.4.

2 Preliminaries

For a positive integer q, we denote the set {1, 2, . . . , q} by [q] and for any 0 ≤ p ≤ q, we
denote the set {p, . . . , q} by [p, q]. We use N to denote the set of all non-negative integers.
Given a function f : X → Z and Y ⊆ X , f |Y denotes the function f restricted to Y .

Graph Theory. For a graph G, we denote by V (G) and E(G) the set of vertices and edges
of G, respectively. Unless specified otherwise, we use n to denote the number of vertices in
G. We denote the edge with endpoints u, v by uv. For any v ∈ V (G), NG(v) = {u | uv ∈
E(G)} denotes the (open) neighbourhood of v, and NG[v] = NG(v)∪ {v} denotes the closed
neighbourhood of v. When the graph G is clear from the context, we omit the subscript G.
For any S ⊆ V (G), G− S denotes the graph obtained from G by deleting vertices in S. We
denote the subgraph of G induced by S, i.e., the graph G − (V (G) \ S), by G[S]. We say
graph G contains graph H as in induced subgraph if H can be obtained from G by series of
vertex-deletions. Recall that for a directed graph H , we denote by N+

H (v) the out-neighbors
of v ∈ V (H) and by N−

H (v) the in-neighbors of v ∈ V (H). If H is clear from the context, we
omit the subscript H . Given a (directed) path P in a graph G and two vertices u, v ∈ V (P),
we denote by P [u, v] the subpath of P from u to v. For any further notation from basic
graph theory, we refer the reader to [17].

Trees. A tree T is a connected acyclic graph. Consider a tree T rooted at r. We define
function parent(t, T) : V (T) \ {r} 7→ V (T) to specify unique parent of the nodes in rooted
tree T . For any node t ∈ T , we denote by Tt the subtree rooted at t. A subdivided star is
a tree with at most one vertex of degree at least 3 (in other words, it is a tree obtained by
repeatedly subdividing the edges of a star graph). The sets V≥3(T) and V=1(T) denote the
set of vertices of degree at least 3, and of degree equal to 1, respectively. The set V≥3(T) is
also called the set of branching vertices of T and the set V=1(T) is called the set of leaves of
T . Note that |V≥3(T)| ≤ |V=1(T)| − 1. Any node of T which is not a leaf is called internal.

Chordal graphs and Tree representations. A graph is called a chordal graph if it
contains no induced cycle of length at least four. It is well-known that chordal graphs can be
represented as intersection graphs of subtrees in a tree, that is, for every chordal graph G,
there exists a tree T and a collection M of subtrees of T in one-to-one correspondence with
V (G) such that two vertices in G are adjacent if and only if their corresponding subtrees

7

intersect. The pair (T,M) is called a tree representation of G. For every v ∈ V (G), we
denote by M(v) the subtree corresponding to v and refer to M(v) as the model of v in T .
Throughout this article, we use nodes to refer to the vertices of the tree T to avoid confusion
with the vertices of the graph G. Furthermore, we use the greek alphabet to denote nodes
of T and the latin alphabet to denote vertices of G. For notational convenience, for any
node α ∈ V (T) and edge e ∈ E(T), we may abuse notation and write α ∈ M(v) in place of
α ∈ V (M(v)) as well as e ∈ M(v) in place of e ∈ E(M(v)).

For every node α ∈ V (T), we let ver(α) = {v ∈ V (G) | α ∈ M(v)}, that is, ver(α) is
the set of vertices in G that contain the node α is their model. A vertex v ∈ V (G) whose
model contains α may also be referred to as an α-vertex. Similarly, for every edge e ∈ E(T),
we let ver(e) = {v ∈ V (G) | e ⊆ M(v)}, that is, ver(e) is the set of vertices of G that
contain the edge e in their model. Given a subtree T ′ of T , we denote by G|T ′ the subgraph
of G induced by those vertices x ∈ V (G) such that V (M(x)) ⊆ V (T ′). If T is rooted, then
for each vertex v ∈ V (G), we call the node in M(v) that is closest to the root of T , the
topmost node of M(v) and denoted it by topM(v).

The leafage of chordal graph G, denoted by lf(G), is defined as the minimum number of
leaves in the tree of a tree representation of G. A tree representation (T,M) for G such that
the number of leaves in T is lf(G), can be computed in time O(|V (G)|3) [28]. Furthermore,
the number of nodes in T is at most O(|V (G)|).

Parameterized Complexity. The input of a parameterized problem comprises an in-
stance I, which is an input of the classical instance of the problem, and an integer k, which
is called the parameter. A parameterized problem Π is said to be fixed-parameter tractable
(FPT for short) if given an instance (I, k) of Π, we can decide whether (I, k) is aYes-instance
of Π in time f(k) · |I|O(1) for some computable function f depending only on k. We say that
an instance (I, k) of a parameterized problem Π and an instance (I ′, k′) of a parameterized
problem Π′ (possibly Π = Π′) are equivalent if (I, k) ∈ Π if and only if (I ′, k′) ∈ Π′. A
reduction rule, for a parameterized problem Π, is a polynomial-time algorithm that takes as
input an instance (I, k) of Π and outputs an instance (I ′, k′) of Π. If (I, k) and (I ′, k′) are
equivalent then we say that the reduction rule is safe. For more details on parameterized
algorithms, and in particular parameterized branching algorithms, we refer the reader to the
book by Cygan et al. [15].

3 Dominating Set

For a graph G, a set X ⊆ V (G) is a dominating set if every vertex in V (G) \X has at least
one neighbor in X , that is, V (G) = N [X]. In the Dominating Set problem (DomSet for
short), the input is a graph G and an integer k, and the objective is to decide whether G
has a dominating set of size at most k. We assume that the leafage of the input graph is
given as part of the input. If not, recall that it can be computed in polynomial time [28].
We consider a generalized version of this problem as defined below.

8

Red-Blue Dominating Set (Red-Blue-DomSet)
Input: A graph G, a partition (R,B) of V (G), and an integer k.
Question: Does there exist a set X ⊆ R of size at most k such that B ⊆ N(X)?

We first prove that to solve DomSet, it is sufficient to solve Red-Blue-DomSet even
when the input is restricted to chordal graphs of leafage ℓ. There is indeed a simple reduction
from the former problem to the latter that preserves the properties in which we are interested.

Lemma 3.1. There is a polynomial-time algorithm that given an instance (G, k) of DomSet
constructs an equivalent instance (G′, (R′, B′), k) of Red-Blue-DomSet such that if G has
leafage at most ℓ, then so does G′.

Proof. We construct G′ from G as follows. For every vertex v ∈ V (G), add two copies
vR and vB to V (G′) and add an edge vRvB to E(G′). For every edge uv ∈ E(G), add
edges vRuR, vRuB, vBuR, and vBuB to E(G′). This completes the construction of G′. Let
R′ = {vR | v ∈ V (G)} and B′ = {vB | v ∈ V (G)}.

Suppose that the DomSet instance has a solution S ⊆ V (G). Then the set SR = {vR |
v ∈ S}, i.e., SR contains the red version of each vertex in S, is a solution for the Red-Blue-
DomSet instance: indeed, the blue vertices vB such that v /∈ S are dominated since S is a
solution, and if v ∈ S, then vB is dominated because of the newly added edges. Conversely,
if SR ⊆ R′ is a solution for the Red-Blue-DomSet instance, then it is easy to see that
S = {v | vR ∈ SR} is a solution for the DomSet instance.

Finally note that a tree representation for G′ can be obtained from a tree representation
for G by duplicating the model of each vertex, and making the original model a model for
the blue version of the vertex, and the copy a model for its red version. In particular, the
leafage of G′ is at most that of G.

In the remainder of this section, we present an FPT algorithm for Red-Blue-DomSet
when parameterized by the leafage ℓ of the input graph. The algorithm consists of two parts.
In the first part, the algorithm constructs 2O(ℓ) many instances of a “restricted version” of
the problem such that the input instance is a Yes-instance if and only if one of these newly
created instances is a Yes-instance. Moreover, the graphs in the newly created instances
satisfy certain properties that allow us to design a fast algorithm. See Lemma 3.2 for the
formal statement. In the second part (cf. Lemma 3.3), the algorithm solves the restricted
version of Red-Blue-DomSet which is defined as follows.

Restricted-Red-Blue Dominating Set (Rest-Red-Blue-DomSet)
Input: A chordal graph G, a partition (R,B) of V (G), an integer k and tree represen-
tation (T,M) of G such that

• for every vertex in G, its model contains at most one branching node of T , and
• for all branching nodes γ ∈ V (T), there are either only red γ-vertices or only blue
γ-vertices.

Question: Does there exist a set D ⊆ R of size at most k such that B ⊆ N(D)?

9

3.1 Constructing Rest-Red-Blue-DomSet Instances

In this section, we prove the following result.

Lemma 3.2. Let I = (G, (R,B), k) be an instance of Red-Blue-DomSet where G is
a chordal graph of leafage at most ℓ. We can construct, in time 2O(ℓ) · nO(1), a collection
{Ii = (Gi, (Ri, Bi), k) | i ∈ [2O(ℓ)]} of Rest-Red-Blue-DomSet instances such that

• for every i ∈ [2O(ℓ)], Gi is a chordal graph of leafage at most 2ℓ, and
• I is a Yes-instance of Red-Blue-DomSet if and only if at least one of the instances
in the collection is a Yes-instance of Rest-Red-Blue-DomSet.

Proof. Let G be a chordal graph and let (T,M) be a tree representation of G. We define
the following functions.

• Let fT (G) denote the number of branching nodes γ ∈ V (T) such that there exist both
a red vertex and a blue vertex whose models contain γ.

• Let fr(G) denote the number of pairs of consecutive branching nodes α, β in T (that
is, no node on the unique path in T from α to β is a branching node) such that there
is red vertex whose model contains both α and β.

• Similarly, let fb(G) denote the number of pairs of consecutive branching nodes α, β in
T such that there is blue vertex whose model contains both α and β.

We further define µ(G) := lf(G) + 2 · (fT (G) + fr(G) + fb(G)). Note that, by definition,
µ(G) ≥ lf(G). We design a polynomial-time branching algorithm whose measure µ decreases
in each branch. We first show that if µ(G) = lf(G) then (G, (R,B), k) is in fact an instance
of Rest-Red-Blue-DomSet and then show how the branching algorithm proceeds.

Assume therefore that µ(G) = lf(G). Then fT (G) = fr(G) = fb(G) = 0 by definition.
However, when fT (G) = 0, then, by definition, for every branching node γ ∈ V (T), all the
vertices containing γ in their model are either red or blue; and when fr(G) = fb(G) = 0
then, considering the fact that every model is a subtree in T , for every vertex in G, its model
contains at most one branching node in T . Therefore if µ(G) = lf(G), then (G, (R,B), k)
is also an instance of Rest-Red-Blue-DomSet.

Now assume that µ(G) > lf(G). Then fT (G) + fr(G) + fb(G) > 0. We consider the
following three exhaustive cases.

Case-I. fT (G) > 0. Let γ be a branching node in T such that there is both a red-vertex
and a blue-vertex whose models contain γ. Suppose that I is a Yes-instance of Red-Blue-
DomSet and let D be a solution. Consider first the case where D includes a red vertex
whose model contains γ. In this case, we return the instance I1 = (G1, (R1, B1), k) which is
obtained as follows.

• Initialize V (G1) = V (G), R1 = R, B1 = B.
• Let T1 be the tree obtained from T by adding a node δ and making it adjacent to γ
only. Note that V (T1) \ {δ} ⊆ V (T).

• For every red vertex v ∈ V (G1) such that γ ∈ M(v), add δ to its model, i.e., M1(v) =
M(v) ∪ {δ}.

10

• For every blue vertex v ∈ V (G1) such that γ ∈ M(v), delete v from V (G1).
• Add a new blue vertex x to V (G1) and to B1 with M1(x) = {δ}.
• For every (red or blue) vertex v ∈ V (G) such that γ 6∈ M(v), define M1(v1) = M(v).

It is easy to verify that (T1,M1) is a tree representation of G1 and that T1 has exactly one
more leaf than T , i.e., lf(G1) ≤ lf(G) + 1. However, since we have deleted all the blue
vertices whose models contained γ, fT (G1) = fT (G)− 1. As the other parts of the measure
do not change, µ(G1) < µ(G).

In the second case where no vertex in D contains γ in its model, we return the instance
I2 = (G2, (R2, B), k) where G2, R2 are obtained from G,R, respectively, by deleting red
vertices whose model contains γ. It is easy to verify that µ(G2) < µ(G).

If I is a Yes-instance, then at least one of I1 or I2 is a Yes-instance as these two
branches are exhaustive. If I1 is a Yes-instance, then any optimum solution must include a
red γ-vertex because of the newly added vertex x. As R2 ⊆ R, if I2 is a Yes-instance, then
I is a Yes-instance. Hence, this branching step is correct.

Case-II. fT (G) = 0 and fr(G) > 0. Let α, β be two consecutive branching nodes in T
such that there is a red vertex whose model contains both α and β. Suppose that I is a
Yes-instance of Red-Blue-DomSet and let D be a solution. Consider the case where
D includes a red vertex whose model contains both α and β. In this case, we return the
instance I1 = (G1, (R1, B1), k) which is obtained as follows.

• Initialize V (G1) = R1 = B1 = ∅.
• Let T1 be the tree obtained from T by contracting the unique path Pαβ from α to β
in T and let γαβ be the node resulting from this contraction. Add a node δ to T1 and
make it adjacent to γαβ only. Note that V (T1) \ {γαβ, δ} ⊆ V (T).

• For every red vertex v ∈ V (G) such that M(v) ∩ V (Pαβ) 6= ∅, add a red vertex v1 to
V (G1) (and to R1) with M1(v1) = (M(v) \ V (Pαβ)) ∪ {γαβ, δ}.

• Add a new blue vertex x to V (G1) with M1(x) = {δ}.
• For every (red or blue) vertex v ∈ V (G) such that M(v) ∩ V (Pαβ) = ∅, add v1 to G1

(and to, respectively, either R1 or B1) with M1(v1) = M(v).
Note that for every blue vertex v ∈ V (G) such that M(G) ∩ V (Pαβ) 6= ∅, there is no
corresponding blue vertex in G1. It is easy to verify that (T1,M1) is a tree representation of
G1 and that T1 has one more leaf than T which implies lf(G1) ≤ lf(G) + 1. Since we have
contracted the path Pαβ to obtain the node γαβ, fr(G1) < fr(G). As the other parts of the
measure do not change, µ(G1) < µ(G).

In the second case where no vertex in D contains both α and β in its model, we return an
instance I2 = (G2, (R2, B), k) where G2, R2 are obtained from G,R, respectively, by deleting
red vertices whose model contains both α and β. It is easy to verify that µ(G2) < µ(G). We
argue as in the previous case for the correctness of this branching steps.

Case-III. fT (G) = 0 and fb(G) > 0. Let α, β be two consecutive branching nodes in T such
that there is a blue vertex whose model contains both α and β. Note that since fT (G) = 0,
for every red vertex v ∈ V (G) such that M(v)∩V (Pαβ) 6= ∅, in fact M(v) ⊆ V (Pαβ)\{α, β}.

11

Suppose that I is a Yes-instance of Red-Blue-DomSet and let D be a solution. Consider
first the case where D includes a red vertex whose model is in V (Pαβ) \ {α, β}. In this case,
we return the instance I1 = (G1, (R,B1), k) where G1, B1 are obtained from G and B as
follows.

• Delete all the blue vertices whose model contains both α and β.
• Add a blue vertex x to V (G1) (and to B1) with M(x) = V (Pαβ) \ {α, β}.

It is easy to verify that (T,M) is a tree representation of G1 and fb(G1) < fb(G). As the
other parts of the measure do not change, µ(G1) < µ(G).

In the second case where there is no vertex in D whose model is in V (Pαβ) \ {α, β},
we consider the following two subcases. If there is a blue vertex v such that M(v) ⊆
V (Pαβ), then we return a trivial No-instance. Otherwise, we return the instance I2 =
(G2, (R2, B2), k) which is constructed as follows.

• Initialize V (G2) = R2 = B2 = ∅.
• Let T2 be the tree obtained from T by contracting the path Pαβ from α to β in T and
let γαβ be the node resulting from this contraction. Note that V (T2) \ {γαβ} ⊆ V (T).

• For every (red or blue) vertex v ∈ G such that M(v)∩ V (Pαβ) = ∅, add a vertex v2 to
G2 (and to, respectively, either R2 or B2) with M2(v2) = M(v).

• For every blue vertex v ∈ V (G) such that M(v)∩ V (Pαβ) 6= ∅, add a blue vertex v2 to
V (G2) (and to B2) with M2(v2) = (M(v2) \ V (Pαβ)) ∪ {γαβ}.

Note that for any red vertex v ∈ V (G) such that M(v) ⊆ V (Pαβ) \ {α, β}, there is no
corresponding red vertex in G2. It is easy to verify that (T2,M2) is a tree representation of
G2. Furthermore, the number of leaves of T2 is the same as T and fb(G2) < fb(G). As the
other parts in the measure do not change, µ(G2) < µ(G).

The correctness of this branching step follows from the same arguments as in the previous
cases and the fact that in the second case, since there is no red vertex whose model intersects
V (Pαβ), it is safe to contract that path.

Finishing the Proof. The correctness of the overall algorithm follows from the correctness
of branching steps in the above three cases. To bound its running time and the number
of instances it outputs, note that fT (G) + fr(G) + fb(G) ≤ 3 · lf(G) as these functions
either count the number of branching nodes or the unique paths containing exactly two
(consecutive) branching nodes.

3.2 Solving an instance of Rest-Red-Blue-DomSet

In this section, we present an algorithm to solve Rest-Red-Blue-DomSet. Formally, we
prove the following lemma.

Lemma 3.3. Rest-Red-Blue-DomSet admits an algorithm running in time 2O(ℓ) ·nO(1).

We first state some easy reduction rules before we handle two cases based on whether

12

the farthest branching node4 is contained only in the models of red vertices or blue vertices.
We present Greedy Select 3.9 and Greedy Select 3.12 to handle these cases. The proof of
the lemma follows from Lemma 3.10, Lemma 3.13 and the fact that each application of the
greedy selection procedure deletes some vertices in the graph.

We first introduce some notations. Recall that an instance of Rest-Red-Blue-DomSet
contains a chordal graph G, a partition (R,B) of V (G), an integer k and tree representation
(T,M) of G such that for every vertex in G, its model contains at most one branching node
of T , and for all branching nodes γ ∈ V (T), there are either only red γ-vertices or only blue
γ-vertices. We assume, without loss of generality, that the tree T is rooted at node r. Unless
mentioned otherwise, α denotes the farthest branching node in T from the root, that is, each
proper subtree of Tα is a path. If there are more than one branching node that satisfy the
property, we arbitrarily select one of them. Let β be the closest branching ancestor of α,
that is, no internal node in the unique path from α to β is a branching node in T .5 Recall
that for a vertex v ∈ V (G), we define topM(v) as the node η ∈ M(v) that is closest to the
root. Likewise if a leaf λ is fixed, we define botλM(v) as the node η ∈ M(v) that is closest
to λ. For ease of notation, we omit λ as it is always clear from the context.

Definition 3.4. Let γ be a node of the tree T . We define the following sets of vertices in G.
• B∩

γ , R
∩
γ , V

∩
γ are the sets of, respectively, blue, red, all vertices v ∈ V (G) whose models

intersect the tree rooted at γ, i.e., M(v) ∩ V (Tγ) 6= ∅.
• B⊆

γ , R
⊆
γ , V

⊆
γ are the sets of, respectively, blue, red, all vertices v ∈ V (G) whose models

are completely contained inside the tree rooted at γ, i.e., M(v) ⊆ V (Tγ).
• B⊆†

γ , R⊆†
γ , V ⊆†

γ are the sets of blue, red, all vertices v ∈ V (G) where the model is
completely contained inside the tree rooted at γ but does not contain γ, respectively,
i.e. M(v) ⊆ V (T †

γ) = V (Tγ) \ {γ}.
• B∈

γ , R
∈
γ , V

∈
γ are the sets of, respectively, blue, red, all vertices v ∈ V (G) whose models

contains γ, i.e., γ ∈ M(v).

Simplifications. We first apply the following easy reduction rules whose correctness read-
ily follows from the definition of the problem. It is also easy to see that the reduction
rules can be applied in polynomial time and the reduced instance is also a valid instance of
Rest-Red-Blue-DomSet.

Reduction Rule 3.5. If there is a blue vertex, which is not adjacent to a red vertex, or if
k < 0, then return a trivial No-instance.

Reduction Rule 3.6.

• If there are two blue vertices u, v such that M(u) ⊆ M(v), then delete v.
• If there are two red vertices u, v such that M(u) ⊆ M(v), then delete u.

4We assume that the tree in the tree representation is rooted and thus, by farthest branching node, we
mean farthest from the root.

5If α is the root of the tree, then we can add an artificial new root β which is not contained in the model
of any vertex.

13

Consider a blue vertex v in G whose model is contained in the subtree rooted at α.
Moreover, let v be such a vertex for which topM(v) is farthest from the root and v is not
adjacent to a red vertex whose model contains α. Hence, there is a natural ordering amongst
the red neighbors of v. Note that such an ordering is not possible if some of its neighbors
contain α in their models. As any solution contains a red neighbor of v, it is safe to include
its neighbor vr for which topM(vr) is closest to α.

Reduction Rule 3.7. Suppose that there is a blue vertex v ∈ B⊆†
α such that topM(v) is

farthest from the root and v is not adjacent to any red α-vertices. Moreover, amongst all the
red neighbors of v, let vr be the node such that topM(vr) is closest to α. Then, remove vr
and all of its blue neighbors and decrease k by 1.

We remark that the above reduction rule is applicable irrespective of the fact whether
either all α-vertices are red or all α-vertices are blue.

Case-1: All the vertices that contain α in their models are red vertices. Let β
be the closest branching ancestor of α. Consider the blue vertices whose model intersect the
path from α to β. Note that there may not be any such blue vertex; however, we find it
convenient to present an uniform argument. With a slight abuse of notation, let b1, . . . , bd
be these blue vertices ordered according to their endpoint in the direction of α, that is, for
i < j we have either botM(bi) = botM(bj) or botM(bi) is closer to α than botM(bj). For
each i ∈ [d], we compute an optimal solution for dominating the vertices whose model is
in the tree rooted at α (i.e., the vertices of B⊆†

α) and the vertex bi while only using red
α-vertices. Formally, we want to compute an optimal solution for the following instance:
Ii := G[R∩

α ∪ B⊆
α ∪ {bi}]. We also define instance I0 := G[R∩

α ∪ B⊆
α] to handle the cases

when there are no blue vertices whose model intersects the path from α to β or when b1
(and hence, the other blue vertices mentioned above) are not dominated by red α-vertices
in an optimum solution. To simplify notation we set OPTi := OPT(Ii) in the following.
If Ii is not defined, then we set OPTi = ∞. Note that the solution OPTi also dominates
the blue vertices b1, . . . , bi−1 due to the ordering of the bis. Hence, for any i, j ∈ [0, d] such
that i < j, we have |OPTi| ≤ |OPTj|. We use this monotonicity to prove the following
structural lemma.

Lemma 3.8. Let q ∈ [0, d] be the largest value such that |OPTq| = |OPT0|. If there is a
solution, then there is an optimum solution containing OPTq.

Proof. Let OPT be an optimum solution of (G, (R,B), k). Let S denote the collection of
vertices inOPT whose model contains nodes in the subtree rooted at α, i.e., S := OPT∩R∩

α.
We claim that we can replace S by a super-set S ′ of OPTq of equal size to obtain another
solution.

Let j ∈ [0, d] be the largest integer such that bj is dominated by some vertex in S. If
j ≤ q, then by our choice of q, |S| = |OPTq|. By the definition of the Iis, we get that OPTq

is also a solution for Ii. Hence, we can replace S by OPTq to get another optimal solution.
Suppose therefore that j > q. By our choice of q, we have |S| > |OPTq|. Let rj be the red

14

α-vertex with topM(rj) closest to β such that bj is a neighbor of rj. Such a vertex exists,
as by assumption, S contains one of these vertices which dominates bj . Then we replace
S by S ′ = OPTq ∪ {rj}. As |S| > |OPTq|, we have |S ′| ≤ |S|. Moreover, observe that
S ′∪OPT\S is still a solution as all vertices in B⊆†

α and the vertices b1, . . . , bq are dominated
by some vertex in OPTq, vertex rj dominates the vertices bq+1, . . . , bj and, by the choice of
j, the vertices bj+1, . . . , bd are dominated by some vertex not contained in S.

We devise a greedy selection step based on the above lemma.

Greedy Select 3.9. Let q ∈ [0, d] be the largest value such that |OPTq| = |OPT0|. Include
the vertices of OPTq in the solution, i.e., delete the red vertices in OPTq, the blue vertices
that are adjacent to vertices in OPTq, and decrease k by |OPTq|.

Lemma 3.10. Greedy Select 3.9 step is correct and can be completed it time 2O(ℓ) · nO(1).

Proof. The correctness of the step follows directly from Lemma 3.8. In the remaining proof,
we show how to compute, for every i ∈ [0, d], OPTi in time O(ℓ·|R|·2ℓ·n) by constructing an
instance of Set Cover. Before constructing such an instance, we justify that only one blue
vertex (which is farthest from α) is critical while constructing this Set Cover instance.

Let α′ be a child of α. As α is a farthest branching node of T from the root, the tree
rooted at α′ is a path. Let λ be the another endpoint of this path. Consider a blue vertex vα′

whose model is contained in Tα′ , i.e., vα′ ∈ B⊆
α′ . Moreover, suppose that vα′ is the vertex for

which topM(vr) is farthest from α′. As Reduction Rule 3.7 is not applicable, there exists at
least one red neighbor of vα′ which is an α-vertex. Hence, an optimum solution can always
include a red neighbor of vα′ which is also an α-vertex. This red α-vertex also dominates all
the blue vertices in B⊆

α′ .
We now explain how to construct an instance (U,F) of Set Cover. For every child α′

of α, if the vertex vα′ mentioned in the previous paragraph exists, then add an element uα′

corresponding to it to U . When i 6= 0, add another element ui corresponding to bi to U . For
every red α-vertex v, we define set Sv ⊆ U as the collection of elements corresponding to the
blue vertices in Ii that are adjacent to v. This completes the construction of the instance.

It is easy to see the one-to-one correspondence between the optimum solutions of these
two instances. The running time of the algorithm follows from the known algorithms for
Set Cover (see, for instance, [21]) and the fact that α has at most ℓ many children.

Case-2: All the vertices that contain α in their models are blue vertices. Let β
be the closest branching ancestor of α. We consider two cases depending on whether there is
a red vertex whose model intersects the path from α to β. If there is no such red vertex, then
we consider the graph induced by all the red vertices whose model is (properly) contained
in the subtree rooted at α and the blue vertices whose model intersects the subtree rooted
at α. Formally, we define I0 = G[R⊆

α ∪B∩
α].

Consider the other case and suppose that there are d ≥ 1 many red vertices whose model
intersects the path from α to β. Let r1, . . . , rd be these vertices ordered according to their
endpoints in the direction of α, that is, for i < j, we have either botM(ri) = botM(rj)

15

or botM(ri) is closer to α than botM(rj). For each such red vertex vi, we compute the
optimal solution to dominate the vertices in B∩

α by vertices in R⊆
α assuming that vi is already

selected. Note that we only have to focus on the blue vertices in B∩
α which are not adjacent

to vi. Formally we define Ii = G[R⊆
α ∪ (B∩

α \ N [vi])]. It is possible that the optimum
solution does not include any of the vertices in {r1, r2, . . . , rd}. To handle this case, we define
Id+1 = G[R⊆

α ∪ B∩
α]. To simplify notation, we set OPTi := OPT(Ii) in the following. Note

that for the instance defined above, Ri is same for every instance whereas Bi ⊆ Bi+1 because
of the ordering. Hence, for any i, j ∈ [d + 1] such that i < j, we have |OPTi| ≤ |OPTj |.
We use this monotonicity to prove the following structural lemma.

Lemma 3.11. If there is a red vertex whose model intersects the path from α to β, let q ∈
[d+ 1] be the largest value such that |OPTq| = |OPT1|. Otherwise, define OPTq = OPT0.
If there is a solution for the instance, then there is an optimum solution OPT such that
OPT ∩R⊆

α = OPTq.

Proof. If there is no red vertices whose model intersects the path from α to β, then all the
red vertices in G that are adjacent to blue vertices in I0 are the red vertices in I0. Hence,
the statement of the lemma follows.

We now consider the case where there are red vertices whose model intersects the path
from α to β. Let OPT be an optimum solution of (G, (R,B), k). Let S denote the collection
of vertices in OPT whose model is (properly) contained in the subtree rooted at α, i.e.,
S := OPT ∩ R⊆†

α . We claim that we can replace S by a super-set S ′ of OPTq of equal size
to obtain another optimum solution.

Let j ∈ [d] be the smallest index such that vj is contained in OPT. Note that, by
definition, j 6= d + 1 as there are only d red vertices with the said property. If j ≤ q, then
by our choice of q, |S| ≥ |OPTj|. By the definition of Ij and the fact blue vertices in Ij

are subset of blue vertices in Iq, OPTq is also a solution for Ij . Hence, we can replace S
by OPTq to get another optimal solution. Suppose therefore that j > q. By our choice of
q, we have |OPTj | > |OPTq|. As OPT is a solution, all vertices in B∩

α must be covered by
OPT. Hence, we can replace S by S ′ = OPTq ∪ {rq} and get a solution of not larger size
which still dominates all vertices in B∩

α . Indeed, the vertices which are not dominated by
OPTq are dominated by rq.

We devise a greedy selection step based on the above lemma.

Greedy Select 3.12. If there is a red vertex whose model intersects the path from α to
β, let q ∈ [d + 1] be the largest value such that |OPTq| = |OPT1|. Otherwise, define
OPTq = OPT0. Include OPTq in the solution, i.e., delete the red vertices in OPTq, the
blue vertices that are adjacent to vertices in OPTq, and decrease k by |OPTℓ|.

Lemma 3.13. Greedy Select 3.12 step is correct and can be completed in time 2O(ℓ) · nO(1).

Proof. The correctness of the step follows directly from Lemma 3.11. In the remaining
proof, we show how to compute OPTi for every i ∈ [0, d+1], by constructing an instance of

16

Hitting Set. As in Lemma 3.10, we first argue that only one red vertex (which is closest
to α) is critical while constructing a Hitting Set instance.

Recall that, by assumption, none of the previous reduction rules are applicable. As in
the previous case, let α′ be a child of α. We first argue that there are no blue vertices whose
path is completely contained in the path rooted at α′. Assume, for the sake of contradiction,
that there exists such a blue vertex v. As Reduction Rule 3.5 is not applicable, v is adjacent
to at least one red vertices. However, since all α-vertices are blue, by the property of the
instance, there are no red α-vertices. In particular, v is not adjacent to any red α-vertex.
This contradicts the fact that Reduction Rule 3.7 is not applicable. Hence, there is no blue
vertex whose model is contained in the path rooted at α′. Since this is true for any child of
α, there are no blue vertices in B⊆†

α , i.e., B⊆†
α = ∅ and B∩

α = B∈
α . Now, for a child α′ of α, let

vα′ ∈ R⊆
α′ be a red vertex such that topM(vr) is closest to α. Since all blue vertices contain

α in their model, the only critical red vertex in this leg is vα′ .
We now explain how to construct an instance (U,F) of Hitting Set. For every child α′

of α, let vα′ be the vertex as mentioned above. Add an element uα′ corresponding to vα′ in U .
For every blue α-vertex v, we define Sv ⊆ U as the collection of elements corresponding to
the red vertices in Ii that are adjacent to v. This completes the construction of the instance.

It is easy to see the one-to-one correspondence between the optimum solutions of these two
instances. The running time of the algorithm follows from the simple brute-force algorithm
for Hitting Set parameterized by the size of the universe and the fact that α has at most
ℓ many children.

4 Multicut with Undeletable Terminals

This section considers the MultiCut with Undeletable Terminals problem formally
defined as follows.

MultiCut with Undeletable Terminals (MultiCut with UnDel Term)
Input: An undirected graph G, a set P ⊆ V (G)× V (G), and an integer k.
Question: Is there a set S ⊆ V (G) \ V (P) such that |S| ≤ k and for all (p, p′) ∈ P ,
there is no path between p and p′ in G− S?

In the following, a set S ⊆ V (G) \ V (P) such that for all (p, p′) ∈ P , there is no path
between p and p′ in G − S is called a P -multicut in G. We first prove that when the
input is restricted to chordal graphs, the problem is unlikely to admit an FPT algorithm
when parameterized by the leafage. We then complement this result with an XP-algorithm
parameterized by the leafage. We restate the theorem with the precise statement for the
reader’s convenience.

Theorem 1.2. MultiCut with Undeletable Terminals on chordal graphs is W[1]-
hard when parameterized by the leafage ℓ and assuming the ETH, does not admit an algorithm

17

p1
K1

p2
K2

p3
· · ·

pn
Kn

pn+1

Figure 1: The auxiliary graph B. Rectangles represent cliques and thick edges indicate that
the corresponding vertex is complete to the corresponding cliques.

running in time f(ℓ) · no(ℓ) for any computable function f . However, it admits an XP-
algorithm running in time nO(ℓ).

To prove that the problem is W[1]-hard, we present a parameter preserving reduction
from Multicolored Clique. An instance of this problem consists of a simple graph G,
an integer q, and a partition (V1, V2, . . . , Vq) of V (G). The objective is to determine whether
there is a clique inG that contains exactly one vertex from each part Vi. Such a clique is called
a multicolored clique. We assume, without loss of generality, that each Vi is an independent
set and that |V1| = . . . = |Vq| = n.6 This implies, in particular, that |E(G)| < n2 · q2. For
every i ∈ [q], we denote by vi1, . . . , v

i
n the vertex set of Vi and for every i 6= j ∈ [q], we denote

by Ei,j ⊆ E(G) the set of edges between Vi and Vj . We define M := (n + 1)2 · q2.

Reduction. The reduction takes as input an instance (G, q, (V1, . . . , Vq)) of Multicol-
ored Clique and outputs an instance (H,P, k) of MultiCut with UnDel Term which
is constructed as follows.

• The reduction starts by constructing an auxiliary graph B. The vertex set of B consists
of n+1 vertices p1, . . . , pn+1 and n vertex-disjoint cliques K1, . . . , Kn such that |Ka| =
a ·M for every a ∈ [n]. Then, it adds edges so that p1 is complete to K1, pn+1 complete
to Kn, and pa complete to Ka−1 ∪ Ka for every a ∈ [n] \ {1}. This completes the
construction of B (see Figure 1).

• For each i ∈ [q], the reduction introduces two vertex-disjoint copies Bi,α and Bi,β of
B. For every i ∈ [q], let pi,α1 , . . . , pi,αn+1 denote the copies of p1, . . . , pn+1 in Bi,α and

Ki,α
1 , . . . , Ki,α

n denote the copies of K1, . . . , Kn in Bi,α. Moreover, for every 1 ≤ a1 ≤
a2 ≤ n+ 1, we define, for notational convenience,

pi,α[a1, a2] := {pi,αa | a1 ≤ a ≤ a2}

and
Ki,α[a1, a2] :=

⋃

a1≤a≤a2

Ki,α
a .

We define pi,βa , Ki,β
a , pi,β[a1, a2], and Ki,β[a1, a2] in a similar way.

• For i ∈ [q] and a ∈ [n], the reduction uses pi,αa , pi,βn+1−a, K
i,α
a , and Ki,β

n+1−a to encode
vertex via.

6Unlike in the rest of the article, we do not use n to denote the total number of vertices in G to keep
notation simple while presenting the reduction.

18

K2,β
1 K2,β

2 K2,β
3 K2,β

4p2,β1 p2,β2 p2,β3 p2,β4 p2,β5

K2,α
1 K2,α

2 K2,α
3 K2,α

4p2,α1 p2,α2 p2,α3 p2,α4 p2,α5

K1,β
1 K1,β

2 K1,β
3 K1,β

4p1,β1 p1,β2 p1,β3 p1,β4 p1,β5

K1,α
1 K1,α

2 K1,α
3 K1,α

4p1,α1 p1,α2 p1,α3 p1,α4 p1,α5

K

ve′
ve

Figure 2: A tree representation of the graph H restricted to the gadgets representing V1, V2

and E1,2 where n = 4 and E1,2 = {e = v13v
2
1 , e

′ = v14v
2
2}.

• For every edge e = viaiv
j
aj

∈ E(G), the reduction introduces an edge-vertex ve and adds
edges so that ve is complete to the following sets.

– pi,α[ai + 1, n+ 1] and Ki,α[ai, n+ 1] in V (Bi,α).
– pj,α[aj + 1, n+ 1] and Ki,α[aj , n+ 1] in V (Bj,α).
– pi,β[n+ 1− ai + 1, n+ 1] and Ki,β[n+ 1− ai + 1, n+ 1] in V (Bi,β).
– pj,β[n+ 1− aj + 1, n+ 1] and Ki,β[n+ 1− aj + 1, n+ 1] in V (Bj,β).

Note that ve is adjacent to vertices in Ki,α[ai] ∪ Kj,α[aj] but not to any vertex in
Ki,β[n + 1− ai] ∪Kj,β[n+ 1− aj].

• The reduction introduces a central clique K of size 2M2 and makes it complete to
{pi,αn+1, p

i,β
n+1 | i ∈ [q]} and VE where VE = {ve | e ∈ E(G)} is the set of edge-vertices.

This completes the construction of H .
• The reduction further defines

P := {(pi,αa , pi,βn+2−a) | a ∈ [n] and i ∈ [q]}, and

k := q(n+ 1)M + |E(G)| − q(q − 1)/2.

The reduction returns (H,P, k) as the instance of MultiCut with UnDel Term. This
completes the reduction. It is easy to see that H is chordal and has leafage at most 2q. See
Figure 2 for a tree representation of H .

Intuition. We first provide the intuition behind the reduction. Recall that the reduction
uses pi,αa , pi,βn+1−a, K

i,α
a , and Ki,β

n+1−a to encode vertex via where i ∈ [q] and a ∈ [n]. Hence, for

a, b ∈ [n], if a + b = n + 1, then pi,αa and pi,βb correspond to the same vertex. Note that the
pairs in P do not correspond to the vertices associated with via. Rather, p

i,α
a+1 is paired with

pi,βn+1−a. Conversely, for a, b ∈ [n], if a + b = n + 2, then (pi,αa , pi,βb) ∈ P . By the construction

of H and P , for a P -multicut S of H , if there is a path from pi,αa to pi,βb in H − S, then
a + b ≥ n+ 3.

19

Now, consider the terminal pairs (pi,α1 , pi,βn+1) in P for some i ∈ [q]. Because of the size
constraints, S cannot contain all the vertices of the central clique K. Since S cannot contain
a terminal, it needs to include one clique from Bi,α. Let ai ∈ [n] be the largest index such that
Ki,α

ai
⊆ S. Using similar arguments, there must also exist bi ∈ [n] such that Ki,β

bi
⊆ S and bi

is largest such index. By definition of ai, bi and construction of H , there is a path from pi,αai+1

to pi,βbi+1 in H−S. The discussion in the previous paragraph implies that ai+1+bi+1 ≥ n+3,
i.e., ai + bi ≥ n+ 1. However, by definition of the solution size k and the size of the cliques,
we have ai + bi ≤ n+ 1. Hence, the structure of the auxiliary graphs and the terminal pairs
ensure that the selected cliques in S ∩ V (Bi,α) and S ∩ V (Bi,β) encode selecting a vertex in
Vi in G.

Suppose that {v1a1 , v
2
a2
, . . . , vqaq} are the vertices in G that are selected by S. Recall that

VE is the collection of edge-vertices in H . Considering the remaining budget, a solution S
can include at most |E(G)|−q(q−1)/2 many vertices in VE . We argue that q(q−1)/2 edges
in G corresponding to vertices in VE \ S should have their endpoints in {v1a1 , v

2
a2
, . . . , vqaq} as

otherwise some terminal pair is connected in H−S. Hence, a P -multicut S of H corresponds
to a multicolored clique in G. We formalize this intuition in the following two lemmas.

Lemma 4.1. If (G, q, (V1, V2, . . . , Vq)) is a Yes-instance of Multicolored Clique, then
(H,P, k) is a Yes-instance of MultiCut with UnDel Term.

Proof. Assume that (G, q, (V1, V2, . . . , Vq)) is a Yes-instance of Multicolored Clique
and let {v1a1 , v

2
a2
, . . . , vqaq} be a clique in G such that viai ∈ Vi for every i ∈ [q]. We construct

a P -multicut S of H as follows. First, we add VE \ {ve | e ∈ {viaiv
j
aj

| i, j ∈ [q]}} to

S. For every i ∈ [q], we further add Ki,α
ai

and Ki,β
n+1−ai

to S. It is easy to verify that
|S| = q(n+ 1)M + |E(G)| − q(q − 1)/2 = k.

Let us show that S is indeed a P -multicut. Fix indices i ∈ [q] and a ∈ [n], and consider
the terminal pair (pi,αa , pi,βn+2−a) in P . Suppose first that a ≤ ai. By construction of H , any

path from pi,αa to pi,βn+2−a in H contains a vertex of Ki,α
ai

or of N(pi,αai) ∩ VE. Recall that if
edge e ∈ E(G) is incident on viai , then the edge-vertex ve in H is adjacent only to vertices
in pi,α[ai + 1, · · · , n+ 1] and Ki,α[ai, · · · , n + 1] in V (Bi,α); in particular, it is not adjacent
to pi,αai . As S only excludes edge-vertices in VE that encode edges incident on viai , it contains
every vertex in N(pi,αai) ∩ VE . Since S also contains every vertex in Ki,α

ai
, we conclude that

there is no path from pi,αa to pi,βn+2−a in H − S.
Now, consider the case where ai < a, i.e., n+2−a < n+2−ai. In this case, it is convenient

to consider a path from pi,βn+2−a to pi,αa . Once again, by construction of H , any path from

pi,βn+2−a to pi,αa in H contains a vertex of Ki,β

n+2−(ai+1) = Ki,β
n+1−ai

or of N(pi,β
n+2−(ai+1)) ∩ VE =

N(pi,βn+1−ai
) ∩ VE. Recall that if edge e ∈ E(G) is incident on viai , then the corresponding

edge-vertex ve in H is adjacent only to vertices in pi,β[n− ai +2, · · ·n+1] and Ki,β[n− ai +
2, · · · , n+1] in V (Bi,β); in particular, it is not adjacent to pi,βn+1−ai

. As S only excludes edge-

vertices in VE that encode edges incident on viai , it contains every vertex in N(pi,βn+1−ai
)∩VE .

Since S also contains every vertex in Ki,β
n+1−ai

, we conclude that there is no path from pi,βn+2−a

20

to pi,αa . This implies that no terminal pair in P is connected in H − S which concludes the
proof.

Lemma 4.2. If (H,P, k) is a Yes-instance of MultiCut with UnDel Term, then
(G, q, (V1, V2, . . . , Vq)) is a Yes-instance of Multicolored Clique.

Proof. Assume that (H,P, k) is a Yes-instance of MultiCut with UnDel Term and
let S be a P -multicut of H of size at most k. Recall that, by definition of the problem,
S ∩ V (P) = ∅. Also, recall that the reduction adds the clique K of size 2M2 and makes it
complete to {pi,αn+1, p

i,β
n+1 | i ∈ [q]} and VE . Note that K \ S 6= ∅ as k < 2M2.

Consider an index i ∈ [q]. It is easy to see that there exists a ∈ [n] such that Ki,α
a ⊆ S

as otherwise, there is a path from pi,α1 to pi,βn+1 in H − S. Let ai ∈ [n] be the largest index

such that Ki,α
ai

⊆ S. Similarly, there must exist b ∈ [n] such that Ki,β
b ⊆ S: let bi ∈ [n]

be the largest index such that Ki,β
bi

⊆ S. Note that by definition of ai, bi and the fact that

K \ S 6= ∅, there is path from pi,αai+1 to pi,βbi+1 in H − S. Now suppose for a contradiction that
ai+1+bi+1 ≤ n+2. Then there exists a′i ∈ [n] such that a′i ≥ ai and a′i+1+bi+1 = n+2 and
so, by definition of P , (pi,α

a′i+1, p
i,β
bi+1) ∈ P . Moreover, by construction of H , the existence of a

path from pi,αai+1 to pi,βbi+1 in H−S implies that there is path from pi,α
a′i+1 to pi,βbi+1 in H−S; this

however, contradicts the fact that S is a P -multicut of H . Therefore ai +1+ bi +1 ≥ n+3,
i.e., ai + bi ≥ n+ 1. Since this holds for any i ∈ [q], we have that

∣∣∣∣∣∣
S ∩

⋃

i∈[q]

V (Bi,α) ∪ V (Bi,β)

∣∣∣∣∣∣
≥

∑

i∈[q]

(aiM + biM) ≥ q(n+ 1)M.

Since |E(G)|− q(q−1)/2 < M and S has size at most k = q(n+1)M + |E(G)|− q(q−1)/2,
it follows that, in fact, ai + bi = n + 1 for all i ∈ [q]. Hence, S ∩ (

⋃
i∈[q] V (Bi,α) ∪ V (Bi,β))

corresponds to a collection of vertices {v1a1 , v
2
a2
, . . . , vqaq} in G such that viai ∈ Vi for every

i ∈ [q].
In the remaining proof, we argue that there are at least q(q − 1)/2 edges with endpoints

in {v1a1 , v
2
a2
, . . . , vqaq}. Since |E(G)| − q(q − 1)/2 < M , and every clique in Bi,α is of size at

least M , for any a ∈ [n] such that a < ai, we have Ki,α
a \ S 6= ∅. In other words, there is at

least one vertex in H − S from each clique Ki,α
a where a < ai. Since ai is the largest index

such that Ki,α
ai

⊆ S, this also holds for every a > ai. As S intersects every path from pi,α1 to

pi,βn+1, it contains every vertex in N(pi,αai) ∩ VE . Using similar arguments, we conclude that

S also contains every vertex in N(pi,βbi) ∩ VE = N(pi,βn+1−ai
) ∩ VE. Now recall that if edge

e ∈ E(G) is incident on viai , then the corresponding edge-vertex ve in H is adjacent to
• terminals in V (Bi,α) which are in pi,α[ai + 1, n+ 1], and
• terminals in V (Bi,β) which are in pi,β[n− ai + 2, n+ 1].

In particular, ve is not adjacent to p
i,α
ai

and pi,βn+1−ai
. This implies that only edges-vertices that

correspond to edges incident on viai can be excluded from S. As this holds for any i ∈ [q],
every vertex in VE \ S has its endpoints in {v1a1 , v

2
a2
, . . . , vqaq}. As |S ∩ (

⋃
i∈[q] V (Bi,α) ∪

21

V (Bi,β))| = q(n + 1)M and k = q(n + 1)M + |E(G)| − q(q − 1)/2, we have |S ∩ VE | ≤
|E(G)| − q(q − 1)/2 which implies that |VE \ S| ≥ q(q − 1)/2. Since G is a simple graph, it
follows that {v1a1 , v

2
a2
, . . . , vqaq} is a multicolored clique in G. This concludes the proof of the

lemma.

Finally, it is known that, assuming the ETH, there is no algorithm that can solve Mul-
ticolored Clique on instance (G, q, (V1, V2, . . . Vq)) in time f(q) · |V (G)|o(q) for any com-
putable function f (see, e.g., [15, Corollary 14.23]). Thus, together with the fact that the
reduction takes polynomial time in the size of the input, Lemmas 4.1 and 4.2, and arguments
that are standard for parameter preserving reductions, we conclude that the following holds.

Lemma 4.3. MultiCut with Undeletable Terminals on chordal graphs is W[1]-hard
when parameterized by leafage ℓ and assuming the ETH, does not admit an algorithm running
in time f(ℓ) · no(ℓ) for any computable function f .

The remainder of this section is devoted to the proof of the following lemma, which
together with Lemma 4.3 proves Theorem 1.2.

Lemma 4.4. MultiCut with Undeletable Terminals on chordal graph of leafage at
most ℓ admits an XP-algorithm running in time nO(ℓ).

Proof. Let (G,P) be an instance of MultiCut with UnDel Term where G is a chordal
graph of leafage at most ℓ. Let (T,M) be a tree representation of G of leafage at most ℓ. We
say that a path in T is a maximal degree-2 path if it contains no branching nodes, except for
possibly the first and last node of the path, and it cannot be extended without violating this
property (that is, it is maximal). A P -multicut S of G is said to destroy an edge e ∈ E(T)
if ver(e) ⊆ S.

Let us root T at an arbitrary node r ∈ V (T). Since the number of leaves of T is at most
ℓ, T has at most 2ℓ− 2 maximal degree-2 paths, one starting at each each leaf or branching
node (except the root) and ending at the first ancestor in T which is a branching node.

Now for each maximal degree-2 path Q from α to β in T , guess the first (i.e., closest to
α) and last (i.e., closest to β) edge of Q, say eQ1 and eQ2 , respectively, such that S destroys
eQ1 and eQ2 . Note that, it might be the case that an optimal solution does not destroy an
edge of Q or only destroys one edge of Q (i.e., eQ1 = eQ2). Since the length of any maximal
degree-2 path is O(n), this creates at most (n+ 1)2ℓ branches.

In each such branch, let D ⊆ E(T) be the set of guessed edges of T . Pick VD = {ver(e) |
e ∈ D} in the solution and delete VD from G: let (G′, P ′) be the resulting instances and
further let T ′ be obtained from T by deleting the edges in D and set M′ = M|V (G′). Observe
that the tree representation of each connected component of G′ is given by some tree of
the forest T ′ together with M′ restricted to the vertices of the corresponding connected
component. Note that it is enough to solve the problem independently on each connected
component of G′.

Thus, without loss of generality, assume that G′ is connected and let (T ′,M′) be a tree
representation of G′ as defined above. Suppose that G′ has at least one terminal pair in P ′,

22

say (s, t) ∈ P ′ ⊆ P . If T ′ is a path, i.e., G′ is an interval graph, then the problem can be
solved in polynomial time [27, Theorem 5]. Otherwise, we ignore this branch.

The algorithm outputs a solution if there is at least one branch where a solution was
computed. Otherwise, there is no solution.

It is not difficult to see that the above algorithm indeed solves the problem, as it considers
all the possible ways a solution could intersect every maximal degree-2 path.

5 Multiway Cut with Undeletable Terminals on Chordal

Graphs

In this section, we consider the Multiway Cut with Undeletable Terminals problem
formally defined below. Given a graph G and a set P ⊆ V (G), a set S ⊆ V (G) \ P is a
called a P -multiway-cut in G if G− S has no (p, p′)-path for any two distinct p, p′ ∈ P .

Multiway Cut with Undeletable Terminals (MWC)
Input: An undirected graph G and a set P ⊆ V (G) of terminals.
Question: Find the size of a minimum P -multiway-cut in G.

The aim of this section is to prove Theorem 1.3 which states that Multiway Cut with
Undeletable Terminals can be solved in nO(1)-time on chordal graphs. Before turning to
the proof, we first start with a few definitions. Let (T,M) a tree representation of a chordal
graph G where T is rooted at an arbitrary node r ∈ V (T). Given a subtree T ′ of T and a set
Q ⊆ V (G), we let Q|T ′ ⊆ Q be the set of vertices x ∈ Q such that M(x) ⊆ V (T ′). Now let
Q ⊆ V (G) be an independent set of G such that for every leaf η of T , ver(η)∩Q 6= ∅. Then
the truncated tree w.r.t. Q is the tree T trunc

Q obtained from T as follows. Let {η1, . . . , ηq} be
the set of leaves of T . For each i ∈ [q], let Qi ⊆ Q\ver(r) be the set of vertices p ∈ Q\ver(r)
such that topM(p) is on the (ηi, r)-path in T , and let pi ∈ Qi be the vertex of Qi such that
topM(pi) is closest to r. Then T trunc

Q is obtained from T by deleting the subtrees rooted at
the children of the nodes in {topM(pi) | i ∈ [q]}. Note that, by construction, the set of leaves
of T trunc

Q is {topM(pi) | i ∈ [q]} and that, apart from the vertices in {pi | i ∈ [q]}, there is at
most one other vertex in Q whose model intersects V (T trunc

Q), namely the potential vertex in
Q ∩ ver(r) (note that if such a vertex exists, its model is in fact fully contained in T trunc

Q).
Finally, given a set P ⊆ V (G), a P -multiway-cut X in G is said to destroy an edge e ∈ E(T)
if ver(e) ⊆ X .

We now turn to the proof of Theorem 1.3. Throughout the remaining of this section,
we let (G,P) be an instance of MWC, where G is a n-vertex chordal graph, and further
let (T,M) be a tree representation of G. First, we may assume that P is an independent
set: indeed, if there exist p, p′ ∈ P such that pp′ ∈ E(G), then (G,P) is a No-instance.
Furthermore, if a vertex v ∈ V (G) does not belong to any (p, p′)-path in G, where p, p′ ∈ P ,
then it can be safely deleted as no minimal P -multiway-cut in G may contain v. Hence, we
assume that every vertex in G participates in some (p, p′)-path where p, p′ ∈ P ; in particular,

23

we may assume that for every leaf η of T , ver(η)∩P 6= ∅. Note that, consequently, for every
internal node α ∈ V (T), the truncation of Tα w.r.t. P|Tα

exists.
Now let T0 be the tree obtained by adding a new node r0 and connecting it to an arbitrary

node r ∈ V (T). Observe that (T0,M) is also a tree representation of G. In the following,
we root T0 at r0. To prove Theorem 1.3, we design a dynamic program that computes, in a
bottom-up traversal of T0, the entries of a table A whose content is defined as follows. The
table A is indexed over the edges of E(T0). For each node α ∈ V (T), A[α parentT0

(α)] stores
the size of a minimum P|Tα

-multiway-cut in G|Tα
. The size of a minimum P -multiway-cut in

G may then be found in A[rr0]. We describe below how to compute the entries of A.

Update Procedure. For every leaf η of T , we set A[η parentT0
(η)] = 0. Consider now an

internal node α of T . We show how to compute A[α parentT0
(α)] assuming that for every

edge e ∈ E(Tα), the entry A[e] is correctly filled.

Let T̃ be the truncation of Tα w.r.t. P|Tα
and let G̃ = G|T̃ . Denote by η1, . . . , ηq the

leaves of T̃ . Recall that, by construction, for every i ∈ [q], there exists pi ∈ P|Tα
such that

ηi = topM(pi): we let P̃ = {pi | i ∈ [q]}. Furthermore, it may be that P|Tα
∩ ver(r) is

nonempty: we let P̃r = P|Tα
∩ ver(r). Note that |P̃r| ≤ 1: if P̃r 6= ∅ then we refer to the

terminal in P̃r as the root terminal. Observe that V (G̃) ∩ P|Tα
= V (G̃) ∩ P = P̃ ∪ P̃r by

construction. To compute A[α parentT0
(α)], we distinguish two cases:

(1) if P̃r 6= ∅ then we construct a unique instance (H0, s, t, wt0) of (s, t)-Cut;
(2) otherwise, for every i ∈ [0, q], we construct an instance (Hi, s, t, wti) of (s, t)-Cut.

We describe below how such instances are constructed. First, recall that an instance of
the (s, t)-Cut problem consists of a digraph D, vertices s, t ∈ V (D), a weight function
wt : E(D) → N ∪ {∞}, and the goal is to find a set X ⊆ E(D) such that D − X has no
(s, t)-path and wt(X) is minimum with this property, where wt(X) =

∑
u∈X wt(u).

Construction of the (s, t)-Cut Instances. For every i ∈ [q], let us denote by P̃i =

P̃ \ {pi} and let P̃0 = P̃ . Consider i ∈ [0, q]. Before turning to the formal construction of
the instance (Hi, s, t, wti), let us first give an intuitive idea of the construction. The digraph

Hi is obtained from T̃ by orienting all edges of T̃ towards its root r̃ = α and further adding
vertices and weighted arcs to encode the graph G|Tα

. The arcs in Hi corresponding to the

edges of T̃ are called the tree arcs and the nodes in Hi corresponding to the nodes of T̃
are called the tree nodes. The idea is that we separate, for each terminal p ∈ P̃i, the node
topM(p) from the root r̃. To achieve this, we add a source node s and source arcs from s

to topM(p) (of infinite weight) and look for an (s, r̃)-cut in Hi. Since the edges of T can
presumably not be independently destroyed in a P -multiway-cut, we need some additional
vertices to encode these dependencies. For each vertex v ∈ V (G̃) \ P̃i, we introduce a node
γ(v) in Hi which is reachable via connection arcs (with infinite weight) from all the tree
nodes that are contained in the model of v. This node γ(v) is further connected via a sink
arc (of weight one) to topM(v) which ensures that if we want to cut a tree arc, we also

24

have to cut all the sink arcs associated to vertices containing the corresponding edge in their
model. The index i is then used to specify which root-to-leaf path of T̃ is uncut: if i = 0
then every such path is cut, otherwise the (ηi, r̃)-path is uncut. To encode the rest of the
solution, we associate with each tree arc (β, δ) a weight wti((β, δ)) corresponding to the size
of a minimum P|β-multiway-cut in G|β.

We proceed with the formal construction of Hi. The vertex set of Hi is V (Hi) = V (T̃)⊎

{s}⊎{Γ} where Γ = {γ(v) | v ∈ V (G̃)\ P̃}, that is, Γ contains a node of every non-terminal

vertex in G̃. For every z ∈ Γ, we denote by γ−1(z) the corresponding vertex in V (G̃) \ P̃ .
The arc set of Hi is partitioned into four sets:

• the set E
T̃
of tree arcs containing all the edges of T̃ oriented towards the root r̃,

• the set Ei
source

= {(s, topM(p)) | p ∈ P̃i} of source arcs,

• the set Econn = {(α, γ(v)) | γ(v) ∈ Γ, α ∈ M(v) ∩ V (T̃)} of connection arcs and

• the set Esink = {(γ(v), topM(v)) | v ∈ V (G̃) \ P̃} of sink arcs.

Furthermore, if P̃r 6= ∅, then we let Erterm ⊆ E
T̃
be the set of tree arcs (β, δ) ∈ E

T̃
such that

the edge βδ is contained in the model of the root terminal; otherwise, we let Erterm = ∅. The
weight function wti : E(Hi) → N∪ {∞} is defined as follows. For every j ∈ [q], let ρj be the

path in T̃ from ηj to r̃ and let −→ρj be the corresponding directed path in Hi (that is,
−→ρj is the

path in Hi from ηj to r̃ consisting only of tree arcs). Then for every arc e of Hi,

wti(e) =

A[e] if i = 0 and e ∈ E
T̃
\ Erterm

A[e] if i 6= 0, e ∈ ET̃ and e does not belong to the path −→ρi

1 if e ∈ Esink

∞ otherwise.

Note, in particular, that every arc in Erterm (if any) has infinite weight. Similarly, if i 6= 0,
then every arc of the path −→ρi has infinite weight. This completes the construction of the
instance (Hi, s, t = r̃, wti) (see Figure 3). It is easy to see that such an instance can be
constructed in O(n2)-time.

Now let X0 be an (s, r̃)-cut in H0 such that wt0(X0) is minimum; and if P̃r = ∅, then for
every i ∈ [q], further let Xi be an (s, r̃)-cut in Hi such that wti(Xi) is minimum. For each
i ∈ [q], let us denote by costi = A[ηi parentT0

(ηi)] and let cost0 = 0. Then we set

A[α parentT0
(α)] =

{
|X0| if P̃r 6= ∅

mini∈[0,q]{|Xi|+ costi} otherwise

In the following, for convenience, we let I = [0, q] if P̃r = ∅, and I = {0} otherwise. We next
show that the entry A[α parentT0

(α)] is updated correctly. To this end, we show that G|Tα

has a P|Tα
-multiway-cut of size at most k if and only if there exists i ∈ I such that Hi has

an (s, r̃)-cut of weight at most k − costi w.r.t. wti.

Lemma 5.1. For any i ∈ I, if Hi has an (s, r̃)-cut Y such that wti(Y) ≤ k − costi, then
G|Tα

has a P|Tα
-multiway-cut of size at most k.

25

η1 η2 η3

β1 β2

α = r̃

p1 p2 p3

u
w

v

(a) The tree representation (T̃ ,M
|V (G̃)

) of G̃

where V (G̃) = {p1, p2, p3, u, v, w} and P̃r =
∅.

η1 η2 η3

β1
β2

α = r̃

γ(u)
γ(v)

γ(w)

s

1
1

1

A[η1β1]

A[η3β2]

A[β2α]

(b) The instance (H2, s, r̃, wt2) (thick arcs
have infinite weight).

Figure 3: An illustration of the construction of the (s, t)-Cut instances.

Proof. Assume that there exists i ∈ I such that Hi has an (s, r̃)-cut Y where wti(Y) ≤
k − costi. For every j ∈ [q] \ {i}, let Aj be the set of tree arcs on the path −→ρj belonging to
Y (recall that −→ρj is the path in Hi from ηj to r̃ consisting only of tree arcs). Note that since
Y is an (s, r̃)-cut, Aj 6= ∅ for every j ∈ [q] \ {i}.

Claim 5.2. For every terminal j ∈ [q] \ {i}, there exists an arc (x, y) ∈ Aj such that for
every z ∈ N+

Hi
(x) \ (N−

Hi
(x) ∪ {y}), the sink arc with tail z belongs to Y .

Proof. Suppose for a contradiction that this does not hold for some index j ∈ [q] \ {i}, that
is, for every arc (x, y) ∈ Aj , there exists z ∈ N+

Hi
(x) \ (N−

Hi
(x) ∪ {y}) such that the sink arc

with tail z does not belong to Y . Let (x1, y1), . . . , (xa, ya) be the arcs of Aj ordered according
to their order of appearance when traversing the path −→ρj . We show that, in this case, there is
a path from s to r̃ in H−Y . For every b ∈ [a], denote by Zb ⊆ N+

Hi
(xb)\ (N

−
Hi
(xb)∪{yb}) the

set of vertices z such that the sink arc with tail z does not belong to Y . Let b1, . . . , bw ∈ [a]
be the longest sequence defined as follows:

• b1 ∈ [a] is the largest index such that Z1 ∩ Zb1 6= ∅ and
• for every l > 1, bl ∈ [a] is the largest index such that Zbl−1+1 ∩ Zbl 6= ∅.

For every l ∈ [w], consider a vertex zbl ∈ Zjl and let hbl ∈ N+
Hi
(zbl) be the head of the sink

arc with tail zbl . Then for every l ∈ [w − 1], hbl lies on the path −→ρj [ybl, xbl+1]: indeed, since
zbl /∈ Zbl+1 by the choice of bl, either zbl /∈ N+

Hi
(xbl+1) or zbl ∈ N+

Hi
(xbl+1) ∩ N−

H(xbl+1); but
zbl ∈ N+

Hi
(xbl) \N

−
Hi
(xbl) by construction, and so, hbl necessarily lies on −→ρj [ybl, xbl+1].

Now observe that, by maximality of the sequence, bw = a: indeed, if bw < a then the
sequence could be extended as Zbw+1 6= ∅ by assumption. Since zbw /∈ N−

Hi
(xbw), this implies,

in particular, that hbw lies on the path −→ρj [ybw , r̃]. It follows that

s−→ρj [ηj , x1]zb1
−→ρj [hb1 , xb1+1]zb2 . . . zbl

−→ρj [hbl , xbl+1]zbl+1
. . .−→ρj [hbw−1

, xbw−1+1]zbwL[hbw , r̃]

is a path from s to r̃ in H − Y , a contradiction which proves our claim. y

26

For every j ∈ [q] \ {i}, let ej = (xj , yj) ∈ Aj be the arc closest to r̃ such that for every
z ∈ N+

Hi
(xj) \ (N

−
Hi
(xj)∪{yj}), the sink arc with tail z belongs to Y (note that we may have

ej = ej′ for two distinct j, j′ ∈ [q] \ {i}). Denote by E = {ej | j ∈ [q] \ {i}} ∪ {e∗} where

e∗ = (ηi, parent(ηi)). For every e = (x, y) ∈ E, let P̃e ⊆ P̃i be the set of terminals in P̃i

which are also terminals in the instance restricted to Tx. Note that {Pe | e ∈ E \ {e∗}} is a

partition of P̃i: indeed, by construction, every p ∈ P̃i belongs to at least one such set and
if there exist e, e′ ∈ E \ {e∗} such that P̃e ∩ P̃e′ 6= ∅, then for any j ∈ [q] \ {i} such that
pj ∈ Pe ∩ Pe′, e, e

′ ∈ Aj ; in particular, both e and e′ lie on the path −→ρj , a contradiction to
the choice of the arc in Aj.

Now for every e = (x, y) ∈ E, let Se be a minimum P|Tx
-multiway-cut in G|Tx

and denote
by Ne = N+

Hi
(x) \ (N−

Hi
(x) ∪ {y}). We define

S = Se∗ ∪
⋃

e∈E\{e∗}

Se ∪ {γ−1(z) | z ∈ Ne}.

Claim 5.3. S is a P|Tα
-multiway-cut in G|Tα

.

Proof. Since for every e = (x, y) ∈ E, Se is a P|Tx
-multiway-cut in G|Tx

, it is in fact enough

to show that for every e, e′ ∈ E, p ∈ P̃e and p′ ∈ P̃e′, there is no path from p to p′ in G|Tα
−S.

Consider therefore j, j′ ∈ [q]\{i} such that pj ∈ P̃e and pj′ ∈ P̃e′ for two distinct e, e′ ∈ E.

Since, as shown above, {P̃f | f ∈ E \ {e∗}} is a partition of P̃i, pj′ /∈ P̃e and pj /∈ P̃e′; in
particular, e′ does not lie on the path −→ρj and e does not lie on the path −→ρj′ . It follows that
any path in G|Tα

from pj to pj′ contains at least one vertex x whose model contains the edge
corresponding to e; but then, γ(x) ∈ Ne and so, x ∈ S by construction. Thus, there is no
path from pj to pj′ in G|Tα

− S. y

Finally, note that, by construction,

|S| = |Se∗|+
∑

e∈E\{e∗}

|Se|+

∣∣∣∣∣∣

⋃

e∈E\{e∗}

{γ−1(z) | z ∈ Ne}

∣∣∣∣∣∣

= |Se∗|+
∑

e∈E\{e∗}

wti(e) +
∑

z∈
⋃

e∈E\{e∗} Ne

wti((z, topM(γ−1(z))))

≤ costi + wti(Y) ≤ k

which concludes the proof.

Lemma 5.4. If G|Tα
has a P|Tα

-multiway-cut X of size at most k, then there exists i ∈ I
such that Hi has an (s, r̃)-cut Y where wti(Y) ≤ k − costi.

Proof. Recall that for every j ∈ [q], ρj is the unique (ηj , r̃)-path in T̃ . To prove the lemma,
we first show the following.

27

Claim 5.5. If there exists i ∈ [q] such that G|Tα
has a P|Tα

-multiway-cut X of size at most
k where
(1) X does not destroy any edge of ρi and
(2) for every j ∈ [q] \ {i}, X destroys an edge of ρj,

then Hi has an (s, r̃)-cut Y such that wti(Y) ≤ k − costi.

Proof. Assume that such an index i ∈ [q] exists and let X be a P|Tα
-multiway-cut X of size

at most k satisfying item (1) and (2). Note that since X does not destroy any edge of ρi,

P̃r = ∅ for, otherwise, pi and the root terminal would be in the same connected component of
G|Tα

−X thereby contradicting the fact that X is a P|Tα
-multiway-cut. For every j ∈ [q]\{i},

let ej ∈ E(T̃) be the closest edge to ηj on ρj such that ver(ej) ⊆ X (note that the edges
e1, . . . , eq are not necessarily pairwise distinct). Denote by E = {ej | j ∈ [q] \ {i}}. We
construct an (s, r̃)-cut Y in Hi as follows: Y contains the tree arcs of Hi corresponding to
the edges in E and for each v ∈ X such that M(v) contains at least one edge of E (that is,
v ∈ ver(e) for some edge e ∈ E), we include in Y the sink arc (γ(v), topM(v)) of E(Hi).
Let us show that Y is indeed an (s, r̃)-cut in Hi.

For every j ∈ [q] \ {i}, let V j
− ⊆ V (T̃) (V j

+ ⊆ V (T̃), respectively) be the set of nodes of
the subpath of ρj from ηj to the tail of ej (the head of ej to r̃, respectively). We contend
that for every j ∈ [q] \ {i}, there is no (V j

−, V
j
+)-path in Hi−Y . Note that if true, this would

prove that Y is indeed an (s, r̃)-cut in Hi. For the sake of contradiction, suppose that, for
some j ∈ [q]\{i}, there is a path L in Hi−Y from a vertex x ∈ V j

− to a vertex y ∈ V j
+. Since

the tree arc in Hi corresponding ej belongs to Y , there must exist a vertex z ∈ V (L) such
that N−

Hi
(z)∩ V j

− ∩ V (L) 6= ∅ and N+
Hi
(z)∩ V j

+ ∩ V (L) 6= ∅; in particular, the sink arc e with
tail z must belong to L. By construction of Hi, it must then be that M(γ−1(z)) contains
the edge ej, that is, γ

−1(z) ∈ ver(ej); but then, γ
−1(z) ∈ X and so, e ∈ Y by construction,

a contradiction which proves our claim.
Let us finally show that wti(Y) ≤ k−costi. To this end, for every e ∈ E, let Xe ⊆ X be

the restriction of X to Tte where te is the endpoint of e the furthest from r̃ (note that for any
two distinct e, e′ ∈ E, Xe ∩ Xe′ = ∅). Then, for every e ∈ E, Xe is a P|Tte

-multiway-cut in
G|Tte

and so, wti(e) ≤ |Xe|. Similarly, the restriction Xi of X to Tηi is a P|Tηi
-multiway-cut

in G|Tηi
and so, |Xi| ≥ costi (note that, by construction, Xi ∩ Xe = ∅ for every e ∈ E).

Letting X ′ =
⋃

e∈E ver(e), it then follows from the definition of Y that

wti(Y) = |X ′|+
∑

e∈E

wti(e) ≤ |X ′|+
∑

e∈E

|Xe| ≤ |X| − |Xi| ≤ k − costi

as X ′ ∩Xi = ∅ and for every e ∈ E, X ′ ∩Xe = ∅. y

Using similar arguments, we can also prove the following.

Claim 5.6. If G|Tα
has a P|Tα

-multiway-cut X of size at most k such that for every i ∈ [q],
X destroys an edge of ρi, then H0 has an (s, r̃)-cut Y such that wti(Y) ≤ k.

28

To conclude the proof of Lemma 5.4, let us show that for any P|Tα
-multiway-cut S in

G|Tα
, S destroys an edge of every root-to-leaf path of T̃ , except for at most one when P̃r = ∅.

Note that if the claim is true, the lemma would then follow from Claims 5.5 and 5.6.
Let S be a P|Tα

-multiway-cut in G|Tα
. Observe first that if P̃r 6= ∅ then for every i ∈ [q], S

must destroy an edge of ρi for, otherwise, pi and the root terminal are in the same connected
component of G|Tα

−S, thereby contradicting the fact that S is a P|Tα
-multiway-cut. Assume

therefore that P̃r = ∅ and suppose, for the sake of contradiction, that there exist two distinct
indices i, j ∈ [q] such that S destroys no edge of ρi and no edge of ρj . Then for every
edge e of ρi ∪ ρj , ver(e) \ S 6= ∅: for each such edge e, let αe ∈ ver(e) \ S. It is now
not difficult to see that there is a path in G|Tα

− S from pi to pj using only vertices from
{αe | e is an edge of ρi ∪ ρj}, a contradiction to the fact that S be a P|Tα

-multiway-cut in
G|Tα

.

We now conclude by Lemmas 5.1 and 5.4, that A[α parentT0
(α)] indeed stores the size of

a minimum P|Tα
-multiway-cut in G|Tα

. Since the construction of each Hi takes polynomial-
time, an (s, t)-cut in Hi can be computed in polynomial time (see, for instance, [22]) and
the number of His is at most n, it takes plynomial-time to update A[α parentT0

(α)]. Finally,
since the number of edges of T is linear in n, the overall running time is polynomial in n,
which proves Theorem 1.3. We remark that a more careful analysis of the running time of
the algorithm leads to an upper bound of O(n4).

6 Restricting to Hℓ-induced-subgraph-free chordal graphs

In this section, we consider problems restricted to Hℓ-induced-subgraph-free chordal graphs.
Recall that Hℓ is the split graph on 2ℓ vertices such that if V (Hℓ) = C ⊎ I is a split partition
then (i) |C| = |I| = ℓ, (ii) every vertex in C is adjacent to exactly one vertex in I, and (iii)
every vertex in I is adjacent to exactly one vertex in C. As mentioned in the Introduction,
the class of Hℓ-induced-subgraph-free chordal graphs is a natural generalization of the class
of chordal graphs of leafage at most ℓ. In fact, denoting by Cℓ the collection of all chordal
graphs that have leafage at most ℓ and by Cis

ℓ the collection of all chordal graphs that do
not contain Hℓ as a induced subgraph (that is, the collection of Hℓ-induced-subgraph-free
chordal graphs), the following holds.

Observation 6.1. Cℓ (Cis
ℓ+1.

Let us briefly explain why Observation 6.1 holds true. Walter generalized the concept of
asteroidal triple in order to characterize other subclasses of chordal graphs [45] as follows.
A subset of nonadjacent vertices of G is an asteroidal set if the removal of the closed neigh-
borhood of any one of its elements does not disconnect the remaining ones. Formally, a set
of vertices A of a graph G is asteroidal if for each a ∈ A, the vertices in A \ {a} belong to a
common connected component of G−N [a]. The asteroidal number of G, denoted by at(G),
is then the size of a largest asteroidal set of G. Note that in the graph Hℓ+1, I is an asteroidal
set of size ℓ + 1 and thus, at(Hℓ+1) ≥ ℓ + 1. By definition, if H is a subgraph of G and H

29

is connected, then at(H) ≤ at(G). Lin et al. [37, Therorem 1] proved that for a connected
chordal graph G, at(G) ≤ lf(G). Hence, if lf(G) ≤ ℓ, then it cannot contain Hℓ+1 as an
induced subgraph. This implies that Cℓ ⊆ Cis

ℓ+1. To see that Cℓ is proper subset of Cis
ℓ+1,

consider a graph obtained from a star by subdividing every edge once. Then it is easy to
see that this graph does not containH3 as induced subgraph but can have unbounded leafage.

The remainder of this section is organized as follows. In Subsection 6.1, we argue that the
FPT algorithms for domination problems cannot be generalized to this larger graph class. We
complement this with an XP-algorithm, which is optimal under the ETH. In Subsection 6.2,
we present a simple algorithm to prove thatMultiCut with UnDel Term is paraNP-hard
on this graph class. This implies that the XP-algorithm presented in Section 4 cannot be
generalized for this larger class.

6.1 Dominating Set and related problems

In this subsection, we prove Theorem 1.4. We first show the hardness results of the theorem
and provide afterwards the XP-algorithms for the problems.

Lemma 6.2. Dominating Set, Connected Dominating Set and Steiner Tree on
Hℓ-induced-subgraph-free chordal graphs are W[1]-hard when parameterized by ℓ and assum-
ing the ETH, do not admit an algorithm running in time f(ℓ) · no(ℓ) for any computable
function f .

Proof. We present a parameter preserving reduction from Multicolored Independent
Set. An instance of this problem consists of a graph G, an integer q, and a partition
(V1, . . . , Vq) of V (G). The objective is to determine whether G has an independent set which
contains exactly one vertex from every part Vi. We assume, without loss of generality, that
each Vi is an independent set. We present a slight modification of a known reduction (see
[15, Theorem 13.9]).

Reduction. The reduction takes as input an instance (G, q, (V1, . . . , Vq)) of Multicol-
ored Independent Set and constructs a graph G′ as follows.

• For every vertex v ∈ V (G), the reduction introduces a vertex v into G′: we denote by
C the set of all these vertices in G′. Note that the sets Vi carry over directly to G′.

• The reduction turns the set C into a clique in G′ by adding edges between any two
distinct vertices of C.

• For every i ∈ [q], the reduction introduces two new vertices xi, yi into G′ and makes
them adjacent to every vertex of Vi.

• For every edge e = uv ∈ E(G) with endpoints u ∈ Vi and v ∈ Vj , the reduction
introduces a vertex we into G′ and makes it adjacent to every vertex of (Vi∪Vj)\{u, v}.

ForDomSet and connDomSet the reduction returns the instance (G′, q). For Steiner Tree,
it sets all the vertices in V (G′) \ C as terminals and returns the instance (G′, V (G′) \ C, q).

30

Correctness. In the following claim, we prove that the reduction produces equivalent
instances. We only prove the claim for DomSet; the correctness for the other two problems
follows immediately from the design of the graph G′.

Claim 6.3. (G, q, (V1, . . . , Vq)) is a Yes-instance for Multicolored Independent Set
if and only if (G′, q) is a Yes-instance for DomSet.

Proof. Assume that (G, q, (V1, . . . , Vq)) is aYes-instance forMulticolored Independent
Set and let I be an independent set I of G containing one vertex from each Vi. We claim
that I is a dominating set in G′. Since for every i ∈ [q], I ∩ Vi 6= ∅, the set I dominates
every vertex in Vi ∪ {xi, yi}. For an edge e = uv ∈ E(G) where u ∈ Vi and v ∈ Vj, consider
the vertex we. As u and v are adjacent, at least one of them is not in I, say u /∈ I without
loss of generality. Since I ∩ Vi 6= ∅, there must then exist w ∈ Vi \ {u} such that w ∈ I; but
we is adjacent to w by construction and thus, I dominates we.

Conversely, assume that (G′, q) is a Yes-instance for DomSet and let D be a dominating
set of size q in G′. We claim that D is also an independent set in G. Since for every i ∈ [q],
D dominates the vertices xi and yi, D has to contain at least one vertex from Vi ∪ {xi, yi};
and since xi and yi are not adjacent, in fact D must contain a vertex from Vi. As these sets
are disjoint for different values of i and |D| ≤ q, it follows that D contains exactly one vertex
from each Vi: let v1 ∈ V1, . . . , vq ∈ Vq be the vertices of D. Now suppose for a contradiction
that vi and vj are the endpoints of an edge e. By construction, vertex we in G′ is adjacent
only to (Vi ∪ Vj) \ {vi, vj} and hence, D does not dominate we, a contradiction. y

The following claim holds for all three problems as it only depends on the structure of
the graph G′.

Claim 6.4. G′ does not contain H2q+2 as an induced subgraph.

Proof. We first partition the vertex set of V (G′). For this, let I = V (G′) \ C. It is easy to
see that I is an independent set and since C is a clique in G′, G′ is in fact a split graph with
split partition (C, I). For each integer i ∈ [q], the vertices in I can be partitioned into the
following three sets depending on their adjacency in Vi.

1. Vertices that are adjacent to all vertices in Vi: these are the vertices xi, yi.
2. Vertices that are adjacent to all but one vertex in Vi: these are the vertices of type we

for edges e with one endpoint in Vi.
3. Vertices that are adjacent to no vertex in Vi: these are the vertices of type we for edges

e with both endpoints are outside Vi, and the vertices xi′ , yi′ where i 6= i′.
Recall that by assumption, Vi is an independent set in G and thus, there is no edge with
both endpoints in Vi.

Now suppose, for the sake of contradiction, that G′ contains H2q+2 as an induced sub-
graph. Consider the (unique) split partition (HC , HI) of H2q+2. Let HC = {v1, v2, . . . , v2q+2}
and HI = {u1, u2, . . . , u2q+2}. Moreover, for every i ∈ [2q + 2], edge viui is in E(H2q+2).
Consider the clique HC in G′. As I is an independent set, |HC ∩ I| ≤ 1. Hence, HC contains
at least 2q + 1 vertices of C. By the Pigeon-Hole principle, there must then exist an integer
i ∈ [q] such that |HC ∩ Vi| ≥ 3: let v1, v2, v3 be three vertices of HC ∩ Vi.

31

Since by construction, u1 is not adjacent to v2 and v3, and v2, v3 are in C, it must be
that u1 ∈ I. But then, u1 is adjacent to one vertex in Vi, namely v1, and nonadjacent to
two vertices in Vi, namely v2 and v3, a contradiction to the fact that vertices in I can be
partitioned into the three sets described above. Therefore, G does not contain H2q+2 as an
induced subgraph. y

It is known that, assuming the ETH, there is no algorithm that can solve Multicolored
Independent Set on instance (G, q, (V1, V2, . . . Vq)) in time f(q) · |V (G)|o(q) for any com-
putable function f (see, e.g., [15, Corollary 14.23]). Note finally, that |V (G′)| ∈ O(|V (G)|2)
and G′ is an H2q+2 induced-subgraph-free split graph. These facts, together with arguments
that are standard for parameter preserving reductions, concludes the proof of the lemma.

In the following, we give the XP-algorithms for the three problems. Instead of giving the
algorithm for DomSet, we give an algorithm for the more general Red-Blue-DomSet.
Recall that, from Lemma 3.1, there is a reduction from the former to the latter problem.
There remains to argue that this reduction preserves the property of being Hℓ-induced-
subgraph-free.

Lemma 6.5. There is a polynomial-time algorithm that given an instance (G, k) of DomSet
constructs an equivalent instance (G′, (R′, B′), k) of Red-Blue-DomSet such that if G is
a Hℓ-induced-subgraph-free graph, then so is G′.

Proof. As in Lemma 3.1, we construct G′ from G as follows. For every vertex v ∈ V (G), add
two copies vR and vB to V (G′) and add an edge vRvB to E(G′). For every edge uv ∈ E(G),
add edges vRuR, vRuB, vBuR, and vBuB to E(G′). This completes the construction of G′.
By the proof of Lemma 3.1, it is known that these two instances are equivalent. In the
following, we let R′ = {vR | v ∈ V (G)} and B′ = {vB | v ∈ V (G)}.

Now assume that G is Hℓ-induced-subgraph-free and suppose, for the sake of contra-
diction, that G′ contains Hℓ as an induced subgraph. Let I be the vertices forming the
independent set and C the vertices forming the clique of Hℓ. We claim that for no vertex
v ∈ V (G), we have that vB, vR ∈ C ∪ I. Note that if the claim holds, then using the original
version of each vertex would give an induced Hℓ in G and thus contradict our assumption.

There remains to prove the claim. To this end, consider v ∈ V (G). Since I is an
independent set, vB and vR cannot both be contained in I. Moreover, it can also not be the
case that vB ∈ I and vR ∈ C (or vice-versa) as then vB would also be adjacent to all vertices
in C. Hence, assume that vB, vR ∈ C. Assume, without loss of generality, that uB ∈ I is
the unique vertex adjacent to vB in C (the case where uR ∈ I is the unique adjacent vertex
is symmetric). Since there is an edge from vB to uB, we know that u and v are adjacent in
G. Hence, by construction, there must also be an edge from vR to uB which contradicts the
fact that we have an Hℓ graph.

We are now ready to show that Red-Blue-DomSet on chordal graphs admits an XP-
algorithm if the input graph does not contain Hℓ as induced subgraph.

32

Lemma 6.6. Red-Blue Dominating Set restricted to Hℓ-induced-subgraph-free chordal
graphs admits an algorithm running in time nO(ℓ).

Proof. Let (G, (R,B), k) be an instance of Red-Blue-DomSet where G is an Hℓ-induced-
subgraph-free chordal graph, and let (T,M) be a tree representation of G. First, we add
a node r to T by connecting it to an arbitrary node of T and root T at r (note that, by
construction, no model in M contains r). We use dynamic programming to compute the
entries of two tables T1 and T2 in a bottom-up traversal of T . The contents of T1 and T2

are defined as follows. For every node α ∈ V (T) and every nonempty set X ⊆ R∈
α of size at

most ℓ,

T1[α,X] := min{|S| | S ⊆ R∩
α, S ∩ R∈

α = X,N [S] ⊇ B∩
α}

Intuitively, this stores the (size of the) smallest set of red vertices containing X such that
all blue vertices in Tα are dominated.

For every node α ∈ V (T) and every set Y ⊆ R⊆†
α of size at most ℓ,

T2[α, Y] := min{|S| | S ⊆ R⊆†
α , N [S] ⊇ B⊆†

α ∪ (N(Y) ∩B∈
α)}

Intuitively, this stores the (size of the) smallest set of red vertices intersecting with Tα but
not α which dominate all blue vertices below α and the α-blues that are neighbors of the
red vertices in Y .

Initially, every entry of T1 and T2 is set to +∞. The output is Yes if and only if
T2[r, ∅] ≤ k. We next show how to update the entries of T1 and T2.

Updating the Leaves. Let α ∈ V (T) be a leaf of T . Then set

T2[α, ∅] = 0

and for every nonempty set X ⊆ R∈
α of size at most ℓ, set

T1[α,X] = |X|.

Updating Internal Nodes. Let α ∈ V (T) be an internal node of T and let β1, . . . , βp

be the children of α. To update the entries of T1[α, ·], we proceed as follows. Let X ⊆ R∈
α

be a nonempty set of size at most ℓ. Denote by I ⊆ [p] the set of indices i ∈ [p] such that
X ∩ R∈

βi
6= ∅ and set I = [p] \ I. For every i ∈ I, further let Xi = X ∩ R∈

βi
. We update

T1[α,X] according to the following procedure.

1. For every i ∈ I, set
mi = min

Z⊆R∈
βi
\R∈

α

s.t. |Z|+|Xi|≤ℓ

T1[βi, Z ∪Xi].

33

2. For every i ∈ I, let

Yi = {Z ⊆ R⊆†
βi

| |Z| ≤ ℓ and B∈
βi
\B∈

α ⊆ N(Z)}

and set
m1

i = min
Z⊆R∈

βi
\R∈

α

s.t. 1≤|Z|≤ℓ

T1[βi, Z] and m2
i = min

Z∈Yi

T2[βi, Z].

3. Set
T1[α,X] = |X|+

∑

i∈I

mi − |Xi|+
∑

i∈I

min{m1
i , m

2
i }.

To update the entries of T2[α, ·], we proceed as follows. Let Y ⊆ R⊆†
α be a set of size at

most ℓ. Denote by I ⊆ [p] the set of indices i ∈ [p] such that Y ∩R∩
βi
6= ∅ and set I = [p] \ I.

We update T2[α, Y] according to the following procedure.

1. Initialise OPTI = 0 and OPTI = +∞.
2. For every i ∈ I do:

2.a. Let
Yi = {Z ⊆ R⊆†

βi
| |Z| ≤ ℓ and B∈

βi
\B∈

α ⊆ N(Z)}

and set

m1
i = min

Z⊆R∈
βi
\R∈

α

s.t. 1≤|Z|≤ℓ

T1[βi, Z] and m2
i = min

Z∈Yi

T2[βi, Z].

2.b. Set OPTI = OPTI +min{m1
i , m

2
i }.

3. For every partition N = {Ni | i ∈ I} of N(Y) ∩ B∈
α where for every i ∈ I, Ni ⊆

N(Yi) ∩ B∈
α do:

3.a. Initialise IntN = 0.
3.b. For every i ∈ I do:

3.b.i. Let
YN

i = {Z ⊆ R⊆†
βi

| |Z| ≤ ℓ and Ni ∪ (B∈
βi
\B∈

α) ⊆ N(Z)}

and set
m1

i = min
Z⊆R∈

βi
\R∈

α

s.t. 1≤|Z|≤ℓ

T1[βi, Z] and m2
i = min

Z∈YN
i

T2[βi, Z].

3.b.ii. Set IntN = IntN +min{m1
i , m

2
i }.

3.c. Set OPTI = min{OPTI , IntN}.
4. Set T2[α, Y] = OPTI + OPTI .

We next show that the entries of T1[α, ·] and T2[α, ·] are updated correctly. To this
end, we first introduce some useful notation. Given a set X ⊆ B, a set S ⊆ R minimally
dominates X if X ⊆ N(S) and for every x ∈ S, X 6⊆ N(S \ {x}). Additionally, we prove
the following.

34

Claim 6.7. For every node α ∈ V (T), the following hold.
(i) For every minimum red-blue dominating set S of G, |S ∩ R∈

α| ≤ ℓ.
(ii) For every set X ⊆ B∈

α and every set Y ⊆ R \R∈
α minimally dominating X, |Y | ≤ ℓ.

Proof. To prove item (i), let S be a minimum red-blue dominating set of G. Since S is
minimum, for every x ∈ S ∩ R∈

α, there exists px ∈ N(x) ∩ B such that px /∈
⋃

y∈S\{x} N(y),

i.e., the blue vertex px is only dominated by x. Then {px | x ∈ S ∩ R∈
α} is an independent

set: indeed, if there exist x, y ∈ S ∩ R∈
α such that pxpy ∈ E(G) then x, px, py, y induces a

C4, a contradiction as G is chordal. It follows that (S ∩R∈
α) ∪ {px | x ∈ S ∩R∈

α} induces an
H|S∩R∈

α | and so, |S ∩ R∈
α| < ℓ.

To prove item (ii), letX ⊆ B∈
α and let Y ⊆ R\R∈

α be a set minimally dominatingX . Since
Y is minimal, for every x ∈ Y , there exists px ∈ N(x)∩X such that px /∈

⋃
y∈Y \{x} N(y), i.e.,

the blue vertex px is only dominated by x. This implies that Y is an independent set: indeed,
if there exist x, y ∈ Y such that xy ∈ E(G) then x, px, py, y induces a C4, a contradiction as
G is chordal. It follows that Y ∪ {px | x ∈ Y } induces an H|Y | and so, |Y | < ℓ. y

We now move towards proving the correctness of the update procedure. We start with
the first table.

Claim 6.8. For every internal node α ∈ V (T), the entries of T1[α, ·] are updated correctly.
Furthermore, T1[α, ·] can be updated in nO(ℓ)-time.

Proof. Let α ∈ V (T) be an internal node of T with children β1, . . . , βp and assume that for
every i ∈ [p], T1[βi, ·] and T2[βi, ·] have been correctly filled. Let us first show that for every
nonempty set X ⊆ R∈

α of size at most ℓ, there exists a set S ⊆ R∩
α of size T1[α,X] such that

S ∩ R∈
α = X and S dominates every vertex in B∈

α .
Consider a nonempty set X ⊆ R∈

α of size at most ℓ. Let I ⊆ [p] be the set of indices
i ∈ [p] such that X ∩ R∈

βi
6= ∅ and set I = [p] \ I. For every i ∈ I, further let Xi = X ∩ R∈

βi
.

For every i ∈ I, let mi be as defined in Step 6.1 and let Zi ⊆ R∈
βi
\ R∈

α be a set such that
|Zi|+ |Xi| ≤ ℓ and mi = T1[βi, Zi ∪Xi].

Then, since for every i ∈ I, T1[βi, ·] has been correctly filled, there exists a set Si ⊆ R∩
βi

of size T1[βi, Zi ∪ Xi] such that Si ∩ R∈
βi

= Zi ∪ Xi and Si dominates every vertex in B∩
βi
.

Similarly, for every i ∈ I, let m1
i and m2

i be as defined in Step 6.1. Further let I1 ⊆ I be the
set of indices i ∈ I such that min{m1

i , m
2
i } = m1

i and set I2 = I \ I1. For every i ∈ I1, let
Zi ⊆ R∈

βi
\ R∈

α be a set such that 1 ≤ |Zi| ≤ ℓ and m1
i = T1[βi, Zi]; and for every i ∈ I2, let

Zi ⊆ R⊆†
βi

be a set of size at most ℓ such that B∈
βi
\B∈

α ⊆ N(Zi) and m2
i = T2[βi, Zi].

Then, since for every i ∈ I1, T1[βi, ·] has been correctly filled, there exists a set Si ⊆ R∩
βi

of size T1[βi, Zi] such that Si∩R∈
βi
= Zi∪Xi and Si dominates every vertex in B∩

βi
; similarly,

since for every i ∈ I2, T2[βi, ·] has been correctly filled, there exists a set Si ⊆ R∩
βi
\ R∈

βi
of

size T2[βi, Zi] such that Si dominates every vertex in B⊆†
βi

∪ (N(Zi) ∩B∈
βi
).

We contend that the set M = X ∪
⋃

i∈[p] Si is the desired S. Indeed, observe first that,

by the update step, T1[α,X] = |X| +
∑

i∈I |Si| − |Xi| +
∑

i∈I |Si| = |M |. Let us next show
that M ∩R∈

α = X . Since for every i ∈ I, T1[βi, ·] is correctly filled, Si ∩R∈
βi
= Xi ∪Zi where

35

Zi ⊆ R∈
βi
\R∈

α by construction; similarly, for every i ∈ I1, Si ∩ R∈
βi

= Zi where Zi ∩ R∈
α = ∅

since Zi ⊆ R⊆†
βi

by definition. Now by construction, for every i ∈ I2, Si ∩ R∈
α = ∅ since

Si ⊆ R⊆†
βi
; thus, M ∩ R∈

α =
⋃

i∈I Xi = X as claimed.
Let us finally show that M dominates every vertex in B∩

α . First observe that since X 6= ∅,
every vertex in B∈

α is dominated by M . Consider therefore a vertex x ∈ B⊆†
α . Then there

exists i ∈ [p] such that x ∈ B∩
βi
. If i ∈ I then x is dominated by Si by definition; similarly,

if i ∈ I1 then x is dominated by Si by definition. Thus, suppose that i ∈ I2. Then either
x ∈ B⊆†

βi
in which case x is dominated by Si by definition; or x ∈ B∈

βi
and since x /∈ B∈

α

by assumption, x ∈ N(Zi) by construction and thus, x is dominated by Si by definition.
Therefore, M dominates every vertex in B∩

α and so, M is indeed the desired S.
Consider now a minimum red-blue dominating set S of G such that S∩R∈

α 6= ∅. Then by
Claim 6.7(i), |S∩R∈

α| ≤ ℓ. Let us show that |S∩R∩
α| ≥ T1[α, S∩R∈

α]. Denote by X = S∩R∈
α

and for every i ∈ [p], let Si = S ∩ R∩
βi
. Further let I ⊆ [p] be the set of indices i ∈ [p] such

that Si ∩ R∈
βi

6= ∅ and set I = [p] \ I. By Claim 6.7(i), for every i ∈ I, |Si ∩ R∈
βi
| ≤ ℓ and

since T1[βi, ·] has been correctly filled, |Si| ≥ T1[βi, Si ∩R∈
βi
]. Now consider i ∈ I. Since S is

dominating and Si ∩R∈
βi
= ∅, every vertex in B∈

βi
\B∈

α must be dominated by some vertex in

S ∩R⊆†
βi
: let S∗

i ⊆ S ∩R⊆†
βi

be a set minimally dominating B∈
βi
\B∈

α . Then by Claim 6.7(ii),
|S∗

i | ≤ ℓ and since T2[βi, ·] has been correctly filled, |Si| ≥ T2[βi, S
∗
i]. Thus, we conclude by

the update step and the above that

T1[α,X] ≤ |X|+
∑

i∈I

T1[βi, Si ∩ R∈
βi
]− |Si ∩X|+

∑

i∈I

T2[βi, S
∗
i]

≤ |X|+
∑

i∈I

|Si| − |Si ∩X|+
∑

i∈I

|Si| = |S ∩ R∩
α|

as claimed. Now by observing that S∩R∩
α is a minimum-sized set dominating every vertex in

B∩
α and whose intersection with R∈

α is X (S would otherwise not be minimum), we conclude
by the above that T1[α, ·] is updated correctly.

Finally, it is not difficult to see that it takes nO(ℓ)-time to update one entry of T1[α, ·]
and since there are nO(ℓ) entries, the claim follows. y

We next show the correctness of the update procedure for the second table.

Claim 6.9. For every internal node α ∈ V (T), the entries of T2[α, ·] are updated correctly.
Furthermore, T2[α, ·] can be updated in nO(ℓ)-time.

Proof. Let α ∈ V (T) be an internal node of T with children β1, . . . , βp and assume that for
every i ∈ [p], T1[βi, ·] and T2[βi, ·] have been correctly filled. Let us first show that for every
set Y ⊆ R⊆†

α of size at most ℓ, there exists a set S of size T2[α, Y] such that S dominated
every vertex in B⊆†

α ∪ (N(Y) ∩B∈
α).

Consider a set Y ⊆ R⊆†
α of size at most ℓ. Let I ⊆ [p] be the set of indices i ∈ [p] such

that Y ∩ R∩
βi

6= ∅ and set I = [p] \ I. For every i ∈ I, let Yi, m
1
i and m2

i be as defined in

Step 6.1. Further let I1 ⊆ I be the set of indices i ∈ I such that min{m1
i , m

2
i } = m1

i and set

36

I2 = I \ I1. Let N = {Ni | i ∈ I} be a partition of N(Y) ∩ B∈
α as considered in Step 6.1

such that the final value of IntN is minimum among all such final values taken over every
partition of N(Y)∩B∈

α as considered in Step 6.1. For every i ∈ I, let YN
i , m1

i and m2
i be as

defined in Step 6.1. Let I1 ⊆ I be the set of indices i ∈ I such that min{m1
i , m

2
i } = m1

i and
set I2 = I \ I1.

For every i ∈ I1 ∪ I1, let Zi ⊆ R∈
βi
\ R∈

α be a nonempty set of size at most ℓ such that

m1
i = T1[βi, Zi]. Then, since for every i ∈ I1 ∪ I1, T1[βi, ·] has been correctly updated, there

exists a set Si ⊆ R∩
βi

of size T1[βi, Zi] such that Si ∩R∈
βi
= Zi and Si dominates every vertex

in B∩
βi
.

Now for every i ∈ I2, let Zi ∈ Yi be a set of size at most ℓ such that m2
i = T2[βi, Zi];

similarly, for every i ∈ YN
i , let Zi ∈ YN

i be a set of size at most ℓ such that m2
i = T2[βi, Zi].

Then, since for every i ∈ I2∪I2, T2[βi, ·] has been correctly filled, there exists a set Si ⊆ R⊆†
βi

of size T2[βi, Zi] such that Si dominates every vertex in B⊆†
βi

∪ (N(Zi) ∩B∈
βi
).

We contend that the set M =
⋃

i∈I Si is the desired S. Indeed, observe first that,
by the update step, T2[α, Y] =

∑
i∈I |Si| +

∑
i∈I |Si| = |M |. Now consider a vertex x ∈

B⊆†
α ∪ (N(Y) ∩ B∈

α) and let us show that x is dominated by M .
Suppose first that x /∈ B∈

α . Then there exists i ∈ I such that x ∈ B∩
βi
. If i ∈ I1 ∪ I1

then x is dominated by Si by definition. Suppose therefore that i ∈ I2 ∪ I2. If x ∈ B⊆†
βi

then
x is dominated by Si by definition; otherwise, x ∈ B∈

βi
and since x /∈ B∈

α by assumption,
x ∈ N(Zi) by construction and so, x is dominated by Si by definition.

Suppose second that x ∈ N(Y)∩B∈
α . Then there exists i ∈ I such that x ∈ Ni. If i ∈ I1

then x is dominated by Si by definition. Suppose therefore that i ∈ I2. If x ∈ B⊆†
βi

then x is
dominated by Si by definition; otherwise, x ∈ B∈

βi
and since x ∈ Ni ⊆ N(Zi) by construction,

x is dominated by Si by definition. Therefore, M dominates every vertex B⊆†
α ∪ (N(Y)∩B∈

α)
and so, M is indeed the desired S.

Consider now a minimum red-blue dominating set S of G such that S ∩ R∈
α = ∅ and

let Y ⊆ S ∩ R⊆†
α be a set minimally dominating N(S ∩ R⊆†

α) ∩ B∈
α . Then by Claim 6.7(ii),

|Y | ≤ ℓ. Let us show that |S ∩ R⊆†
α | ≥ T2[α, Y]. For every i ∈ [p], let Si = S ∩R∩

βi
. Further

let I ⊆ [p] be the set of indices i ∈ [p] such that Y ∩ R∩
βi

6= ∅ and set I = [p] \ I. By
construction, for every x ∈ N(Y) ∩ B∈

α , there exists i ∈ I such that x ∈ N(Y ∩ R∩
βi
): let

N = {Ni | i ∈ I} be a partition of N(Y) ∩B∈
α where for every i ∈ I, Ni ⊆ N(Y ∩R∩

βi
).

Let I1 ⊆ I be the set of indices i ∈ I such that Si ∩ R∈
βi

6= ∅ and set I2 = I \ I1. Then
for every i ∈ I1, |Si ∩ R∈

βi
| ≤ ℓ by Claim 6.7(i) and since T1[βi, ·] has been correctly filled,

|Si| ≥ T1[βi, Si ∩ R∈
βi
]. Now for every i ∈ I2, let Zi ⊆ R⊆†

βi
be a set minimally dominating

Ni ∪ (B∈
βi
\B∈

α). Then for every i ∈ I2, |Zi| ≤ ℓ by Claim 6.7(ii) (note indeed that Ni ⊆ B∈
βi
)

and since T2[βi, ·] has been correctly filled, |Si| ≥ T2[βi, Zi].
Similarly, let I1 ⊆ I be the set of indices i ∈ I such that Si ∩R∈

βi
6= ∅ and set I2 = I \ I2.

Then for every i ∈ I1, |Si ∩ R∈
βi
| ≤ ℓ by Claim 6.7(i) and since T1[βi, ·] has been correctly

filled, |Si| ≥ T1[βi, Si ∩ R∈
βi
]. Now for every i ∈ I2, let Zi ⊆ R⊆†

βi
be a set minimally

dominating B∈
βi
\B∈

α . Then for every i ∈ I2, |Zi| ≤ ℓ by Claim 6.7(ii) and since T2[βi, ·] has
been correctly filled, |Si| ≥ T2[βi, Zi]. Thus, we conclude by the update step and the above

37

that

T2[α, Y] ≤
∑

i∈I1∪I1

T1[βi, Si ∩ R∈
βi
] +

∑

i∈I2∪I2

T2[βi, Zi]

≤
∑

i∈I

|Si| = |S ∩ R⊆†
α |

as claimed. Now by observing that S ∩R⊆†
α is a minimum-sized set dominating every vertex

in B⊆†
α ∪ (N(S ∩R⊆†

α)∩B∈
α) (S would otherwise not be minimum), we conclude by the above

that T2[α, ·] is updated correctly.
Finally, it is not difficult to see that Step 6.1 can be done in nO(ℓ)-time and that, similarly,

for a fixed partition, Steps 6.1–6.1 can be done in nO(ℓ)-time. Now observe that |I| ≤ ℓ since
|Y | ≤ ℓ and thus, there are at most nO(ℓ) partitions to consider in Step 6.1. y

The lemma now follows from Claims 6.8 and 6.9.

6.2 MultiCut with Undeletable Terminals

We present a simple reduction from Vertex Cover to Multicut with UnDel Term to
prove Theorem 1.5. Consider an instance (G, q) of Vertex Cover where G has n vertices.
Let G′ be a graph obtained from a star with center r and n + 1 leaves by subdividing each
of its edge once. Fix an injective mapping f : V (G) 7→ V (G′) such that f(v) is a leaf for
every v ∈ V (G). Let w be the unique leaf which is not in the range of f . Then, the set of
terminal pairs P is defined as follows: P = {(f(u), f(v) | uv ∈ E(G)} ∪ {(r, w)}. It is easy
to see that (G, q) is a yes-instance of Vertex Cover if and only if (G′,P, q) has a multicut
of size at most q. As G′ is acyclic, it is H3-induced free.

7 Other domination-related problems

The aim of this section is to complete the proofs of Theorem 1.1 and Theorem 1.4. More
precisely, we show that Connected Red-Blue-DomSet and Steiner Tree are FPT
parameterized by leafage and admit a nO(ℓ)-algorithm on Hℓ-induced-subgraph-free chordal
graphs. The two problems are considered in two separate subsections.

7.1 Connected Red-Blue Dominating Set

In this subsection, we aim to prove that Connected Dominating Set is FPT param-
eterized by the leafage and admits a nO(ℓ)-algorithm on Hℓ-induced-subgraph-free chordal
graphs. Formally, we prove the following.

Lemma 7.1. Connected Red-Blue Dominating Set is FPT parameterized by the
leafage and admits nO(ℓ)-algorithm on Hℓ-induced-subgraph-free chordal graphs.

38

To obtain these results, we reduce in both cases to Red-Blue-DomSet and use the
algorithms from Section 3 and Theorem 1.4, respectively. We describe below the reduction
and show thereafter that both parameters are preserved. We first start with some useful
terminology.

A tree representation (T,M) of a graph G is minimal if for every edge αβ ∈ E(T), the
sets {x ∈ V (G) |α ∈ M(x)} and {x ∈ V (G) | β ∈ M(x)} are inclusion-wise incomparable.
A tree representation can easily be made minimal by contracting each edge αβ ∈ E(T) for
which the sets {x ∈ V (G) |α ∈ M(x)} and {x ∈ V (G) | β ∈ M(x)} are inclusion-wise
comparable. Note that this operation does not increase the number of leaves of the tree
representation.

Reduction. Let (G, (RG, BG), k) be an instance of Connected Red-Blue-DomSet
and let (T,M) be a minimal tree representation of G with lf(G) leaves. We construct an
instance (H, (RH , BH), k) of Red-Blue-DomSet as follows. More precisely, we construct
a tree representation (TH ,MH) for H by modifying (T,M).

A node α ∈ V (T) is called a red node if α /∈
⋃

x∈B M(x), that is, α is contained only in
models of red vertices.

Let TB be the forest obtained by removing every red node in T and let TB be the
smallest connected subtree of T containing TB. We further reduce TB according to the
following procedure.

• For each leaf α of TB do:
– Let β ∈ V (TB) be the neighbor of α.
– If {x ∈ BG | α ∈ M(x)} ⊆ {x ∈ BG | β ∈ M(x)}, then set TB = TB/αβ.

Once the above procedure has been applied to TB, we subdivide each edge of TB and let TH

be the resulting tree. We now define the vertices and edges of H as follows.
• For each node α ∈ V (TH), we add a blue vertex x to BH with model MH(x) = {α}.
• For each red vertex x ∈ RG such that M(x) ∩ V (TB) 6= ∅, we add a red vertex rx to
RH whose model MH(rx) in TH corresponds to the subdivision of M(x) ∩ V (TB).

We next show that these two instances are equivalent.

Lemma 7.2. If (G, (RG, RB), k) is a Yes-instance for Connected Red-Blue-DomSet
then (H, (RH , BH), k) is a Yes-instance for Red-Blue-DomSet.

Proof. Let DG ⊆ RG be a connected red-blue dominating set of G of size at most k and let
DH = {rx ∈ RH | x ∈ DG and M(x) ∩ V (TB) 6= ∅}. We contend that DH is a red-blue
dominating set of H .

Indeed, consider a blue vertex x ∈ BH . By construction, there exists a node α ∈ V (TH)
such that MH(x) = {α}. If α corresponds to a node or an edge of TB−V (TB) then, since DG

is connected, there exists y ∈ DG such that M(y) contains the node or edge corresponding
to α; but then, ry ∈ DH by construction and so, x is dominated. We conclude similarly if α
corresponds to an edge between V (TB) \ V (TB) and V (TB).

39

Assume therefore that α corresponds to a node or an edge of TB. Suppose first that α
is a leaf of TB and let β be the neighbor of α in TB. Then by construction, {x ∈ BG |
α ∈ M(x)} \ {x ∈ BG | β ∈ M(x)} 6= ∅ and so, there exists y ∈ DG such that α ∈ M(y)
since DG is dominating; but then, ry ∈ DH by construction and so, x is dominated. Suppose
finally that α corresponds to an edge or an internal node of TB. Since DG is dominating and
connected, there then exists y ∈ DG such that α ∈ M(y); but then, ry ∈ DH by construction
and so, x is dominated. Therefore, DH is a red-blue dominating set of H and since |DH | ≤ k,
we conclude that (H, (RH , BH), k) is a Yes-instance for Red-Blue-DomSet.

Lemma 7.3. If (H, (RH , BH), k) is a Yes-instance for Red-Blue-DomSet, then (G, (RG,
RB), k) is a Yes-instance Connected Red-Blue-DomSet.

Proof. Let DH ⊆ RH be a red-blue dominating set of H of size at most k and let DG = {x ∈
RG | rx ∈ DH}. We contend that DG is a connected red-blue dominating set of G. Indeed,
consider a blue vertex x ∈ BG. Then by construction, there exists a node α ∈ V (TB)
such that α ∈ M(x). Since DH is dominating, there then exists a vertex ry ∈ DH such
that the node in TH corresponding to α is contained in MH(ry); but then, x is dominated
since y ∈ DG and α ∈ M(y) by construction. Now to see that DG is connected, observe
that if it weren’t the case, there would exist an edge αβ ∈ E(TB) such that no model in
{M(y) | y ∈ DG} contains the edge αβ; but then, the vertex in TH corresponding to the edge
αβ wouldn’t be dominated by DH , a contradiction. Therefore, DG is a connected red-blue
dominating set of G as claimed and |DG| ≤ k.

Finally, let us show that both parameters are preserved in the above reduction. First,
it is not difficult to see that the leafage of H is at most that of G since the number of
leaves of TH is at most the number of leaves of T . Assume second that G is Hℓ-induced-
subgraph-free for some ℓ ≥ 3, and suppose for a contradiction that H contains an induced
Hℓ. Let v1, u1, . . . , vℓ, uℓ ∈ V (H) be 2ℓ such that H [{viui | i ∈ [ℓ]}] is isomorphic to Hℓ

where {vi | i ∈ [ℓ]} is a clique and for every i ∈ [ℓ], uivi ∈ E(H). Note that since BH is an
independent set of H and every vertex in BH is simplicial in H , {vi | i ∈ [ℓ]} ∩ BH = ∅; in
particular, {vi | i ∈ [ℓ]} ⊆ RH ⊆ RG. Now for every i ∈ [ℓ], let αi be a node of TH defined
as follows:

• if there is a node in MH(ui) ∩MH(vi) which correspond to a node in T , then let αi

be any such node.
• otherwise, MH(ui) ∩MH(vi) contains only one node (namely, a node corresponding
to an edge of T), in which case we let αi ∈ MH(vi) be the neighbor in MH(vi) of the
node in MH(ui) ∩MH(vi).

Note that, by construction, for every i ∈ [ℓ], αi corresponds to a node of T which is,
furthermore, contained in M(vi). We contend that for every i ∈ [ℓ], there exists xi ∈
V (G) \ {vj | j ∈ [ℓ]} such that xivi ∈ E(G) and xi is nonadjacent to {vj | j ∈ [ℓ] \ {i}}
in G, that is, {vi, xi | i ∈ [ℓ]} induces an Hℓ in G. If true, this would contradict the fact
that G is Hℓ-induced-subgraph-free and thus conclude the proof. Let i ∈ [ℓ] and consider
a node α ∈

⋂
j∈[ℓ]M(vj) (note that since subtrees in a tree satisfy the Helly property, this

40

intersection is nonempty). Further let β ∈ V (T) be the neighbor of αi on the path in T from
αi to α. Then since T is minimal, I = {x ∈ V (G) | αi ∈ M(x)}\{x ∈ V (G) | β ∈ M(x)} 6= ∅;
and since αi, β ∈ M(vi), vi /∈ I. Thus, we may set xi = x where x ∈ I.

7.2 Steiner Tree

The aim of this section is to prove that Steiner Tree is FPT parameterized by the leafage
and admits an nO(ℓ)-algorithm on Hℓ-induced-subgraph-free chordal graphs. To obtain these
results, we give two parameter preserving reductions to Red-Blue-DomSet. We first
present a general reduction rule for Steiner Tree instances.

Reduction Rule 7.4. Let (G, T , k) be an instance of Steiner Tree. If G[T] has a
connected component C of size greater than 1, then return the instance (G/V (C), (T \V (C))∪
{vC}, k − |V (C)|+ 1) where vC is the vertex resulting from the contraction of C in G.

Lemma 7.5. Reduction Rule 7.4 is safe. Furthermore, the leafage of G/V (C) is at most
that of G.

Proof. Suppose that such a connected component C exists. Assume first that (G, T , k) is a
Yes-instance for Steiner Tree and let S be a solution for (G, T , k) such that the number
of connected component in S[V (C)] is minimum amongst all solutions for (G, T , k). We
claim that S[V (C)] has only one connected component. Indeed, suppose to the contrary
that S[V (C)] has at least two connected components. Since C is connected, there exist two
connected components C1 and C2 of S[V (C)] such that C1 and C2 are adjacent, that is,
there is an edge xy ∈ E(G) where x ∈ V (C1) and y ∈ V (C2). Let L = z1 . . . zp be a shortest
path in S from C1 to C2. Then the tree S ′ = S − {z1z2} + {xy} is a solution for (G, T , k)
such that S ′[V (C)] contains fewer connected component than S[V (C)], a contradiction to
the choice of S. Thus, S[V (C)] has only one connected component and it is easy to see that
S/V (C) is a solution for (G/V (C), (T \ V (C)) ∪ {vC}, k − |V (C)|+ 1).

Conversely, assume that (G/V (C), (T \ V (C))∪ {vC}, k− |V (C)|+ 1) is a Yes-instance
for Steiner Tree and let S be a solution. By construction, for every neighbor y of vC in
S, there exists x ∈ V (C) such that y ∈ N(x): for every y ∈ N(vC)∩ S, let xy ∈ V (C) be an
arbitrary vertex such that y ∈ N(xy). Set V = {xy | y ∈ N(vC) ∩ S} and for every x ∈ V ,
denote by Nx = {y ∈ N(vC) ∩ S | xy = x}. Now let x1, . . . , xp be an arbitrary ordering of
V and let y1, . . . , yq be an arbitrary ordering of V (C) \ V . Then the tree obtained from S
by removing the vertex vC to replace it with the path x1 . . . xpy1 . . . yq and adding the edges
{xiz | i ∈ [p] and z ∈ Nxi

} is readily seen to be a solution for (G, T , k).
Finally, let us remark that a tree representation for G/V (C) can be obtained from a

tree representation (T,M) of G by merging the models in {M(x) | x ∈ V (C)} into a single
model representing vC ; in particular, the leafage of G/V (C) is at most that of G.

Lemma 7.6. Let (G, T , k) be an instance of Steiner Tree and let (GR, TR, k) be the
instance resulting from an exhaustive application of Reduction Rule 7.4 to (G, T , k). If G is
Hℓ-induced-subgraph-free then GR is Hℓ+1-induced-subgraph-free.

41

Proof. Assume that G[T] contains at least one connected component of size greater than
1 (the lemma is trivial otherwise) and let C1, . . . , Cp be all such connected components of
G[T]. For every i ∈ [p], denote by vCi

∈ V (GR) the vertex resulting from the contraction of
Ci. Now assume that G is Hℓ-induced-subgraph-free and suppose for a contradiction that
GR contains an induced Hℓ+1. Let v1, u1, . . . , vℓ+1, uℓ+1 ∈ V (GR) be 2(ℓ+1) vertices inducing
an Hℓ+1 in GR where {vi | i ∈ [ℓ + 1]} is the clique and for every i ∈ [ℓ + 1], viui ∈ E(GR).
Since {vCi

| i ∈ [p]} is an independent set in GR, |{vi | i ∈ [ℓ+1]}∩{vCi
| i ∈ [p]}| ≤ 1: let us

assume without loss of generality that {vi | i ∈ [ℓ]}∩{vCi
| i ∈ [p]} = ∅. On the other hand, if

vCi
= uji for some i ∈ [p] and ji ∈ [ℓ], then, by construction, there exists xi ∈ V (Ci) such that

xivji ∈ E(G): let I ⊆ [p] be the set of such indices. Then X = {xi | i ∈ I}∪{ui | i ∈ [ℓ]\I} is
an independent set inG where each vertex inX has exactly one neighbor inK = {vi | i ∈ [ℓ]},
that is, K ∪X induces an Hℓ in G, a contradiction.

Lemma 7.7. Steiner Tree parameterized by the leafage is FPT.

Proof. As mentioned above, we reduce to Connected Red-Blue-DomSet: given an in-
stance (G, T , k) of Steiner Tree, we construct an instance (H, (R,B), kH) of Connected
Red-Blue-DomSet as follows. First, we assume that Reduction Rule 7.4 has been exhaus-
tively applied to (G, T , k). This implies, in particular, that T is an independent set of G.
Let us further assume that |T | > 1 (the problem is trivial otherwise). Now let G∗ be the
supergraph of G obtained by making each terminal simplicial, that is, for every t ∈ T , the
neighborhood NG(t) (= NG∗(t)) of t induces a clique in G∗. Observe that the leafage of
G∗ is at most that of G: indeed, a tree representation for G∗ can be obtained from a tree
representation (T,M) of G as follows. For every terminal t ∈ T , let αt ∈ V (T) be a node
of T contained the model M(t) of t. If there exists a neighbor x ∈ NG∗(t) such that M(x)
does not contain αt, then we extend M(x) by adding to it the path in T from αt to αx

where αx ∈ M(x) is the closest node to αt in T . By iterating this process and leaving all
the other models intact, we obtain a tree representation (T ∗,M∗) for G∗ where T ∗ has the
same number of leaves as T .

Reduction. We may now construct the graph (H, (R,B)): the set R = {rx | x ∈ V (G)}
of red vertices contains a copy of each vertex in V (G) and the set B = {bt | t ∈ T } of blue
vertices contains a copy of each terminal. The graph H [R] is then isomorphic to G∗ and for
every t ∈ T , bt is a true twin to rt. Finally, we set kH = k − |T |. We next show that the
instances (G, T , k) and (H, (R,B), kH) are equivalent.

Claim 7.8. If (G, T , k) is a Yes-instance for Steiner Tree, then (H, (R,B), kH) is a
Yes-instance for Connected Red-Blue-DomSet.

Proof. Assume that (G, T , k) is a Yes-instance for Steiner Tree and let S be a solution.
Note that since |T | > 1 by assumption, necessarily V (S) \ T 6= ∅. We contend that the set
D = {rx | x ∈ V (S) \ T } is a solution for (H, (R,B), kH). Indeed, it is clear that for every
t ∈ T , bt has a neighbor in D. To see that D is connected, observe that if a terminal t ∈ T
is not a leaf of S, then t has at least two neighbors in S; but the neighborhood of rt (and

42

bt) in R is clique in H and so, D is connected. Since |D| ≤ k − |T | = kH , we conclude that
D is indeed a solution for (H, (R,B), kH). y

Claim 7.9. If (H, (R,B), kH) is a Yes-instance for Connected Red-Blue-DomSet,
then (G, T , k) is a Yes-instance for Steiner Tree.

Proof. Assume that (H, (R,B), kH) is aYes-instance forConnected Red-Blue-DomSet
and let D be a minimal solution. We contend that the set S = {x | rx ∈ D} ∪ T contains
a solution for (G, T , k), that is, for every t, t′ ∈ T , there is a path from t to t′ in G[S].
Observe first that for every t ∈ T , rt /∈ D: indeed, if there exists t ∈ T such that rt ∈ D,
then surely rt has at least one neighbor in D since |B| = |T | > 1 and B is an independent
set in H ; but N [bt] = N [rt] and N [rt] is a clique and so, D \ {rt} is still a solution for
(H, (R,B), kH), a contradiction to the minimality of D. This implies, in particular, that
|S| = |D| + |T | ≤ kH + |T | = k. Now since D is dominating and connected, for every
terminal t, t′ ∈ T , there exists a path Pt,t′ in H [D ∪ {bt, bt′}] from bt to bt′ ; but then, it is
easy to see that the set {x ∈ V (G) | rx ∈ Pt,t′} ∪ {t′′ ∈ T | V (Pt,t′) ∩ N(rt′′) 6= ∅} ⊆ S
contains a path from t to t′. Therefore, S is a solution for (G, T , k). y

Observe finally that a tree representation for (H, (R,B)) can be obtained from the tree
representation (T ∗,M∗) of G∗ by adding a copy of M∗(t) for each terminal t ∈ T ; in
particular, the leafage of H is at most that of G∗ which concludes the proof.

Lemma 7.10. For every ℓ ≥ 3, Steiner Tree admits a nO(ℓ)-algorithm on Hℓ-induced-
subgraph-free chordal graphs.

Proof. As mentioned above, we reduce to Connected Red-Blue-DomSet: given an
instance (G, T , k) of Steiner Tree where G is an Hℓ-induced-subgraph-free chordal graph,
we construct an instance (H, (R,B), kH) of Connected Red-Blue-DomSet as follows.
First, we assume that Reduction Rule 7.4 has been exhaustively applied to (G, T , k). This
implies, in particular, that T is an independent set of G. Furthermore, by Lemma 7.6, G
is Hℓ+1-induced-subgraph-free. Now the set R = {rx | x ∈ V (G)} of red vertices contains a
copy of each vertex in V (G) and the set B = {bt | t ∈ T } of blue vertices contains a copy of
each terminal. The graph H [R] is then isomorphic to G and for every t ∈ T , bt is adjacent to
only rt. Furthermore, we set kH = k. Now it is not difficult to see that these two instances
are indeed equivalent: if S is a Steiner tree for T in G then {rx | x ∈ V (S)} is a connected
red-blue dominating set of H ; and conversely, if D is a connected red-blue dominating set
then for every t ∈ T , rt ∈ D and so, {x | rx ∈ D} contains a Steiner tree for T . Finally, it
is easily seen that H is Hℓ+2-induced-subgraph-free since {rt | t ∈ T } is also an independent
set in H and for every t ∈ T , NH(bt) = {rt} (recall that G is Hℓ+1-induced-subgraph-free
after the exhaustive application of Reduction Rule 7.4), which concludes the proof.

8 Conclusion

In this article, we presented improved and new results regarding domination and cut prob-
lems on chordal graphs with bounded leafage. We presented an FPT algorithm running

43

in time 2O(ℓ) · nO(1)-time for the Dominating Set problem on chordal graphs, and used
it to obtain similar results for the Connected Dominating Set and Steiner Tree
problems. Regarding cut problems, we proved that MultiCut with Undeletable Ter-
minals on chordal graphs is W[1]-hard when parameterized by the leafage. We also pre-
sented a polynomial-time algorithm for Multiway Cut with Undeletable Terminals
on chordal graphs. We find it surprising that the complexity of this problem was not known
before. Finally, we examined these problems on Hℓ-induced-subgraph-free chordal graphs to
check the extent of our approach.

In the case of chordal graphs, we believe the leafage to be a more natural parameter than
other popular parameters such as vertex cover, feedback vertex set or treewidth. It would be
interesting to examine the structural parameterized complexity of problems such as Longest
Cycle, Longest Path, Component Order Connectivity, s-Club Contraction,
Independent Set Reconfiguration, Bandwidth, or Cluster Vertex Deletion.
These problems are known to be NP-complete on split graphs and admit polynomial-time
algorithms on interval graphs. Hence it is plausible that they admit an FPT or XP algorithm
on chordal graphs parameterized by the leafage. We believe it is a representative list, though
not exhaustive, of problems that exhibit this behavior. In fact, it would be fascinating to find
a natural problem that does not exhibit this behavior, i.e., a problem that is NP-complete
on interval graphs but admits a polynomial-time algorithm on split graphs.

References

[1] Liliana Alcón. On asteroidal sets in chordal graphs. Discret. Appl. Math., 164:482–491,
2014. doi:10.1016/j.dam.2013.04.019.

[2] Vikraman Arvind, Roman Nedela, Ilia Ponomarenko, and Peter Zeman. Test-
ing isomorphism of chordal graphs of bounded leafage is fixed-parameter
tractable. CoRR, abs/2107.10689, 2021. URL: https://arxiv.org/abs/2107.10689,
arXiv:2107.10689.

[3] Hari Balakrishnan, Anand Rajaraman, and C. Pandu Rangan. Connected domina-
tion and steiner set on asteroidal triple-free graphs. In Frank K. H. A. Dehne, Jörg-
Rüdiger Sack, Nicola Santoro, and Sue Whitesides, editors, Algorithms and Data Struc-
tures, Third Workshop, WADS ’93, Montréal, Canada, August 11-13, 1993, Proceed-
ings, volume 709 of Lecture Notes in Computer Science, pages 131–141. Springer, 1993.
doi:10.1007/3-540-57155-8_242.

[4] Kathleen D. Barnetson, Andrea C. Burgess, Jessica A. Enright, Jared Howell, David A.
Pike, and Brady Ryan. The firebreak problem. Networks, 77(3):372–382, 2021.
doi:10.1002/net.21975.

[5] Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and

44

https://doi.org/10.1016/j.dam.2013.04.019
https://arxiv.org/abs/2107.10689
http://arxiv.org/abs/2107.10689
https://doi.org/10.1007/3-540-57155-8_242
https://doi.org/10.1002/net.21975

Florian Sikora. Token sliding on split graphs. Theory Comput. Syst., 65(4):662–686,
2021. doi:10.1007/s00224-020-09967-8.

[6] Benjamin Bergougnoux, Charis Papadopoulos, and Jan Arne Telle. Node multiway
cut and subset feedback vertex set on graphs of bounded mim-width. Algorithmica,
84(5):1385–1417, 2022. doi:10.1007/s00453-022-00936-w.

[7] Alan A. Bertossi. Dominating sets for split and bipartite graphs. Inf. Process. Lett.,
19(1):37–40, 1984.

[8] Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J.
Comput., 47(1):166–207, 2018. doi:10.1137/140961808.

[9] Peter Buneman. A characterisation of rigid circuit graphs. Discret. Math., 9(3):205–212,
1974.

[10] Yixin Cao. Linear recognition of almost interval graphs. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1096–1115.
SIAM, 2016. doi:10.1137/1.9781611974331.ch77.

[11] Maw-Shang Chang. Efficient algorithms for the domination problems on in-
terval and circular-arc graphs. SIAM J. Comput., 27(6):1671–1694, 1998.
doi:10.1137/S0097539792238431.

[12] Steven Chaplick and Juraj Stacho. The vertex leafage of chordal graphs. Discret. Appl.
Math., 168:14–25, 2014. doi:10.1016/j.dam.2012.12.006.

[13] Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algo-
rithms, 11(4):28:1–28:28, 2015. doi:10.1145/2700209.

[14] Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-
parameter tractability of directed multiway cut parameterized by the size of the cutset.
SIAM J. Comput., 42(4):1674–1696, 2013. doi:10.1137/12086217X.

[15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. doi:10.1007/978-3-319-21275-3.

[16] Celina M. H. de Figueiredo, Raul Lopes, Alexsander Andrade de Melo, and Ana
Silva. Parameterized algorithms for steiner tree and dominating set: Bounding the
leafage by the vertex leafage. In Petra Mutzel, Md. Saidur Rahman, and Slamin, ed-
itors, WALCOM: Algorithms and Computation - 16th International Conference and
Workshops, WALCOM 2022, Jember, Indonesia, March 24-26, 2022, Proceedings, vol-
ume 13174 of Lecture Notes in Computer Science, pages 251–262. Springer, 2022.
doi:10.1007/978-3-030-96731-4_21.

45

https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1007/s00453-022-00936-w
https://doi.org/10.1137/140961808
https://doi.org/10.1137/1.9781611974331.ch77
https://doi.org/10.1137/S0097539792238431
https://doi.org/10.1016/j.dam.2012.12.006
https://doi.org/10.1145/2700209
https://doi.org/10.1137/12086217X
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-96731-4_21

[17] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathe-
matics. Springer, 2012.

[18] P̊al Grøn̊as Drange, Markus S. Dregi, and Pim van ’t Hof. On the computational com-
plexity of vertex integrity and component order connectivity. Algorithmica, 76(4):1181–
1202, 2016. doi:10.1007/s00453-016-0127-x.

[19] Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the Tractabil-
ity of Optimization Problems on H-graphs. Algorithmica, 82(9):2432–2473, 2020.
doi:10.1007/s00453-020-00692-9.

[20] Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yngve
Villanger. Enumerating minimal subset feedback vertex sets. Algorithmica, 69(1):216–
231, 2014. doi:10.1007/s00453-012-9731-6.

[21] Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger. Exact (exponential) al-
gorithms for the dominating set problem. In Juraj Hromkovic, Manfred Nagl, and
Bernhard Westfechtel, editors, Graph-Theoretic Concepts in Computer Science, 30th
International Workshop,WG 2004, Bad Honnef, Germany, June 21-23, 2004, Revised
Papers, volume 3353 of Lecture Notes in Computer Science, pages 245–256. Springer,
2004. doi:10.1007/978-3-540-30559-0_21.

[22] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

[23] Fanica Gavril. The intersection graphs of subtrees in tree are exactly the chordal graphs.
Combinatorica, 1974.

[24] P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs
and of interval graphs. Canadian Journal of Mathematics, 16:539–548, 1964.
doi:10.4153/CJM-1964-055-5.

[25] Petr A. Golovach, Pinar Heggernes, Pim van ’t Hof, and Christophe Paul. Hadwiger
number of graphs with small chordality. SIAM J. Discret. Math., 29(3):1427–1451, 2015.
doi:10.1137/140975279.

[26] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2004.

[27] Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and Johannes Uhlmann.
Complexity and exact algorithms for vertex multicut in interval and bounded treewidth
graphs. Eur. J. Oper. Res., 186(2):542–553, 2008. doi:10.1016/j.ejor.2007.02.014.

[28] Michel Habib and Juraj Stacho. Polynomial-time algorithm for the leafage of chordal
graphs. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th An-
nual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings,
volume 5757 of Lecture Notes in Computer Science, pages 290–300. Springer, 2009.
doi:10.1007/978-3-642-04128-0_27.

46

https://doi.org/10.1007/s00453-016-0127-x
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/s00453-012-9731-6
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4153/CJM-1964-055-5
https://doi.org/10.1137/140975279
https://doi.org/10.1016/j.ejor.2007.02.014
https://doi.org/10.1007/978-3-642-04128-0_27

[29] Michel Habib and Juraj Stacho. Reduced clique graphs of chordal graphs. Eur. J.
Comb., 33(5):712–735, 2012. doi:10.1016/j.ejc.2011.09.031.

[30] Winfried Hochstättler, Johann L. Hurink, Bodo Manthey, Daniël Paulusma, Britta
Peis, and Georg Still. In memoriam walter kern. Discret. Appl. Math., 303:2–3, 2021.
doi:10.1016/j.dam.2021.08.034.

[31] Kyriaki Ioannidou, George B. Mertzios, and Stavros D. Nikolopoulos. The longest path
problem has a polynomial solution on interval graphs. Algorithmica, 61(2):320–341,
2011. doi:10.1007/s00453-010-9411-3.

[32] J. Mark Keil. Finding hamiltonian circuits in interval graphs. Inf. Process. Lett.,
20(4):201–206, 1985.

[33] Athanasios L. Konstantinidis and Charis Papadopoulos. Cluster deletion on in-
terval graphs and split related graphs. Algorithmica, 83(7):2018–2046, 2021.
doi:10.1007/s00453-021-00817-8.

[34] Dieter Kratsch. Finding the minimum bandwidth of an interval graphs. Inf. Comput.,
74(2):140–158, 1987. doi:10.1016/0890-5401(87)90028-9.

[35] Dieter Kratsch and Lorna Stewart. Approximating bandwidth by mixing
layouts of interval graphs. SIAM J. Discret. Math., 15(4):435–449, 2002.
doi:10.1137/S0895480199359624.

[36] C. Lekkeikerker and J. Boland. Representation of a finite graph by a set of in-
tervals on the real line. Fundamenta Mathematicae, 51(1):45–64, 1962. URL:
http://eudml.org/doc/213681.

[37] In-Jen Lin, Terry A. McKee, and Douglas B. West. The leafage of a chordal graph.
Discuss. Math. Graph Theory, 18(1):23–48, 1998. doi:10.7151/dmgt.1061.

[38] George S. Lueker and Kellogg S. Booth. A linear time algorithm for deciding interval
graph isomorphism. J. ACM, 26(2):183–195, 1979.

[39] Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci.,
351(3):394–406, 2006. doi:10.1016/j.tcs.2005.10.007.

[40] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut param-
eterized by the size of the cutset. SIAM J. Comput., 43(2):355–388, 2014.
doi:10.1137/110855247.

[41] Pranabendu Misra, Fahad Panolan, Ashutosh Rai, Saket Saurabh, and Roohani Sharma.
Quick separation in chordal and split graphs. In Javier Esparza and Daniel Král’,
editors, 45th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of

47

https://doi.org/10.1016/j.ejc.2011.09.031
https://doi.org/10.1016/j.dam.2021.08.034
https://doi.org/10.1007/s00453-010-9411-3
https://doi.org/10.1007/s00453-021-00817-8
https://doi.org/10.1016/0890-5401(87)90028-9
https://doi.org/10.1137/S0895480199359624
http://eudml.org/doc/213681
https://doi.org/10.7151/dmgt.1061
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1137/110855247

LIPIcs, pages 70:1–70:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.MFCS.2020.70.

[42] Charis Papadopoulos. Restricted vertex multicut on permutation graphs. Discret. Appl.
Math., 160(12):1791–1797, 2012. doi:10.1016/j.dam.2012.03.021.

[43] Charis Papadopoulos and Spyridon Tzimas. Polynomial-time algorithms for the subset
feedback vertex set problem on interval graphs and permutation graphs. Discret. Appl.
Math., 258:204–221, 2019. doi:10.1016/j.dam.2018.11.017.

[44] Charis Papadopoulos and Spyridon Tzimas. Computing a minimum subset feedback ver-
tex set on chordal graphs parameterized by leafage. In Cristina Bazgan and Henning Fer-
nau, editors, Combinatorial Algorithms - 33rd International Workshop, IWOCA 2022,
Trier, Germany, June 7-9, 2022, Proceedings, volume 13270 of Lecture Notes in Com-
puter Science, pages 466–479. Springer, 2022. doi:10.1007/978-3-031-06678-8_34.

[45] James Richard Walter. Representations of rigid cycle graphs. Wayne State University,
1972.

[46] Kevin White, Martin Farber, and William R. Pulleyblank. Steiner trees, con-
nected domination and strongly chordal graphs. Networks, 15(1):109–124, 1985.
doi:10.1002/net.3230150109.

48

https://doi.org/10.4230/LIPIcs.MFCS.2020.70
https://doi.org/10.1016/j.dam.2012.03.021
https://doi.org/10.1016/j.dam.2018.11.017
https://doi.org/10.1007/978-3-031-06678-8_34
https://doi.org/10.1002/net.3230150109

	1 Introduction
	2 Preliminaries
	3 Dominating Set
	3.1 Constructing Rest-Red-Blue-DomSet Instances
	3.2 Solving an instance of Rest-Red-Blue-DomSet

	4 Multicut with Undeletable Terminals
	5 Multiway Cut with Undeletable Terminals on Chordal Graphs
	6 Restricting to H-induced-subgraph-free chordal graphs
	6.1 Dominating Set and related problems
	6.2 MultiCut with Undeletable Terminals

	7 Other domination-related problems
	7.1 Connected Red-Blue Dominating Set
	7.2 Steiner Tree

	8 Conclusion

