
Subexponential Parameterized Directed Steiner Network

Problems on Planar Graphs: a Complete Classification

Esther Galby∗ Sándor Kisfaludi-Bak† Dániel Marx‡ Roohani Sharma§

Abstract

In the Directed Steiner Network problem, the input is a directed graph G, a set
T ⊆ V (G) of k terminals, and a demand graph D on T . The task is to find a subgraph
H ⊆ G with the minimum number of edges such that for every (s, t) ∈ E(D), the solution H
contains a directed s→ t path. The goal of this paper is to investigate how the complexity
of the problem depends on the demand pattern in planar graphs. Formally, if D is a class
of directed graphs closed under identification of vertices, then the D-Steiner Network
(D-SN) problem is the special case where the demand graph D is restricted to be from D.
For general graphs, Feldmann and Marx [14] characterized those families of demand graphs
where the problem is fixed-parameter tractable (FPT) parameterized by the number k of
terminals. They showed that if D is a superset of one of five hard families, then D-SN is
W[1]-hard parameterized by k, otherwise it can be solved in time f(k) · nO(1).

For planar graphs, besides the existence of an FPT algorithm, it is also an interest-
ing question whether the W[1]-hard cases can be solved by subexponential parameterized
algorithms. For example, Chitnis et al. [8] showed that, assuming the Exponential-Time Hy-
pothesis (ETH), there is no f(k)·no(k) time algorithm for the general D-Steiner Network
problem on planar graphs, but the special case called Strongly Connected Steiner Sub-

graph (where the demand graph D is a bidirected clique) can be solved in time f(k)·nO(
√
k)

on planar graphs. We present a far-reaching generalization and unification of these two re-
sults: we give a complete characterization of the behavior of every D-SN problem on planar
graphs. We classify every class D closed under identification of vertices into three cases:
assuming ETH, either the problem is

1. solvable in time 2O(k) · nO(1), i.e., FPT parameterized by the number k of terminals,
but not solvable in time 2o(k) · nO(1),

2. solvable in time f(k) · nO(
√
k), but cannot be solved in time f(k) · no(

√
k), or

3. solvable in time f(k) · nO(k), but cannot be solved in time f(k) · no(k).
We show that the FPT cases (Case 1) are the same as in the case of general graphs: D
needs to exclude the same five families of hard graphs. We further identify a finite number
of hard families that D needs to exclude if we want to solve D-SN on planar graphs in time

f(k) · nO(
√
k) (Case 2). As an important step of our lower bound proof, we discover that,

assuming ETH, D-SN on planar graphs has no f(k) · no(k) time algorithm where D is the
class of all directed bicliques. This corresponds to the following simple problem: given two
sets of terminals S and T with |S| + |T | = k, find a subgraph with minimum number of
edges such that every vertex of T is reachable from every vertex of S. Our result gives a
rare example of a genuinely planar problem that cannot be solved in time f(k) · no(k).

∗CISPA Helmholtz Center for Information Security, Germany. esther.galby@cispa.de
†Department of Computer Science, Aalto University, Espoo, Finland. sandor.kisfaludi-bak@aalto.fi
‡CISPA Helmholtz Center for Information Security, Germany. marx@cispa.de
§Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.

rsharma@mpi-inf.mpg.de

ar
X

iv
:2

20
8.

06
01

5v
1

 [
cs

.D
S]

 1
1

A
ug

 2
02

2

Contents

1 Introduction 1
1.1 Overview of our main result . 5
1.2 Details of Statement (iii): the f(k) · nO(

√
k) algorithm 8

2 Formal definition of a t-tough-pair 12

3 The structure theorem 13
3.1 A subexponential algorithm . 13
3.2 A tree of segments . 16
3.3 Region slicing . 18
3.4 Finding a t-tough pair . 20

4 Cleaning: Identifying to a t-hard-pattern 30
4.1 Simplifying the t-tough-pair . 33
4.2 Simplifying a biclique . 35

4.2.1 When Dcontr has a long path . 36
4.2.2 No long path in Dcontr . 39

4.3 Cleaning the ordered tough-pair . 41
4.3.1 Semi-cleaning . 41
4.3.2 From semi-cleaned ordered tough-pair to hard-pattern 48

4.4 Cleaning the induced-biclique with minimal edges 57

5 Hardness proofs and lower bounds 59
5.1 Finding a star . 59
5.2 Diamonds . 59
5.3 Hard patterns . 77

5.3.1 Hard matching patterns . 78
5.3.2 Hard biclique patterns . 81

2

1 Introduction

Finding Steiner trees and related network design problems were intensively studied in undirected
graphs, directed graphs, and planar graphs, from the viewpoint of approximation and param-
eterized algorithms [1–3, 5–8, 11–14, 16–18, 21, 22, 24, 27, 28, 30, 32, 33]. The simplest problem of
this type is Steiner Tree, where given a graph G and set T ⊆ V (G) of terminals, the task is to
find a tree with smallest number of edges that contains every terminal. This problem models a
network-design scenario where the terminals need to be connected to each other with a network
of minimum cost. Steiner Forest is the generalization where we do not require connection
between every pair of terminals, but have to satisfy a given set of demands. Formally, the input
of Steiner Forest is a graph G with pairs of vertices (s1, t1), . . . , (sd, td), the task is to find
a subgraph with the minimum number of edges that satisfies every request, that is, si and ti
are in the same component of the solution for every i ∈ [d].

On directed graphs, Directed Steiner Tree (DST) is defined by specifying one of the
terminals in T to be the root and the task is to find a subgraph with the smallest number of
edges such that there is path from the root to every terminal in the solution. This problem
models a scenario where we need to construct a network where the root can broadcast to every
other terminal. An equally natural network design problem on directed graphs is the Strongly
Connected Steiner Subgraph (SCSS) problem, where given a directed graph G and a set
T ⊆ V (G) of terminals, the task is to find a subgraph with the smallest number of edges where T
is in a single strongly connected component, or in other words, the solution contains a path from
every terminal to every other terminal. The directed variant of Steiner Forest generalizes
both of these problems: in Directed Steiner Network (DSN), the input is a digraph G
with pairs of vertices (s1, t1), . . . , (sd, td), and the task is to find a subgraph with the minimum
number of edges that has an si → ti path for every i ∈ [d].

Planar graphs. A well-known phenomenon on planar graphs is that the running time of pa-
rameterized algorithms for typical NP-hard problems have exponential dependence on O(

√
k),

where k is the parameter, and this dependence is best possible assuming the Exponential-
Time Hypothesis (ETH) [8–10,15,19,20,23,25–27,29]. All three of Directed Steiner Tree,
Strongly Connected Steiner Subgraph, and Directed Steiner Network remain NP-
hard on planar graphs. However, they behave very differently from the viewpoint of parame-
terized complexity: the dependence of the running time on the number k of terminals is very
different.

Our starting point

1. Planar DST can be solved in time 2k · nO(1) [4], but cannot be solved in time
2o(k) · nO(1) [27], assuming the ETH.

2. Planar SCSS can be solved in time 2O(k log k) ·nO(
√
k) [8], but has no algorithm with

running time f(k) · no(
√
k) for any function f , assuming the ETH [8].

3. Planar DSN can be solved in time f(k) · nO(k) [12], but has no algorithm with
running time f(k) · no(k) for any function f , assuming the ETH [8].

The goal of this paper is to put these results into the context of a wider landscape of directed
network design problems. We systematically explore other special cases of Directed Steiner
Network and determine their behavior on planar graphs. Our main result is showing that
every special case behaves similarly to one of these three problems: assuming ETH, the best

possible running time is of the form 2O(k) ·nO(1), f(k) ·nO(
√
k), or f(k) ·nO(k). Furthermore, we

provide an exact combinatorial characterization of the problems belonging to the three classes.

1

Dichotomy for general graphs. We explore the different special cases of Directed Steiner
Network on planar graphs in a framework similar to how Feldmann and Marx [14] treated
the problem on general graphs. We can define various special cases of Directed Steiner
Network by looking at what kind of graph the connection demands define on the terminals:
it is an out-star for Directed Steiner Tree, a bidirected clique for Strongly Connected
Steiner Subgraph, and a matching for Directed Steiner Network. More generally, for
every class D of directed graphs, we investigate the problem where the pattern of demands has
to belong to the class D. Our goal is to understand how the graph-theoretic properties of the
members of D influence the resulting special case of Directed Steiner Tree.

Formally, for every class D, Feldmann and Marx [14] defined the restriction of the problem
in the following way.

D-Steiner Network
Input: Digraph G, a set of k terminals T ⊆ V (G), and a demand digraph D ∈ D with
vertex set T .
Question: What is the minimum number of edges in a subgraph H of G where for each
(u, v) ∈ E(D) there is a u→ v path in H?

Note that only the transitive closure of D matters for the problem: if D1 and D2 have the
same transitive closure, then having D1 or D2 in the input results in exactly the same problem.
Therefore, it makes sense to consider only classes D that are closed under transitive equivalence,
that is, if D1 and D2 have the same transitive closure and D1 ∈ D, then D2 ∈ D as well. Another
natural assumption is that D is closed under identifying vertices. That is, if G ∈ D and G′ is
obtained by merging two vertices x, y ∈ V (G) to a single vertex whose in- and out-neighbors are
the union of the in- and out-neighbors of x and y, then G′ is also in D. This closure property
models the extension of the problem where we can put multiple terminals at the same vertex
and we parameterize by the number of vertices that have terminals.

Feldmann and Marx [14] characterized those classes D closed under transitive equivalence
and identifying vertices where D-Steiner Network is fixed-parameter tractable (FPT) pa-
rameterized by the number of terminals, that is, can be solved in time f(k) · nO(1). They
identified five classes of graphs that prevent the problem from being FPT. A pure out-diamond
is a complete bipartite graph K2,t directed from the 2-element side to the t-element side. A
flawed out-diamond has in addition a vertex v and edges going from v to the 2-element side.
The pure in-diamond and flawed in-diamond are defined similarly by reversing the orientation
of the edges. Let us denote by A1, A2, . . . , A5 the class of all pure out-diamonds, flawed
out-diamonds, pure in-diamonds, flawed in-diamonds, and directed cycles, respectively.

Theorem 1.1 (Feldmann and Marx [14]). Let D be a class of graphs closed under transitive
equivalence and identifying vertices.

1. FPT: If Ai 6⊆ D for any i ∈ [5], then D-Steiner Network can be solved in time
2O(k)nO(1), where k is the number of terminals.

2. Hard: If Ai ⊆ D for some i ∈ [5], then D-Steiner Network is W[1]-hard parameterized
by the number k of terminals.

The first part of Theorem 1.1 was proved by a combination of an algorithm that solves
the problem in time 2O(kw logw) · nO(w) if there is an optimum solution with treewidth w and
a combinatorial result showing that if D is not the superset of Ai for any i ∈ [5], then there
is a constant bound on the treewidth of optimum solutions. The second part follows from a
W[1]-hardness result for each of the five classes Ai.

2

Our result: trichotomy for planar graphs. Our main result classifies Planar D-Steiner

Network into three levels of complexity: 2O(k) · nO(1), f(k) · nO(
√
k), or f(k) · nO(k) time. In

light of Theorem 1.1 and the earlier results on planar graphs, there are three natural questions
that arise:

1. Are there cases that are FPT on planar graphs, but W[1]-hard on general graphs?
2. Are there subexponential FPT cases on planar graphs, that is, where the running time is

2o(k) · nO(1)?
3. Where is the boundary line between the f(k) · nO(

√
k) and f(k) · nO(k) cases?

We answer the first question negatively: the hard cases remain hard on planar graphs. The
answer to the second question is also negative: we show that every (nontrivial) case of Planar
D-SN is at least as hard as Directed Steiner Tree, hence a known lower bound [27] shows
that there is no subexponential FPT algorithm, assuming ETH. To answer the third question,
we define a finite number κ ≤ 10000 of classes Ci, i ∈ [κ], and show that these are precisely the

classes of patterns that prevent subexponential f(k) · nO(
√
k) time algorithms.

Our main result

Theorem 1.2. Let D be a class of directed graphs closed under transitive equivalence and
identifying vertices where the number of edges is not bounded.

1. FPT: If Ai 6⊆ D for any i ∈ [5], then Planar D-Steiner Network
(i) can be solved in time 2O(k) · nO(1),

(ii) but has no 2o(k) · nO(1) time algorithm assuming the ETH.
2. Subexponential: If Ai ⊆ D for some i ∈ [5], but Ci 6⊆ D for any i ∈ [κ], then

Planar D-Steiner Network
(iii) can be solved in time f(k) · nO(

√
k),

(iv) but has no f(k) · no(
√
k) time algorithm assuming the ETH.

3. Hard: If Ci ⊆ D for some i ∈ [κ], then Planar D-Steiner Network
(v) can be solved in time f(k) · nO(k),

(vi) but has no f(k) · no(k) time algorithm assuming the ETH.

Hard classes. Let us define now the graph classes Ci representing the hard-patterns. Given
a digraph G and a set X ⊆ V (G), an X-source is a vertex s ∈ V (G) \X such that N+(s) = X.
Similarly, an X-sink is a vertex t ∈ V (G) \X such that N−(t) = X. The first 4 classes C1, . . . ,
C4 are defined by extending a biclique.

Definition 1.3 (t-hard-biclique-pattern). A t-hard-biclique-pattern is an (acyclic) digraph D
constructed in the following way. We start with two disjoint sets A and B with |A| = |B| = t
and introduce every edge from A to B. Furthermore, we introduce into D any combination of
the following items (see Figure 1):

1. an A-source;
2. a B-sink.

In particular, there are 2 · 2 types of t-hard-biclique patterns: we let C1, . . . , C4 be the 4 classes
that each contain all the t-hard-biclique-patterns of a specific type for every t.

The following definition specifies the remaining classes.

3

B

A

Figure 1: The 5-hard biclique patterns: each blue vertex may or may not be present.

Figure 2: The 4-hard matching patterns (without source, sink, rWZ , or rY X).

Definition 1.4 (t-hard-matching-pattern). A t-hard-matching-pattern is an (acyclic) digraph
D constructed the following way. We start with disjoint vertex sets W = {w1, . . . , wt}, X =
{x1, . . . , xt}, Y = {y1, . . . , yt} and Z = {z1, . . . , zt} and introduce the edges wixi and yizi for
every i ∈ [t]. Furthermore, we introduce into D any combination of the following items:

1. either the directed path w1 → w2 → . . . → wt → z1 → z2 → . . . → zt, or any of the
directed paths w1 → w2 → . . .→ wt and z1 → z2 → . . .→ zt;

2. either the directed path y1 → y2 → . . . → yt → x1 → x2 → . . . → xt, or any of the
directed paths x1 → x2 → . . .→ xt and y1 → y2 → . . .→ yt;

3. an S-source for exactly one S ∈ {W,X, Y, Z,W ∪ Y,X ∪ Z,X ∪ Y,W ∪ Z};
4. an S-sink for exactly one S ∈ {W,X, Y, Z,W ∪ Y,X ∪ Z,X ∪ Y,W ∪ Z};
5. a vertex rWZ such that N−(rWZ) = W and N+(rWZ) = Z;
6. a vertex rY X such that N−(rY X) = Y and N+(rY X) = X.

In particular, there are 5 · 5 · 9 · 9 · 2 · 2 types of t-hard matching patterns: we let C5, . . . , C8104 be
the 8100 classes that each contain all the t-hard-matching-patterns of a specific type for every t.

Note that some of these classes are isomorphic. For example, adding the path x1 → xt or
the path z1 → zt lead to isomorphic graphs. If we just consider the graph classes where we
choose not to add a source, sink, vertex rWZ , or vertex rY X , then we have 15 nonisomorphic
classes, as shown in Figure 2. One could think of t-hard-matching-patterns as (the transitive
closure of) one of these graphs, potentially extended by appropriate sources and sinks.

Finally, we define a t-hard pattern as any of the patterns defined above.

4

Definition 1.5 (t-hard-pattern). A t-hard-pattern is either a t-hard-biclique-pattern or t-hard-
matching-pattern.

1.1 Overview of our main result

Observe that Theorem 1.2 consists of six statements. Let us briefly discuss how these six
statements are proved. Note that some of these statements follow from known results, while for
others we need to do a substantial amount of new technical work. The proofs of statments (iii)
and (vi) form the main technical part of the paper (see Figure 4).

Statement (i)

The FPT result (i) follows directly from Theorem 1.1 (here the surprising aspect is that, by
statement (iv), there are no further FPT cases).

Statement (ii)

The lower bound (ii) follows by observing that every relevant class contains either all in-stars
or all out-stars, hence the lower bound for Directed Steiner Tree [27] applies. To avoid
triviality, we need to assume that the class contains graphs with arbitrarily large number of
edges.

Lemma 1.6. Let D be a class of graphs closed under identifying vertices and transitive closures
where the number of edges of the graphs is not bounded. Then one of the following holds:

• D contains every directed cycle,
• D contains every out-star, or
• D contains every in-star.

In statement (ii) of Theorem 1.2, we assume that Ai 6⊆ D, and A5 is the class of all directed
cycles. Thus D contains either every out-star or every in-star.

Statement (iii)

Our main technical result is proving statement (iii): the existence of a f(k) · nO(
√
k) time

algorithm if Ci 6⊆ D for any i ∈ [κ] (in the following subsection, we give a more detailed
description of the proof). This algorithm is obtained by showing that the treewidth of the
optimal solution is always O(

√
k) under these conditions. Then we can use the following result

of Feldmann and Marx [14].

Theorem 1.7 (Theorem 1.5 of [14]). If an instance (G,T,D) of Directed Steiner Network
has an optimum solution H of treewidth w, then it can be solved in 2O(kw logw) · nO(w) time.

Note that this is a slightly weaker form of the statement, with a simplified bound on the
running time. With Theorem 1.7 at hand, our main goal is to prove that every optimum solution
of Planar D-SN has treewidth O(

√
k) if Ci 6⊆ D for any i ∈ [κ].

Towards proving this bound, we first translate the question to a problem on acyclic graphs:
it is sufficient to show that if the solution is acyclic, then the total degree of the branch vertices
(i.e., of degree > 2) is O(k). More formally, for a vertex v of a digraph, let d∗(v) denote the
branch degree of v, defined as

d∗(v) = max(d+(v) + d−(v)− 2, 0),

where d+(v) and d−(v) denotes the out- and in-degree of v, respectively. The total branch
degree of a graph G is the sum of all branch degrees of the vertices of G.

5

We say that a feasible solution H of (G,T,D) is edge-minimal if for all edges e ∈ E(H)
the graph H − e is not feasible. An edge e is essential for some demand edge tt′ ∈ E(D) if
there is no t→ t′ path in H − e. Note that all edges of an edge-minimal graph H are essential
for some demand edge of D. We say that a pattern class D is c-bounded for some c = O(1)
if for any instance (G,T,D) Planar D-Steiner Network where G,D are acyclic, and any
edge-minimal solution H, the total branch degree of H is at most ck.

The next theorem moves the problem to the domain of acyclic digraphs: what we need now
is a linear bound on the total branch degree of acyclic solutions.

Theorem 1.8. If the pattern class D is c-bounded for some c = O(1), then for any instance of
Planar D-Steiner Network with |T | = k the solution graph H has treewidth O(

√
k).

Applying Theorem 1.7 implies that c-bounded classes have the desired subexponential algo-
rithm, but we still need to establish a link between non-c-bounded classes and t-hard-patterns.
First, we argue that if the total branch degree is too large, then a grid-like structure can be
found in the solution. The grid-like structure appears in the solution to satisfy a set of edges
in the demand graph D, and this set of demands form a certain hard structure in the demand
pattern that we call the t-tough-pair which we define informally here (see Definition 2.3 for
a formal definition). We say that two edges e1 and e2 are weakly independent if there is no
directed path from the head of one to the tail of the other. Edges e1 and e2 are strongly inde-
pendent if, in addition to being weakly independent, there is no directed path containing the
heads of both edges and there is no directed path containing the tails of both edges. An edge e
is minimal in a digraph D if there is no path from the head of e to the tail of e avoiding e. Let
E1 ∪E2 be a vertex-disjoint set of minimal edges with |E1| = |E2| = t. We say that (E1, E2) is
a t-tough-pair if

• any two edges in e, e′ ∈ E1 are weakly independent,
• any two edges in e, e′ ∈ E2 are weakly independent, and
• any two edges e1 ∈ E1 and e2 ∈ E2 are strongly independent.

Observe that in particular the two matchings in a t-hard-matching-pattern form (vertical edges
in Figure 2) a t-tough-pair. Similarly, taking two vertex-disjoint matchings of size t each in a
t-hard-biclique-pattern is also a t-tough-pair.

Our main structure theorem connects the total branch degree to the existence of these kind
of hard structures.

Theorem 1.9 (Structure Theorem). Let D be a class of graphs closed under identifying vertices
and transitive equivalence. Then either D has a pattern with a t-tough-pair for each positive
integer t, or it is c-bounded for some constant c.

Theorems 1.8 and Theorem 1.9 show that the existence of arbitrarily large t-tough-pairs is
the canonical reason why treewidth is not O(

√
k). The lower bounds ruling out f(k) · no(k)

time algorithms essentially rely on the existence of t-tough-pairs. However, the existence of a
t-tough-pair in a demand pattern D ∈ D is not sufficient for the lower bound: the t-tough-pair
could be only a small part of the pattern D, and hence the lower bounds may not apply. We
show, with heavy use of Ramsey’s Theorem and other combinatorial arguments, that whenever a
large t-tough-pair appears in a graph, then the graph can be “cleaned”: we can identify vertices
to obtain one of the t-hard-patterns. Therefore, if arbitrary large t-tough-pairs appear in the
members of a class D closed under identifying vertices, then the class is a superset of one of the
hard classes Ci.

Theorem 1.10. Let D be a class of graphs closed under transitive equivalence and identifying
vertices. The following two are equivalent:

1. For every t, there is a D ∈ D that has a t-tough pair.

6

2. Ci ⊆ D for some i ∈ [κ].

We can conclude that if D is not the superset of Ci for any i ∈ [κ], then the treewidth of the

optimum solution is O(
√
k), implying that Planar DSN can be solved in time f(k) · nO(

√
k).

Statement (iv)

The statement (iv) ruling out f(k) ·no(
√
k) time algorithms follows from the known lower bound

for Strongly Connected Steiner Subgraph (i.e., D = A5) [8] and from reproving the
W[1]-hardness of diamonds (i.e., D ∈ {A1,A2,A3,A4}) for planar graphs [14]. Compared to
the W[1]-hardness on general graphs, the proof for planar graphs is more involved. As it is
very usual for planar problems, we establish these lower bounds by reducing from k × k-Grid
Tiling, which cannot be solved in time f(k) · no(k), assuming ETH [9]. For statement (iv), we
need to reduce from

√
k×
√
k Grid Tiling to a Planar DSN with O(k) terminals forming a

pure/flawed in/out-diamond pattern, ruling out f(k) · no(
√
k) algorithms for such patterns.

In all these reductions, we are reusing and extending the gadget constructions from earlier
work [8]. However, the high-level structure of the reduction is substantially different and depends
on the pattern class we are considering. In light of Theorem 1.7, we should first verify, as a
sanity check, that the treewidth of the solution can be sufficiently large, that is, it can be Ω(

√
k)

in case of diamonds. Typically, one can expect that examples with sufficiently large treewidth
shed some light on how the high-level structure of the hardness proof could like. Figure 3
shows that treewidth can be indeed sufficiently large: a

√
k×
√
k grid can be obtained from two

“interlocking combs.”

Statement (v)

The upper bound f(k) · nO(k) (statement (v)) follows from the work of Eiben et al. [12], who
showed that Planar DSN with k terminals can be always solved within this running time.

Statement (vi)

To prove statement (vi) ruling out f(k) · no(k) algorithms, we provide such a lower bound for
each class Ci for i ∈ [κ]. Analogously to statement (iv), the proof is by reduction from k × k
Grid Tiling to a Planar DSN instance with a k-hard-matching-pattern or a k-hard-biclique-
pattern, ruling out f(k) · no(k) algorithms. Again, let us verify that the treewidth can be
sufficiently large: Figure 3 shows how a k × k grid can appear in the solution to an instance
with k terminals.

For t-hard-matching-patterns, the simplest case is when we have two induced matchings of
size t. Then a t× t grid can arise very easily in the solution if the terminals are on the boundary
of a grid. The crucial point here is that the t-hard-matching-pattern was defined in a way that
all the additional paths, sources etc. do not interfere with the grid, see the figure for an example.
For the t-hard-biclique-pattern, there is a non-obvious and highly delicate way of constructing
an instance with 2t terminals where a t× t grid appears. Combining these constructions gives
the lower bound.

Theorem 1.11. Let D be a class of graphs closed under identifying vertices and transitive
equivalence. If Ci ⊆ D for some i ∈ [κ], then Planar D-Steiner Network has no f(k) ·no(k)

time algorithm assuming the ETH.

Let us observe that if D consists of bicliques directed from one side to the other, then
Planar D-SN corresponds to the following problem: given a planar digraph G with two sets
S, T ⊆ V (G) of terminals with |S| + |T | = k, find a subgraph with minimum number of edges

7

diamond pattern t-hard matching pattern t-hard biclique pattern

Ω(
√
t)× Ω(

√
t) grid

in the solution
Ω(t)× Ω(t) grid
in the solution

Ω(t)× Ω(t) grid
in the solution

Figure 3: Pattern graphs (top row) and example minimal solution graphs with large grid patterns
and large treewidth (bottom row). The red/blue edges show how (some of the) demands are
connected in the solution.

such that there is a path from every vertex of S to every vertex of T . Our result shows that,
assuming ETH, this problem has no f(k) · no(k) time algorithm. This result is surprising, as
the problem can be considered to be genuinely planar in the sense that the input is a planar
graph with k terminals and a single bit of annotation at each terminal. To our knowledge, this
is the first example of a relatively natural planar problem where f(k) ·nO(k) is best possible and

cannot be improved to f(k) · nO(
√
k).

1.2 Details of Statement (iii): the f(k) · nO(
√
k) algorithm

In this section, we give a more detailed overview of the technical steps of the proof of (iii)
sketched above.

From treewidth to total branch degree. Theorem 1.8 translates the question about the
treewidth of the solution in general graphs to a question about the total branch degree of the
solution in acyclic graphs. Suppose that we have an edge-minimal solution H in a (not neces-
sarily acyclic) graph G with k terminals. Let us contract the strongly connected components
of H in both G and H to obtain G′ and H ′, respectively. We can observe that H ′ is an acyclic
graph that is the optimum solution to an instance in G′ with at most k terminals. Our goal is
to show that if H ′ has total branch degree d, then H has treewidth O(

√
d+ k). Therefore, in

the later steps of the proof, we bound the total branch degree of H ′ by O(k), giving an O(
√
k)

bound on the treewidth of H.
We say that a vertex of a strongly connected component of H is a portal if it is incident

to an edge connecting it to some other component. For simplicity of discussion, let us assume
here that every strongly connected component of H has at least 3 edges incident to the portals,
that is, every vertex of H ′ has at least 3 incident edges. (If a component has less than 3 such
edges and has no terminal, then it consists only of a single vertex and does not affect treewidth

8

Thm 1.10large t-tough pair large t-hard pattern Thm 1.11

Tree width of the
solution

Statement (vi):

no f(k)no(k)

algorithm

total branch
degree ω(k)

Thm 1.9

Statement (iii):

2O(k)nO(
√
k)

algorithm

ω(
√
k)

O(
√
k)

Thm 1.8

Thm 1.7

Figure 4: The structure of the proofs of statements (iii) and (vi).

anyway; if it has terminals, then it can be taken into account with additional calculations.) By
this assumption, the set P of portals have size at most 6d, where d is the total branch degree
of H ′.

We want to bound the treewidth of H by showing that there is a set W of O(d+ k) vertices
such that H−W has treewidth at most 2. It is known that if removing a set W of vertices from
a planar graph reduces treewidth to a constant, then the planar graph has treewidth O(

√
|W |).

Thus the treewidth bound O(
√
d+ w) follows from the existence of such a set W .

Let H[Vi] be a strongly connected component of H that has pi portals and contains ki
terminals. The key observation is that the only role of H[Vi] in the solution is to fully connect
the terminals and portals in H[Vi]. That is, we can assume that H[Vi] is an optimum solution
of a Strongly Connected Steiner Subgraph instance with pi + ki terminals. Chitnis et
al. [8] showed that we can remove a set Wi of O(pi+ki) vertices from such an optimum solution
to reduce its treewidth to 2. Therefore, taking the union of P and every Wi, we get a set W
of size O(d) +O(

∑
(pi + ki)) = O(d+ k) whose removal reduces treewidth to 2 (as removing P

breaks the graph in a way that each component is a subset of some Vi, and the removal of Wi

breaks H[Vi] into components of treewidth at most 2).

Building a skeleton. Towards the proof of Theorem 1.9, our goal is to bound the total
branch degree by O(k) in an edge-minimal acyclic solution H. At some step of the proof, it
will be important to assume that H is a triangulated planar graph (every face has exactly three
vertices and edges), which is of course not true in general. Therefore, we introduce artificial
undirected edges in the graph H to make it triangulated. As these edges do not play any role
in the directed problem, it does not change the nature of the solution. Another simplification
step is that we assume that there is no vertex v 6∈ T with d−(v) = d+(v) = 1. Such a vertex
has branch degree 0 and hence suppressing it (i.e., removing it and adding an edge from its in-
neighbor to its out-neighbor) has no effect on the total branch degree and on the connectivity
of the terminals.

We start by building a skeleton of the solution: a connected subgraph that contains every
terminal. The skeleton is composed from segments of two types. A long segment is a directed
path of H of length at least some constant L. A short segment is any path in the undirected sense
of length at most L, possibly containing both undirected or directed edges of any orientation.
Furthermore, we require that any two long segments in the skeleton are distant, that is, have
distance at least L in the undirected sense.

A skeleton tree consisting of O(k) terminals and containing all the segments can be built
the following way. Initially, we start with an edgeless subgraph R containing only the k termi-
nals. For simplicity of discussion, let us assume that the demand pattern is connected (in the

9

undirected sense). Then there has to be a demand titj such that ti and tj are in two different
components Ci and Cj of R, respectively. This means that H has a directed path P connecting
two different components of R. If P has length at most L, then we can introduce it as short
segment to reduce the number of components of R. Otherwise, we can shorten P to P ′ such
that every vertex of P ′ is at distance at least L from R and the two endpoints are at distance
exactly L from two different components C and C ′ of R. Then we can reduce the number of
components of R by introducing P ′ as a long segment and two short segments connecting the
endpoints of P ′ to C and C ′. By repeating these steps, we can reduce the number of components
to 1 by introducing O(k) segments in total.

Refining the faces. Our next goal is to further refine the skeleton such that every face of the
skeleton has at most 35 segments on its boundary, and it is still true that the skeleton consists
of O(k) segments. We achieve this goal by iteratively dividing a face into two by introducing to
the skeleton a new path consisting of at most 5 segments. We argue below that if the division
is not very skewed in a certain sense, then the bound O(k) on the number of segments can be
achieved even after iterative applications of this step.

Suppose that we have a face F where x ≥ 36 segments appear on the boundary. Let P
be a path between two segments of the boundary and assume that P consists of at most 5
segments. Introducing the path P into the skeleton creates two new faces F1 and F2 that see
some number x1 and x2 segments on the boundary of F , plus the 5 new segments of P . We
have x1 + x2 ≤ x+ 2: if the endpoints of P are internal vertices of segments, then we may have
up to 2 segments that are now on the boundary of both F1 and F2.

For a face seeing x ≥ 13 segments of the skeleton, let us define x−13 ≥ 0 to be the potential
of the face. If we chose the path P such that x1, x2 ≥ 13, then the potential of the two new
faces F1 and F2 are defined. Moreover, the total potential of the two faces is at most

(x1 + 5− 13) + (x2 + 5− 13) ≤ x− 14,

strictly less than the potential of F . This means that if we start with a face F that sees x
segments of the skeleton, then repeated applications of this step can introduce only O(x) new
segments.

Finding a division that is not skewed. Next we show that if face F sees x ≥ 36 segments
of the skeleton, then we can find a division with x1, x2 ≥ 13. Then as we have seen above,
repeated applications of this step introduces O(x) segments and divide F into faces that see at
most 35 segments each.

Let us divide the boundary of F into three parts, red, green, and blue, each containing at
least 12 segments (see Figure 5). As every vertex v inside the face F is essential for the solution,
there is a directed path Pv from v to some vertex of the boundary; let us fix such a Pv for each v.
This defines a color of v according to which of the three parts of the boundary contains the head
of Pv. Then by Sperner’s Lemma and fact that the graph is triangulated, there is a triangle
ur, ug, ub inside F where the three vertices have three different colors. From the assumptions
that ur, ug, ub are on three different parts, and each part has length at least 13, it follows that
there are two vertices, say ur and ub, such that both subpaths of the boundary between the
heads of Pur and Pub have at least 12 segments. Then putting together Pur and Pub creates a
path P that divides the face F in the required way. This argument needs to be refined a bit
further: as we said earlier, we want a skeleton where the long segments are distant, i.e., are at
distance at least L from each other. But this can be easily achieved by appropriately shortening
the long segments Pur , Pub , and then extending them by three short segments.

10

ug

ur ub
Pur

Pug

Pub

Figure 5: Finding a division that is not skewed.

S1

S2

e1 es

P1 Ps

f1

fs

Q1

Qs

e2

Figure 6: Finding a grid.

Many edges incident to a long path. We assume now that the skeleton has O(k) faces,
each seeing at most 35 segments. If we can show that the total branch degree (of the orginal
solution H without the artificial edges) is a constant in each face, then we can bound by O(k)
the total branch degree of the solution. We can observe, using the acyclicity of the edges inside
the face, that we need to bound only the number of edges incident on the boundary.

Let e be an edge inside the face incident to vertex v of the boundary. We say that e is
essential for demand titj if removing e breaks every path from ti to tj . Then we can define a
path Pe the following way: let us take any path P from ti to tj , and let Pe be the subpath of
P starting from e (which has to appear on P) to the first vertex on the boundary of F . Let us
consider two edges e1, e2 starting from the same vertex v of the boundary. Let us observe that
Pe1 and Pe2 cannot intersect: then we could bypass e.g. e1 by starting on Pe2 and following it
until intersection. By a similar argument, Pe1 and Pe2 cannot go to the same long segment: then
one of Pe1 and Pe2 could be avoided by using the other path and part of the long segment. From
these observations, it follows that the only way the boundary can have many edges incident to
it is that if there are edges e1, . . . , es incident to distinct vertices of a long segment S1, with
paths P1, . . . , Ps going to distinct vertices of some other long segment S2 (see Figure 6).

Finding a grid and a t-tough pair. Now comes the point where we use the assumption
that long segments are distant. In particular, this means that the “middle path” Pes/2 is long.
The internal vertices of this path have no terminals (as all the terminals are on the skeleton),

11

hence it is not possible that d+(v) = d−(v) = 1 for any such internal vertex. Thus either there
are many vertices on this path that have an edge leaving the path, or many vertices that have
an edge entering the path. Assume without loss of generality the former, let f1, . . . , fs be these
edges. Again, each edge is essential for some demand, hence the path satisfiying the demand has
a subpath Qi starting with fi and going to the boundary. We can observe again that these paths
have to be disjoint. Therefore, we can obtain a grid-like structure in the region surrounded by
S1, Ps/2, S2, and Ps, see the region highlighted by yellow in Figure 6. (There are some other
cases to consider, which we ignore here. For example, the paths Qi may go to S1 or S2.) This
region has s/2− 1 “vertical” paths Ps/2, . . . , Ps−1, intersected by the s “horizontal paths” Q1,
. . . , Qs.

We observe that if this grid has t horizontal and vertical paths, then we can use it to discover
a t-tough pair. Each edge ei is essential for some minimal demand; let E1 be the set of these t
demands. Similarly, we define E2 based on chosing a minimal demand for which fi is essential.
Then we can carefully verify that (E1, E2) is a t-tough-pair: if there is an edge in the demand
graph that is not allowed, then a careful analysis shows that there is a way of bypassing some
ei or fi in the grid, contradicting the fact that it is essential. This concludes the proof that if
we have an upper bound on the size of the largest t-tough pair appearing in the graphs of class
D, then we can bound the treewidth of the solution by O(

√
k).

Cleaning. To prove Theorem 1.10, we need to show that if arbitrary large t-tough-pairs
appear in the graphs of D, then Ci ⊆ D for some i ∈ [κ]. The proof is a long combinatorial
argument to show that we can find t-tough-pairs that are canonical in some sense, and then we
use the assumption that D is closed under identifying vertices to contract the vertices outside
the t-tough-pair into a small constant number of well-behaved vertices.

Suppose that there is a t-tough-pair(E1, E2) in a digraph D. The minimality of the edges
in E1 and the fact that they do not appear in directed cycles (as they are weakly independent
to themselves) imply that for any two edges xiyi, xjyj ∈ E1, at least one of the following holds:

1. exactly the edges xiyj , xjyi appear between {xi, yi} to {xj , yj},
2. there is no edge from {xi, yi} to {xj , yj}, or
3. there is no edge from {xj , yj} to {xi, yi}.

Let us consider a complete graph on t vertices w1, . . . , wt, and for every i < j, color the edge
wiwj according to which of the three statements hold for the edges xiyi and xjyj (if more than
one statement is true, we can choose arbitrarily). By Ramsey’s Theorem, there is a large subset
E′1 ⊆ E1 where the same statement holds for any pair of edges. We can find a similar subset
E′2 ⊆ E2. We consider two main cases. The first case is when Statement 1 holds either in
E′1 or E′2. Then what we have is a matching xiyi of minimal edges that is part of a complete
bipartite graph, that is, every xi is adjacent to every yj (but note that xiyj does not have to be
a minimal edge). The second case is where we have Statement 2 or 3 in both E′1 and E′2. Then
we can reorder E1 and E2 to have a further ordering property: there is no edge from {xi, yi}
to {xj , yj} for j < i. We handle the two cases separately. With further Ramsey arguments and
case distinctions, we show that identifications can be used to find a t′-hard biclique pattern or a
t′-hard matching pattern appearing in a graph in D, where t′ is some unbounded function of t.
It follows that if arbitrarily large t-tough pairs appear in D, then D is a superclass of some Ci.

2 Formal definition of a t-tough-pair

In this section we give the formal definition of a t-tough-pair. Further definitions, that are
specific to the sections. are defined in the beginning of the respective sections.

12

Given a digraph D and an edge e = (u, v) ∈ E(D), we say that e is a minimal edge of D
if D has no (u, v)-path of length strictly greater than 1 in D, where the length of the path
is the number of edges in it. We say that a digraph D is reachability-minimal if each edge of
D is minimal. For an edge e = (u, v) in a directed graph D, v is called the head of e and u
is called the tail of e. For any E′ ⊆ E(D), head(E′) (resp. tail(E′)) denotes the set of heads
(resp. tails) of the edges in E′. Next we define weak independence and strong independence
that are crucially to define the t-tough-pair formally.

Definition 2.1 (Weakly independent edges). Given a digraph D and e1 = (u1, v1), e2 =
(u2, v2) ∈ E(D), we say that the pair of edges (e1, e2) is weakly independent in D, if u1 6=
v1 6= u2 6= v2, and D has neither a (v1, u2)-path nor a (v2, u1)-path. A set of edges E′ ⊆ E(D)
are weakly independently if every pair of distinct edges in E′ are pairwise weakly independent
and for each edge (ui, vi) ∈ E′, there is no (vi, ui)-path in D.

Informally, a pair of edges is weakly independent, if the head of one cannot reach the tail
of the other. Therefore, if a pair of edges are weakly independent, then they cannot lie on a
directed path.

Definition 2.2 (Strongly independent edges). Given a digraph D and e1 = (u1, v1), e2 =
(u2, v2) ∈ E(D), we say that the pair of edges (e1, e2) is strongly independent in D, if they
are weakly independent in D, and additionally D has no (u1, u2)-path, no (u2, u1)-path, no
(v1, v2)-path and no (v2, v1)-path.

Informally, a pair of edges is strongly independent, if they are weakly independent, and the
head of one cannot reach the head of the other, and the tail of one cannot reach the tail of the
other. That is, the vertices of the heads (resp. vertices of tails) do not lie on any directed path.

Definition 2.3 (t-tough-pair). Given a digraph D, E1, E2 ⊆ E(D), we say that (E1, E2) is a
tough-pair in D if:

1. |E1| = |E2|,
2. each edge of E1 ∪ E2 is a minimal edge in D,
3. all edges in Ei are pairwise weakly independent in D, for both i ∈ {1, 2}, and
4. for each e1 ∈ E1 and e2 ∈ E2, (e1, e2) are strongly independent in D.

Further, for a positive integer t, we say that (E1, E2) is a t-tough-pair if |E1| = |E2| = t.

3 The structure theorem

The goal of this section is to prove Theorem 1.9 (see Section 1 for the statement). We start by
giving the algorithm for the c-bounded case, that is the proof of Theorem 1.8, and refocusing
our efforts on acyclic instances.

3.1 A subexponential algorithm

In order to prove Theorem 1.8, we will utilize the following result.

Theorem 3.1 (Lemma 2.1 of [8]). Suppose that H is an edge-minimal solution for the Strongly
Connected Steiner Network problem on the instance (G,T), where |T | = k. Then there
is a set W ⊆ V (H) of 9k vertices such that deleting W from H results in a graph of treewidth
at most 2.

We start by generalizing the above theorem to our setting.

13

Lemma 3.2. Let H be an edge-minimal solution to Planar D-Steiner Network where D
is a c-bounded class. Then there is a set of (30c + 29)k vertices in V (H) whose deletion from
H results in a graph H ′ of treewidth at most 2.

Proof. Let V1, . . . , Vt be the vertex sets of the strongly connected components of H that are not
singletons. The degree of Vi, denoted by d(Vi), is the number of edges in H with one endpoint
in Vi and one endpoint outside Vi.

We claim that if Vi has no terminals, then d(Vi) ≥ 3. Suppose the contrary: Vi ∩ T = ∅
and d(Vi) ≤ 2. Notice that d(Vi) 6= 1 as in such a case we could remove all edges of H induced
by Vi as well as the edge that enters/exits Vi. Suppose now that d(Vi) = 2. Notice that the
two edges that have one endpoint in Vi cannot both be entering or both be exiting Vi as again
that would be redundant in H. Thus Vi has one edge entering at some vertex u ∈ Vi and one
edge exiting from some vertex v ∈ Vi. Let π be a path in H[Vi] from u to v. Notice that since
|Vi| ≥ 2 and H[Vi] is strongly connected, there must be some edge e in H[Vi] that is not on
the path π. However all terminal-to-terminal paths passing through Vi can be realized using
π, since if such a path enters Vi then it enters at u and exits at v. Consequently, the edge e is
redundant, contradicting the minimality of H.

We say that a vertex v is a portal of Vi if it is an endpoint of some edge e ∈ E(H) that
enters or exits Vi. Let P denote the set of all portals, and let Pi be the set of portals in Vi.
Consider now a strongly connected subgraph H[Vi] that contains at least one terminal, and
let Ti = Vi ∩ T . Since H[Vi] is strongly connected, it is an edge-minimal solution of Planar
Strongly Connected Steiner Network for the terminal set Ti ∪ Pi: indeed, if some edge
e can be removed from H[Vi] to maintain strong connectivity on Ti ∪ Pi, then H − e would
also be feasible for the original problem, which contradicts the edge-minimality of H. We can
therefore apply Theorem 3.1 for the graph H[Vi] and terminal set Ti ∪ Pi: there is a set Xi of
at most 9|Ti ∪ Pi| vertices such that H[Vi \Xi] has treewidth at most 2.

We now delete the following vertices from H:
• the portal set P
• all the sets Xi

• the set Y of vertices outside
⋃
i Vi that have degree at least 3.

Let H∗ be the resulting graph. Each connected component of H∗ is either a subgraph of some
strongly connected component H[Vi], or it lies outside

⋃
i Vi, thus its vertices have maximum

degree at most 2: in both cases, it has treewidth at most 2. Consequently, tw(H∗) ≤ 2.
In order to bound the number of deleted vertices, let us first introduce an acyclic instance

of Planar D-Steiner Network based on (G,T,D) and H: this is required so that we can
use the c-boundedness of D . Let G/(

⋃
Vi) be the graph obtained by contracting each vertex

set Vi into a single vertex (deleting all loops and parallel edges). Notice that the picture H ′

of H under this contraction is acyclic. In the demand graph D, we identify each vertex set Ti
individually, resulting in a demand graph D′ and terminal set T ′. Notice that since D is closed
under identification, we have D′ ∈ D.

We claim that H ′ is an edge-minimal solution to the Planar D-Steiner Network in-
stance (G′ = H ′, T ′, D′) (where H ′ and D′ are acyclic). First we show that H ′ is feasible. If
D′ has an edge u′v′, then the edge has an ancestor uv in D, so H contains some path Puv
connecting the terminals u and v (where u and v cannot be located in the same set Vi). When
we apply the contraction on Puv, we get a path P ′ connecting u′ and v′ in H ′, concluding the
proof of feasibility for H ′.

To prove the edge-minimality of H ′, suppose the contrary: that there is some edge a′b′ in H ′

whose deletion does not break feasibility. Let ab be an edge of H that contracts to a′b′. Notice
that ab is not induced by any component Vi. We claim that H − ab is feasible for (G,T,D).
Consider a demand edge uv ∈ E(D). If the terminals u and v are in the same Vi, then they are
connected within H[Vi] and thus they are also connected in H − ab. Otherwise these terminals

14

are identified with some distinct terminals u′ and v′, respectively, and D′ has a demand u′v′.
Thus H ′− a′b′ connects u′ and v′ via some path P ′. Let u and v be arbitrary vertices of G that
contract to (or are equal to) u′ and v′, respectively.

Using P ′, we will now build a path P connecting u and v in H − ab. First, we pick for each
edge x′y′ ∈ P ′ an arbitrary edge whose image after contraction is x′y′. Consider now an edge
pair x′y′, y′z′ on P ′: if y′ comes from the contraction of Vi, then we may have to select xy1 as
the ancestor of x′y′ and y2z as the ancestor of y′z′, where y1 6= y2 are different portals. But
since (H − ab)[Vi] is strongly connected, there is a path Pi connecting the portals y1 to y2 in
(H − ab)[Vi]. We concatenate this path with the edges xy1 and y2z. Using the same technique,
we can build a path from some u2 to some v2 where either u2 = u or u2 and u are in the same
component Vj (and the analogous statement holds for v and v2). We can again use the strong
connectivity of the components Vi to get a path P from u to v. Consequently, H−ab is feasible
for the original problem, which contradicts the edge-minimality of H.

Finally, we note that for any pair Vi, Vj with i 6= j there can be at most one edge going
between Vi and Vj . Since these are strongly connected components, there cannot be two edges
in different directions, as that would make them into a single strongly connected component.
Suppose that uv and u′v′ both go from Vi to Vj . Then either of these edges can be removed
without affecting feasibility, which contradicts the edge-minimality of H. This property implies
that in the proposed contraction the degree of the vertex that we get from contracting Vi is
equal to d(Vi).

We can now bound the size of the deleted set. Since D is c-bounded, we have that∑
v∈V (H′) d

∗(v) ≤ ck. Since each non-0 term in the sum comes from some contraction of Vi
or a deleted vertex from Y , we obtain the following.∑

v∈V (H′)

d∗(v) =
∑
i

d∗(Vi) +
∑
v∈Y

d∗(v) ≤ ck, (1)

where d∗(Vi) = max(0, d(Vi) − 2). Recall that if Vi has degree at most 2, then it must have at
least one terminal. It follows that it can have at most 2 portals, and thus |Pi| ≤ 2|Ti|. If it has
degree at least three, then it has at most d(Vi) = d∗(Vi) + 2 ≤ 3d∗(Vi) portals.

Thus the total number of deleted vertices can be bounded as:

|Y |+ |P |+
∣∣∣⋃
i

Xi \ P
∣∣∣ ≤ |Y |+ |P |+∑

i

9|Ti ∪ Pi|

≤ |Y |+ 9|T |+ 10|P |

= |Y |+ 9k + 10 ·

 ∑
i : d(Vi)≥3

|Pi|+
∑

i : d(Vi)≤2

|Pi|

≤ |Y |+ 9k + 10 ·

∑
i

3d∗(Vi) +
∑

i : d(Vi)≤2

2|Ti|

≤ (30c+ 29)k,

where the second inequality uses that the sets Vi are disjoint, and the last inequality uses the
bound (1). Consequently, we have removed at most (30c + 29)k vertices from

⋃
i Vi, which

concludes the proof.

The next lemma can essentially be found within the proof of Lemma 2.2 in [8]. We reproduce
the proof for completeness.

Lemma 3.3. If G is a planar graph where deleting k ≥ 1 vertices results in a graph of treewidth
w ≥ 1, then tw(G) ≤ 3w

√
k.

15

Proof. By the planar grid theorem [31], there is a constant c̄ such that any planar graph of
treewidth c̄ω has a grid minor of size ω× ω. If G has treewidth at least c̄ · d3w

√
ke, then it has

a grid minor of size at least d3w
√
ke. This minor can be decomposed into

⌊
d3w
√
ke

w+1

⌋
·
⌊
d3w
√
ke

w+1

⌋
vertex disjoint grid minors, each of size at least (w + 1) × (w + 1). Notice that

⌊
d3w
√
ke

w+1

⌋
·⌊

d3w
√
ke

w+1

⌋
≥ k + 1 for k,w ≥ 1 integers, thus there is at least one (w + 1)× (w + 1) grid minor

where no vertex has been deleted. This intact grid minor has treewidth at least w + 1, which
contradicts our assumptions.

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. Consider an input (G,T,D). By Lemma 3.2, we can find a set of (30c+
29)k vertices in H whose deletion results in a graph of treewidth at most 2. Lemma 3.3 then
bounds the treewidth of H as tw(H) ≤ 3 · 2 ·

√
(30c+ 29)k < 47

√
ck = O(

√
k). This concludes

the proof.

3.2 A tree of segments

We begin the proof of Theorem 1.9 by supposing that D is a class that is closed under identifi-
cation, but it is not c-bounded. The goal is now to show that D has a pattern with a t-tough
pair for all positive integers t. Consider an instance where G and D are acyclic.

First, we show that it sufficient to consider a weakly connected acyclic solution H where all
vertices have undirected degree at least 3. To show the minimum degree bound, we contract all
edges uv of H (and G) where u or v has undirected degree at most 2. If at least one of u and v
is a non-terminal, then such contractions do not influence the feasibility and edge minimality of
H, and it also does not change the total branch degree of H. If both u and v are terminals, then
let H ′ denote the new graph after the contraction, and let us identify u and v in D, resulting in
the graph D′. Since |D′| = k−1 and H and H ′ have the same total branch-degree, we have that
if H has total branch degree at least ck, then also H ′ has total branch degree at least c · (k− 1).
It is therefore sufficient to consider graphs H where all vertices of the undirected graph H̄ have
degree at least 3. (Throughout this section, the notation X̄ refers to the undirected graph given
by the edges of the graph X, where X may be a directed graph or mixed graph.)

Suppose now that H is disconnected, and let Hi be the connected components of H (i =
1, 2, . . .). For each Hi let Di be the subgraph of D induced by T ∩V (Hi). Notice that the graphs
Di are a partition of the edges ofD, where each connected component ofD is contained in a single
graph Di. Observe that each Hi is an edge-minimal solution for the instance (G,T ∩V (Hi), Di).
Moreover, if H has branch-degree at least ck, than at least one among the Hi has branch degree
at least c · |T ∩ V (Hi)|. Therefore we can restrict our attention to weakly connected graphs H.

Defining a tree of segments. The skeleton S is a 2-connected mixed graph that we will
build based on an optimum solution H of the instance (G,T,D) of Planar D-SN where G and
D are acyclic. Suppose now that H is a solution to (G,T,D) that is a connected acyclic graph
of minimum degree at least 3. We fix a plane embedding of H, and add undirected edges to H̄ in
a greedy manner to create a triangulation of the plane with vertex set V (H); let H∆ denote the
resulting mixed graph, where the edges of H are directed, and the newly added triangulation
edges are undirected.

A long segment is a directed path of length at least L in H∆. A short segment is a path
of H̄∆ (i.e., of arbitrary orientation edges in H∆) that consists of at most L edges. A pair of
segments A,B are distant if for any pair of vertices a ∈ A and b ∈ B the distance of a and b in
H̄ is at least L. Our goal is to create a skeleton where the boundary of the so-called relevant
face consists of O(k) (long and short) segments where the long segments are pairwise distant.

16

Next, we construct a tree R in H∆ consisting of O(k) segments that contains all terminals.

Lemma 3.4. There is a tree R in H∆ that contains all terminals and consists of O(k) segments,
such that any pair of long segments of R are distant.

Proof. Initially, we set R to be the edgeless forest with vertex set T . We add segments to R
using the following insertions, until it becomes connected.

Insertion 1. Let C and C ′ be the closest components of the current graph R, that is, the
pair of components where δ(C,C ′) := minu∈V (C),v∈V (C′) distH̄∆

(u, v) is minimized. If
δ(C,C ′) ≤ 2L, then let P be a shortest path connecting C and C ′ in H∆. Since |P | ≤ 2L,
we can decompose P into at most two segments, which we add to R, connecting C and C ′.

Insertion 2. Suppose that R is not connected, but Insertion 1 can no longer be applied. A
vertex v is a collaborator of a component C of R if there is an edge e incident to v that
is essential for some demand tt′ where t ∈ V (C) or t′ ∈ V (C). Let v be a vertex that
collaborates with at least two distinct components. Let Pv and P ′v be directed paths
connecting v to these two components. We shortcut the loops of Pv ∪ P ′v, to find a path
P whose internal vertices are outside NR that connects two distinct neighborhoods NC

and NC′ . Note that P is the concatenation of at most two directed paths, thus it can be
decomposed into at most two short or long segments. If we have two long segments, we
also need to separate these with a short segment: let u be the first vertex on the first long
segment that is within H̄-distance L to the other long segment. We connect u to the last
vertex v of the other long segment to which it has distance L using a short segment, and
remove the parts of the long segments that fall between u and v. Let P be the final path,
which now consists of at most 3 segments, and if it has two long segments, then those are
distant. Connecting the endpoints of P to C and C ′ with short segments, we are able to
add at most five segments to R that connect C and C ′.

We claim that applying the above insertions exhaustively leads to a tree that contains all
terminals. Observe that after each successful insertion the number of connected components of
R decreases by at least one (and no cycles can be created), thus after at most k−1 insertions we
get a connected tree R. In order to show this, we need to show that as long as R is disconnected,
there is an insertion that we can apply.

Claim 3.5. If R is disconnected, then at least one of the insertions can be applied.

Proof. Suppose for the sake of contradiction that Insertion 1 and 2 cannot be applied, but R is
still disconnected. It follows that each vertex collaborates with at most one component. If some
edge e is essential for demand titj and the terminals ti, tj lie in different connected components
of R, then Insertion 2 can be applied, so suppose that no such edge exists, i.e., for each edge
the corresponding demand terminals fall into the same component. Since all edges e of H are
essential and H has no isolated vertices, we have that all vertices of H collaborate with at least
one component of R.

Let P0 be a path in H̄ connecting the distinct components C and C ′ of R whose internal
vertices are disjoint from V (R): such a path exists because R is a disconnected subgraph of
the connected graph H. The starting vertex of P0 collaborates with C, and its ending vertex
collaborates with C ′, so there must be an edge e along this path whose endpoints collaborate
with distinct components. But this contradicts the definition of collaboration, which implies that
adjacent vertices collaborate with all components for which the connecting edge is essential. y

Notice that each insertion adds at most 5 new segments to R, and we can do at most k − 1
insertions to reach the final tree R, thus the final tree R consists of at most 5k − 5 segments.

17

Moreover, long segments can only be added with Insertion 2 and 3, and each of them adds a
long segment outside the current NR, thus the newly added long segments are distant from all
earlier long segments. Thus insertions preserve the property that long segments are pairwise
distant. This concludes the proof.

3.3 Region slicing

We will now slice the plane into smaller regions using segments. We say that a closed region
(some connected union of faces of H∆) in the plane is relevant if it is interior-disjoint from the
plane tree R. We work towards the following lemma.

Lemma 3.6 (Skeleton Lemma). There is a subgraph Skel ⊂ H∆ consisting of O(k) segments
where the faces of Skel are relevant and they partition the plane, each face of Skel has at most
35 segments on its boundary, and within the subgraph of H̄ induced by each face of Skel any
pair of long segments on the face boundary are either subpaths of the same directed path of H,
or they are distant.

The proof of the lemma requires a good separation, which we will prove next. The separator
that we prove relies on Sperner’s lemma, which can be phrased as follows.

Theorem 3.7 (Sperner’s lemma). Let G be an undirected simple plane graph where the vertices
are assigned one of three colors (red, green, or blue). Suppose that other than the outer face, the
rest of the graph is triangulated. Moreover, suppose that the boundary of the outer face has three
marked vertices, v1, v2, v3 colored with 1, 2, 3, and that each vertex on the boundary is assigned
one of the colors of the two marked vertices that enclose it on the boundary. Then G has a
triangle whose vertices have three different colors.

If F is a relevant region bounded by some cycle of H̄∆, then let HF and HF∆ denote the
subgraph of H and H∆ consisting of the edges in F (including edges on the boundary of F),
respectively.

Lemma 3.8 (Separator). Let F be relevant region of H that is bounded by a cycle F of H̄∆

which consists of s ≥ 36 segments, where long segments are distant in H̄F . Then there is a path
P in F that splits F into two regions, F1 and F2 with boundary cycles F1 and F2 consisting of
s1 and s2 segments, so that

• long segments in F ∪ P = F1 ∪ F2 are distant,
• s1 + s2 ≤ s+ 12,
• and 13 ≤ s1, s2 ≤ s− 4.

Proof. We will assign colors to the vertices of H∆ that fall in F . First, we split the boundary
cycle F̄ into three paths P1, P2, P3 of almost equal number of segments, i.e., so that the number
of segments on each of these paths have a difference of at most 1. We color the endpoints of
the paths with 1, 2 and 3 so that Pi goes from the point of color i to the point of color i + 1,
where indices are defined modulo 3. Next, all internal vertices of Pi will be colored by i for each
i = 1, 2, 3, see Figure 7.

To color the vertices in the interior of F , let v be an arbitrary vertex there. Since v is not in
R, it cannot be a terminal, so it has an essential edge incident to it, which is on some terminal-to
terminal path. Let Pv be this directed path connecting two terminals that contains v. Since
there are no terminals in the interior of F , going forward on the path we will eventually exit
F . Before this point, there will be a first vertex w of P after v that is of distance at most L
to some point b ∈ V (F), that is, either distH̄F∆(v, b) ≤ L and v = w, or distH̄F (w, b) = L and
maxx∈P [v,w) distH̄F∆

(x, V (F)) > L. (If there are multiple vertices b ∈ V (F) at minimum distance

to w in H̄F∆ , then we choose an arbitrary such vertex b). We assign to v the color that we have

18

P1

P2

P3

u2

P1

P2

P3

Pv

v

w

L

(i) (ii)

u1
u3

Figure 7: (i) Coloring segments on the boundary of the region F . Long segments are denoted
with an arrow. The color of vertex v is defined using a path Pv that arrives in the L-neighborhood
of ∂F . (ii) Applying Sperner’s lemma in the coloring. Two of the landing vertices in ∂F (denoted
by empty squares) will be from distant segments along ∂F .

assigned to b. Notice that we have a path Q consisting of a directed path (a subpath of Pv) and
a short segment that connects v to b, and Q is distant from all long segments of V (F).

By Sperner’s lemma there is a triangle u1u2u3 in this coloring where ui has color i. Let Qi
be the path from ui to the boundary point bi ∈ V (Pi) that we used to assign color i to ui. Since
the paths Pi have at least bs/3c segments, we have that there is a pair b′, b′′ among b1, b2, b3 such
that along F there are at least bs/3c complete segments between them (and up to two partial
segments). Let u′, u′′ ∈ {u1, u2, u3} and Q′, Q′′ ∈ {Q1, Q2, Q3} be the starting points and paths
corresponding to b′ and b′′. Consider the path that is the concatenation of Q′, the edge b′b′′,
and Q′′. If both Q′ and Q′′ contain long segments attached to u′ and u′′, then the path can be
shortcut in the middle with a short segment to ensure that they remain distant from each other:
let u be the first vertex on the first long segment that is within H̄-distance L to the other long
segment. We connect u to the last vertex v of the other long segment to which it has distance
L using a short segment, and remove the parts of the long segments that fall between u and v.

Let P be the resulting path connecting b′ and b′′, and let F1 and F2 be the regions that we
get by splitting F with P . By construction, the resulting path consists of at most 5 segments,
and long segments in F ∪P are pairwise distant. Note that the vertices b′ and b′′ may be internal
vertices of some segment of F , and in such a case the corresponding segment will be counted
both in F1 and F2. We are also counting the at most 5 segments of P both times. Thus we
have that s1 + s2 ≤ s + 2 + 2 · 5 = s + 12. Since P has at least one segment, we have that
min(s1, s2) ≥ bs/3c+ 1 ≥ 13 since s ≥ 36. Taking into account the partial segments, the upper
bound can be written as max(s1, s2) ≤ s− bs/3c+ 2 + 5 ≤ 2s/3 + 8 ≤ s− 4, since s ≥ 36.

We can use this separator to prove Lemma 3.6, but first let us consider a walk along the
boundary of the unbounded face of the plane tree R. Notice that the walk uses each edge of R
twice, once in each direction. Additionally, whenever we encounter a branching vertex (a vertex
of degree at least 3) of R that is an interior vertex of the segment we have been walking along,
then we slice the current segment into two smaller segments at v, resulting in two (short or
long) segments. As a result, we end up with a walk that consists of the original O(k) segments,
plus at most the number of branching vertices of R, which is at most O(k), as there are at most
O(k) leaves in R. Consequently, the walk has at most O(k) segments.

Proof of Lemma 3.6. If the walk aroundR consists of at most 35 segments, then we set Skel = R;
this has all the desired properties. Otherwise, we recursively slice the region outside R into

19

smaller regions using Lemma 3.8, until all regions have at most 35 segments on their boundary,
using the following procedure.

For a partition P = {F1, . . . ,Ft} of the plane where each Fi is a non-empty union of faces
of H∆ and where Fi has si boundary segments, we define the potential function

f(P) =
t∑
i=1

si − 13t.

Notice that the contribution of region Fi to f(P) is si − 13. By Lemma 3.8, for any region
Fi appearing throughout the slicing we have si ≥ 13, therefore each region contributes a non-
negative integer to f . It follows that f(P) ≥ 0 for all partitions P that appear in the slicing.

If F is the region boundary of an element of P with s ≥ 36 segments on its boundary, then
by Lemma 3.8, after the slicing it will be replaced by two regions, and the total number of
segments on region boundaries increase by at most 12. Therefore in the potential function f
the number t increases by one, while the segment sum increases by at most 12. Thus if P ′ is
the new partition we get by applying Lemma 3.8 on F , then we have

f(P ′) ≤ f(P) + 12− 13 = f(P)− 1.

Thus the potential is decreasing in each step. Initially we have a singleton partition with value
O(k), and we know that the potential remains non-negative, thus there can be at most O(k)
steps. It follows that Skel consists of O(k) regions, each of which has O(1) segments on their
boundary. The long segments of any of the faces F in Skel are either on the same directed path
of the original solution H, or they are distant inside H̄F∆ . Indeed, this property is true for the
initial singleton partition, the distances are preserved by the slicing, and the distance is not
shortened when restricting to a subgraph defined by some region F .

3.4 Finding a t-tough pair

Let F be a relevant face of the skeleton Skel given by Lemma 3.6. If F is the unbounded face
of Skel, then we change the embedding of H∆ so that F is not the outer face. Let HF denote
the subgraph of H induced by the vertices in F , and let B denote the vertices that are on the
boundary of F . We denote by ∂F the edges of HF that are on the boundary of F , and let intF
denote the edge set E(HF) \ ∂F . (Note that F may contain undirected triangulation edges
that are not contained in ∂F or intF .) By Lemma 3.6 we know that F consists of cSkel = O(1)
segments. Observe that if we decompose the short segments on the boundary ∂F into length-0
paths, then we can think of it as a collection of at most L · cSkel directed paths (where the long
segments appear as themselves, and vertices only incident to short segments as singletons).

Given an (essential) edge e in intF (i.e., not on the boundary F), there exists a directed
path in HF connecting two distinct vertices of B using e to satisfy the demand for which e is
essential. Note that the edges of this path are all in intF . Such a path is called an essential
path through e.

Lemma 3.9. For each v ∈ B we have that degHF (v) ≤ 2L · cSkel + 2.

Proof. Let vu be an edge where v ∈ B and u 6∈ B. Since vu is essential for some demand, there
is some essential path P through vu; let v′ be the other endpoint of P . Suppose that w′ ∈ B is
reachable from v′ along ∂F . Then there can be no essential path from v to w′ that avoids vu, as
the connection is already established by P and the path along ∂F from v′ to w′. In particular,
there can be at most one edge leaving v where the corresponding essential path ends on a given
directed path of ∂F . Since ∂F consists of at most L · cSkel directed paths, we have that there
are at most L · cSkel inner edges leaving v. An analogous argument for the incoming edges plus
the at most two boundary edges proves the desired upper bound on the degree of v.

20

We will now consider the number of demands for which the edges of HF are essential. In
what follows, let κ be the number of such demands, i.e., suppose that H \ intF fails to satisfy
κ of the demands.

Lemma 3.10. If H \ intF fails κ demands, then the total branching degree of HF is at most
κ(κ− 1).

Proof. First we show that the internal vertices of HF have bounded total branching degree. To
do so, we first bound the number of intersections between paths satisfying different demands.

We claim that there can be at most one intersection point where there are incoming edges
of HF essential for a given pair of demands. Suppose the contrary: that v, w ∈ V (HF) are
distinct vertices such that both of them have an incoming edge essential for demand edge d
(denoted by e(d, v) and e(d,w) and an incoming edge essential for demand edge d′, denoted by
e(d′, v) and e(d′, w). Note that either v is reachable form w or vice versa, as otherwise we could
remove one of e(d, v) and maintain the connection of d via w. Assume without loss of generality
that there is a path P from v to w. Note that P cannot use both e(d,w) and e(d′, w); suppose
that it does not use e(d,w). Since e(d,w) is essential for d, there is a directed path Q ⊂ E(HF)
through it1 satisfying the demand d. Note that Q must also pass through the edge e(d, v), and
in particular, contains vertex v.

We can therefore use an initial part of Q to get to v: note that this part of Q is disjoint
from P as otherwise there would be a closed walk and thus a cycle in H. We use P to go from
v to w, and continue on Q after w; as Q goes through e(d,w), it can be continued from w. The
resulting path Q′ essentially replaces Q[v, w] with P , and has the same endpoints as Q, making
e(d,w) non-essential for d, a contradiction.

The analogous argument for outgoing edges gives the same bound. Imagine labeling each
unordered pair of edges that have the same head with an unordered pair of demands, such that
one edge is essential for one demand and the other edge is essential for the other. The above
argument implies that these labels must be distinct for all pairs of edges sharing the same head.
The analogous can be done for edge pairs that share the same tail. Consequently, the vertices
of HF satisfy ∑

v∈V (HF)

(
ρ(v)

2

)
≤
(
κ

2

)
∑

v∈V (HF)

(
δ(v)

2

)
≤
(
κ

2

)
,

where ρ(v) and δ(v) denote the in- and outdegree of v in HF , respectively. On the other hand,
observe that

(
ρ(v)

2

)
+
(
δ(v)

2

)
≥ d∗(v), thus we have that the total branching degree is at most

2
(
κ
2

)
= κ(κ− 1).

Lemma 3.11. If for each relevant face F of Skel we have that H \ F fails at most κ demands,
then, then the total branch degree of H is at most O(κ2) · k.

Proof. By Lemma 3.10, we have that each relevant face F has total branch degree at most
κ(κ − 1). Since each vertex of H has degree at least 3, the same holds for the vertices of HF

that are in intF . Thus all of the inner vertices contribute at least 1 to the branch degree of HF ;
it follows that there are at most κ(κ− 1) inner vertices. It follows that the total degree of the
inner vertices is at most κ(κ− 1) + 2κ(κ− 1), since the degree and branch degree differs by at
most 2. Let BF denote the vertices of ∂F , and let B̂F denote those vertices that are adjacent

1Here Q may use boundary edges of HF , i.e., it is not necessarily an essential path.

21

to some inner vertex of F in HF . Since the total degree of inner vertices is at most 3κ(κ− 1),
this also bounds the number of vertices in B̂F : we have |B̂F | ≤ 3κ(κ− 1).

By Lemma 3.6 we know that Skel has O(k) faces, thus the sum of the branch degrees of all
relevant faces is m = O(κ2k). We claim that the total branch degree of H is at most O(k) larger
than 3m. Notice that the difference between the two amounts is due to the vertices of H that
lie on the shared boundary of some relevant faces of Skel. Suppose now that v has degree 2 in
Skel with neighboring relevant faces F and F ′. Then d∗H(v) ≤ d∗

HF
(v) +d∗

HF′
(v) + 2. Therefore,

the total contribution from vertices in B̂F is at most 2κ(κ − 1), and all other vertices have all
adjacent edges in the other face, so they satisfy d∗F ′(v) = d∗H(v).

Suppose now that v has degree dv ≥ 3 in Skel, with neighboring faces F1, . . .Fdv and
corresponding branch degrees d∗1(v), . . . , d∗dv(v). Then we have

d∗H(v) ≤
dv∑
i=1

d∗i (v) + 2(dv − 1).

Consequently, the branch degree of H differs by at most 2
∑

v(dv − 1), where the sum goes over
vertices of Skel of degree at least 3. Note that Skel is a plane graph with O(k) faces, thus the
sum is at most O(k), concluding the proof.

We say that a directed edge uv enters (resp. exits) a path P if u 6∈ V (P) and v ∈ P (resp.
u ∈ V (P) and v 6∈ V (P)).

Lemma 3.12. Suppose that P and P ′ are essential paths for the edges e, e′ respectively, and
that the directed paths Qs, Q,Qt do not contain these edges. Suppose that P and P ′ exit the
directed path Qs before e and e′ respectively, and the edges e, e′ enter the same directed path Q.
Alternatively, suppose that e, e′ exit the same directed path Q, and after them P and P ′ enter
the same directed path Qt. Then P and P ′ are vertex-disjoint, and the paths Qs, Q (respectively,
Q,Qt) have the same “direction”, that is, their intersections with P and P ′ appear in the same
order.

Proof. Let e = uv and f = u′v′, and let P and P ′ be essential paths through e and f respectively,
and suppose that uv and u′v′ both enter a directed path. Let Q denote the directed path from
v to v′. Let s, t and s′, t′ denote the start- and endpoints of P and P ′, respectively. We observe
that the directed path Qs must be oriented from s to s′: indeed, if it is oriented the other way,

then P ′ cannot be an essential path for u′v′, as we can use the path s′
Qs−−→ s

P−→ v
Q−→ v′ instead

of P ′[s′, v′], and we claim that this path avoids u′v′. In case of Qs and Q do not contain u′v′,
so one only needs to check P . But if u′v′ ∈ P [s, v], then we could create closed walk together
with Q and contradict acyclicity.

Now suppose for the sake of contradiction that P and P ′ intersect at some vertex p. We
distinguish three cases:

Case 1: p occurs after the edge uv on P .

This contradicts the essentiality of uv, as one can use s
Qs−−→ s′

P ′−→ p instead of P [s, p].

Case 2: p occurs before the edge uv on P , and before the edge u′v′ on P ′.

This contradicts the essentiality of u′v′, as one can use p
P−→ v

Q−→ v′ instead of P ′[p, v′].

Case 3: p occurs before the edge uv on P , but after the edge u′v′ on P ′.

This contradicts the acyclicity of H, as p
P−→ v

Q−→ v′
P ′−→ p is a closed walk.

Suppose now that uv and u′v′ both exit a directed path. Let Q denote the directed path
from u to u′. We observe that the directed path Qt must be oriented from t to t′: indeed,

22

if it is oriented the other way, then P cannot be an essential path for uv, as we can use the

path u
Q−→ u′

P ′−→ t′
Qt−→ t instead of P [u, t]. Again this path avoids uv as if uv ∈ P ′[u′, t′] then

together with Q we would get a closed walk.
Now suppose for the sake of contradiction that P and P ′ intersect at some vertex p. We

distinguish three cases:

Case 1: p occurs before the edge u′v′ on P ′.

This contradicts the essentiality of u′v′, as one can use p
P−→ t

Qt−→ t′ instead of P ′[p, t′].

Case 2: p occurs after the edge u′v′ on P ′, and after the edge uv on P .

This contradicts the essentiality of uv, as one can use u
Q−→ u′

P ′−→ p instead of P [u, p].

Case 3: p occurs after the edge u′v′ on P ′, but before the edge uv on P .

This contradicts the acyclicity of H, as p
P−→ u

Q−→ u′
P ′−→ p is a closed walk.

This concludes the proof.

A bundle is a collection of pairwise vertex-disjoint essential paths of F that exit a directed
path Ps of ∂F and enter a directed path Pt of ∂F . For a cycle C in H̄F∆ let HC denote the
edges of H that are inside2 C or on C.

Definition 3.13 (Grid structure). A grid structure of size λ is a cycle C in H̄F∆ and a pair of
directed path sets BP = {P1, . . . , Pλ} and BQ = {Q1, . . . , Qλ}, where the paths are in HC , and
the following properties hold. See Figure 8 for an illustration.

(i) Path Pi starts at sPi ∈ V (C) and ends at tPi ∈ V (C). Similarly, path Qj starts at some

sQj ∈ V (C) and ends at tQj ∈ V (C). Apart from their start- and endpoints, each Pi and
Qj is vertex-disjoint from C. The paths of BP are pairwise vertex-disjoint, and the paths
of BQ are pairwise vertex disjoint.

(ii) The cycle C contains the vertices

sP1 , s
P
2 , . . . , s

P
λ , tQ1 , t

Q
2 , . . . , t

Q
λ , tPλ , t

P
λ−1, . . . , t

P
1 , sQλ , s

Q
λ−1, . . . , s

Q
1

in this cyclic order, or reversed.

(iii) There is a directed path Qs ⊂ C through sP1 , s
P
2 , . . . , s

P
λ . Similarly, the directed path

Qt ⊂ C goes through tP1 , t
P
2 , . . . , t

P
λ , the path Ps ⊂ C goes through sQ1 , s

Q
2 , . . . s

Q
λ , and the

path Pt ⊂ C goes through tQ1 , t
Q
2 , . . . , t

Q
λ .

(iv) Each Pi intersects each Qj in some non-empty connected subpath.

(v) Each Pi is a subpath of an essential path for some edge ei ∈ Pi, and each Qj is a subpath of
an essential path for some edge e′j ∈ Qj . Moreover, ei 6∈ Qj and e′j 6∈ Qi for any i, j ∈ [λ].

(vi) For each 1 ≤ i1 < i2 ≤ λ the head of ei2 is reachable from the tail of ei1 within HC using
a path that avoids ei1 or ei2 . Similarly, the head of e′i2 is reachable from the tail of e′i1
within HC using a path that avoids e′i1 or e′i2 .

Let us fix a vertex xi,j ∈ Pi∩Qj for each i, j ∈ [λ]. The embedding ensures that xi,1, . . . , xi,λ
appear in this order on Pi, and x1,j , . . . , xλ,j appear in this order onQj . Observe that contracting

2That is, in the fixed embedding, these edges lie entirely in the bounded region defined by C. Recall that all
relevant faces of Skel are bounded.

23

P1 P2 Pi Pλ−1 PλPs Pt

C

xi,j

Qs

Q1

Q2

Qj

Qλ−1

Qλ

Qt

sP1 sP2
sPi sPλ−1 s

P
λ

tP1 tP2
tPi tPλ−1 tPλ

sQ1

sQ2

sQi

sQλ−1

sQλ

tQ1

tQ2

tQi

tQλ−1

tQλ

e′1

e′2

e′j

e′λ−1

e′λ

e1
e2 ei eλ−1 eλ

Figure 8: A grid structure with cycle C and path sets BP ,BQ. Thick edges are the defining
essential edges.

the edges of Pi ∩Qj as well as all edges that have an incident degree-2 edge results in a plane
grid with grid lines Pi and Qj .

Our task now is to find a large grid structure. Consider a bundle B consisting of paths
P1, . . . , Pt from long segment A to long segment B where the indices are according to the order
of starting points on A. Suppose that Pt/4 starts at a1 ∈ A and ends in b1 ∈ B, and that P3t/4

starts at a2 ∈ A and ends in b2 ∈ B. The spread of B is defined as distĀ(a1, a2) + distB̄(b1, b2).

Lemma 3.14. Suppose that κ > L4 and that L is large enough. If H \ intF fails κ demands,
then HF has a grid structure of size Ω(L).

Proof. By Lemma 3.9 we have that each vertex on ∂F has degree O(LcSkel). Since there are at
most LcSkel vertices on ∂F that are on some short segment, we have that at least κ−O(L2c2

Skel)
demands whose essential paths go through long segments. Consequently, there exists a long

segment S that has
κ−O(L2c2Skel)

cSkel
demands going through it. At least half of these demands

are exiting S or entering S; suppose the former, i.e., there are at least
κ−O(L2c2Skel)

2cSkel
demands

exiting S (the entering case can be handled analogously). Since vertices of segment S have
degree at most O(LcSkel), we have that among these demands exiting S, there must be at least
κ−O(L2c2Skel)

2cSkel·O(LcSkel)
= Ω(κ/L) demands exiting S that have pairwise distinct starting vertices.

Each of these demands have some edge exiting S, and for each of these edges let us fix a
corresponding essential path. Among these essential paths, at most O(L2c2

Skel) of them end on
short segments, and among the rest, at least 1

cSkel
proportion of them end on the same long

segment of ∂F . Thus there are at least
Ω(κ/L)−O(L2c2Skel)

cSkel
= Ω(κ/L) essential paths among them

that also end on the same long segment of ∂F . Among these paths, at least 1
O(LcSkel)

proportion

of them have pairwise distinct ending points. Thus, there exists a bundle of size at least Ω(κ/L2)
where either all defining essential edges exit a long segment of ∂F , or all defining essential edges
enter a long segment of ∂F . We fix a constant c∗ such that there exists a bundle of size at least
c∗κ/L2. Let B be the bundle of minimum spread that has exactly λ := bL/(4c2

Skel)c and where
the defining edges are all entering or all exiting a long segment. Since L is large enough, we
may assume L > 1/c∗, so c∗κ/L2 > κ/L3 > L > λ, so such a bundle B exists.

24

By Lemma 3.12, we have that the paths of B are pairwise vertex-disjoint. Moreover, by the
same lemma, we can index the paths of B by the order in which their starting points occur in
∂F as P1, . . . , Pλ. By the essentiality of the defining edges of B, we know that the target of
a path cannot be reachable from its source, thus the starting and ending long segments of B
are distinct and they cannot be subpaths of the same directed path of H. Thus Lemma 3.6
implies that the starting and ending long segment of B are distant, therefore there are at least
L vertices on the middle path Pm of B, where we set m = bλ/2c. Note that each vertex of Pm
has degree at least 3, thus each of these vertices has an incident edge that is not on Pm. At
least half of these edges are on the same side of Pm in the embedding, and at least half of them
are all entering or all exiting Pm. Consider now the essential paths of the L/4 edges selected
this way. At least 1/c2

Skel proportion of them have the same starting and ending segment, thus
there are at least λ = bL/(4c2

Skel)c paths all entering or all exiting Pm in the same direction.
Let B′ be this size-λ collection of essential paths.

We can index the paths of B′ by the order in which their essential edge occur on Pm as
P ′1, . . . , P

′
λ. Let e′j the essential edge of P ′j .

Let SB, TB, S
′
B, T

′
B be starting and ending segments of B and B′, respectively. We denote by

ei and e′i the essential edge of Pi and P ′i . Suppose now that Pi and P ′j intersect more than once,
and let x and x′ be the first and last intersection along Pi. By acyclicity of H, we know that x
and x′ are also the first and last intersection along P ′j . Observe that the ei and e′j cannot occur
between x and x′, as that would allow us to circumnavigate an essential edge using a portion
of the other path. Consequently, we can change P ′j by exchanging P ′j [x, x

′] with Pi[x, x
′]; the

result is still an essential path for the edge e′j . By making such changes exhaustively, we can
ensure that for each i, j ∈ [λ] if Pi intersects Pj , then their intersection is a connected (possibly
one-vertex) subpath.

We now distinguish several cases based on what segment B′ starts and ends on. Note that
SB 6= TB and S′B 6= T ′B by essentiality of e1 and e′1, and acyclicity. Assume without loss of
generality that B goes from bottom to top, with both SB and TB oriented left to right. See
Figure 9 for an illustration.

Case 1. S′B 6∈ {SB, TB} (or symmetrically, T ′B 6∈ {SB, TB}). First we show that the paths of
B′ are pairwise disjoint. Suppose that the edges e′j are entering Pm from the left. Then we
can apply Lemma 3.12 with P1 playing the role of Qs and Pm playing the role of Q. If they
are exiting Pm on the right, and T ′B 6∈ {SB, TB}, then Lemma 3.12 is applied with Q = Pm
and Qt = Pλ. If T ′B ∈ {SB, TB}, then Lemma 3.12 is applied with Q = Pm and Qt = T ′B. All
remaining cases can be handled with analogous invocations of Lemma 3.12.

Suppose that the edges e′i enter Pm from the left or exit it on the right. Because of the
embedding it follows that all paths of B′ intersect P1, P2, . . . , Pm. We claim that if the edges e′i
exit Pm, then the paths P ′i also intersect the path Z = SB[m,m+1]∪Pm+1, where SB[m,m+1]
denotes the portion of SB between the starting point of Pm and Pm+1. Note that P ′i enters the
inside of the closed curve Pm ∪ SB[m,m+ 1] ∪ Pm+1 ∪ TB[m,m+ 1], so P ′i must intersect Z or
TB[m,m+ 1] after passing e′i (because of the earlier simplifaction it cannot intersect Pm again).
If P ′i enters TB[m,m+ 1], then its portion containing e′i can be curcumnavigated on a directed
subpath of Pm ∪ TB[m,m+ 1], contradicting the essentaility of e′i.

If e′i enters Pm, then we set Z = Pm.
Consider the cycle C of H̄ formed by P1, P

′
1, P

′
m, Z (Since P1, Z and P ′1, P

′
m are vertex-

disjoint, and the other pairs have a connected intersection, there is a unique cycle in the union
P1 ∪ P ′1 ∪ P ′m ∪ Z.) One can verify that C, {P2|C , . . . , Pm−1|C}, and {P ′2|C , . . . , P ′m−1|C} form
a grid structure, where P |C denotes the portion of the path P that falls in the interior of the
bounded region of C.

The case when the edges B′ enter Pm from the right or exit it to the left can be handled

25

∂F

SB

TB

P1 PtPm

S′
B

P ′
1

P ′
m

P ′
t

e′1

e′m

e′t

Q

Pm+1

C

Figure 9: Finding a grid structure based on a bundle B (orange). The edges e′j exit the middle
path Pm on the right. The bundle B′ (red) has a distinct starting segment S′B, as in Case 1.
The directed path Z is depicted with dashed line, and the cycle C around the found grid is the
boundary of the gray shaded region.

analogously, using the paths Pm, . . . , Pλ instead of P1, . . . , Pm, and setting Z = Pm−1 ∪ TB[m−
1,m] or Z = Pm for entering/exiting edges e′i. The cycle C is defined by Z,Pλ, P

′
m, P

′
λ, and the

grid is given by C, {Pm+1|C , . . . , Pλ−1|C}, and {P ′m+1|C , . . . , P ′λ−1|C}. In all cases the grid has
size at least bλ/2c − 2.

Case 2. SB = S′B and TB = T ′B. We claim that this case cannot occur. If e′i exits Pm on
the right, then we can exchange the portion of P ′i starting at e′i with a part of Pm and TB,
contradicting the essentiality of e′i. If e′i enters Pm from the left, then we can exchange the
portion of P ′i ending at e′i with a part of SB and Pm, contradicting the essentiality of e′i.

If e′i exits Pm on the left, or enters Pm from the right, then we can exchange the portion of
Pm starting at em with a part of SB and P ′m, contradicting the essentiality of em.

Case 3. SB = T ′B and TB = S′B. First we note that e′i cannot enter Pm from the right or exit
it on the left, as both would create a cycle. We can invoke Lemma 3.12 on any pair of paths
of B′ with Q = Pm and either Qs = S′B or Qt = T ′B to prove that the paths of B′ are pairwise
vertex-disjoint.

Since B has minimum spread, we have that B′ has a spread at least as big. Recall that if B
goes from A = SB to B = TB, then Pλ/4 starts at a1 ∈ A and ends in b1 ∈ B, while P3λ/4 starts
at a2 ∈ A and ends in b2 ∈ B. Now B′ goes from B to A, so we set the start and endpoint of
P ′λ/4 as b′1 ∈ B and a′1 ∈ A, and similarly, the start and end of P ′3λ/4 as b′2 ∈ B and a′2 ∈ A. Now

distĀ(a1, a2) + distB̄(b1, b2) ≤ distĀ(a′1, a
′
2) + distB̄(b′1, b

′
2), thus at least one of the inequalities

distĀ(a1, a2) ≤ distĀ(b′1, b
′
2) and distB̄(b1, b2) ≤ distB̄(a′1, a

′
2) holds.

Suppose that the latter inequality holds. Then because of the embedding we have that
P ′1, . . . , P

′
bλ/4c all intersect Pdλ/4e, . . . , Pbλ/2c. We can then define a grid for these two smaller

bundles of size at least λ/4 − 2 as seen in Case 1 by imagining that the path TB is split
into two shorter paths, the first part containing the endpoints of P ′1, . . . , P

′
bλ/4c, and the sec-

ond containing the starting points of Pdλ/4e, . . . , Pbλ/2c. Similarly, if the former inequality

26

C

P1 Pλ

Q1

Qλ

Pi Pj

sP1 sPλ

tP1 tPλ

sQ1

sQλ

tQ1

tQλ

Ps Pt

Qs

Qt

vPi vPj

uP
i uP

j

Pd

sQ2 tQ2

sQ3 tQ3
xi,3

xj,1

C

P1 Pλ

Q1

Qλ

Pi

sP1 sPλ

tP1 tPλ

sQ1

sQλ

tQ1

tQλ

Ps Pt

Qs

Qt

vPi

uP
i

sQj tQjQj

Pd

uQ
j xi,j vQj

(i) (ii)

Figure 10: (i) Proving weak independence: a demand vPi u
P
j leads to the path Q2 being avoidable,

contradicting essentiality of e′2. (ii) Proving strong independence. A demand uPi u
Q
j leads to the

edge ei being avoidable on P exi , contradicting its essentiality for uPi v
P
i . In both sides the path

P ∗ is represented as the concatenation of the path(s) with orange background and the blue
path Pd.

(distB̄(b1, b2) ≤ distB̄(a′1, a
′
2)) holds, then P ′d3λ/4e, . . . , P

′
λ all intersect Pdλ/2e, . . . , Pb3λ/4c, and

the grid can again be defined analogously to Case 1.

In all possible cases we have shown that a grid of size Ω(λ) = Ω(L) exists which completes
the proof.

The usefulness of the grid structure is demonstrated by the following lemma.

Lemma 3.15. If C,B, and B′ form a grid structure of size λ, then the demands corresponding
to a subset of their essential paths form a (λ− 2)-tough pair.

Proof. First we show that the demands corresponding to the essential paths BP = {P1, . . . , Pλ}
are pairwise weakly independent. For a path Pi let dPi = uPi v

P
i be the corresponding minimal

demand, which is served by some path P exi that is an extension of Pi. (Similarly, the minimal

demand of Qj is dQj = uQj v
Q
j , and it is served by the path Qexj .) See Figure 10 for an illustration.

Suppose now that dPi and dPj are not weakly independent, where i < j. There cannot be

a demand vPj u
P
i , as a path satisfying this demand together with P exi [uPi , xi,1] ∪ Q1[xi,1, xj,1] ∪

P exj [xj,1, v
P
j] forms a closed walk, i.e., contradicts acyclicity. Thus weak independence must be

violated by a demand vPi u
P
j ; let Pd be the path corresponding to this demand. We claim that

this contradicts the essentiality of e′2, as Q∗ = Q2[sQ2 , t
Q
2] can be exchanged with the path

P ∗ = sQ2
Ps−→ sQ3

Q3−−→ xi,3
P exi−−→ vPi

Pd−→ uPj
P exj−−→ xj,1

Q1−−→ tQ1
Pt−→ tQ2 .

Unless P ∗ also contains e′2, this exchange contradicts the essentiality of e′2. Suppose now
that P ∗ does contain e′2; by the properties of the grid we know that e′2 cannot lie on any of

27

Ps, Q3, P
ex
i , P exj , Q1, Pt, thus it could only be contained in Pd. Notice that if e′2 is not essential

for the demand of Pd, then we can change Pd to exclude e′2 and get a contradiction as above.
Thus in what follows, we assume that e′2 is an essential edge for Pd.

Notice that the same argument can be repeated for e′3, thus Pd must contain e′3 as an essential
edge. By Property (vi) of grid structures, the head of e′3 is reachable from the tail of e′2. It
follows that e′2, e

′
3 must appear in this order on Pd, as otherwise we could create a closed walk

(tail(e′2)→ head(e′3)
Pd−→ tail(e′2)), contradicting acyclicity. Consequently, Pd has a subpath

tail(e′2)
e′2−→ head(e′2)

Pd−→ tail(e′3)
e′2−→ head(e′3),

which we could replace with the guaranteed path tail(e′2) → head(e′3) from the grid structure
that avoids e′2 or e′3, contradicting the essentiality of either e′2 or e′3 for Pd. The weak indepen-
dence of the paths Qj can be proven symmetrically (by switching the role of P and Q).

Next we show strong independence of dPi and dQj for all i, j ∈ {2, 3, . . . , λ− 1}. Notice that

this is sufficient, as it shows that the demands dP2 , . . . , d
P
λ−1 and dQ2 , . . . , d

Q
λ−1 form a (λ − 2)-

tough pair. Observe that having a demand vQj u
P
i or vPi u

Q
j for any i, j would create a closed

walk:

xi,j
Qexj−−→ vQj −→ uPi

P exi−−→ xi,j and xi,j
P exi−−→ vPi −→ uQj

Qj−−→ xi,j ,

respectively, contradicting acyclicity. Suppose now that there is a demand uPi u
Q
j served by a

path Pd, where i, j ∈ {2, 3, . . . , λ− 1}. Then the path P exi [uPi , t
P
i] can be replaced by

P ∗ = uPi
Pd−→ uQj

Qexj−−→ x1,j
P1−→ tP1

Qt−→ tPi .

Similarly to earlier, the existence of such a path contradicts the essentiality of ei, unless P ∗

passes through ei. The grid properties imply that ei cannot lie on any of Qexj , P1, Qt, thus it
must lie on Pd, and moreover, that it must be essential for Pd. We now distinguish two cases
based on the location of ei on Pi.

Case 1. Edge ei comes before xi,j on Pi. Then ei is inside the bounded region of the non-
directed cycle

C ′ = sPi−1
Qs−−→ sPi+1

Pi+1−−−→ xi+1,j
Qj←−− xi−1,j

Pi−1←−−− sPi−1,

see Figure 11 for an illustration. We claim that after Pd passes through ei, it is “trapped” inside
C ′, i.e., it cannot pass through any vertex of C ′.

Entering some vertex x of Qj [xi−1,j , xi+1,j] after ei is not possible since it creates a closed

walk x
Pd−→ uQj

Qexj−−→ x. Entering Qs[s
P
i−1, s

P
i] at vertex x would also create a closed walk: x

Qs−−→

sPi
Pi−→ head(ei)

Pd−→ x. Entering some vertex x of P# := sPi
Qs−−→ sPi+1

Pi+1−−−→ xi+1,j contradicts the

essentiality of ei for Pd, as we can exchange Pd[u
P
i , x] with uPi

P exi−−→ sPi
P#

−−→ x. Thus Pd has to
enter some vertex x of Pi−1[sPi−1, xi−1,j]. If x appears before ei−1 on Pi−1, then we get a closed

walk headei
Pd−→ x

Pi−1−−−→ tail(ei−1) −→ head(ei), where the last portion of the walk is supplied
by Property (vi) of grids. This contradicts acyclicity. If x appears after ei−1, then ei−1 is non-

essential for Pi−1, as Pi−1[sPi−1, x] can be circumnavigated on sPi−1
Qs−−→ sPi

Pi−→ head(ei)
Pd−→ x.

Thus no vertex of C ′ can be entered by Pd after passing through ei.

Case 2. Edge ei comes after xi,j on Pi. Then ei is inside the bounded region of the non-directed
cycle

C ′ = xi−1,j
Qj−−→ xi+1,j

Pi+1←−−− tPi+1
Qt←− sPi−1

Pi−1←−−− xi−1,j .

28

Q1
Ps Pt

Qs

Qt

sQj tQjQj

Pi

ei−1 ei+1

Qs

Qt

sQj tQjQj

sPi−1 sPi sPi+1

xi−1,j xi,j xi+1,j

Pi−1 Pi+1

eiei−1 ei+1

xi−1,j xi,j xi+1,j

tPi−1 tPi tPi+1

ei

P1 PλPs PtPiPi−1 Pi+1

(i) (ii)

Figure 11: (i) The demand path Pd is trapped in the shaded region after passing through ei,
as entering its boundary is not possible. (ii) The demand path Pd cannot exit the boundary of
the shaded region before it passes through ei.

We claim that after Pd exits C ′, it cannot pass through ei. The case can be handled analogously
to Case 1: If Pd exits from Qj [xi−1,j , xi+1,j], Q

t[tPi , t
P
i+1], or Pi+1 after ei+1, then it creates a

closed walk, contradicting acyclicity. Exiting at vertex x of Pi+1 before ei+1 contradicts the es-

sentiality of ei+1 for Pi+1, as Pi+1[x, tPi+1] can be exchanged with x
Pd−→ head(ei)

Pi−→ tPi
Qt−→ tPi+1.

Exiting from vertex x of P# := xi−1,j
Pi−1−−−→ tPi−1

Qt−→ tPi contradicts essentiality of ei for P exi , as

P exi [uPi , t
P
i] can be exchanged with uPi

Pd−→ x
P#

−−→ tPi .

The non-existence of a demand uQj u
P
i can be proven as above by exchanging the role of Pi

and Qj . If a demand vPi v
Q
j could exist, then in the reversed orientation graph it would be a valid

demand uPi u
Q
j , contradicting the above arguments. The non-existence of demands of the form

vQj v
P
i then follows by exchanging the role of Pi and Qj again. This concludes the proof.

We are now ready to prove the Structure Theorem (Theorem 1.9).

Proof of Theorem 1.9. Suppose that D is not c-bounded, that is, for any positive real number γ,
there exists an instance (Gγ , Tγ , Dγ) of Planar D-SN and an optimum solution H := Hγ such
that the total branch degree of H is more than γk, where k = |Tγ |.

We say that a quantity µ is γ-tied if it can be lower bounded by µ > f(γ) where limγ→∞ f(γ) =
∞. We need to show that H contains a tough pair whose size is γ-tied. This implies that we
can find a sequence of patterns that have tough pairs whose size goes to infinity. We can use
vertex identifications in these patterns on the tough pairs to get patterns with t-tough pairs for
all positive integers t.

As discussed in the beginning of Section 3.2, we may assume without loss of generality that
H is acyclic, weakly connected, and the vertices of H have undirected degree at least 3.

Note that if for each face F of Skel we have that H \ intF fails at most κ demands for some
absolute constant κ, then each HF has total branch degree at most O(κ2)k by Lemma 3.11, thus
we have a face F whereH\intF fails at least κ = Ω(γ1/2) demands. We set L = bκ1/3c = Ω(γ1/6)
(in particular, both κ and L are γ-tied). Now we invoke Lemma 3.14, which gives us a grid
structure of size λ = Ω(L), i.e., a grid structure whose size is γ-tied. Finally, we use Lemma 3.15
on this grid: we get a (λ− 2)-tough pair. Since λ is γ-tied, this concludes the proof.

29

4 Cleaning: Identifying to a t-hard-pattern

The goal of this section is to prove Theorem 1.10.

Theorem 1.10. Let D be a class of graphs closed under transitive equivalence and identifying
vertices. The following two are equivalent:

1. For every t, there is a D ∈ D that has a t-tough pair.
2. Ci ⊆ D for some i ∈ [κ].

Towards the proof of Theorem 1.10, we first prove Lemma 4.1.

Lemma 4.1 (Identifying to a t-hard-pattern). Let D be a class of graphs that is closed under
transitive equivalence and identifying vertices. Let D ∈ D and let t be a positive integer. Then
there exists t′ that depends only on t, such that if D contains a t′-tough-pair then there exists
D′ ∈ D that is a t-hard-pattern.

From Lemma 4.1, the proof of Theorem 1.10 follows easily. We give this proof before proving
Lemma 4.1.

Proof of Theorem 1.10. We first prove the forward direction. From Lemma 4.1, for every pos-
itive integer t, D contains a digraph from some t-hard-pattern, that is, D contains a digraph
from some Ci. Since κ is finite, there exists i ∈ [κ] such that infinitely many digraphs of Ci
belong to D. Further, since D is closed under vertex identifications and from any member of Ci
every smaller member can be obtained by vertex identifications, we conclude that Ci ⊆ D.

For the backward direction observe from the definitions of {C1, . . . , Cκ}, that each t-hard
digraph of each Ci contains in fact a t-tough-pair.

The remainder of this section is dedicated to the proof of Lemma 4.1 which is divided into
five separate steps presented in Sections 4.1, 4.2, 4.3.1, 4.3.2 and 4.4, respectively. Below we give
the main results of each of these sections and show how they together imply Lemma 4.1. Before
stating the results, we give some important definitions that are used throughout the section.

Definitions. For any digraph D, we denote by D? the transitive closure of D, that is D? is
obtained from D by repeatedly adding edges (u, v) whenever (u, v) is not already an edge but
there is a (u, v)-path in D.

For a digraph D and two ordered sets A = (a1, . . . , at), B = (b1, . . . , bt) ⊆ V (D) such that
|A| = |B|, we say that D has an (A,B)-matching if for each i ∈ [t], (ai, bi) ∈ E(D). We say that
D has an (A,B)-induced-matching if D has an (A,B)-matching, for each i 6= j, (ai, bj) 6∈ E(D),
(bj , ai) 6∈ E(D), (bi, ai) 6∈ E(D) and A,B are independent sets in D.

We say that D has an (A,B)-biclique if for each i, j ∈ [t], (ai, bj) ∈ E(D) and (bj , ai) 6∈
E(D). We say that D has an (A,B)-induced-biclique if D has an (A,B)-biclique and, A,B are
independent sets in D. We say that D has a t-biclique if there exists an (A,B)-biclique in D
for some A,B ⊆ V (D) and |A| = |B| = t. Similarly, we say that D has a t-induced-biclique if
there exists an (A,B)-induced-biclique in D for some A,B ⊆ V (D) and |A| = |B| = t. In all
these cases, we call the set of edges {(ai, bi) : i ∈ [t]} as the matching edges of (A,B).

For positive integers i, j, let R(i, j) denote the minimum number of vertices such that any
R(i, j)-vertex complete graph whose edges are colored with j colors, contains a monochromatic
clique of size i. Let R′(i) denote the minimum integer such that any bipartite graph that has
a matching of size R′(i), either has an induced matching of size t or a t-induced-biclique. From
Ramsey Theorem, such numbers always exists and they depend only on i, j, or i, respectively.
Recall the definitions of weakly independence, strongly independence and t-tough-pair from
Section 2.

30

Definition 4.2 (Ordered t-tough-pair). Given a digraph D, E1, E2 ⊆ E(D?), we say that
(E1, E2) is an ordered t-tough-pair in D if

1. |E1| = |E2| = t,
2. all edges in Ei are pairwise weakly independent in D, for each i ∈ {1, 2}, and
3. for each e1 ∈ E1 and e2 ∈ E2, (e1, e2) are strongly independent in D, and

there exists an ordering of the sets head(E1) = (w1, . . . , wt), tail(E1) = (x1, . . . , xt), head(E2) =
(y1, . . . , yt) and tail(E2) = (z1, . . . , zt) such that

1. for any 1 ≤ i < j ≤ t, there is no (wj , xi)-path, no (wj , wi)-path and no (xj , xi)-path in
D,

2. for any 1 ≤ i < j ≤ t, there is no (yj , zi)-path, no (yj , yi)-path and no (zj , zi)-path in D.

If (E1, E2) is an ordered t-tough-pair then we treat E1 and E2 as ordered sets such that their
head sets and tail sets satisfies the above properties. We say ordered tough-pair to mean an
ordered t-tough-pair for some t.

Observe that, unlike the t-tough-pair, if (E1, E2) is an ordered t-tough-pair in D, then the
edges of E1 and E2 may not be minimal in D.

Simplifying the t-tough-pair. In Section 4.1, using Ramsey arguments we show that it D
contains a t-tough-pair for a large enough t, then it contains one of the three structures described
in Lemma 4.3.

Lemma 4.3 (Hard sub-structures). Let D be a reachability-minimal digraph and t be a positive
integer. If D contains an R(2t, 9)-tough-pair then one of the following holds.

1. D contains an ordered t-tough-pair or
2. D contains a t-biclique, or
3. there exist ordered sets A,B ⊆ V (D) such that |A| = |B| = t, D contains an (A,B)-

matching and D? contains an (A,B)-induced-biclique.

Note that if D is reachability-minimal and contains a t-biclique then it contains a t-induced-
biclique. From Lemma 4.3 one concludes that, in order to prove Lemma 4.1, it is enough to
identify one of the three structures defined in Lemma 4.3 to some t-hard-pattern. The first
outcome of Lemma 4.3 is handled in Section 4.3, the second outcome is handled in Section 4.4
and the third outcome is handled in Section 4.2.

Cleaning ordered t-tough-pair. In Section 4.3 we show that if the outcome of Lemma 4.3
is an ordered t-tough-pair, then one can identify D to either a t′-hard-pattern or D? contains a
t′-induced-biclique whose edges are minimal in D. This is achieved by two rounds of cleaning: in
the first round the digraph is cleaned to an intermediate structure, called a semi-cleaned ordered
t-tough-pair (defined below), and in the second round this semi-cleaned ordered t-tough-pair is
either identified to obtain a t′-hard-pattern, or it can be shown that it contains a t′-induced-
biclique whose edges are minimal. This is formalized in Lemmas 4.5 and 4.6 which are proved
in Section 4.3.1 and 4.3.1, respectively.

Definition 4.4 (Semi-cleaned ordered t-tough-pair). We say that a digraph D is a semi-cleaned
ordered t-tough-pair, if it contains an ordered t-tough-pair (A,B) such that the vertex set of D
contains at most two vertices, called a source s and a sink t, outside of the set V (A ∪B), and
N−D (s), N+

D (t) = ∅. (Note that from this definition (t, s) 6∈ E(D)).

31

Lemma 4.5 (Semi-cleaning the ordered tough-pair). Let D be a digraph such that D contains
an ordered t2-tough-pair, then one can obtain D̂ from D by identification, such that D̂ is a
semi-cleaned t-ordered tough-pair, for some function g that depends only on t.

For any positive integer t, let h(t) = 2R(2R(2R(4t+ 2, 4), 4), 5).

Lemma 4.6 (Cleaning the semi-cleaned ordered tough-pair). If D is a semi-cleaned ordered
h(t)-tough-pair then either,

• D? contains a t-induced-biclique whose edges are minimal in D, or
• D can be identified to a digraph D̂ such that D̂ is transitively equivalent to a t-hard-

matching-pattern.

For any positive integer t, let cor(t) = (h(t))2. Corollary 4.7 follows from Lemmas 4.5
and 4.6.

Corollary 4.7. If a digraph D contains an ordered cor(t)-tough-pair, then either D can be
identified to a t-hard-matching-pattern, or D? contains a t-induced-biclique whose edges are
minimal in D.

If the outcome of Corollary 4.7 a t-hard-matching-pattern, then we are done. Otherwise, we
need to clean the t-induced-biclique whose edges are minimal, which is what is done next.

Cleaning a minimal induced-biclique. In Section 4.4 we show that if D contains a 9t-
induced-biclique whose edges are minimal, then D can be identified to a t-hard-biclique-pattern.
In this case, Lemma 4.1 is proved.

Lemma 4.8 (Cleaning minimal biclique). For a positive integer t and a digraph D, if D?

contains a 9t-induced-biclique whose edges are minimal in D, then D can be identified to digraph
that is transitively equivalent to a t-hard-biclique-pattern.

Simplifying the third outcome of Lemma 4.3. In Section 4.2, we show that if Lemma 4.3
outputs its third outcome, then one can contract some edges of the input digraph (and hence
obtain a digraph in the same pattern class as the input, since the pattern class is closed under
identification and contraction is a type of identification) such that the resulting digraph either
contains an ordered t′-tough-pair (which we know how to deal using Corollary 4.7), or it contains
a t′-biclique whose edges are minimal (which we also know to deal with because of Lemma 4.8).

For positive integers t, p, define f(t, p) = 2R
′(2t) · f(t, p − 1) + R′(2t) when p > 1 and

f(t, 1) = t.

Lemma 4.9 (Simplifying a biclique). Let D be a directed graph and t be a positive integer.
Suppose there exists ordered sets A,B ⊆ V (D) such that |A| = |B| ≥ f(t, 2t + 2), D? contains
an (A,B)-induced-biclique and the matching edges of (A,B) are minimal in D,. Then, one can
obtain D̂ from D by contraction, such that either

1. D̂ contains an ordered t-tough-pair, or
2. D̂∗ contains a t-induced-biclique whose edges are minimal in D̂.

Proof of Lemma 4.1. We now give a proof of Lemma 4.1 using the lemmas stated earlier. The
proofs of the those lemmas appear in their respective sections.

Set t1 = max{cor(9t), 9t}, t2 = max{f(t1, 2t1 + 2), cor(9t1), 9t1} where f is defined as in
Lemma 4.9 and cor is defined in Corollary 4.7. Then, define t′ = R(2t2, 9). We will now show
that if D contains a t′-tough-pair, then there exists D′ ∈ D that is a t-hard-pattern.

Given D, let (X,Y) be a t′-tough-pair in D. Let D1 be a spanning subgraph of D such that
D1 is reachability-minimal, D1 is transitively equivalent to D and (X,Y) is a t′-tough-pair in

32

D1. Observe that such a graph D1 exists and can be obtained by starting with the edge set
E0 = X ∪ Y and adding an edge of D to E0 as long as D[E0] remains reachability-minimal.

Using Lemma 4.3 on D1, we conclude that either D1 contains an ordered t2-tough-pair,
or a t2-biclique, or there exists A,B ⊆ V (D1) such that |A| = |B| = t2 and D1 contains an
(A,B)-induced-matching and D?

1 contains an (A,B)-induced-biclique.
In the first case, by applying Corollary 4.7 on D?

1, we either get D2 ∈ D such that D2 is
some t-hard-matching-pattern, or conclude that D?

1 contains a 9t-induced-biclique whose edges
are minimal in D1. Then applying Lemma 4.8 to D1 gives some t-hard-biclique-pattern in D.
In the second case, again by applying Lemma 4.8 to D1 gives some t-hard-biclique-pattern in D.

In the third case, by applying Lemma 4.9 we conclude that there exists D2 ∈ D such that
either D2 contains an ordered t1-tough-pair, in which case a further application of Corollary 4.7
on D?

2 either yields a D3 ∈ D which is a t-hard-matching-pattern, or we conclude that D?
2

contains a 9t-induced-biclique whose edges are minimal in D2. In the remaining cases, applying
Lemma 4.8 yields a D4 ∈ D which is some t-hard-biclique-pattern.

Basic terminology for the remaining section. Throughout the remaining section, we use
the following basic notation. For two integers i, j, [i] denotes the set {1, . . . , i} and [i, j] denotes
the set {i, i + 1, . . . , j}. For any (di)graph D and sets S, T ⊆ V (D), an (S, T)-path in D is a
path in D from some vertex of S to some vertex of T . If S or T is singleton, say S = {v},
then we use the notation (v, T)-path. Let e ∈ E(D), let D/e represents the (di)graph obtained
after contracting e, that is, by deleting the endpoints of e and adding a new vertex xe such that
the set of in-neighbours (resp. out-neighbours) of xe is the union of the set of in-neighbours
(resp. out-neighbours) of the end points of e in D. For E′ ⊆ E(D), V (E′) ⊆ V (G) is the set of
vertices that are endpoints of some edge in E′. If D is a digraph, the for any v ∈ V (D), N−D (v)
denotes the set of in-neighbours if v in D, N+

D (v) denotes the set of out-neighbours if v in D
and ND(v) denotes the set of in-neighbours and out-neighbours, called the neighbours, of v in
D. We say that a digraph D is connected if its underlying undirected graph is connected.

4.1 Simplifying the t-tough-pair

In this section we prove Lemma 4.3 restated below.

Lemma 4.3 (Hard sub-structures). Let D be a reachability-minimal digraph and t be a positive
integer. If D contains an R(2t, 9)-tough-pair then one of the following holds.

1. D contains an ordered t-tough-pair or
2. D contains a t-biclique, or
3. there exist ordered sets A,B ⊆ V (D) such that |A| = |B| = t, D contains an (A,B)-

matching and D? contains an (A,B)-induced-biclique.

Proof. Let (E1, E2) be anR(2t, 9s)-tough-pair in D. Let t′ = R(2t, 9). Fix an arbitrary ordering
of the edges of E1 and E2. Let E1 = (e1

1, . . . , e
1
t′) and let E2 = (e2

1, . . . , e
2
t′). Fix i ∈ [2]. We will

use Ramsey arguments to prove the lemma. Towards this, construct an auxiliary undirected,
complete, edge-colored graph Auxi as follows. The vertex set of Auxi corresponds to the edges
of Ei, that is, for each e ∈ Ei there is a vertex corresponding to e. For the sake of simplicity we
denote the vertex of Auxi that correspond to the edge e of Ei, by e itself. The coloring function
coli on the edges of Auxi (equivalently on the pair of distinct edges of Ei) is defined based on
the following. Fix any two distinct edges e = (u, v), e′ = (u′, v′) ∈ Ei. The coloring function
coli(e, e

′) is defined based on the existence of the edges (u, v′) and (u′, v) in D and D?. Below
we describe coli(e, e

′).

1. If (u, v′) ∈ E(D), and

33

(a) (u′, v) ∈ E(D), then coli(e, e
′) = (1, 1),

(b) (u′, v) ∈ E(D?) \ E(D), then coli(e, e
′) = (1, 2),

(c) (u′, v) 6∈ E(D), (u′, v) 6∈ E(D?), then coli(e, e
′) = (1, 3).

2. If (u, v′) ∈ E(D?) \ E(D), and

(a) (u′, v) ∈ E(D), then coli(e, e
′) = (2, 1),

(b) (u′, v) ∈ E(D?) \ E(D), then coli(e, e
′) = (2, 2),

(c) (u′, v) 6∈ E(D), (u′, v) 6∈ E(D?), then coli(e, e
′) = (2, 3).

3. If (u, v′) 6∈ E(D), (u, v′) 6∈ E(D?), and

(a) (u′, v) ∈ E(D), then coli(e, e
′) = (3, 1),

(b) (u′, v) ∈ E(D?) \ E(D), then coli(e, e
′) = (3, 2),

(c) (u′, v) 6∈ E(D), (u′, v) 6∈ E(D?), then coli(e, e
′) = (3, 3).

We now use a Ramsey argument on the t′-vertex graph Auxi with edge-coloring function
coli (that uses at most 9 different colors). Using Ramsey arguments, we conclude that there
exists a monochromatic clique in Auxi of size 2t. Below we show how one can get one of the
three outcomes in the lemma statement based of the color of the monochromatic clique. Say
edges of Ei that correspond to this monochromatic clique in Auxi are E′i = {eij1 , e

i
j2
, . . . , eijt}

such that j1 < . . . < jt (recall we fixed an ordering of the edges of Ei). For the ease of notation
later, we assume that the sets E′i are ordered with the ordering as described in the previous
line.

Claim 4.10. If for each i ∈ [2], the color of the monochromatic clique in Auxi is (j, 3) or (3, j)
for any j ∈ [3], then (E′1, E

′
2) form an ordered 2t-tough-pair in D.

Proof. Since (E1, E2) is a tough-pair and E′i ⊆ Ei, (E′1, E
′
2) is also a tough-pair (of size t). If

coli colors the clique corresponding to the edges of E′i with the color (j, 3), then consider the
ordering (eij1 , e

i
j2
, . . . , eijt) of E′i, otherwise (when coli colors the monochromatic clique with

color (3, j)), then consider the ordering (eijt , . . . , e
i
j1

) of E′i. Then from the description of the
definition of coli corresponding to the case when coli takes value (3, j) or (j, 3), one concludes
that (E′1, E

′
2) is indeed an ordered t-tough-pair with the ordering described above. y

Note that if the graph has an ordered 2t-tough-pair, then it also has an ordered t-tough-pair.

Observation 4.11. It is easy to observe that if the color of the monochromatic clique in Auxi
is (1, 1), then (tail(E′i), head(E′i)) form a 2t-biclique in D. If the color is (2, 2), then D contains
the (tail(E′i), head(E′i))-induced matching and D? contains the (tail(E′i), head(E′i))-biclique (thus,
the third outcome of the lemma holds).

Note that if the graph has 2t-biclique, then it also has an ordered t-biclique.

Claim 4.12. If there exists i ∈ [2] such that the color of the monochromatic clique in Auxi is
(1, 2) or (2, 1), then H contains a t-biclique.

Proof. Suppose that the color of the monochromatic clique in Auxi is (1, 2). Recall that E′i =
((eij1 , e

i
j2
, . . . , eijt)) is the ordered set of edges that correspond to the monochromatic clique. The

(tail({eij1 , . . . , e
i
jt
}), head({eijt+1

, . . . , eij2t})) form a t-biclique in D.

Similarly, if the color of the monochromatic clique in Auxi is (2, 1), then (tail({eijt+1
, . . . ,

eij2t}),head({eij1 , . . . , e
i
jt
})) form a t-biclique in H. y

Thus, from Claims 4.12 and 4.10, and Observation 4.11, the lemma follows.

34

4.2 Simplifying a biclique

In this section, we prove the following lemma. Recall that, from Section 4, for positive integer
t, p, R′(t) is the smallest positive integer such that any bipartite graph with a matching of size
R′(t) either has an induced matching of size t or a t-induced-biclique. Furethermore f(t, p) =
2R
′(2t)f(t, p− 1) +R′(2t) when p > 1 and f(t, 1) = t.

Lemma 4.9 (Simplifying a biclique). Let D be a directed graph and t be a positive integer.
Suppose there exists ordered sets A,B ⊆ V (D) such that |A| = |B| ≥ f(t, 2t + 2), D? contains
an (A,B)-induced-biclique and the matching edges of (A,B) are minimal in D,. Then, one can
obtain D̂ from D by contraction, such that either

1. D̂ contains an ordered t-tough-pair, or
2. D̂∗ contains a t-induced-biclique whose edges are minimal in D̂.

The remainder of this section is dedicated to the proof of Lemma 4.9. Recall that A,B are
ordered sets. Let g(t) = f(t,R(2t, 2)). Further let A = (a1, . . . , ag(t)) and B = (b1, . . . , bg(t)).

We begin by showing that, one can assume without loss of generality that D is acyclic.
Suppose that D is not acyclic. First observe that for any ai, aj ∈ A, such that i 6= j, ai
and aj belong to different strongly connected components of D. Similarly, each vertex of B
belongs to a distinct strongly connected component of D. Further, for any ai, bj , ai and bj
do not belong to the same strongly connected component of D. Indeed, as otherwise there
is a (bj , ai)-path in D contracting the definition of an (A,B)-biclique. Thus, each vertex in
{a1, . . . , ag(t), b1, . . . , bg(t)} belong to distinct strongly connected components of D. Let D′ be
obtained from D by contracting each strongly connected component of D into a single vertex.
That is, D′ has a vertex for each strongly connected component of D and for two vertices u, v
in D′, there is an edge from u to v in D′ if there is vertex in the strongly connected component
of D which was contracted onto u, that has an edge in D to a vertex of the strongly connected
component of D which was contracted to v. Let us call a vertex of D′ ai if it is obtained by
contracting a strongly connected component containing ai. Similarly, let us call a vertex of D′

bi if it is obtained by contracting a strongly connected component containing bi. It is easy to
observe that D′ also contains an (A,B)-matching and D′? contains an (A,B)-induced-biclique.
Indeed, since an (ai, bj)-path in D implies an (ai, bj)-path in D′ and no (ai, aj)-path (resp. no
(bi, bj)-path) in D implies no (ai, aj)-path (resp. no (bi, bj)-path) in D′. Further if D′ contains an
(ai, bi)-path of length strictly greater than 1 then so does D. Since D′ is obtained by contraction
operation from D, we conclude that without loss of generality, we can assume for the rest of the
section that the input graph D in Lemma 4.9 is acyclic.

We say that an edge e ∈ E(D) \E(A,B) is contraction-redundant with respect to (A,B) in
D if the following holds.

1. If D/e is acyclic,
2. all the edges in {(ai, bi) : i ∈ [g(t)]} (that is the matching edges of (A,B)) are minimal

edges in D/e, and
3. (D/e)? has an (A,B)-induced-biclique..

LetDcontr be the graph obtained fromD by repeatedly contracting the contraction-redundant
edges with respect to (A,B) until Dcontr has no such edge. For the ease of notation by aa-path
we mean a path between two distinct vertices of A, by bb-path we mean a path between two
distinct vertices of B and by a∗b∗-path we mean a (ai, bi)-path for some i ∈ [g(t)]. We divide
the proof of Lemma 4.9 into two independent parts based on the length of a longest path in
Dcontr. In Section 4.2.1, we consider the case when the length of a longest path in Dcontr is at
least 2t+2. In this case, we show that Dcontr contains an ordered t-tough-pair. In Section 4.2.2,
we consider the case when the length of any longest path in Dcontr is at most 2t + 2. In this
case, we get one of the desired outputs.

35

4.2.1 When Dcontr has a long path

In this section, we prove Lemma 4.9 when the length of a longest path in Dcontr is at least
2t+ 2. Let P = (v1, . . . , vp) be a directed longest path in Dcontr (then p ≥ 2t+ 2). Recall that
none of the edges of Dcontr, and in particular, none of the edges of P , are contraction-redundant
with respect to (A,B).

Lemma 4.13. For each e ∈ E(P), Dcontr/e is acyclic.

Proof. Suppose, for the sake of contradiction, that there is a cycle in Dcontr/e. Let e = (vi, vi+1).
Then, either there is a (vi, vi+1)-path in Dcontr − {(vi, vi+1)} or a (vi+1, vi)-path in Dcontr. If
there exists a (vi+1, vi)-path in Dcontr then together with the edge e = (vi, vi+1), it creates a
directed closed walk in Dcontr. This contradicts that Dcontr is acyclic.

In the other case, suppose there exists a (vi, vi+1)-path, say P ′ in Dcontr − {(vi, vi+1)}. We
first claim that the internal vertices of P ′ are disjoint from P . Suppose not, let vj ∈ V (P) be
the first internal vertex of P ′ that belongs to P . Then there is a (vi, vj)-path in Dcontr and
(vj , vi+1)-path in Dcontr. If j < i, then the (vi, vj)-path together with the (vj , vi)-subpath of
P , gives a closed walk in Dcontr, contradicting its acyclicity. Otherwise, j > i+ 1. In this case,
the (vj , vi+1)-path together with the (vi+1, vj)-subpath of P gives a closed walk in Dcontr, again
contradicting its acyclicity.

Since each edge of Dcontr, in particular, each edge of P , is not contraction-redundant, from
Lemma 4.13 and the definition of contraction-redundant, for each e ∈ E(P) either

1. there exists an aa-path, or a bb-path in Dcontr/e (that is, (Dcontr/e)
? does not contain

the (A,B) -induced-biclique), or
2. there exists i ∈ [g(t)] an aibi-path in (Dcontr/e)− {(ai, bi)} ((ai, bi) is not a minimal edge

in Dcontr/e).

Lemma 4.14. Let e = (vi, vi+1) ∈ E(P) such that Hcontr/e has an (aj , bj)-path. Then there
exists an (aj , vi+1)-path and a (vi, bj)-path in Dcontr.

If Dcontr/e has a (aj , a`)-path, for some aj , a` ∈ A, then there exists an (aj , vi+1)-path and
a (vi, a`)-path in Dcontr.

If Dcontr/e has a (bj , b`)-path, for some bj , b` ∈ B, then there exists an (bj , vi+1)-path and
(vi, b`)-path in Dcontr.

Proof. Let e = (vi, vi+1) ∈ E(P) such that Dcontr/e has an (aj , bj)-path. Then either there
exists an (aj , vi)-path and a (vi+1, bj)-path in Dcontr, or there exists an (aj , vi+1)-path and
(vi, bj)-path in Dcontr. In the later case, we are done. The former case implies an (aj , bj)-path
in Dcontr of length at least three (with at least three edges), which contradicts that (aj , bj) is a
minimal edge in Dcontr.

If Dcontr/e has an (aj , a`)-path, then either there exists an (aj , vi)-path and a (vi+1, a`)-path
in Dcontr, or there exists an (aj , vi+1)-path and (vi, a`)-path in Dcontr. In the later case, we
are done. The former case implies an (aj , a`)-path in Dcontr which contradicts that (A,B) is
an induced biclique in D?

contr (in particular, that A is an independent set in D?
contr). One

can similarly show that if Dcontr/e has a (bj , b`)-path, then there exists an (bj , vi+1)-path and
(vi, b`)-path in Dcontr.

For each e = (vi, vi+1) ∈ E(P), we say that:

1. e is j-irredundant in Dcontr, if there is an (aj , vi+1)-path and a (vi, bj)-path in Dcontr.
2. e is aa-irredundant in Dcontr, if there exists aj , a` ∈ A such that there is an (aj , vi+1)-path

and a (vi, a`)-path in Dcontr.

36

3. e is bb-irredundant in Dcontr, if there exists bj , b` ∈ B such that there is an (bj , vi+1)-path
and (vi, b`)-path in Dcontr.

From Lemmas 4.13 and 4.18, for each e ∈ E(P), either e is j-irredundant, for some j ∈ [g(t)],
or is aa-irredundant or is bb-irredundant.

Lemma 4.15. Let e = (vi, vi+1) ∈ E(P) such that e is aa-irredundant in Dcontr. Then i = 1.

Proof. For the sake of contradiction, suppose that i > 1. Let e′ = (vi−1, vi). If e′ is aa-
irredundant or e′ is j-irredundant for some j ∈ [g(t)], then there exists a path from some vertex
of A to vi in Dcontr. Also since e is aa-irredundant, there exists a path from vi to some vertex
of A in Dcontr. This implies either a directed closed walk in Dcontr, contradicting its acyclicity,
or a path between two distinct vertices of A in Dcontr, contradicting that A is an independent
set in D?

contr.
If e′ is bb-irredundant, then there exists a path from some vertex of B to vi. Also since e is

aa-irredundant, there exists a path from vi to some vertex of A. This implies a path from some
vertex of B to some vertex of A. Since (A,B) is an induced biclique in D?

contr, that is there is a
path from every vertex of A to every vertex of B in Dcontr, this implies a directed closed walk
in Dcontr, contradicting its acyclicity.

Lemma 4.16. Let e = (vi, vi+1) ∈ E(P) such that e is bb-irredundant in Dcontr. Then i+1 = p.

Proof. For the sake of contradiction, suppose that i + 1 < p. Let e′ = (vi+1, vi+2). If e′ is
bb-irredundant or e′ is j-irredundant for some j ∈ [g(t)], then there exists a path from vi+1 to
some vertex of B. Also since e is bb-irredundant, there exists a path from some vertex of B
to vi+1. This either implies a directed closed walk in Dcontr, contradicting its acyclicity, or a
path between two distinct vertices of B in Dcontr, contradicting that B is an independent set
in D?

contr.
If e′ is aa-irredundant, then there exists a path from vi+1 to some vertex of A in Dcontr.

Also since e is bb-irredundant, there exists a path from some vertex of B to vi+1 in Dcontr.
This implies a path from some vertex of B to some vertex of A in Dcontr. Since (A,B) is
an induced-biclique in D?

contr, this implies a directed closed walk in Dcontr, contradicting its
acyclicity.

Let P ′ be a subpath obtained from P by without the first and last edge of P , that is
P ′ = (v2, . . . , vp−1). From Lemmas 4.15 and 4.16, each edge e ∈ E(P ′) is j-irredundant for
some j ∈ [g(t)].

Lemma 4.17. Let e, e′ be distinct edges of P ′ such that e is q-irredundant in Dcontr and e′ is
r-irredundant in Dcontr, for some q, r ∈ [g(t)]. Then q 6= r.

Proof. For the sake of contradiction, suppose that q = r. Without loss of generality, let e =
(vi, vi+1) and e′ = (vj , vj+1) such that i < j. Then there exists an (aq, vi+1)-path and (vj , bq)-
path in Dcontr. Since i < j, there exists a path from (vi, vj) (which is the the (vi+1, vj)-subpath
of P ′) in Dcontr. This implies an (aq, bq)-path of length strictly greater than one in Dcontr,
contradicting that (aq, bq) is a minimal edge in Dcontr.

For each e = (vi, vi+1) ∈ E(P ′), fix a ρ(i) ∈ [g(t)], such e is ρ(i)-irredundant in Dcontr. The
following observation follows from Lemma 4.17.

Observation 4.18. For each vi ∈ V (P ′), i ∈ [3, p − 2], there exists a (aρ(i−1), vi)-path and a
(vi, bρ(i))-path in Dcontr. Also, for i, j ∈ [3, p− 2], i 6= j, ρ(i) 6= ρ(j).

37

For each i ∈ [3, p − 2], let P a
i denote an (arbitrarily) fixed (aρ(i−1), vi)-path in Dcontr and

let P b
i denote an (arbitrarily) fixed (vi, bρ(i))-path in Dcontr. Let E1 = (v3, bρ(3)), (v4, bρ(4)), . . . ,

(vp/2−2, bρ(p/2−2)) and let E2 = ((aρ(p/2−2), vp/2−1), (aρ(p/2−1), vp/2), . . . , (aρ(p−1), vp−2). From
Observation 4.18, each edge of E1 ∪ E2 is an edge in D?

contr and the endpoints of the edges
in E1 ∪ E2 are distinct. We will now show that (E1, E2) is an ordered (p/2 − 1)-tough-pair in
D?

contr. Since p ≥ 2t+ 2, this proves Lemma 4.9 in the case when the length of a longest path
in Dcontr is at least 2t+ 2.

Lemma 4.19. (E1, E2) is an ordered (p/2− 1)-tough-pair in D?
contr.

Proof. To prove the lemma, we prove the following claims.

Claim 4.20 (Weak independence of E1 (resp. E2)). The edges in E1 are pairwise weakly inde-
pendent. Similarly, the edges in E2 are pairwise weakly independent in D?

contr.

Proof. Let (aρ(i−1), vi), (aρ(j−1), vj) ∈ E1. For the sake of contradiction, say (vj , aρ(i−1)) ∈
D?

contr. Then this implies a (aρ(j−1, aρ(i−1))-path in D?
contr contradicting that A is an indepen-

dent set in D?
contr. Using symmetric arguments one can show that all edges in E2 are pairwise

weakly independent. y

Claim 4.21 (Orderedness on E1 and E2). For any i, j ∈ [3, p − 2], i < j, (aρ(j−1), vi),
(aρ(j−1), aρ(i−1)), (vj , bρ(i)), (vj , vi) 6∈ E(D?

contr).

Proof. Since A is an independent set in D?
contr, (aρ(j−1), aρ(i−1)) 6∈ E(D?

contr). Since D?
contr is

acyclic and there is a (vi, vj)-path in Dcontr, we conclude that (vj , vi) 6∈ E(D?
contr). If there

is an (aρ(j−1), vi)-path in Dcontr, then this together with the (vi, vj−1)-subpath of P ′ and the
(vi−1, bρ(i−1)) path P b

i−1, implies a (aρ(j−1),bρ(j−1)
)-path of length strictly greater than 1 in Dcontr,

which is a contradiction. Using symmetric arguments, one can show that (vj , bρ(i)), (vj , vi) 6∈
E(D?

contr). y

Claim 4.22 (Weak independence between E1 and E2). Let (vi, bρ(i)) ∈ E1 and (aρ(j−1), vj) ∈
E2. There is (vj , bρ(i)), (bρ(i), aρ(i−1)) 6∈ E(D?

contr).

Proof. First observe from the construction of E1, E2 that i < j. If (vj , bρ(i)) ∈ E(D?
contr),

then the (aρ(i), vi+1)-path P a
i+1, together with the (vi+1, vj)-subpath of P ′, together with the

(vj , bρ(i))-path, implies a (aρ(i), bρ(i))-path of length strictly greater than 1 in Dcontr, which is a
contradiction.

If (bρ(i), aρ(i−1)) ∈ E(D?
contr), then the (arho(i−1), bρ(i))-path obtained by concatenating P a

i

and P b
i , together with the (bρ(i), aρ(i−1))-path, implies a (aρ(i−1), aρ(j−1))-path in Dcontr, which

contradicts that A is an independent set in Dcontr. y

Claim 4.23 (Strong independence between E1 and E2). Let (vi, bρ(i)) ∈ E1 and (aρ(j−1), vj) ∈
E2. Then (vi, aρ(j−1), (aρ(j−1), vi), (bρ(i), vj), (vj , bρ(i)) 6∈ E(D?

contr).

Proof. Recall that i > j. If (vi, aρ(j−1)) ∈ E(D?
contr), then together with P a

i , it contradicts
that A is independent in D?

contr. Similarly, if (bρ(i), vj) ∈ E(D?
contr), then it contradicts the

independence of B in D?
contr.

If (aρ(j−1), vi) ∈ E(D?
contr), then this together with the (vi, vj−1)-subpath of P ′, together

with the path P b
j−1, implies a (aρ(j−1), bρ(j−1))-path of length strictly greater than 1 in Dcontr,

which is a contradiction. Similarly if, (vj , bρ(i)) ∈ E(D?
contr), then this implies a (aρ(i), bρ(i))-path

of length strictly greater than 1 in Dcontr, which is a contradiction. y

This concludes the proof.

38

4.2.2 No long path in Dcontr

In this section, we prove Lemma 4.9 in the case when the length of a longest path in Dcontr is
p ≤ 2t + 2. Recall that Dcontr contains (A,B)-matching and D?

contr contains (A,B)-induced-
biclique. Also, the edges of A∪B are minimal in Dcontr. We prove Lemma 4.9 by induction on
the length of a longest (A,B)-path in Dcontr. For this purpose we essentially restate Lemma 4.9
in a form that is “induction-friendly”. Observe, as a base case, that when the length of a longest
(A,B)-path is 1, then since D?

contr contains (A,B)-induced-biclique, we conclude that Dcontr

contains (A,B)-induced-biclique and the edges of the (A,B)-induced-biclique are minimal. In
this case, we conclude that we get the second output of Lemma 4.9.

Lemma 4.24. Let A,B ⊆ V (Dcontr) be ordered sets such that the length of a longest (A,B)-
path in Dcontr is p, |A| = |B| ≥ f(t, p), D?

contr contains an (A,B)-induced-biclique and the
matching edges of (A,B) are minimal in Dcontr, then either

1. there exist ordered sets A′, B′ ⊆ V (Dcontr) such that the length of a longest (A′, B′)-path in
Dcontr is at most p, |A′| = |B′| ≥ f(t, p− 1), D?

contr contains an (A′, B′)-induced-biclique
and the matching edges of (A′, B′) are minimal in Dcontr, or

2. Dcontr contains an ordered t-tough-pair, or
3. D?

contr contains a t-induced-biclique whose edges are minimal in Dcontr.

Proof. Let L be the set of vertices of Dcontr that contains the first internal vertex on every
longest (A,B)-path in Dcontr.

Claim 4.25. There is no (L,L)-path in Dcontr.

Proof. For the sake of contradiction, suppose there exist x, y ∈ L such that there this an (x, y)-
path in Dcontr. Note that x 6= y, as otherwise, Dcontr would contain a cycle. From the definition
of L, there exists ai, aj ∈ L (i not necessarily distinct from j) such that x is the first internal
vertex on some (ai, B)-path, say Px, of length p and y is the first internal vertex on some
(aj , B)-path, say Py, of length p. Let Pxy be some (x, y)-path in Dcontr. We first claim that the
set of internal vertices of Px,y is disjoint from Py. Suppose not. Let z be some internal vertex
of Pxy that is also a vertex of Py. Since z ∈ V (Py), there exists a (y, z)-path in Dcontr. Also
since z ∈ V (Px,y), there exists a (z, y)-path in Dcontr. This implies a cycle in Dcontr, which is a
contradiction. Thus, we conclude that the internal vertices of Pxy are disjoint from that of Py.
Then consider the (x,B)-path obtained by appending Pxy and Py. Note that the length of Py is
p− 1 and the length of Pxy is at least 1. This (x,B)-path, together with the edge (ai, x), gives
an (ai, B)-path of length strictly greater than p in Dcontr, which contradicts that the length of
a longest (A,B)-path in Dcontr is p. y

Claim 4.26. For each (a, x) ∈ E(Dcontr) such that a ∈ A and x ∈ L, (a, x) is a minimal edge
of Dcontr.

Proof. For the sake of contradiction, say there exists an (a, x)-path in Dcontr of length at least
2. Let this path be Pax. Since x ∈ L, there exists an (A,B)-path of length p whose first internal
vertex is x. Let this path be PAB. Then the internal vertices of Pax are disjoint from the
internal vertices of PAB, as otherwise there would be a cycle in Dcontr. By appending the path
Psx (which is of length at least 2) with the subpath of PABs starting from x (which is of length
p− 1), we get an (A,B)-path in Dcontr of length at least p+ 1, which is a contradiction. y

Claim 4.27. Let a ∈ A and x ∈ L, such that (a, x) 6∈ E(Dcontr). Then (a, x) 6∈ E(D?
contr).

39

Proof. For the sake of contradiction, suppose there exists an (a, x)-path, say Pa,x in Dcontr of
length at least two. Since x ∈ L, there exists a′ ∈ A (a′ not necessarily distinct from a) such
that x is the first internal vertex of a (a′, T)-path, say Pa′B, of length p. First observe that the
internal vertices of Pa,x are disjoint from that of Pa′B, as otherwise there would be a cycle in
Dcontr. The path Pa,x appended with the (x,B)-subpath of Pa′B gives an (A,B)-path in Dcontr

of length strictly greater than p, which is a contradiction. y

Consider the bipartite graph Dbip = Dcontr[A ∪ L]. Note, from Claim 4.26, that each edge
of Dbip is a minimal edge in Dcontr. We now distinguish into two cases based on the size of the
matching in Dbip.

Case 1: The size of a maximum matching in Dbip is at least R′(2t). In this case, from
Ramsey’s Theorem, either there exists an induced matching of size 2t in Dbip or a 2t-induced-
biclique. From Claim 4.26, each edge of Dbip is a minimal edge of Dcontr.

In the first case, we get sets A∗ ⊆ A and B∗ ⊆ L such that there is an (A∗, B∗)-induced-
matching in Dbip. Since A is an independent set in D?

contr, so is A∗. Since B∗ ⊆ L, from
Claim 4.26, B∗ is an independent set in D?

contr. Thus, (A∗, B∗) is an induced-matching in
Dcontr. Further, from Claim 4.27, (A∗, B∗) is in fact an induced matching in D?

contr. Observe
that if a digraph has an induced-matching of size 2t in its transitive closure, then it has a ordered
t-tough-pair. Thus, in this case we get the second outcome of the lemma.

In the second case, when Hbip contains a 2t-induced-biclique, then this is also a 2t-induced-
biclique in Dcontr where all edges of the biclique are minimal edges of Dcontr. Thus, in this case
we get the third outcome of the lemma.

Case 2: The size of a maximum matching in Dbip is at most R′(2t). In this case, we
will find ordered sets A′, B′ ⊆ V (Dcontr) satisfies the properties stated in the first outcome of
the lemma.

Let Z be a minimum vertex cover of Dbip of size at most R′(2t). Let ZA = Z ∩ A and
ZL = Z ∩ L. Let A∗ = A \ ZS . Since ZA ∪ ZL is a vertex cover of Dbip, for any a ∈ A∗,
NL(a) ⊆ ZL. For each subset L′ ⊆ ZL, let AL′ ⊆ A∗ such that for each vertex a ∈ AL′ ,
NZL(a) = L′ (and hence NL(a) = L′).

Fix L′ ⊆ ZL such that |SL′ | is maximized. Recall that the sets A = (a1, . . . , af(t,p)) and
T = (t1, . . . , tf(t,p)) are ordered sets. Set A′ = AL′ and B′ be the corresponding vertices of B,

that is bi ∈ B′ if and only if ai ∈ A′. From the choice of L′, |A′| = |B′| ≥ (|A|−R′(2t))/2R′(2t) =
f(t, p − 1). We will now show that the length of a longest (A′, B′)-path in Dcontr is at most
p− 1.

Claim 4.28. Let ai ∈ A′ and bj ∈ B′ such that i 6= j. Let P = (ai, x1, . . . , xq, bj) be a longest
(A′, B′)-path in Dcontr. Then x1 6∈ L.

Proof. Since bj ∈ B′, aj ∈ A′ (from construction of B′). First observe that since bj ∈ B′,
then aj ∈ A′. For the sake of contradiction, suppose x1 ∈ L. Since (ai, x) ∈ E(Dcontr)
and all the vertices of A′ have the same neighbourhood in ZL and aj ∈ A′, we conclude that
(aj , x) ∈ E(Dcontr). Thus, there is an (aj , bj)-path in Dcontr of length strictly greater than one,
which contradicts that (aj , bj) is a minimal edge of Dcontr. y

From Claim 4.28, the first internal vertex of every longest (A′, B′)-path is not contained in
L. Now suppose that there exists an (A′, B′)-path of length p. Then its first internal vertex
should be in L by the definition of L. This is a contradiction.

Lemma 4.24 proves Lemma 4.9 when the length of the longest path p ≤ 2t+ 2.

40

4.3 Cleaning the ordered tough-pair

The cleaning of ordered tough-pairs is done in two steps: we first show that an ordered tough-
pair can be identified to a so-called semi-cleaned ordered tough-pair (see Section 4.3.1) and show
thereafter how to further identify a semi-cleaned ordered tough-pair to a hard matching pattern
(see Section 4.3.2).

4.3.1 Semi-cleaning

Recall the definition of a semi-cleaned ordered t-tough-pair from Section 4. The goal of this
section is to prove Lemma 4.5 restated below.

Lemma 4.5 (Semi-cleaning the ordered tough-pair). Let D be a digraph such that D contains
an ordered t2-tough-pair, then one can obtain D̂ from D by identification, such that D̂ is a
semi-cleaned t-ordered tough-pair, for some function g that depends only on t.

To prove Lemma 4.5, we first define a type of a vertex in D with respect to the ordered
t-tough-pair (A,B). This is based on the neighbourhoods of a vertex in the head sets and tail
sets of A and B. We then define a notion of a bad type. The vertices having a bad type hinder
the semi-cleaning procedure. To overcome this, we show that if a digraph D contains an ordered
t2-tough-pair then it also contains an ordered t-tough-pair (A′, B′) such that there are no bad
vertices with respect to (A′, B′). We then show that given such an ordered tough-pair (A′, B′)
we can identify the remaining vertices to one of the endpoints of A′ ∪B′.

Bad vertices with respect to the ordered tough-pair (A,B). Given an ordered tough-
pair (A,B) in a digraph D, we say that a vertex v ∈ V (D) \ V (A ∪ B) is bad with respect to
(A,B) if v ∈ N+

D?(tail(A)) ∩N−D?(head(A)) ∩N+
D?(tail(B)) ∩N−D?(head(B)).

Lemma 4.29 (Eliminating bad vertices). Let D be a digraph such that D contains an ordered
t2-tough-pair. Then D contains an ordered t-tough-pair (A′, B′) such that there is no bad vertex
in V (D) \ V (A′ ∪B′) with respect to (A′, B′).

Proof. Let (A,B) be an ordered t2-tough-pair inD and let t′ = t2. LetA = ((w1, x1), . . . , (wt′ , xt′))
and B = ((y1, z1), . . . , (yt′ , zt′)). For each vertex v ∈ V (H) \ V (A ∪ B) which is bad with re-
spect to (A,B), let W (v) be the largest index in [t′] such that (aW (v), v) ∈ E(D), X(v) be
the smallest index in [t′] such that (v, bX(v)) ∈ E(D), Y (v) be the largest index in [t′] such
that (cY (v), v) ∈ E(D), and Z(v) be the smallest index in [t′] such that (v, dZ(v)) ∈ E(D).

For every p, q ∈ [
√
t′], let Vp,q be the set of bad vertices v with respect to (A,B) such that

W (v), X(v) ∈ {(p− 1)
√
t′ + 1, . . . , p

√
t′}, and Y (v), Z(v) ∈ {(q − 1)

√
t′, . . . , q

√
t′}.

If there exists p, q ∈ [
√
t′] such that Vpq = ∅, then let A′ = ((w(p−1)

√
t′+1, x(p−1)

√
t′ +

1), . . . , (xp
√
t′ , xp

√
t′)) and B′ = ((c(q−1)

√
t′+1, z(q−1)

√
t′+1), . . . , (cq

√
t′ , zq

√
t′)). Then from the def-

inition of Vp,q, (A′, B′) is an ordered
√
t′-tough-pair such that there are no bad vertices with

respect to it.
Without loss of generality, assume that for each p, q ∈ [

√
t′], Vpq 6= ∅. Let vp,q denote

an arbitrarily fixed vertex in Vpq. Let A′ = ((wW (v2,1
, v2,1), . . . , (wW (v√

t′,1), v√t′,1)) and B′ =

((yY (v1,2), v1,2), . . . , (yY (v√
t′,1), v1,

√
t′)). We will now show that (A′, B′) is an ordered tough-pair

in D. Moreover, we will show that there is no (tail(B′),head(A′))-path in D, thereby concluding
that there is no bad vertex with respect to (A′, B′). Note that the edges of A′, B′ are minimal
edges because they belong to D which is a reachability minimal digraph.

41

Weak independence of A′ (resp. B′). We show that there is no (head(A′), tail(A′)) path
(resp. no (head(B′), tail(B′)) path) in D. Recall that every vertex in head(A′) is a bad vertex
with respect to (A,B). Thus, each vertex of tail(A′) is an out-neighbour of some vertex of
tail(B′). Thus, a (head(A′), tail(A′))-path in D implies a (tail(B), tail(A′))-path in D. Since
tail(A′) ⊆ tail(A), this contradicts that every edge of A is strongly independent with every edge
of B. The other case is symmetric.

Weak independence between A′ and B′. We show that a pair of edges containing an edge
of A′ and an edge of B′ is weakly independent. To see that there is no (head(B′), tail(A′))-path,
recall that every vertex of head(B′) is a bad vertex with respect to (A,B). Thus, each vertex
of head(B′) is an out-neighbour of some vertex of tail(B). Thus, a (head(B′), tail(A′))-path in
D implies a (tail(B), head(A′))-path in D. Since tail(A′) ⊆ tail(A), this is a contradiction. One
can symmetrically prove that there is no (head(A′), tail(B′))-path.

Strong independence of A′ and B′. We prove the following three statements.
There is no (tail(A′), tail(B′))-path and no (tail(B′), tail(A′))-path. Since tail(A′) ⊆ tail(A)

and tail(B′) ⊆ tail(B), and (A,B) is a tough-pair, we conclude that there is no (tail(A′),
tail(B′))-path and no (tail(B′), tail(A′))-path.

There is no (head(A′), head(B′))-path. For the sake of contradiction, suppose there exists
vi,1 ∈ head(B′) and v1,j ∈ head(B′), i, j 6= 1, such that there exists a (vi,1, v1,j)-path in D. By
definition w(vi,1) ∈ {2

√
t′ + 1, . . . , t′} and X(v1,j) ∈ {1, . . . ,

√
t′}. Also, (wW (vi,1), vi,1) ∈ E(D)

and (v1,j , xX(v1,j)) ∈ E(D). Thus, a (vi,1, v1,j)-path in D implies a (wW (vi,1), yY (v1,j))-path in D.
Since X(v1,j) < W (vi,1), this is a contradiction.

There is no (head(B′), head(A′))-path. For the sake of contradiction, suppose there exists
vi,1 ∈ head(A′) and v1,j ∈ head(B′), i, j 6= 1, such that there exists a (v1,j , vi,1)-path in D. By
definition Y (v1,j) ∈ {2

√
t′ + 1, . . . , t′} and Z(vi,1) ∈ {1, . . . ,

√
t′}. Also, (yY (v1,j), v1,j) ∈ E(D)

and (vi,1, zZ(vi,1)) ∈ E(D). Thus, a (v1,j , vi,1)-path in D implies a (yY (v1,j), zZ(vi,1))-path in D.
Since Z(vi,1) < Y (v1,j), this is a contradiction.

Ordered condition on A′ (resp. B′). Consider vertices vi,1 and vj,1 such that i ≤ j. Suppose
for the sake of contradiction that there exists a (vj,1, vi,1)-path in D. Recall (wW (vj,1), vj,1) ∈
E(D) and (vi,1, xX(vi,1)) ∈ E(D). Thus, there exists a (wW (vj,1), yY (vi,1))-path in D. Since i ≤ j,
W (vj,1) ≤ X(vi,1). This is a contradiction. The other case can be proved symmetrically.

There is no (tail(B′),head(A′))-path. For the sake of contradiction, let vi,1 ∈ head(A′),
i 6= 1, and yj ∈ tail(B′) such that there exists a (yj , vi,1)-path in D. Since yj ∈ tail(B′),
j ∈ {2

√
t′+ 1, . . . , t′}. Also Z(vi,1) ∈ {1, . . . ,

√
t}. Since (vi,1, zZ(vi,1)) ∈ E(D), we conclude that

there is a (yj , zZ(vi,1))-path. This is a contradiction which concludes the proof.

Lemma 4.30. Let D be a directed graph and let (A,B) be an ordered t-tough-pair in D such
that there are no bad vertices with respect to (A,B) in D. Then one can obtain a semi-cleaned
ordered t-tough-pair from D by identification.

The remainder of this section is devoted to the proof of Lemma 4.30. Note that Lemma 4.30,
together with Lemma 4.29, proves Lemma 4.5.

Recall that A,B are ordered sets. Let tail(A) = W = (w1, . . . , wt), head(A) = X =
(x1, . . . , xt), tail(B) = Y = (y1, . . . , yt) and head(B) = Z = (z1, . . . , zt). We will now describe a
procedure of identifying vertices in V (D)\V (A∪B) onto the vertices of V (A∪B), as long as there
is a vertex that has both an in-neighbour and an out-neighbour in V (A∪B) = W ∪X∪Y ∪Z in
the graph D∗, while maintaining the invariants that after the identification (A,B) remains an

42

ordered tough-pair in the new graph, no vertex in the new graph is bad with respect to (A∪B)
and the new graph is acyclic. We will apply these identification rules exhaustively, in order.

Invariants. If D̂ is the graph obtained after identification, then (A,B) is an ordered tough-pair
in D̂, and there are no bad vertices with respect to (A,B) in D̂.

Identification Rule 1. If there exists v ∈ V (D) \ (W ∪X ∪ Y ∪Z) such that N+
D?(v)∩W 6= ∅

and N−D?(v) ∩W 6= ∅, then let i ∈ [t] be the largest index such that (wi, v) ∈ E(D?). Identify v
onto wi.

Lemma 4.31. Let D̂ be the graph obtained after the application of Identification Rule 1. Then,
the invariants are satisfied.

Proof. Since N+
D?(v) ∩W 6= ∅ and N−D?(v) ∩W 6= ∅, there is a (v,W)-path, say Pout, and a

(W, v)-path say Pin in D.

Weak independence of A in D̂. For the sake of contradiction, say there is a (X,wi)-path in
D̂. Then there exists a (X, v)-path in D. This, together with the (v,W)-path Pout, implies an
(X,W)-path in D, which is a contradiction to the weak independence of the edges of A in D.

Weak independence between A,B in D̂. For the sake of contradiction, say there is a
(Z,wi)-path in D̂. Then there exists a (Z, v)-path in D. This, together with (v,W)-path Pout,
implies an (Z,W)-path in D, which is a contradiction to the weak independence between the
edges of A,B in D.

Strong independence between A,B in D̂. For the sake of contradiction, say there is a
(wi, Y)-path in D̂. Then there exists a (v, Y)-path in D. This, together with the (W, v-path
Pin in D, implies an (W,Y)-path in D, which is a contradiction to the strong independence
between the edges of A,B in D.

For the sake of contradiction, say there is a (Y,wi)-path in D̂. Then there exists a (Y, v)-
path in D. This, together with the (v,W)-path Pout, implies an (Y,W)-path in D, which is a
contradiction to the strong independence between the edges of A,B in D.
Orderedness. Fix j < i. Suppose, for the sake of contradiction, that there is a (wi, wj)-path

in D̂. Then, there is a (v, wj)-path in D. This, together with the (wi, v)-path in D, implies a
(wi, wj)-path in D, contradicting the ordered-ness condition on the edges of A.

For the sake of contradiction, for j < i, say there is a (wi, xj)-path in D̂. Then there is a
(v, xj)-path in D, which together with the (wi, v)-path in D contradicts the ordered-ness con-
dition on the edges of A.

No bad vertices. For the sake of contradiction, say there exists a bad vertex u with respect to
(A,B) in D̂, that is, N−

D̂?
(u) ∩W,N+

D̂?
(u) ∩X,N−

D̂?
(u) ∩ Y,N+

D̂?
(u) ∩ Z 6= ∅. Then, considering

that D̂ is obtained from D by only identifying v onto wi, we get that N+
D?(u) ∩ X,N−D?(u) ∩

Y,N+
D?(u) ∩ Z 6= ∅ and (v, u) ∈ E(D?). The (v, u)-path, together with the (W, v)-path P∈,

implies a (W,u)-path in D, that is N−D?(u) ∩W 6= ∅. That is, u is a bad vertex with respect to
(A,B) in D, which is a contradiction.

Identification Rule 2 is the analogue of Identification Rule 1.

Identification Rule 2. If there exists v ∈ V (D) \ (W ∪X ∪ Y ∪Z) such that N+
D?(v)∩ Y 6= ∅

and N−D?(v) ∩ Y 6= ∅, then let i ∈ [t] be the largest index such that (yi, v) ∈ E(D?). Identify v
onto yi.

Symmetrically to Lemma 4.31, the following holds.

43

Lemma 4.32. Let D̂ be the graph obtained after the application of Identification Rule 2. Then,
the invariants are satisfied.

Identification Rule 3. If there exists v ∈ V (D) \ (W ∪X ∪ Y ∪Z) such that N−D?(v)∩X 6= ∅
and N+

D?(v) ∩ X 6= ∅, then let i ∈ [t] be the largest index such that either (wi, v) ∈ E(D?) or
(xi, v) ∈ E(D?). Identify v onto xi.

Lemma 4.33. Let D̂ be the graph obtained after the application of Identification Rule 3. Then,
the invariants are satisfied.

Proof. Since N−D?(v)∩X 6= ∅ and N+
D?(v)∩X 6= ∅, here is a (X, v)-path, say Pin, and a (v,X)-

path say Pout in D.

Weak independence of A in D̂. For the sake of contradiction, say there is a (xi, wj)-path in

D̂. Then there exists a (v, wj)-path, say P , in D. From the choice of i and since N−D?(v)∩X 6= ∅,
there exists i′ ≤ i, such that there is a (xi′ , v)-path in D. This implies a (xi′ , wj)-path in D.
Since i′ < i and A is weakly independent in D, j < i.

From the choice of i, either (wi, v) ∈ E(D∗), in which case the existence of P implies a
(wi, wj)-path, j < i, in D, contradicting the weak independence of A in D. Or, (xi, v) ∈ E(D?),
in which case P implies a (xi, wj)-path, i < i in D, again contradicting the weak independence
of A in D.

Weak independence between A,B in D̂. For the sake of contradiction, say there is a
(xi, Y)-path in D̂. Then there exists a (v, Y)-path in D. This, together with (X, v)-path Pin,
implies an (X,Y)-path in D, which is a contradiction to the weak independence between the
edges of A,B in D.

Strong independence between A,B in D̂. For the sake of contradiction, say there is a
(Z, xi)-path in D̂. Then there exists a (Z, v)-path in D. This, together with the (v,X)-path
Pout in D, implies an (Z,X)-path in D, which is a contradiction to the strong independence
between the edges of A,B in D.

For the sake of contradiction, say there is a (xi, Z)-path in D̂. Then there exists a (v, Z)-
path in D. This, together with the (X, v)-path Pin, implies an (X,Z)-path in D, which is a
contradiction to the strong independence between the edges of A,B in D.

Orderedness. Suppose, for the sake of contradiction, that there is a (wj , xi)-path in D̂ for
j > i. Then, there is a (wj , v)-path in D. Since j > i, this contradicts the choice of i.

For the sake of contradiction, say there is a (xj , xi)-path in D̂ for j > i. Then, there is a
(xj , v)-path in D. Since j > i, this contradicts the choice of i.

For the sake of contradiction, say there is a (xi, xj)-path in D̂ for j < i. Then, there is a
(v, xj)-path in D. This together with either the (xi, v)-path or the (wi, v)-path, implies either
a (xi, xj)-path or a (wi, xj)-path in D, contradicting the ordered-ness condition on A.

No bad vertices. For the sake of contradiction, say there exists a bad vertex u with respect to
(A,B) in D̂, that is, N−

D̂?
(u) ∩W,N+

D̂?
(u) ∩X,N−

D̂?
(u) ∩ Y,N+

D̂?
(u) ∩ Z 6= ∅. Then, considering

that D̂ is obtained from D by only identifying v onto xi, we get that N−D?(u) ∩W,N−D?(u) ∩
Y,N+

D?(u) ∩ Z 6= ∅ and (u, v) ∈ E(D?). The (u, v)-path, together with the (v,X)-path Pout,
implies a (u,X)-path in D, that is N+

D?(u) ∩X 6= ∅. That is, u is a bad vertex with respect to
(A,B) in D, which is a contradiction.

Identification Rule 4 is the analogue of Identification Rule 3.

44

Identification Rule 4. If there exists v ∈ V (D) \ (W ∪X ∪ Y ∪Z) such that N−D?(v)∩Z 6= ∅
and N+

D?(v) ∩ Z 6= ∅, then let i ∈ [t] be the largest index such that either (yi, v) ∈ E(D?) or
(zi, v) ∈ E(D?). Identify v onto zi.

Symmetrically to Lemma 4.34, the following holds.

Lemma 4.34. Let D̂ be the graph obtained after the application of Identification Rule 3. Then,
the invariants are satisfied.

The remaining identification rules are applied on a vertex v when the (in and out) neigh-
bourhood of v is empty in one of the sets W,X, Y or Z.

Identification Rule 5. If ND?(v) ∩W = ∅ and ∅ 6= N−D?(v) ∩ (X ∪W ∪ Y ∪ Z) ⊆ Y , then let
i ∈ [t] be the largest integer such that (yi, v) ∈ E(D∗). Identify v onto yi.

Lemma 4.35. Let D̂ be the graph obtained after the application of Identification 5. Then, D̂
satisfies the invariants.

Proof. Weak independence of B in D̂. For the sake of contradiction, say there is a (Z, yi)-
path in D̂. Then there exists a (Z, v)-path, in D, which is a contradiction (to the assumptions
of Identification Rule 5).

Weak independence between A,B in D̂. For the sake of contradiction, say there is a (X, yi)-
path in D̂. Then there exists a (X, v)-path in D, which is a contradiction (to the assumptions
of Identification Rule 5).

Strong independence between A,B in D̂. For the sake of contradiction, say there is a
(W, yi)-path in D̂. Then there exists a (W, v)-path in D, which is a contradiction (to the as-
sumptions of Identification Rule 5). Similarly, if there is a (yi,W)-path in D̂, then there exists
a (v,W)-path in D, which is again a contradiction.

Orderedness. Fix j < i. For the sake of contradiction,say there is a (yi, yj)-path in D̂. Then,
there is a (v, yj)-path in D. This together with the (yi, v)-path implies a (yi, yj)-path in D,
which contradicts the ordered-ness condition on B.

Similarly, if there is a (yi, zj)-path in D̂, then there is a (v, zj)-path in D. This, together with
the (yi, v)-path, implies a (yi, zj)-path inD, again contradicting the ordered-ness condition on B.

No bad vertices. For the sake of contradiction, say there exists a bad vertex u with respect to
(A,B) in D̂, that is, N−

D̂?
(u) ∩W,N+

D̂?
(u) ∩X,N−

D̂?
(u) ∩ Y,N+

D̂?
(u) ∩ Z 6= ∅. Then, considering

that D̂ is obtained from D by only identifying v onto yi, we get that N−D?(u) ∩W,N+
D?(u) ∩

X,N+
D?(u) ∩ Z 6= ∅ and (v, u) ∈ E(D?). The (v, u)-path, together with the (v, yi)-path, implies

a (u, Y)-path in D, that is N−D?(u) ∩ Y 6= ∅. That is, u is a bad vertex with respect to (A,B)
in D, which is a contradiction.

The following identification rule is symmetric to Identification Rule 5.

Identification Rule 6. If ND?(v) ∩ Y = ∅ and ∅ 6= N−D?(v) ∩ (X ∪W ∪ Y ∪ Z) ⊆W , then let
i ∈ [t] be the largest integer such that (xi, v) ∈ E(D∗). Identify v onto wi.

Similarly to Lemma 4.35, we can prove the following.

Lemma 4.36. Let D̂ be the graph obtained after the application of Identification 6. Then, D̂
satisfies the invariants.

45

Identification Rule 7. If ND?(v) ∩X = ∅ and ∅ 6= N+
D?(v) ∩ (X ∪W ∪ Y ∪ Z) ⊆ Z, then let

i ∈ [t] be the smallest integer such that (v, zi) ∈ E(D∗). Identify v onto zi.

Lemma 4.37. Let D̂ be the graph obtained after the application of Identification 7. Then, D̂
satisfies the invariants.

Proof. Weak independence of B in D̂. For the sake of contradiction, say there is a (zi, Y)-
path in D̂. Then there exists a (v, Y)-path, in D, which is a contradiction (to the assumptions
of Identification Rule 7).

Weak independence between A,B in D̂. For the sake of contradiction, say there is a
(zi,W)-path in D̂. Then there exists a (v,W)-path in D, which is a contradiction (to the as-
sumptions of Identification Rule 7).

Strong independence between A,B in D̂. For the sake of contradiction, say there is a
(zi, X)-path in D̂. Then there exists a (v,X)-path in D, which is a contradiction (to the as-
sumptions of Identification Rule 7). Similarly, if there is a (X, zi)-path in D̂, then there exists
a (X, v)-path in D, which is again a contradiction.

Orderedness. For the sake of contradiction,say there is a (zi, zj)-path in D̂ for j < i.. Then,
there is a (v, zj)-path in D. This together with the (zi, v)-path implies a (zi, zj)-path in D,
which contradicts the ordered-ness condition on B.

If there is a (zi, yj)-path in D̂, then there is a (v, yj)-path in D. This, together with the
(yi, v)-path, implies a (yi, yj)-path in D, again contradicting the ordered-ness condition on B.

No bad vertices. For the sake of contradiction, say there exists a bad vertex u with respect to
(A,B) in D̂, that is, N−

D̂?
(u) ∩W,N+

D̂?
(u) ∩X,N−

D̂?
(u) ∩ Y,N+

D̂?
(u) ∩ Z 6= ∅. Then, considering

that D̂ is obtained from D by only identifying v onto zi, we get that N−D?(u) ∩W,N+
D?(u) ∩

X,N−D?(u) ∩ Y 6= ∅ and (u, v) ∈ E(D?). The (u, v)-path, together with the (v, zi)-path, implies
a (u, Z)-path in D, that is N+

D?(u) ∩ Z 6= ∅. That is, u is a bad vertex with respect to (A,B)
in D, which is a contradiction.

The following identification rule is symmetric to Identification Rule 7.

Identification Rule 8. If ND?(v) ∩ Z = ∅ and ∅ 6= N+
D?(v) ∩ (X ∪W ∪ Y ∪ Z) ⊆ X, then let

i ∈ [t] be the smallest integer such that (v, xi) ∈ E(D∗). Identify v onto xi.

Similarly to Lemma 4.37, we can prove the following.

Lemma 4.38. Let D̂ be the graph obtained after the application of Identification 8. Then, D̂
satisfies the invariants.

Lemma 4.39. When none of the Identification Rules 1-8 are applicable, for each vertex of
v ∈ V (D) \ V (A ∪B) either N−D (v) = ∅ or N+

D (v) = ∅.

Proof. To prove the lemma, we prove the following claims.

Claim 4.40. If N+
D?(v) ∩W 6= ∅, then N−D?(v) ∩ (W ∪X ∪ Y ∪ Z) ⊆W .

Proof. If xj ∈ N−D?(v) for some j ∈ [t], then this implies a (X,W)-path in D, contradicting the
weak independence of A. If yj ∈ N−D?(v) for some j ∈ [t], then this implies a (Y,W)-path in D,
contradicting the strong independence between A,B. If zj ∈ N−D?(v) for some j ∈ [t], then this
implies a (Z,W)-path in D, contradicting the weak independence between A,B. y

46

Symmetrically to Claim 4.40, the following holds.

Claim 4.41. If N+
D?(v) ∩ Y 6= ∅, then N−D?(v) ∩ (W ∪X ∪ Y ∪ Z) ⊆ Y .

Claim 4.42. If N−D?(v) ∩X 6= ∅, then N+
D?(v) ∩ (W ∪X ∪ Y ∪ Z) ⊆ X.

Proof. If wj ∈ N+
D?(v) for some j ∈ [t], then this implies a (X,W)-path in D, contradicting the

weak independence of A. If yj ∈ N+
D?(v) for some j ∈ [t], then this implies a (X,Y)-path in D,

contradicting the weak independence between A,B. If zj ∈ N+
D?(v) for some j ∈ [t], then this

implies a (X,Z)-path in D, contradicting the strong independence between A,B. y

Symmetrically to Claim 4.42, the following holds.

Claim 4.43. If N−D?(v) ∩ Z 6= ∅, then N+
D?(v) ∩ (W ∪X ∪ Y ∪ Z) ⊆ Z.

From Claims 4.40 and 4.43, if Identification Rules 1-4 are not applicable and there exists
v ∈W∪X∪Y ∪Z such that N+

D?(v)∩(W∪X∪Y ∪Z) 6= ∅ and N−D?(v)∩(W∪X∪Y ∪Z) 6= ∅, then
since there are no bad vertices with respect to (A,B), we conclude that either ND?(v)∩W = ∅
or ND?(v) ∩X = ∅ or ND?(v) ∩ Y = ∅ or ND?(v) ∩ Z = ∅. Thus, Claims 4.44-4.47 prove the
lemma.

Claim 4.44. If Identification Rules 1-4 are no longer applicable, ND?(v)∩W = ∅ and N+
D?(v)∩

(X ∪ Y ∪ Z) 6= ∅, then N−D?(v) ∩ (X ∪ Y ∪ Z) ⊆ Y .

Proof. We first show that that N−D?(v)∩X = ∅. For the sake of contradiction, say N−D?(v)∩X 6=
∅. Then, since Identification Rule 2 is not applicable, N+

D?(v) ∩X = ∅. Also, N+
D?(v) ∩ Y = ∅,

as otherwise there is a (X,Y)-path in D, contradicting the weak independence between A,B.
Further, N+

D?(v) ∩ Z = ∅, as otherwise there is a (X,Z)-path in D, contradicting the strong
independence between A,B.

Similarly, if N−D?(v)∩Z 6= ∅. Then, since Identification Rule 2 is not applicable, N+
D?(v)∩Z =

∅. Also, N+
D?(v) ∩ X = ∅, as otherwise there is a (Z,X)-path in D, contradicting the strong

independence between A,B. Further, N+
D?(v) ∩ Y = ∅, as otherwise there is a (Z, Y)-path in

D, contradicting the weak independence of B. y

Similarly to Claim 4.44, we can prove the following.

Claim 4.45. If Identification Rules 1-4 are no longer applicable, ND?(v)∩Y = ∅ and N+
D?(v)∩

(X ∪W ∪ Z) 6= ∅, then N−D?(v) ∩ (W ∪X ∪ Z) ⊆W .

Claim 4.46. If Identification Rules 1-4 are no longer applicable, ND?(v)∩X = ∅ and N−D?(v)∩
(X ∪ Y ∪ Z) 6= ∅, then N+

D?(v) ∩ (W ∪ Y ∪ Z) ⊆ Z.

Proof. We first show that that N+
D?(v)∩W = ∅. For the sake of contradiction, say N+

D?(v)∩W 6=
∅. Then, since Identification Rule 2 is not applicable, N−D?(v) ∩W = ∅. Also, N−D?(v) ∩ Y = ∅,
as otherwise there is a (Y,W)-path in D, contradicting the strong independence between A,B.
Further, N−D?(v) ∩ Z = ∅, as otherwise there is a (Z,W)-path in D, contradicting the weak
independence between A,B.

Similarly, if N+
D?(v)∩Y 6= ∅, then since Identification Rule 2 is not applicable, N−D?(v)∩Y =

∅. Also, N−D?(v) ∩W = ∅, as otherwise there is a (W,Z)-path in D, contradicting the strong
independence between A,B. Further, N−D?(v)∩Z = ∅, as otherwise there is a (Z, Y)-path in D,
contradicting the weak independence of B. y

Similarly to Claim 4.46, we can prove the following.

Claim 4.47. If Identification Rules 1-4 are no longer applicable, ND?(v)∩Z = ∅ and N−D?(v)∩
(X ∪ Y ∪ Z) 6= ∅, then N+

D?(v) ∩ (W ∪X ∪ Y) ⊆ X.

47

O4
1 O4

2 O4
3 O4

4

Figure 12: The graphs of Definition 4.49 for t = 4.

This concludes the proof of Lemma 4.39.

Now suppose that Identification Rules 1-8 are no longer applicable. From Lemma 4.39, each
vertex of V (D) \ (W ∪ X ∪ Y ∪ Z) either has only in-neighbours or only out-neighbours in
D?. Let Vs = {v : v ∈ V (D) \ (W ∪ X ∪ Y ∪ Z) and N+

D?(v) ∩ (W ∪ X ∪ Y ∪ Z) 6= ∅} and
Vt = V (D) \ (W ∪ X ∪ Y ∪ Z ∪ Vs). Then identify all the vertices of Vs onto a new vertex s

and all the vertices of Vt onto a new vertex t. The resulting graph is a semi-cleaned ordered
t-tough-pair.

4.3.2 From semi-cleaned ordered tough-pair to hard-pattern

The aim of this section is to prove Lemma 4.6. We first introduce the almost t-hard matching
patterns which differ from the t-hard matching patterns in that the source and sink vertices of
items 3 and 4, respectively, in Definition 1.4 may not have ”full” neighborhoods (recall that an
S-source is a source vertex s such that N+(s) = S and that an S-sink is a sink vertex such that
N−(s) = S).

Definition 4.48 (almost t-hard matching pattern). An almost t-hard matching pattern is an
(acyclic) digraph D constructed the following way. We start with disjoint vertex sets W =
{w1, . . . , wt}, X = {x1, . . . , xt}, Y = {y1, . . . , yt} and Z = {z1, . . . , zt} and introduce the edges
(wi, xi) and (yi, zi) for every i ∈ [t]. Furthermore, we introduce into D any combination of the
following items:

1. either the directed path w1 → w2 → . . . → wt → z1 → z2 → . . . → zt, or any of the
directed paths w1 → w2 → . . .→ wt and z1 → z2 → . . .→ zt;

2. either the directed path y1 → y2 → . . . → yt → x1 → x2 → . . . → xt, or any of the
directed paths x1 → x2 → . . .→ xt and y1 → y2 → . . .→ yt;

3. a vertex s such that N−(s) = ∅ and N+(s) ⊆W ∪X ∪ Y ∪ Z;
4. a vertex t such that N+(t) = ∅ and N−(t) ⊆W ∪X ∪ Y ∪ Z;
5. a vertex rWZ such that N−(rWZ) = W and N+(rWZ) = Z;
6. a vertex rY X such that N−(rY X) = Y and N+(rY X) = X.

We further introduce the four canonical graphs below corresponding to ”half” a hard match-
ing pattern (see Figure 12 for an illustration).

Definition 4.49. Let U = {u1, . . . , ut} and V = {v1, . . . , vt}. We define the following four
reachability-minimal acyclic digraphs on vertex set U ∪ V .

• The digraph Ot1 is a (U, V)-induced-matching.
• The digraph Ot2 is a (U, V)-matching which further contains the directed path on U from
u1 to ut.

• The digraph Ot3 is a (U, V)-matching which further contains the directed path on V from
v1 to vt.

• The digraph Ot4 is a (U, V)-matching which further contains the directed path on U from
u1 to ut and the directed path on V from v1 to vt.

Lemma 4.6 (Cleaning the semi-cleaned ordered tough-pair). If D is a semi-cleaned ordered
h(t)-tough-pair then either,

48

• D? contains a t-induced-biclique whose edges are minimal in D, or
• D can be identified to a digraph D̂ such that D̂ is transitively equivalent to a t-hard-

matching-pattern.

Proof. For every p ≥ 1 and j ≥ 1, let `j(p) be an integer such that p ≥ R(`j(p), j). For
notational convenience, we show, instead of the above statement, that if D is a semi-cleaned
ordered t-tough-pair then either D∗ contains a g(t)-induced-biclique whose edges are minimal
in D, or D can be identified to a digraph D̂ such that D̂ is transitively equivalent to a g(t)-hard
matching pattern, where g(t) = (`4(`4(`5(t))/2) − 4)/8 (equivalently, h(t) = R(2R(2R(8t +
4, 4), 4), 5)).

Let D be a semi-cleaned ordered t-tough-pair and let (A,B) be the ordered t-tough-pair
contained in D, where A = ((w1, x1), . . . , (wt, xt)) and B = ((y1, z1), . . . , (yt, zt)). Denote by
W = {wi | i ∈ [t]}, X = {xi | i ∈ [t]}, Y = {yi | i ∈ [t]} and Z = {zi | i ∈ [t]}. Given a digraph
H, we denote by H the underlying undirected graph and by H∗ the transitive closure of H.
Before turning to the proof of the lemma, we first show the following claims.

Claim 4.50. One of the following holds.
(1) There exist subsets X ′ ⊆ X and W ′ ⊆ W such that |X ′| = |W ′| = b`5(t)/2c and D

contains a (W ′, X ′)-induced-biclique.
(2) There exist a set I ⊆ [t] of size `5(t) such that D[{xi, wi | i ∈ I}] is transitively equivalent

to one of O
`5(t)
1 , O

`5(t)
2 , O

`5(t)
3 and O

`5(t)
4 .

Proof. Consider the edge-coloring of the complete undirected graph G on vertex set {1, . . . , t}
defined as follows: for every i, j ∈ [t] where i < j, the edge ij ∈ E(G) receives

• color 1 if (wi, wj), (xi, xj), (wi, xj) /∈ E(D∗);
• color 2 if (wi, wj) ∈ E(D) and (xi, xj) /∈ E(D∗);
• color 3 if (wi, wj) /∈ E(D) and (xi, xj) ∈ E(D∗);
• color 4 if (wi, wj), (xi, xj) ∈ E(D∗); and
• color 5 if (wi, wj), (xi, xj) /∈ E(D∗) and (wi, xj) ∈ E(D∗).

Note that for any 1 ≤ i < j ≤ t, if D∗ contains one of (wi, wj) and (xi, xj) then D∗ also contains
(wi, xj) and thus, each edge of E(G) receives a color in the above coloring. Now by Ramsey’s
Theorem, G contains a monochromatic clique of size `5(t): let 1 ≤ i1 < . . . < i`5(t) ≤ t be a set
of `5(t) vertices inducing a monochromatic clique in G. Since (A,B) is an ordered t-tough-pair,
for every 1 ≤ p < q ≤ `5(t), there is no (wiq , wip)-path, no (wiq , xip)-path and no (xiq , xip)-path.
It follows that if the clique in G on vertex set {i1, . . . , i`5(t)} has

• color 1 then D[{wij , xij | j ∈ [`5(t)]}] is transitively equivalent to O
`5(t)
1 ;

• color 2 then D[{wij , xij | j ∈ [`5(t)]}] is transitively equivalent to O
`5(t)
2 ;

• color 3 then D[{wij , xij | j ∈ [`5(t)]}] is transitively equivalent to O
`5(t)
3 ;

• color 4 then D[{wij , xij | j ∈ [`5(t)]}] is transitively equivalent to O
`5(t)
4 ;

• color 5 then D contains a ({wij | j ∈ [b`5(t)/2c]}, {xib`5(t)/2c+j | j ∈ [b`5(t)/2c]})-induced-
biclique.

Thus, if the clique in G on vertex set {i1, . . . , i`5(t)} does not have color 5 then we may take
I = {i1, . . . , i`5(t)} to prove our claim. y

Symmetrically to Claim 4.50, we have the following.

Claim 4.51. One of the following holds.
(1) There exist subsets Y ′ ⊆ Y and Z ′ ⊆ Z such that |Y ′| = |Z ′| = b`5(t)/2c and D contains

a (Y ′, Z ′)-induced-biclique.
(2) There exist a set I ⊆ [t] of size `5(t) such that D[{yi, zi | i ∈ I}] is transitively equivalent

to one of O
`5(t)
1 , O

`5(t)
2 , O

`5(t)
3 and O

`5(t)
4 .

49

Claim 4.52. For any subsets W ′ ⊆ W and Z ′ ⊆ Z where |W ′| = |Z ′| = p, there exist subsets
W ′′ ⊆W ′ and Z ′′ ⊆ Z ′ such that |W ′′| = |Z ′′| = b`4(p)/2c and
• either there is no edge in D from a vertex of W ′′ to a vertex of Z ′′,
• or D∗ contains a (W ′′, Z ′′)-biclique (not necessarily induced).

Proof. Let W ′ ⊆ W and Z ′ ⊆ Z be two subsets of size p. We distinguish two cases depending
on whether the bipartite graph D[W ′, Z ′] has a matching of size at least p/2 or not.

Case 1. The bipartite graph D[W ′, Z ′] has a matching of size at least p/2. Let M be a
matching in D[W ′, Z ′] of size bp/2c and let e1, . . . , ebp/2c be an arbitrary ordering of the edges in
M . Consider the edge-coloring of the complete undirected graph G on vertex set {1, . . . , bp/2c}
defined as follows: for every 1 ≤ i < j ≤ bp/2c, the edge ij ∈ E(G) receives

• color 1 if (tail(ei), head(ej)), (tail(ej), head(ei)) /∈ E(D∗);
• color 2 if (tail(ei), head(ej)) ∈ E(D∗) and (tail(ej), head(ei)) /∈ E(D∗);
• color 3 if (tail(ei), head(ej)) /∈ E(D∗) and (tail(ej), head(ei)) ∈ E(D∗); and
• color 4 if (tail(ei), head(ej)), (tail(ej), head(ei)) ∈ E(D∗);

Then by Ramsey’s Theorem, G contains a monochromatic clique of size `4(p): let 1 ≤ i1 <
. . . < i`4(p) ≤ p/2 be a set of `4(p) vertices inducing a monochromatic clique in G. Now if this
clique has

• color 1 then by taking W ′′ = {tail(eij) | j ∈ [b`4(p)/2c]} and Z ′′ = {head(eij) | j ∈
[b`4(p)/2c]}, there is no edge from W ′′ to Y ′′ in D∗ (and a fortiori in D);

• color 2 then by taking W ′′ = {tail(eij) | j ∈ [b`4(p)/2c]} and Z ′′ = {head(eib`4(p)/2c+j) | j ∈
[b`4(p)/2c]}, D∗ contains a (W ′′, Z ′′)-biclique;

• color 3 then by taking W ′′ = {tail(eib`4(p)/2c+j) | j ∈ [b`4(p)/2c]} and Z ′′ = {head(eij) | j ∈
[b`4(p)/2c]}, D∗ contains a (W ′′, Z ′′)-biclique;

• color 4 then by taking W ′′ = {tail(eij) | j ∈ [b`4(p)/2c]} and Z ′′ = {head(eij) | j ∈
[b`4(p)/2c]}, D∗ contains a (W ′′, Z ′′)-biclique.

Case 2. The bipartite graph D[W ′, Z ′] has no matching of size at least p/2. Then by
König’s Theorem, D[W ′, Z ′] has, in this case, a vertex cover at size at most p/2: let V ⊆W ′∪Z ′
be a minimum vertex cover of D[W ′, Z ′]. Since then, min{W ′ \ V,Z ′ \ V } ≥ b`4(p)/2c ≥
b`4(p)/2c, we may take any subsets W ′′ ⊆ W ′ \ V and Z ′′ ⊆ Z ′ \ V of size b`4(p)/2c to prove
the claim, as there are surely no edges from W ′′ to Z ′′ in D. y

Symmetrically to Claim 4.52, we have the following.

Claim 4.53. For any subsets Y ′ ⊆ Y and X ′ ⊆ X where |Y ′| = |X ′| = p, there exist subsets
Y ′′ ⊆ Y ′ and X ′′ ⊆ X ′ such that |Y ′′| = |X ′′| = b`4(p)/2c and
• either there is no edge in D from a vertex of Y ′′ to a vertex of X ′′,
• or D∗ contains a (Y ′′, X ′′)-biclique (not necessarily induced).

We next define partitions with respect to a set and prove thereafter useful properties of these
partitions.

Definition 4.54. For any V ∈ {W,X, Y, Z} and any U ⊆ V , the partition of V w.r.t. U is the
partition of V \ U into four sets V ?, V ◦, V + and V − such that the following hold.

• For every v ∈ V ?, N+
D∗(v) ∩ U 6= ∅ and N−D∗(v) ∩ U 6= ∅.

• For every v ∈ V ◦, (N+
D∗(v) ∪N−D∗(v)) ∩ U = ∅.

• For every v ∈ V +, N+
D∗(v) ∩ U 6= ∅ and N−D∗(v) ∩ U = ∅.

• For every v ∈ V −, N+
D∗(v) ∩ U = ∅ and N−D∗(v) ∩ U 6= ∅.

Note that since (A,B) is an ordered tough-pair, for any V ∈ {W,X, Y, Z} and any v ∈ V ,
• if u ∈ N−D∗(v) then u has a smaller index than that of v, and

50

• if u ∈ N+
D∗(v) then u has a larger index than that of v.

Claim 4.55. For any V ∈ {W,X, Y, Z} and any U ⊆ V , the following hold. Let V ?, V ◦, V +

and V − be the partition of V w.r.t U . Then there is no edge in D∗

(i) from a vertex of V ? to a vertex of V ◦ ∪ V +,
(ii) from a vertex of V − to a vertex of V ? ∪ V ◦ ∪ V +, and

(iii) from a vertex of V ◦ to a vertex of V + ∪ V ?.
Furthermore, if D∗[U] has no edge then V ? = ∅.

Proof. Consider u ∈ V ?. If there exists v ∈ V ◦∪V + such that (u, v) ∈ E(D∗) then in particular
∅ 6= N−D∗(u) ∩ U ⊆ N−D∗(v), a contradiction to the fact that v ∈ V + ∪ V ◦. Similarly, there
is no edge in D∗ from a vertex of V − to a vertex of V + ∪ V ?: indeed, if there exist u ∈ V −
and v ∈ V + ∪ V ? such that (u, v) ∈ E(D∗) then in particular ∅ 6= N−D∗(u) ∩ U ⊆ N−D∗(v), a
contradiction to the fact that v ∈ V +. Furthermore, there is no edge from a vertex of V − to a
vertex of V ◦ for if there exist u ∈ V − and v ∈ V ◦ such that (u, v) ∈ E(D∗), then in particular
∅ 6= N−D∗(u)∩U ⊆ N−D∗(v), a contradiction to the fact that v ∈ V ◦. Finally, if there exist u ∈ V ◦
and v ∈ V + ∪ V ? such that (u, v) ∈ E(D∗) then in particular ∅ 6= N+

D∗(v) ∩ U ⊆ N+
D∗(u), a

contradiction to the fact that u ∈ V ◦. Now assume that D∗[U] has no edge and suppose for a
contradiction that there exists u ∈ V \ U such that both N−D∗(u) ∩ U 6= ∅ and N+

D∗(u) ∩ U 6= ∅.
Then for any x ∈ N−D∗(u) ∩ U and y ∈ N+

D∗(u) ∩ U , (x, y) ∈ E(D∗), a contradiction to the fact
that U is an independent set of D∗. y

Claim 4.56. For any V ∈ {W,Y } and any U ⊆ V , the following hold:
• if there exist u ∈W ∪X ∪ Y ∪ Z and v ∈ V + such that (u, v) ∈ E(D∗) then u ∈ V +;
• if there exist u ∈W ∪X ∪ Y ∪Z and v ∈ V ◦ such that (u, v) ∈ E(D∗) then u ∈ V ◦ ∪ V +,

where V ?, V ◦, V +, V − is the partition of V w.r.t U .

Proof. Suppose that there exist u ∈ W ∪ X ∪ Y ∪ Z and v ∈ V + such that (u, v) ∈ E(D∗).
Observe first that since V ∈ {W,Y } and (A,B) is an ordered tough-pair, necessarily u ∈ V .
Now since v ∈ V +, u /∈ U by definition and since by Claim 4.55, u /∈ V ? ∪ V ◦ ∪ V −, we
conclude that u ∈ V +. Suppose next that there exist u ∈W ∪X ∪ Y ∪Z and v ∈ V ◦ such that
(u, v) ∈ E(D∗). Then as previously u ∈ V . Now since v ∈ V ◦, u /∈ U by definition and since by
Claim 4.55, u /∈ V ? ∪ V −, we conclude that u ∈ V ◦ ∪ V +. y

Claim 4.57. For any V ∈ {X,Z} and any U ⊆ V , the following hold:
• if there exist u ∈ V − and v ∈W ∪X ∪ Y ∪ Z such that (u, v) ∈ E(D∗) then v ∈ V −;
• if there exist v ∈ V ◦ and v ∈W ∪X ∪ Y ∪Z such that (u, v) ∈ E(D∗) then u ∈ V ◦ ∪ V −,

where V ?, V ◦, V +, V − is the partition of V w.r.t U .

Proof. Suppose that there exist u ∈ V − and v ∈ W ∪ X ∪ Y ∪ Z such that (u, v) ∈ E(D∗).
Observe first that since V ∈ {X,Z} and (A,B) is an ordered tough-pair, necessarily v ∈ V . Now
since u ∈ V −, v /∈ U by definition and since by Claim 4.55, v /∈ V ? ∪V ◦ ∪V +, we conclude that
v ∈ V −. Suppose next that there exist v ∈ V ◦ and v ∈W ∪X ∪Y ∪Z such that (u, v) ∈ E(D∗)
then u ∈ V ◦ ∪ V −. Then as previously v ∈ V . Now since u ∈ V ◦, v /∈ U by definition and since
by Claim 4.55, v /∈ V + ∪ V ?, we conclude that v ∈ V ◦ ∪ V −. y

We now turn to the proof of the lemma. We assume henceforth that D contains no g(t)-
induced-biclique (we are done otherwise). We first prove that D can be identified to a digraph
which is transitively equivalent to an almost 4g(t)-hard matching pattern and then show how
to obtain a g(t)-hard matching pattern from an almost 4g(t)-hard matching pattern.

By Claim 4.50, there exists a set IA ⊆ [t] of size `5(t) such that D[{wi, xi | i ∈ IA}] is

transitively equivalent to one of O
`5(t)
1 , O

`5(t)
2 , O

`5(t)
3 and O

`5(t)
4 ; and similarly, by Claim 4.51,

there exists a set IB ⊆ [t] of size `5(t) such that D[{yi, zi | i ∈ IB}] is transitively equivalent

51

to one of O
`5(t)
1 , O

`5(t)
2 , O

`5(t)
3 and O

`5(t)
4 . Now by Claim 4.52 there exist subsets I1

A ⊆ IA and
I1
B ⊆ IB such that |I1

A| = |I1
B| = `4(`5(t))/2 and there is either no edge or every edge in D from

{wi | i ∈ I1
A} to {zi | i ∈ I1

B}. By Claim 4.53, there further exist subsets I2
A ⊆ I1

A and I2
B ⊆ I1

B

such that |I2
A| = |I2

B| = `4(`4(`5(t))/2))/2 = 4g(t) + 2 and there is either no edge or every edge
in D from {yi | i ∈ I2

A} to {xi | i ∈ I2
B}.

Now let W ?,W ◦,W+,W− be the partition of W w.r.t. {wi | i ∈ I2
A}, X?, X◦, X+, X− be the

partition of X w.r.t {xi | i ∈ I2
A}, Y ?, Y ◦, Y +, Y − be the partition of Y w.r.t {yi | i ∈ I2

B} and
Z?, Z◦, Z+, Z− be the partition of Z w.r.t {zi | i ∈ I2

B}. We devise the following identification
rules.

Identification Rule 9. Proceed as follows.
1. Identify every vertex in W ◦ ∪W+ ∪Y ◦ ∪Y + (together with the source vertex s of D when

it exists) to a single vertex s.

2. If D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
1 , further identity every vertex in

X+ to s.
3. If D[{yi, zi | i ∈ IB}] is transitively equivalent to O

`5(t)
1 , further identity every vertex in

Z+ to s.

Identification Rule 10. Proceed as follows.
1. Identify every vertex in X◦ ∪X− ∪Z◦ ∪Z− (together with the sink vertex t of D when it

exists) to a single vertex t.

2. If D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
1 , further identity every vertex in

W− to t.
3. If D[{yi, zi | i ∈ IB}] is transitively equivalent to O

`5(t)
1 , further identity every vertex in

Y − to t.

Identification Rule 11. For every consecutive i < i′ ∈ I2
A∪{1, t} (that is, (I2

A∪{1, t})∩[i, i′] =
{i, i′}) and every j ∈ [i, i′], proceed as follows.

1. D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
2 : if wj ∈W ? ∪W− then identify wj

to wi and if xj ∈ X+ then identify xj to wi′.

2. D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
3 : if wj ∈ W− then identify wj to xi

and if xj ∈ X? ∪X+ then identify xj to xi′.

3. D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
4 : if wj ∈W ? ∪W− then identify wj

to wi and if xj ∈ X? ∪X+ then identify xj to xi′.

Identification Rule 12. For every consecutive i < i′ ∈ I2
B ∪{1, t} and every j ∈ [i, i′], proceed

as follows.

1. D[{yi, zi | i ∈ IB}] is transitively equivalent to O
`5(t)
2 : if yj ∈ Y ? ∪ Y − then identify yj to

yi and if zj ∈ Z+ then identify zj to yi′.

2. D[{yi, xi | i ∈ IB}] is transitively equivalent to O
`5(t)
3 : if yj ∈ Y − then identify yj to zi

and if zj ∈ Z? ∪ Z+ then identify zj to zi′.

3. D[{yi, zi | i ∈ IB}] is transitively equivalent to O
`5(t)
4 : if yj ∈ Y ? ∪ Y − then identify yj to

yi and if zj ∈ Z? ∪ Z+ then identify zj to zi′.

Let DI be the digraph resulting from an exhaustive application of Identification Rules 9-12.
We aim to show that DI can be identified to a digraph which is transitively equivalent to an
almost 4g(t)-hard matching pattern. To this end, we first prove the following claims and then
distinguish cases depending on the graphs to which D[{wi, xi | i ∈ IA}] and D[{yi, zi | i ∈ IB}]
are transitively equivalent, and whether there is no edge or every edge in D from {wi | i ∈ I2

A}
to {zi | i ∈ I2

B} (from {yi | i ∈ I2
A} to {xi | i ∈ I2

B}, respectively).

52

Claim 4.58. The vertex set of DI consists of {wi, xi | i ∈ I2
A} ∪ {yi, zi | i ∈ I2

B} together with
possibly s or t.

Proof. We first prove that V (DI) ∩W = {wi | i ∈ I2
A}. Clearly, after Identification Rule 9.1

has been applied, there are no more vertices from W ◦ ∪W+ left. Now if D[{wi, xi | i ∈ IA}] is

transitively equivalent to O
`5(t)
1 then W ? = ∅ by Claim 4.55 and once Identification Rule 10.2

has been applied, there are no more vertices from W− left. Similarly, if D[{wi, xi | i ∈ IA}] is

transitively equivalent to O
`5(t)
3 then W ? = ∅ by Claim 4.55 and once Identification Rule 11.2 has

been exhaustively applied, there are no more vertices from W− left. Otherwise, D[{wi, xi | i ∈
IA}] is transitively equivalent to either O

`5(t)
2 or O

`5(t)
4 in which case, an exhaustive application

of Identification Rule 11.1 and Identification Rule 11.3, respectively, leaves no vertex from
W ? ∪W−. We conclude symmetrically that V (DI) ∩ Y = {yi | i ∈ I2

B}.
Second, let us show that V (DI) ∩X = {xi | i ∈ I2

A}. Clearly, after Identification Rule 10.1
has been applied, there are no more vertices from X◦ ∪ X− left. Now if D[{wi, xi | i ∈ IA}]
is transitively equivalent to O

`5(t)
1 then X? = ∅ by Claim 4.55 and once Identification Rule 9.2

has been applied, there are no more vertices from X+ left. Similarly, if D[{wi, xi | i ∈ IA}] is

transitively equivalent to O
`5(t)
2 then X? = ∅ by Claim 4.55 and once Identification Rule 11.1 has

been exhaustively applied, there are no more vertices from X+ left. Otherwise, D[{wi, xi | i ∈
IA}] is transitively equivalent to either O

`5(t)
3 or O

`5(t)
4 in which case, an exhaustive application

of Identification Rule 11.2 and Identification Rule 11.3, respectively, leaves no vertex from
X? ∪X+. We conclude symmetrically that V (DI) ∩ Z = {zi | i ∈ I2

B}. y

Claim 4.59. If s exists then d−DI (s) = 0 and if t exists then d+
DI

(t) = 0.

Proof. Assume that s exists and suppose to the contrary that there exists u ∈ V (DI) such that
u ∈ N−DI (s). Then there exist vs, vu ∈ V (D) such that vs has been identified to s, vu has been
identified to u and (vu, vs) ∈ E(D). Since the source vertex s of D (if any) has in-degree zero in
D, necessarily vs 6= s. Furthermore, vs cannot belong to W ◦ ∪W+ ∪ Y ◦ ∪ Y +: indeed, if, say,
vs ∈W ◦∪W+ (the case where vs ∈ Y ◦∪Y + is symmetric) then by Claim 4.56, vu ∈W ◦∪W+, a
contradiction as vu is not identified to s. Thus, it must be that D[{wi, xi | i ∈ IA}] is transitively

equivalent to O
`5(t)
1 and vs ∈ X+, or D[{yi, xi | i ∈ IB}] is transitively equivalent to O

`5(t)
1 and

vs ∈ Z+. Assume without loss of generality that the latter holds (the other case is symmetric).
Then since (A,B) is an ordered tough-pair, necessarily vu ∈ Y ∪ Z. However, since vu is not
identified to s, vu /∈ Y ◦ ∪ Y + and since D ∗ [{yi| i ∈ IB}] has no edge, Y ? = ∅ by Claim 4.55.
Furthermore, vu cannot belong to {yi | i ∈ I2

A} ∪ Y − for otherwise, since vs ∈ Z+ and (A,B) is
an ordered tough-pair, there exist i, j ∈ I2

A such that i < j and (yi, zj) ∈ E(D∗), a contradiction

to the fact that D[{yi, xi | i ∈ IB}] is transitively equivalent to O
`5(t)
1 . Thus, it must be that

vu ∈ Z. However, since vs ∈ Z+, vu /∈ Z? ∪ Z− ∪ Z◦ by Claim 4.55 and vu /∈ {zi | i ∈ I2
B} by

definition of Z+. Thus, we conclude that vu ∈ Z+, a contradiction since vu is not identified
to s.

Assume now that t exists and suppose to the contrary that there exists u ∈ V (DI) such that
u ∈ N+

DI
(t). Then there exist vt, vu ∈ V (D) such that vt is identified to t, vu is identified to u

and (vt, vu) ∈ E(D). Since the sink vertex t of D (if any) has out0degree zero in D, necessarily
vt 6= t. Furthermore, vt cannot belong to X◦∪X−∪Z◦∪Z−: indeed, if, say, vt ∈ X◦∪X− (the
case where vt ∈ Z◦∪Z− is symmetric) then by Claim 4.57, vu ∈ X◦∪X−, a contradiction since
vu is not identified to t. Thus, it must be that D[{wi, xi | i ∈ IA}] is transitively equivalent

to O
`5(t)
1 and vt ∈ W−, or D[{yi, zi | i ∈ IB}] is transitively equivalent to O

`5(t)
1 and vt ∈ Y −.

Assume without loss of generality that the latter holds (the other case is symmetric). Then
since (A,B) is an ordered tough-pair, necessarily vu ∈ Y ∪Z. However, since vu is not identified
to t, vu /∈ Z◦∪Z− and since D ∗ [{zi| i ∈ IB}] has no edge, Z? = ∅ by Claim 4.55. Furthermore,

53

vu cannot belong to {zi | i ∈ I2
B} ∪ Z+ for otherwise, since vt ∈ Y − and (A,B) is an ordered

tough-pair, there exist i, j ∈ I2
B such that i < j and (yi, zj) ∈ E(D∗), a contradiction to the

fact that D[{yi, xi | i ∈ IB}] is transitively equivalent to O
`5(t)
1 . Thus, it must be that vu ∈ Y .

However, since vt ∈ Y −, vu /∈ Y ? ∪ Y ◦ ∪ Y + by Claim 4.55 and vu /∈ {yi | i ∈ I2
B} by definition

of Y −. Thus, we conclude that vu ∈ Y −, a contradiction since vu is not identified to t. y

Claim 4.60. For any i ∈ [4], if D[{wj , xj | j ∈ IA}] is transitively equivalent to O
`5(t)
i then

DI [{wj , xj | j ∈ I2
A}] is transitively equivalent to O

4g(t)+2
i .

Proof. Let us first show that if D[{wi | i ∈ IA}] has no edge then DI [{wi | i ∈ I2
A}] has

no edge as well. Assume that D[{wi | i ∈ IA}] has no edge, that is, D[{wi, xi | i ∈ IA}]
is transitively equivalent to O

`5(t)
1 or O

`5(t)
3 . Then by Claim 4.55, W ? = ∅. Suppose first that

D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
1 . Then every vertex inW ◦∪W+ is identified

to s and every vertex in W− is identified to t where d−DI (s) = d+
DI

(t) = 0 by Claim 4.59. Since,
in this case, every vertex in X is identified either to s, t or itself and no other identification
may create an edge between two vertices of {wi | i ∈ I2

A}, we conclude that DI [{wi | i ∈ I2
A}]

has no edge. Suppose second that D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
3 . Then

every vertex in W ◦ ∪W+ is identified to s and every vertex in X◦ ∪X− is identified to t where
d−DI (s) = d+

DI
(t) = 0 by Claim 4.59. Since every vertex in W− ∪ X? ∪ X+ is identified to a

vertex in {xi | i ∈ I2
A} and no other identification may create an edge between two vertices of

{wi | i ∈ I2
A}, we conclude that DI [{wi | i ∈ I2

A}] has no edge.
Second, let us show that if D[{wi | i ∈ IA}] is transitively equivalent to the directed path

wmin IA → wmin IA+1 → . . . → wmax IA then DI [{wi | i ∈ I2
A}] is transitively equivalent to the

directed path wmin I2
A
→ wmin I2

A+1 → . . .→ wmax I2
A

. Assume that D[{wi | i ∈ IA}] is transitively

equivalent to this directed path, that is, D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
2 or

O
`5(t)
4 . Note that since I2

A ⊆ IA, it is enough to show that no edge from a vertex in {wi | i ∈ I2
A}

to a vertex in {wi | i ∈ I2
A} of smaller index is created (we refer to such an edge as a bad

edge in the following). First, since every vertex wj ∈ W ? ∪ W− is identified to the vertex
wj′ ∈ {wi | i ∈ I2

A} such that j′ = max{i ∈ I2
A : i ≤ j}, no bad edge is created here. Now

if D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
2 (note that, in this case, X? = ∅ by

Claim 4.55), then every vertex xj ∈ X+ is identified to the vertex wj′ ∈ {wi | i ∈ I2
A} such

that j′ = min{i ∈ I2
A : j ≤ i} and so, no bad edge is created here; and if D[{wi, xi | i ∈ IA}]

is transitively equivalent to O
`5(t)
4 , then every vertex in X? ∪ X+ is identified to a vertex in

{xi | i ∈ I2
A} and thus, no bad edge is created here as well. Since every vertex in W ◦ ∪W+

is identified to s and every vertex in X◦ ∪X− is identified to t where d−DI (s) = d+
DI

(t) = 0 by
Claim 4.59, no bad edge is created with these identifications; and since no other identification
may create a bad edge, we conclude that DI [{wi | i ∈ I2

A}] is indeed transitively equivalent to
the directed path wmin I2

A
→ . . .→ wmax I2

A
.

Consider next X. As in the case of W , let us first show that if D[{xi | i ∈ IA}] has no edge
then DI [{xi | i ∈ I2

A}] has no edge as well. Assume that D[{xi | i ∈ IA}] has no edge, that is,

D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
1 or O

`5(t)
2 . Then by Claim 4.55, X? = ∅.

Now if D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
1 , we conclude, symmetrically to

the case of W , that DI [{xi | i ∈ I2
A}] has no edge. Suppose therefore that D[{wi, xi | i ∈ IA}]

is transitively equivalent to O
`5(t)
2 . Since then, every vertex in X◦ ∪X− is identified to t, every

vertex in W ◦∪W+ is identified to s where d−DI (s) = d+
DI

(t) = 0 by Claim 4.59, and every vertex

in X+ ∪W ? ∪W− is identified to a vertex in {wi | i ∈ I2
A}, no edge between two vertices in

{xi | i ∈ I2
A} is created with these identifications. Since no other identification may create an

54

edge between two vertices in {xi | i ∈ I2
A}, we conclude that DI [{xi | i ∈ I2

A}] has no edge in
this case as well.

Let us next show that if D[{xi | i ∈ IA}] is transitively equivalent to the directed path
xmin IA → xmin IA+1 → . . . → xmax IA then DI [{xi | i ∈ I2

A}] is transitively equivalent to the
directed path xmin I2

A
→ xmin I2

A+1 → . . .→ xmax I2
A

. Assume that D[{xi | i ∈ IA}] is transitively

equivalent to this directed path, that is, D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
3 or

O
`5(t)
4 . Note that since I2

A ⊆ IA, it is enough to show that no edge from a vertex in {xi | i ∈ I2
A}

to a vertex in {xi | i ∈ I2
A} of smaller index is created (we refer to such an edge as a bad

edge in the following). First, since every vertex xj ∈ X? ∪ X+ is identified to the vertex
xj′ ∈ {wi | i ∈ I2

A} such that j′ = min{i ∈ I2
A : j ≤ i}, no bad edge is created here. Now

if D[{wi, xi | i ∈ IA}] is transitively equivalent to O
`5(t)
3 (note that, in this case, W ? = ∅ by

Claim 4.55), then every vertex wj ∈ W− is identified to the vertex xj′ ∈ {xi | i ∈ I2
A} such

that j′ = max{i ∈ I2
A : i ≤ j} and so, no bad edge is created here; and if D[{wi, xi | i ∈ IA}]

is transitively equivalent to O
`5(t)
4 , then every vertex in W ? ∪W− is identified to a vertex in

{wi | i ∈ I2
A} and thus, no bad edge is created here as well. Since every vertex in X◦ ∪X− is

identified to t and every vertex in W ◦ ∪W+ is identified to s where d−DI (s) = d+
DI

(t) = 0 by
Claim 4.59, no bad edge is created with these identifications; and since no other identification
may create a bad edge, we conclude that DI [{xi | i ∈ I2

A}] is indeed transitively equivalent to
the directed path xmin I2

A
→ . . .→ xmax I2

A
.

By combining the above four properties, we conclude that if D[{wj , xj | j ∈ IA}] is transi-

tively equivalent to O
`5(t)
i for some i ∈ [4], then DI [{wj , xj | j ∈ I2

A}] is transitively equivalent

to O
|I2
A|

i ; and since |I2
A| = 4g(t) + 2, the claims follows. y

Symmetrically to Claim 4.60, we have the following.

Claim 4.61. For any i ∈ [4], if D[{yj , zj | j ∈ IB}] is transitively equivalent to O
`5(t)
i then

DI [{yj , zj | j ∈ I2
B}] is transitively equivalent to O

4g(t)+2
i .

Now note that since every vertex in A (B, respectively) is identified either to s, t or a
vertex in A (B, respectively) and d−DI (s) = d+

DI
(t) = 0 by Claim 4.59, no edge between A

and B is created by these identifications that didn’t already exist. This implies in particular
that if there is no edge in D from {wi | i ∈ I2

A} to {zi | i ∈ I2
B} and from {yi | i ∈ I2

B} to
{xi | i ∈ I2

A} then by Claims 4.60 and 4.61, DI − {s, t} is transitively equivalent to the disjoint

union of O
4g(t)+2
i and O

4g(t)+2
j , where O

4g(t)+2
i (O

4g(t)+2
j , respectively) is the digraph to which

D[{wa, xa | a ∈ IA}] (D[{ya, za | a ∈ I2
B}], respectively) is transitively equivalent. Thus, since

we may safely identify, e.g., the two first edges of D[{wi, xi | i ∈ I2
A}] (that is, (wmin I2

A
, xmin I2

A
)

and (wmin I2
A+1, xmin I2

A+1)) to the third edge of D[{wi, xi | i ∈ I2
A}] and proceed similarly with

D[{yi, zi | i ∈ I2
B}], we conclude that, in this case, DI can be identified to an almost 4g(t)-hard

matching pattern. Note that, more generally, if there is no edge in D from {wi | i ∈ I2
A} to

{zi | i ∈ I2
B} then DI [{wi | i ∈ I2

A} ∪ {zi | i ∈ I2
B}] is transitively equivalent to the disjoint

union of DI [{wi | i ∈ I2
A}] and DI [{zi | i ∈ I2

B}] (in particular, no vertex rWZ may be created
by identifications); and the same holds for {yi | i ∈ I2

B} and {xi | i ∈ I2
A}.

Assume henceforth that there is every edge either from {wi | i ∈ I2
A} to {zi | i ∈ I2

B}, from
{yi | i ∈ I2

B} to {xi | i ∈ I2
A}, or both. Note that since we assume D not to contain a g(t)-induced-

biclique, if there is every edge from {wi | i ∈ I2
A} to {zi | i ∈ I2

B} then at least one of DI [{wi | i ∈
I2
A}] and DI [{zi | i ∈ I2

B}] has edges (in fact, is transitively equivalent to a directed path by
Claims 4.60 and 4.61); and the same holds for {yi | i ∈ I2

B} and {xi | i ∈ I2
A}. Now if there is every

edge in D from {wi | i ∈ I2
A} to {zi | i ∈ I2

B} and both DI [{wi | i ∈ I2
A}] and DI [{zi | i ∈ I2

B}]
are transitively equivalent to a directed path, then DI{wi | i ∈ I2

A}∪{zi | i ∈ I2
B}] is transitively

55

equivalent to the directed path wmin I2
A
→ . . . → wmax I2

A
→ zmin I2

B
→ . . . → zmax I2

B
in which

case we need not introduce the vertex rWZ ; and we conclude symmetrically with {yi | i ∈ I2
B}

and {xi | i ∈ I2
A}.

By the above discussion, there remains to consider the case where every edge in D from
{wi | i ∈ I2

A} to {zi | i ∈ I2
B} (or from {yi | i ∈ I2

B} to {xi | i ∈ I2
A}) exist and exactly one of

DI [{wi | i ∈ I2
A}] and DI [{zi | i ∈ I2

B}] (DI [{yi | i ∈ I2
B}] and DI [{xi | i ∈ I2

A}], respectively)
has no edge. In this case, we devise the following identification rules (for simplicity, we still call
DI the graph resulting from these identifications).

Identification Rule 13. If there is every edge from {wi | i ∈ I2
A} to {zi | i ∈ I2

B} in DI and
exactly one of D∗I [{wi | i ∈ I2

A}] and D∗I [{zi | i ∈ I2
B}] has no edge, then proceed as follows.

1. If D∗I [{wi | i ∈ I2
A}] has no edge then identify ymin I2

B
to s and rename zmin I2

B
as rWZ .

2. If D∗I [{zi | i ∈ I2
B}] has no edge then identify xmax I2

A
to t and rename wmax I2

A
as rWZ .

Claim 4.62. If Identification Rule 13 has been applied then it still holds that d−DI (s) = d+
DI

(t) =

0. Furthermore, N−DI (rWZ)\{s} = {wi | i ∈ I2
A} and N+

DI
(rWZ)\{t} = {zi | i ∈ I2

B \{min I2
B}}.

Proof. Assume that Identification Rule 13 has been applied and that D∗I [{wi | i ∈ I2
A}] has

no edge (the case where D∗I [{zi | i ∈ I2
B}] has no edge is symmetric). Then, by assumption,

D∗I [{zi | i ∈ I2
B}] must have edges; and in fact, by Claim 4.61 and definition of I2

B, D∗I [{zi | i ∈
I2
B}] must be transitively equivalent to the directed path zmin I2

B
→ zmin I2

B+1 → . . . → zmax I2
B

.

It follows that N+
DI

(rWZ) \ {t} = N+
DI

(zmin I2
B

) \ {t} = {zi | i ∈ I2
B \ {min I2

B}} and since,

by assumption, there is every from {wi | i ∈ I2
A} to {zi | i ∈ I2

B} in DI , we conclude that
N−DI (rWZ) \ {s} = {wi | i ∈ I2

A}. Finally to see that d−DI (s) = d+
DI

(t) = 0, note that by
construction, the only possible in-neighbor for ymin I2

B
is s and the only possible out-neighbor

for xmax I2
A

is t. y

Identification Rule 14. If there is every edge from {yi | i ∈ I2
B} to {xi | i ∈ I2

A} in DI and
exactly one of D∗I [{yi | i ∈ I2

B}] and D∗I [{xi | i ∈ I2
A}] has no edge, then proceed as follows.

1. If D∗I [{yi | i ∈ I2
B}] has no edge then identify wmin I2

A
to s and rename xmin I2

A
as rY X .

2. If D∗I [{xi | i ∈ I2
A}] has no edge then identify zmax I2

B
to t and rename ymax I2

B
as rY X .

Symmetrically to Claim 4.62, we have the following.

Claim 4.63. If Identification Rule 14 has been applied then it still holds that d−DI (s) = d+
DI

(t) =

0. Furthermore, N−DI (rY X)\{s} = {yi | i ∈ I2
B \{max I2

B}} and N+
DI

(rY X)\{t} = {xi | i ∈ I2
A}.

Note finally that Identification Rule 13 reduces the size of E(DI − {s, t}) by one as does
Identification Rule 14 (it may be that the size of {(wi, xi) | i ∈ I2

A} reduces by two while
the size of {(yi, zi) | i ∈ I2

B} remains the same if Identification Rule 13.2 and Identification
Rule 14.1 are applied, and vice-versa). Since we may always safely identify consecutive edges in
{(wi, xi) | i ∈ I2

A} or {(yi, zi) | i ∈ I2
B} to reduce their size to 4g(t) (as done above), we conclude

that DI can be identified to a digraph transitively equivalent to an almost 4g(t)-hard matching
pattern.

There remains to show how to obtain a g(t)-hard matching pattern from an almost 4g(t)-
hard matching pattern. To this end, let H be an almost 4g(t)-hard matching pattern. We first
show how to handle the source vertex from item 3 in Definition 4.48 and then how to handle
the sink vertex from item 4 in Definition 4.48.

Let s be the vertex of H such that N−(s) = ∅ and N+(s) ⊆W∪X∪Y ∪Z. Suppose first that
N+(s) ∩W 6= ∅ and let I1 ⊆ [4g(t)] be the set of indices such that N+(s) ∩W = {wi | i ∈ I1}.

56

By the pigeonhole principle, either (1) |I1| ≥ 4g(t)/2 or (2) |[4g(t)] \ I1| ≥ 4g(t)/2. If (1) holds
then we proceed as follows.

• For every j < min I1, we identify wj and xj to wmin I1 and xmin I1 , respectively.
• For every consecutive i < i′ ∈ I1 and for every j ∈]i, i′[, we identify wj and xj with wi

and xi, respectively.
• For every j > max I1, we identify wj and xj to wmax I1 and xmax I1 , respectively.

Suppose next that (2) holds. If H contains the path w1 → w2 → . . . → w4g(t) then we simply
identify s to w1. Let us therefore assume that H does not contain this path. If H contains the
path x1 → x2 → . . .→ x4g(t) then for every i ∈ I1, we identify wi to xi and further identify s to
x1. Finally, if H does not contain this path then we identify every vertex in {wi, xi | i ∈ I1}∪{s}
to w1.

Now suppose that N+(s)∩W = ∅ and N+(s)∩X 6= ∅. Let I1 ⊆ [4g(t)] be the set of indices
such that N+(s) ∩W = {wi | i ∈ I1}. By the pigeonhole principle, either (1) |I1| ≥ 4g(t)/2 or
(2) |[4g(t)] \ I1| ≥ 4g(t)/2. If (1) holds then we proceed as follows.

• For every j < min I1, we identify wj and xj to wmin I1 and xmin I1 , respectively.
• For every consecutive i < i′ ∈ I1 (that is, I1 ∩ [i,′ i] = {i, i′}) and for every j ∈]i, i′[, we

identify wj and xj with wi and xi, respectively.
• For every j > max I1, we identify wj and xj to wmax I1 and xmax I1 , respectively.

Suppose next that (2) holds. If H contains the path x1 → x2 → . . . → x4g(t) then we simply
identify s to x1. Let us therefore assume that H does not contain this path. If H contains the
path w1 → w2 → . . .→ w4g(t) then for every i ∈ I1, we identify xi to wi and further identify s to
w1. Finally, if H does not contain this path then we identify every vertex in {wi, xi | i ∈ I1}∪{s}
to w1.

By proceeding symmetrically with Y and Z, we may identify H to an almost 2g(t)-hard
matching pattern H1 in which s satisfies item 3 of Definition 1.5. Now let t be the vertex of H
(and of H1) such that N+(t) = ∅ and N−(t) ⊆W ∪X ∪ Y ∪Z. Then using similar arguments,
we may further identify H1 to an almost g(t)-hard matching pattern H2 in which s still satisfies
item 3 of Definition 1.5 and t satisfies item 4 of Definition 1.5, that is, H2 is a g(t)-hard matching
pattern which concludes the proof.

4.4 Cleaning the induced-biclique with minimal edges

In this section, we prove Lemma 4.8 restated below.

Lemma 4.8 (Cleaning minimal biclique). For a positive integer t and a digraph D, if D?

contains a 9t-induced-biclique whose edges are minimal in D, then D can be identified to digraph
that is transitively equivalent to a t-hard-biclique-pattern.

Proof. Let (A,B) be a 9t-biclique in D such the edges of A ∪ B are minimal edges of D, and
such that (A,B) is a 9t-induced-biclique in D?. Then A,B are independent sets in D?.

We first claim that for any v ∈ V (D)\(A∪B), it is not the case that N−D?(v)∩(A∪B) 6= ∅ and
N+
D?(v)∩ (A∪B) 6= ∅. For the sake of contradiction, say it is the case. Let x ∈ N−D?(v)∩ (A∪B)

and let y ∈ N+
D?(v)∩(A∪B). Then there exists an (x, y)-path in D of length strictly greater than

1. If x, y ∈ A (resp. x, y ∈ B), then this contradicts that A (resp. B) is an independent set in
D∗. If x ∈ A and y ∈ B, then this contradicts the minimality of the edges of the (A,B)-biclique.
If x ∈ B and y ∈ A, then this contradicts the definition of an (A,B)-biclique.

Let Vs ⊆ V (D) \ (A ∪B) such that for each v ∈ Vs, N+
D?(v) 6= ∅ and N−D?(v) ∩ (A ∪B) = ∅.

Let Vt = V (D) \ (A ∪ B ∪ Vs). Then from the claim in the above paragraph, for each v ∈ Vt,
N+
D?(v)∩ (A∪B) = ∅. Observe that Vs] Vt partition the vertex set V (D) \ (A∪B). If Vs 6= ∅,

then identify the vertices of Vs into s, if Vt 6= ∅, then identify the vertices of Vt into t. Let
D̂ be the resulting digraph. We now show that E(Vt, Vs) = ∅. For the sake of contradiction,

57

say u ∈ Vt and v ∈ Vs such that (u, v) ∈ E(D?). Then N+
D?(u) ∩ (A ∪ B) 6= ∅. Since u 6∈ Vs,

N−D?(u) 6= ∅. But this contradicts the claim in the second paragraph. Thus, we conclude that
N−
D̂

(s), N+

D̂
(t) = ∅.

Now let t′ = 9t. Recall that A,B are ordered sets, say A = (a1, . . . , at′) and B = (b1, . . . , bt′).
Let I1 ⊆ [t′] such that for i ∈ I1, (s, ai) ∈ E(D̂). Let I2 ⊆ [t′] such that for each i ∈ I2,
(s, ai) 6∈ E(D̂) and (s, bi) ∈ E(D̂). Let I3 ⊆ [t′] such that for each i ∈ I3, (s, ai), (s, bi) 6∈ E(D̂).
Observe that [t′] = I1] I2] I3. Let J1 ⊆ [t′] such that for each j ∈ J1, (bj , t) ∈ E(D̂). Let

J2 ⊆ [t′] such that for each j ∈ J2, (bj , t) 6∈ E(D̂) and (aj , t) ∈ E(D̂). Let J3 ⊆ [t′] such that

for each j ∈ J3, (bj , t), (aj , t) 6∈ E(D̂). Observe that [t′] = J1] J2] J3.
By the pigeon-hole principle, either |I1| ≥ t′/3 or |I2| ≥ t′/3 or |I3| ≥ t′/3. We consider

these three cases separately.

Case 1. |I1| ≥ t′/3. Suppose first that |J1 ∩ I1| ≥ |I1|/3. Let A′ = {ai : i ∈ J1 ∩ I1} and B′ =
{bi : i ∈ J1∩I1}. Observe that |A′| = |B′| ≥ t′/3. Identify the vertices of (A\A′)∪(B \B′) with

s. Let the resulting digraph be D̂′. Observe that A′ ⊆ N+

D̂′
(s), B′ ⊆ N−

D̂′
(t) and (t, s) 6∈ E(D̂′).

Suppose next that |J2 ∩ I1| ≥ |I1|/3. Let A′ = {ai : i ∈ J2 ∩ I1} and B′ = {bi : i ∈ J2 ∩ I1}.
Observe that |A′| = |B′| ≥ t′/3. Identify the vertices of (A \ A′) ∪ (B \ B′) with s. Let the

resulting digraph be D̂′. Observe that A′ ⊆ N+

D̂′
(s), A′ = N−

D̂′
(t) and (t, s) 6∈ E(D̂′).

Suppose finally that |J3∩ I1| ≥ |I1|/3. Let A′ = {ai : i ∈ J3∩ I1} and B′ = {bi : i ∈ J3∩ I1}.
Observe that |A′| = |B′| ≥ t′/3. Identify the vertices of (A \ A′) ∪ (B \B′) ∪ t with s. Let the

resulting digraph be D̂′. Observe that A′ ⊆ N+

D̂′
(s).

Case 2. |I2| ≥ t′/3. Suppose first that |J1 ∩ I2| ≥ |I2|/3. Let A′ = {ai : i ∈ J1 ∩ I2} and B′ =
{bi : i ∈ J1∩I2}. Observe that |A′| = |B′| ≥ t′/3. Identify the vertices of (A\A′)∪(B \B′) with

s. Let the resulting digraph be D̂′. Observe that B′ = N+

D̂′
(s), B′ ⊆ N−

D̂′
(t) and (t, s) 6∈ E(D̂′).

Suppose next that |J2 ∩ I2| ≥ |I2|/3. Let A′ = {ai : i ∈ J2 ∩ I2} and B′ = {bi : i ∈ J2 ∩ I2}.
Observe that |A′| = |B′| ≥ t′/3. Identify the vertices of (A \ A′) ∪ (B \ B′) with s. Let the

resulting digraph be D̂′. Observe that B′ = N+

D̂′
(s), A′ = N−

D̂′
(t) and (t, s) 6∈ E(D̂′).

Suppose finally that |J3∩ I2| ≥ |I2|/3. Let A′ = {ai : i ∈ J3∩ I2} and B′ = {bi : i ∈ J3∩ I2}.
Observe that |A′| = |B′| ≥ t′/3. Identify the vertices of (A \ A′) ∪ (B \B′) ∪ t with s. Let the

resulting digraph be D̂′. Observe that B′ = N+

D̂′
(s).

Case 3. |I3| ≥ t′/3. Suppose first that |J1 ∩ I3| ≥ |I3|/3. Let A′ = {ai : i ∈ J1 ∩ I3} and
B′ = {bi : i ∈ J1∩I3}. Observe that |A′| = |B′| ≥ t′/3. Identify the vertices of (A\A′)∪(B\B′),
if any, with s. Let the resulting digraph be D̂′. Observe that if (A \ A′) ∪ (B \ B′) = ∅, then

then s 6∈ V (D̂′) and B ⊆ N−
D̂′

(t). Otherwise, additionally, s ∈ V (D) and since (A,B) is an

induced biclique, B′ = N+

D̂′
(s). Moreover, (t, s) 6∈ E(D̂′).

Suppose next that |J2 ∩ I3| ≥ |I3|/3. Let A′ = {ai : i ∈ J2 ∩ I3} and B′ = {bi : i ∈ J2 ∩ I3}.
Observe that |A′| = |B′| ≥ t′/3. Identify the vertices of (A\A′)∪(B\B′), if any, with s. Let the

resulting digraph be D̂′. If (A \A′)∪ (B \B′) = ∅, then s 6∈ V (D̂′) and A = N−
D̂′

(t). Otherwise,

additionally s ∈ V (D̂′) and since (A,B) is an induced biclique, B = N+

D̂′
(s). Moreover, (t, s) 6∈

E(D̂′).
Suppose finally that |J3∩ I3| ≥ |I3|/3. Let A′ = {ai : i ∈ J3∩ I3} and B′ = {bi : i ∈ J3∩ I3}.

Observe that |A′| = |B′| ≥ t′/3 and (A \ A′) ∪ (B \ B′) 6= ∅ since D is connected (without loss
of generality). Identify the vertices of (A \A′) ∪ (B \B′) ∪ t with s . Let the resulting digraph

be D̂′. Since (A,B) is an induced biclique and (A \A′) ∪ (B \B′) 6= ∅, B′ = N+

D̂′
(s).

58

5 Hardness proofs and lower bounds

This section is devoted to presenting the lower bounds on the complexity of Planar D-SN for
various classes D. First we prove the combinatorial result Lemma 1.6 that implies that there are
no nontrivial class with subexponential FPT algorithms on planar graphs (Section 5.1). Then
we present reductions from Grid Tiling to Planar D-SN where D is the class of diamonds
(Section 5.2), hard matching patterns (Section 5.3.1), or hard biclique patterns (Section 5.3.2).

5.1 Finding a star

We present here a short proof that every nontrivial class D in our setting contains either all
cycles, all in-stars, or all out-stars.

Proof (of Lemma 1.6). Suppose that there is an integer α such that D does not contain a cycle,
in-star, or out-star on α vertices. This means in particular that a graph D cannot have a strongly
connected component with α vertices. Indeed, by selecting α vertices of the component and
identifying every other vertex of the graph with one of these vertices, we would obtain a strongly
connected graph on α vertices, which is transitively equivalent to a cycle on α vertices. It also
follows that a graph D ∈ D has less than α strongly connected components of size larger than
1: otherwise, identifying one vertex from each such component to a single vertex would create
a strongly connected component of size larger than α.

This bound on the size of the strongly connected components implies that identifying the
vertex set of each strongly connected component of some D ∈ D to a single vertex results in an
acyclic graph whose size is at most a factor of α smaller. Therefore, the fact that D contains
arbitrarily large graphs implies that D contains arbitrary large acyclic graphs. Furthermore, D
contains arbitrarily large graphs without isolated vertices: if we have a graph with c edges and
identify every isolated vertex with some vertex v, then we get a graph without isolated vertices
and exactly c edges. If we identify the strongly connected components of such a graph to single
vertices, then less than α isolated vertices can be created (as there are less than α components
of size larger than 1). It follows that D contains arbitrarily large acyclic graphs with less than
α isolated vertices.

Observe that D ∈ D cannot have a path longer than α + 1: otherwise, identifying the first
and last vertices of the path would create a member of D ∈ D that has a strongly connected
component larger than α. This means that every acyclic D ∈ D can be partitioned into α + 2
levels, that is, D has a topological ordering with blocks B1, . . . , B` with ` ≤ α + 2 such that
each block Bi is an independent set. If an acyclic graph Dc has at least (α+ 2)c vertices, then
one such block Bi has size at least c. Let D∗c be obtained by identifying the blocks B1, . . . , Bi−1

to a single vertex x, and the blocks Bi+1, . . . , B` to a single vertex y. If there are α vertices in
Bi adjacent to both x and y, then identifying x and y creates a strongly connected component,
a contradiction. If there is a set I ⊆ Bi of α vertices that is adjacent only to x, then identifying
(Bi \ I) ∪ {x, y} to a single vertex results in an out-star on α + 1 vertices. Similarly, if there
is a set I ⊆ Bi of α vertices that is adjacent only to y, then identifying (Bi \ I) ∪ {x, y} to a
single vertex results in an in-star on α + 1 vertices. Finally, I cannot have α vertices that are
adjacent to neither x or y, because they would be isolated vertices. Therefore, if c ≥ 4α, then
we arrive to a contradiction in one of the three cases.

5.2 Diamonds

The aim of this section is to prove the following.

59

Theorem 5.1. For any ` ∈ [4], Planar A`-Steiner Network is W[1]-hard parameterized

by the number k of terminals and does not admit an f(k) · no(
√
k) algorithm for any computable

function f , unless ETH fails.

We only formally prove the statement for pure out-diamonds as it will become clear from
the proof that to handle

1. flawed out-diamonds, it suffices to add a vertex s and edges (s, r1) and (s, r2) in the
construction below;

2. pure in-diamonds, it suffices to reverse the direction of every edge in the construction
below; and

3. flawed in-diamonds, it suffices to add a vertex t and edges (r1, t) and (r2, t), and addition-
ally reverse the direction of every edge in the construction below.

In the following, we assume that the class of all pure out-diamonds is A1. To prove the state-
ment, we first introduce the k × k-Grid Tiling problem, formally defined below.

k × k-Grid Tiling
Input: Integers k, n and k2 nonempty set Si,j ⊆ [n]× [n] where i, j ∈ [k].
Question: For each i, j ∈ [k], does there exist an entry (xi,j , yi,j) ∈ Si,j such that

• for every i ∈ [k], xi,1 = xi,2 = . . . = xi,k and
• for every j ∈ [k], y1,j = y2,j = . . . = yk,j?

Throughout the paper, we assume that whenever given a set S ⊆ [n] × [n], 1 < x, y < n
holds for every (x, y) ∈ S: it suffices to increase n by two and replace (x, y) by (x + 1, y + 1)
otherwise.

It was shown [9, Theorem 14.28] that, under ETH, k × k-Grid Tiling does not admit an
algorithm running in time f(k) · no(k) for any computable function f . To prove Theorem 5.1
for pure out-diamonds, we give a reduction which transforms an instance of k×k-Grid Tiling
into an instance of (edge-weighted)3 Planar A1-Steiner Network with O(k2) terminals.
To this end, we design three types of gadgets: the connector gadget, the down main gadget and
the up main gadget. The reduction represents each set of the k× k-Grid Tiling instance with
a copy of the up or down main gadget, and uses the connector gadgets to further connect these
gadgets (see Figure 16). The remainder of this section is organized as follows. We first intro-
duce the connector gadget and prove in Lemma 5.2 that it satisfies several desired properties.
We then introduce the down main gadget and prove in Lemma 5.7 that it also satisfies several
desired properties. The up main gadget is introduced thereafter together with its symmetrical
Lemma 5.24. We end the section with the precise description of the reduction and a proof of
its correctness.

Connector gadget. Given an integer n > 0, the connector gadget CGn is an edge-weighted
planar digraph consisting of n × n grid, where the vertex lying at the intersection of column
i and row j is denoted by xi,j , and 2n + 2 additional vertices p1, . . . , pn, q1, . . . , qn, p, q. The
adjacencies and edge weights are defined as follows (we fix N = 3n).

• Left source edges: for every j ∈ [n], there is an edge (pj , x1,j). Together these edges are
called left source edges. The weight of each such edge is set to N2.

• Right source edges: for every j ∈ [n], there is an edge (qj , xn,j). Together these edges are
called right source edges. The weight of each such edge is set to N2.

3We argue at the end of the section that with polynomially bounded integer weights, the edge-weighted version
of the problem reduces to its unweighted version.

60

p1

p2

p3

p4

q1

q2

q3

q4

q

p

Figure 13: The connector gadget for n = 4. A set of edges representing 2 is highlighted.

• Top sink edges: for every i ∈ [n], there is an edge (xi,n, p). Together these edges are called
top sink edges. The weight of each such edge is set to N2.

• Bottom sink edges: for every i ∈ [n], there is an edge (xi,1, q). Together these edges are
called bottom sink edges. The weight of each such edge is set to N2.

• The n× n grid is divided in two according to the diagonal j = n+ 1− i: the vertices on
the top-right part (that is, the vertices xi,j such that j+ i ≥ n+ 1) are connected with ←
and ↑ edges, and the vertices of the bottom-left part (that is, the vertices xi,j such that
j+ i ≤ n+1) are connected with→ and ↓ edges. More specifically, we define the following
edges.

– Up edges: for every i ∈ [n] and every j ∈ [n− 1] such that j + i ≥ n+ 1, there is an
edge (xi,j , xi,j+1). Together these edges are called up edges.

– Down edges: for every i ∈ [n] and every j ∈ [n] \ {1} such that j + i ≤ n + 1, there
is an edge (xi,j , xi,j−1). Together these edges are called down edges.

We set the weight of every up/down edge to N .
– Left edges: for every i ∈ [n] \ {1} and every j ∈ [n] such that j + i > n+ 1, there is

an edge (xi,j , xi−1,j). Together these edges are called left edges.
– Right edges: for every i ∈ [n− 1] and every j ∈ [n] such that j + i < n+ 1, there is

an edge (xi,j , xi+1,j). Together these edges are called right edges.
We set the weight of every left/right edge to 1.

This concludes the construction of the connector gadget CGn (see Figure 13 for an illustration
of the connector gadget for n = 4). In the following, we call the vertices p1, . . . , pn the left
vertices, the vertices q1, . . . , qn the right vertices and the vertices p, q the terminal vertices. We
further set

C∗n = 4N2 + (n− 1)N + n− 1.

A set E ⊆ E(CGn) satisfies the connectedness property if the following hold in E:
• p can be reached from some right vertex and from some left vertex;
• q can be reached from some right vertex and from some left vertex.

A set E ⊆ E(CGn) satisfying the connectedness property represents an integer j ∈ [n] if the
only left source edge in E is the one incident to pj and the only right source edge in E is the
one incident to qj (see Figure 13 for a set of edges representing 2).

Lemma 5.2. For any integer n > 0, the connector gadget CGn satisfies the following properties.
(1) For every j ∈ [n], there exists a set Ej ⊆ E(CGn) of weight C∗n representing j.

61

(2) If there exists a set E ⊆ E(CGn) of weight at most C∗n satisfying the connectedness
property, then E has weight exactly C∗n and represents some integer j ∈ [n].

Proof. To prove (1), it suffices to take Ej to be the union of the following sets of edges:
• {(pj , x1,j), (qj , xn,j), (xn+1−j,n, p), (xn+1−j,1, q)};
• {(xi,j , xi+1,j) | 1 ≤ i ≤ n− j};
• {(xi,j , xi−1,j) | n+ 2− j ≤ i ≤ n};
• {(xn+1−j,`, xn+1−j,`+1) | j ≤ ` ≤ n− 1}; and
• {(xn+1−j,`, xn+1−j,`−1) | 2 ≤ ` ≤ j}.

It is not difficult to see that Ej represents j and has weight C∗n.

Next, suppose that E ⊆ E(CGn) is a set of weight at most C∗n satisfying the connectedness
property. Let us show that E has weight exactly C∗n and represents some integer j ∈ [n]. To
this end, we prove the following claims.

Claim 5.3. E contains exactly one left source edge, one right source edge, one top sink edge
and one bottom sink edge.

Proof. Since E satisfies the connectedness property, it contains at least one left source edge, one
right source edge, one top sink edge and one bottom sink edge. Now if E contains at least two
left source edges (the other cases are symmetric), then the weight of E is at least 5N2; however,
by definition,

C∗n = 4N2 + (n− 1)N + n− 1 < 4N2 + nN + nN < 5N2

as N = 3n > 2n, a contradiction. y

In the following, we let pj1 be the left vertex incident to the left source edge in E and qj2
be the right vertex incident to the right source edge in E.

Claim 5.4. For every j ∈ [n−1], E contains exactly one (up or down) edge with one endvertex
on row j and one endvertex one row j + 1. In particular, E contains exactly n − 1 up/down
edges.

Proof. First note that if there exists j ∈ [n − 1] such that E contains no (up or down) edge
with one endvertex on row j and the other endvertex on row j + 1, then either j1 ≤ j in which
case pj1 cannot reach p in E, or j1 > j in which case pj1 cannot reach q in E, a contradiction in
both cases to the connectedness of E. Thus, for every j ∈ [n− 1], E contains at least one (up
or down) edge with one endvertex on row j and the other endvertex on row j+ 1; in particular,
E contains at least n− 1 up/down edges. Now if E contains at least n up/down edges then by
Claim 5.3, the weight of E is at least 4N2 + nN ; however, by definition,

C∗n = 4N2 + (n− 1)N + n− 1 < 4N2 + (n− 1)N + n < 4N2 + nN

as N = 3n > n, a contradiction. y

Claim 5.5. E contains exactly n− 1 left/right edges.

Proof. Observe first that for every i ∈ [n− 1], E contains at least one (left or right) edge with
one endvertex on column i and the other endvertex on column i + 1: indeed, if this were not
the case for some i ∈ [n − 1], then every path in CGn[E] from pj1 to p would be edge-disjoint
from every path in CGn[E] from qj2 to p and thus, E would contain at least two top sink edges,
a contradiction to Claim 5.3. Hence, for every i ∈ [n− 1], E contains at least one (left or right)
edge with one endvertex on column i and the other endvertex on column i + 1; in particular,
E contains at least n− 1 left/right edges. Now if E contains at least n left/right edges then by
Claims 5.3 and 5.4, the weight of E is at least 4N2 + (n− 1)N + n > C∗n, a contradiction. y

62

Now by Claims 5.3, 5.4 and 5.5, E has weight exactly C∗n; we next show that j1 = j2 which
would imply that E represents j1. Suppose to the contrary that j2 < j1 (the case where j2 > j1
is symmetric). By Claim 5.4, E contains exactly one edge e with one endvertex on row j2 and
one endvertex on row j2 + 1; but then, either e is an up edge in which case pj1 cannot reach
q in E, or e is a down edge and qj2 cannot reach p in E, a contradiction in both cases to the
connectedness of E which concludes the proof.

Down Main Gadget. Given an integer n > 0, the down main gadget dMGS represents a set
S ⊆ [n]× [n]4 and is constructed as follows. It is an edge-weighted planar digraph consisting of a
2n×n2 grid, where the vertex lying at the intersection of column i and row j is denoted by xi,j ,
and 6n additional vertices `1, . . . , `n, `

′
1, . . . , `

′
n, r1, . . . , rn, r

′
1, . . . , r

′
n, t1, . . . , tn, b1, . . . , bn. The

adjacencies and edge weights are defined as follows (we fix M = 13n2).
• Source edges: for every i ∈ [n], there is an edge (ti, xi,n2). Together these edges are called

source edges. The weight of each such edge is set to M5.
• Bottom sink edges: for every i ∈ [n], there is an edge (xn+i,1, bi). Together these edges

are called bottom sink edges. The weight of each such edge is set to M5.
• Left sink edges: for every j ∈ [n], there is an edge (`′j , `j) whose weight is set to Mj.

Together these edges are called left sink edges.
• Right sink edges: for every j ∈ [n], there is an edge (r′j , rj) whose weight is set to M2−Mj.

Together these edges are called right sink edges.
• Left internal sink edges: for every j ∈ [n] and every (j−1)n+1 ≤ p ≤ jn, there is an edge

(x1,p, `
′
j) whose weight is set to p− (j − 1)n. For every fixed j ∈ [n], these edges together

are called the jth left internal sink edges.
• Right internal sink edges: for every j ∈ [n] and every (j − 1)n + 1 ≤ p ≤ jn, there is an

edge (x2n,p, r
′
j) whose weight is set to n+ 1− (p− (j− 1)n). For every fixed j ∈ [n], these

edges together are called the jth right internal sink edges.
• Right bridge edges: for every j ∈ [n] and every (j − 1)n + 1 ≤ p ≤ jn, there is an edge

(xn,p, xn+1,p). For every fixed j ∈ [n], these edges together are called the jth right bridge
edges. The weight of each jth right bridge edge is set to M4.

• Downward bridge edges: for every j ∈ {pn + 1 | p ∈ [n − 1]} and every i ∈ [2n], there is
an edge (xi,j , xi,j−1). For every fixed j ∈ {pn + 1 | p ∈ [n− 1]}, these edges together are
called the jth downward bridge edges. The weight of each jth downward bridge edge is set
to M3.

• Down edges: for every i ∈ [2n], every j ∈ [n] and every (j − 1)n+ 2 ≤ p ≤ jn, there is an
edge (xi,p, xi,p−1). Together these edges are called down edges. The weight of each such
edge is set to 4.

• Right edges: for every j ∈ [n], every (j−1)n+1 ≤ p ≤ jn and every jn+1−p ≤ q ≤ 2n−1
such that q 6= n, there is an edge (xq,p, xq+1,p). Together these edges are called right edges.
The weight of each such edge is set to 4.

• Left edges: for every j ∈ [n], every (j−1)n+ 1 ≤ p ≤ jn−1 and every 2 ≤ q ≤ jn+ 1−p,
there is an edge (xq,p, xq−1,p). Together these edges are called left edges. The weight of
each such edge is set to 4.

• Shortcut edges: for every s = (i, j) ∈ S, we introduce two shortcut edges e`s, e
r
s as follows.

Set p = jn+ 1, then
– subdivide the edge (xi,p+1−i, xi,p−i) by adding a vertex yi,j and the edge (xi,p+1−i, yi,j)

(of weight 3) with the edge (yi,j , xi,p−i) (of weight 1);
– subdivide the edge (xn+i,p−i, xn+i,p−1−i) by adding a vertex zi,j and the edge (xn+i,p−i,
zi,j) (of weight 3) with the edge (zi,j , xn+i,p−1−i) (of weight 1).

The introduced edges are called down subdivided edges. Then

4Recall that, by assumption, 1 < x, y < n holds for every (x, y) ∈ S.

63

– e`s = (yi,j , xi−1,p−i) and its weight is set to 2;
– ers = (zi,j , xn+i+1,p−i) and its weight is set to 2.

The edges e`s are called left shortcut edges and the edges ers are called right shortcut edges.
This concludes the construction of the down main gadget dMGS (see Figure 14 for an illustration
of the down main gadget with n = 4 representing S = {(2, 2), (2, 3), (3, 2)}). In the following, we
call the vertices `1, . . . , `n the left vertices, the vertices r1, . . . , rn the right vertices, the vertices
t1, . . . , tn the top vertices and the vertices b1, . . . , bn the bottom vertices. Furthermore, we set

M∗n = 2M5 +M4 + (n− 1)M3 +M2 + (4n+ 1)(n+ 1)− 12.

We further let V` = {xi,j | 1 ≤ i ≤ n and 1 ≤ j ≤ n2} ∪ {yi,j | (i, j) ∈ S}, Vr = {xi,j | n + 1 ≤
i ≤ 2n and 1 ≤ j ≤ n2} ∪ {zi,j | (i, j) ∈ S} and for every j ∈ [n], Vj = {xi,p | 1 ≤ i ≤
2n and (j − 1)n+ 1 ≤ p ≤ jn}. Note that, by construction, the following holds.

Observation 5.6. For every j ∈ [n] and every xi,p ∈ Vj ∩ V`, the following holds.
• If n+ 1− i > p− (j− 1)n then xi,p cannot reach a vertex xi′,p′ ∈ Vj such that n+ 1− i′ ≤
p′ − (j − 1)n.

• If n+ 1− i < p− (j − 1)n then xi,p cannot reach a vertex xi′,p′ ∈ Vj such that i′ < i and
p′ − (j − 1)n > n+ 1− i.

A set E ⊆ E(dMGS) satisfies the connectedness property if the following hold in E:
• a top vertex can reach a bottom vertex;
• a top vertex can reach a right vertex;
• a top vertex can reach a left vertex.

A set E ⊆ E(dMGS) satisfying the connectedness property represents a pair (i, j) ∈ [n]× [n] if
the only source edge in E is the one incident to ti, the only bottom sink edge in E is the one
incident to bi, the only left sink edge in E is the one incident to `j and the only right sink edge
in E is the one incident to rj (see Figure 14 for a set of edges representing (2, 2)).

Lemma 5.7. For any n > 0 and any S ⊆ [n]× [n], the down main gadget dMGS satisfies the
following properties.

(1) For every (i, j) ∈ S, there exists a set Ei,j ⊆ E(dMGS) of weight M∗n representing (i, j).
(2) If there exists a set E ⊆ E(dMGS) of weight at most M∗n satisfying the connectedness

property, then E has weight exactly M∗n and represents a pair (i, j) ∈ S.

Proof. To prove (1), it suffices to take Ei,j to be the union of the following set of edges:
• {(ti, xi,n2), (xn+i,1, bi), (x0,jn+1−i, `

′
j), (`

′
j , `j), (x2n+1,jn+1−i, r

′
j), (r

′
j , rj)};

• {(xi,p, xi,p−1) | jn+ 2− i ≤ p ≤ n2} ∪ {(xn+i,p, xn+i,p−1) | 2 ≤ p ≤ jn+ 1− i};
• {(xp,jn+1−i, xp−1,jn+1−i) | 1 ≤ p ≤ i− 1} ∪ {e`(i,j)};
• {(xp,jn+1−i, xp+1,jn+1−i) | i ≤ p ≤ 2n and p 6= n+ i} ∪ {er(i,j)}.

It is not difficult to see that Ei,j represents (i, j) and has weight M∗n.

Next, suppose that E ⊆ E(dMGS) is a set of weight at most M∗n satisfying the connectedness
property. Let us show that E has weight exactly M∗n and represents some (i, j) ∈ S. To this
end, we first prove the following claims.

Claim 5.8. E contains exactly one source edge and one bottom sink edge.

Proof. Since E satisfies the connectedness property, it contains at least one source edge and one
bottom sink edge. Now if E contains at least two source edges, then the weight of E is at least
3M5; however, by definition,

M∗n = 2M5 +M4 + (n− 1)M3 +M2 + (4n+ 1)(n+ 1)− 12

< 2M5 + n2M4 + n2M4 + n2M4 + 9n2M4 < 3M5

64

b1 b2 b3 b4

t1 t2 t3 t4

`′1

`1

`′2

`2

`′3

`3

`′4

`4

r′1

r1

r′2

r2

r′3

r3

r′4

r4

Figure 14: The down main gadget dMGS with n = 4 representing S = {(2, 2), (2, 3), (3, 2)} (the
red edges are the shortcut edges). A set of edges representing (2, 2) is highlighted.

65

as M = 13n2 > 12n2, a contradiction. We conclude similarly if E contains at least two bottom
sink edges. y

In the following, we let ti1 be the top vertex incident to the source edge in E and bi2 be the
bottom vertex incident to the bottom sink edge in E.

Claim 5.9. E contains exactly one right bridge edge.

Proof. Since ti1 can reach bi2 in E, E contains at least one right bridge edge. Now if E contains
at least two right bridge edges then by Claim 5.8, the weight of E is at least 2M5 + 2M4;
however, by definition,

M∗n = 2M5 +M4 + (n− 1)M3 +M2 + (4n+ 1)(n+ 1)− 12

< 2M5 +M4 + n2M4 + n2M4 + 9n2M4

< 2M5 + 2M4

as M = 13n2 > 11n2, a contradiction. y

Claim 5.10. For every j ∈ [n − 1], E contains exactly one jth downward bridge edge. In
particular, E contains exactly n− 1 downward bridge edges.

Proof. Since ti1 can reach bi2 in E, E contains at least one jth downward bridge edge for every
j ∈ [n − 1]. Now if E contains at least n downward bridge edges then by Claims 5.8 and 5.9,
the weight of E is at least 2M5 +M4 + nM3; however, by definition,

M∗n = 2M5 +M4 + (n− 1)M3 +M2 + (4n+ 1)(n+ 1)− 12

< 2M5 +M4 + (n− 1)M3 + n2M2 + 9n2M2

< 2M5 +M4 + nM3

as M = 13n2 > 10n2, a contradiction. y

Since E satisfies the connectedness property, it contains at least one left sink edge (`′j1 , `j1)
and at least one right sink edge (r′j2 , rj2); we next show that E contains in fact no other left or
right sink edge.

Claim 5.11. It holds that j1 = j2. Furthermore, E contains a jth1 right bridge edge.

Proof. Towards a contradiction, suppose that j1 6= j2. Assume first that j1 < j2 and let P be
a path from ti1 to rj2 in dMGS [E]. Then P must contain a jth right bridge edge e for some
j ≥ j2, and since E contains exactly one right bridge edge by Claim 5.9, it follows that every
path in dMGS [E] from ti1 to bi2 contains e. But ti1 can reach `j1 in E as well and so, E must
contain at least n− j downward bridge edges for ti1 to reach the tail of e, plus j − 1 downward
bridge edges for the head of e to then reach bi2 , plus j− j1 downward bridge edges for ti1 to also
reach `j1 , a contradiction to Claim 5.10. Suppose next that j2 < j1. Then since E contains the
edge (`′j1 , `j1) and the edge (r′j2 , rj2), it follows from Claims 5.8, 5.9 and 5.10 that the weight of

E is at least 2M5 +M4 + (n− 1)M3 +Mj1 +M2−Mj2 ≥ 2M5 +M4 + (n− 1)M3 +M2 +M .
However, by definition,

M∗n = 2M5 +M4 + (n− 1)M3 +M2 + (4n+ 1)(n+ 1)− 12

< 2M5 +M4 + (n− 1)M3 +M2 + 9n2

< 2M5 +M4 + (n− 1)M3 +M2 +M

as M = 13n2 > 9n2, a contradiction. Thus, j1 = j2 and by arguing as above, we can show that
E must then contain a jth1 right bridge edge. y

66

In the following, we say that a path P in dMGS crosses a row j if V (P)∩{xi,j | i ∈ [2n]} 6= ∅
and that P crosses a column i if V (P) ∩ {xi,j | j ∈ [n2]} 6= ∅. Furthermore, we define

• a 2d-move to be the union of two down subdivided edges e, e′ such that the head of e
coincides with the tail of e′;

• a d`-move to be the union of a down subdivided edge e and a left shortcut edge e′ such
that the head of e coincides with the tail of e′;

• a dr-move to be the union of a down subdivided edge e and a right shortcut edge e′ such
that the head of e coincides with the tail of e′.

For convenience, we also call
• a right edge an r-move,
• a left edge an `-move,
• a down edge a d-move and
• a downward bridge edge a Db-move.

Note that no dr-move is possible in dMGS [V`] and that no x-move with x ∈ {d`, `} is pos-
sible in dMGS [Vr]. Furthermore, for any x ∈ {2d, r, `, d}, the weight of an x-move is 4
and for any x ∈ {dr, d`}, the weight of an x-move is 5. Given a path P of dMGS and
x ∈ {2d, d`, dr, r, `, d,Db}, we let m(P, x) be the number of x-moves in P .

Let (x1,j0 , `
′
j1

) be a jth1 left internal sink edge contained in E (recall that `j1 ∈ V (E)).

Further let xi0,j1n be the head of the jth1 downward bridge in E if j1 ≤ n − 1 (recall that by
Claim 5.10, E contains exactly one such edge) and the head of the source edge in E otherwise
(note that in this case i0 = i1). Since xi0,j1n can reach x1,j0 , the following holds.

Observation 5.12. j0 − (j1 − 1)n ≤ n+ 1− i0.

Now by connectedness of E, there exists a path P t in dMGS [E] from the head of the source
edge in E to xi0,j1n; we next lower bound the weight of P t.

Claim 5.13. The weight of P t is at least (n− j1)M3 + 4(n− 1)(n− j1) + |i1 − i0|.

Proof. Observe first that since by Claims 5.9 and 5.11, E contains one jth1 right bridge edge and
no other right bridge edge, necessarily i0 ≤ n. Now P t must cross every row j1n ≤ j ≤ n2 and
thus,

m(P t, Db) +m(P t, d) +m(P t, 2d) +m(P t, d`) = n2 − j1n.

By Claim 5.10, P t contains exactly n− j1 downward bridge edges, that is, m(P t, Db) = n− j1.
We next distinguish cases depending on whether i1 ≤ i0 or i1 > i0. Suppose first that i1 ≤ i0.
Then since P t must cross every column i1 ≤ i ≤ i0, m(P t, r) ≥ i0− i1. It follows that the weight
of P t is at least

M3m(P t, Db) + 4m(P t, d) + 4m(P t, 2d) + 5m(P t, d`) + 4m(P t, r)

= (n− j1)M3 + 4m(P t, d) + 4m(P t, 2d) + 5m(P t, d`) + 4m(P t, r)

≥ (n− j1)M3 + 4(m(P t, d) +m(P t, 2d) +m(P t, d`)) + 4(i0 − i1)

≥ (n− j1)M3 + 4(n2 − j1n− (n− j1)) + 4(i0 − i1)

≥ (n− j1)M3 + 4(n− 1)(n− j1) + (i0 − i1)

Second, suppose that i1 > i0. Then since P t must cross every column i0 ≤ i ≤ i1,

m(P t, `) +m(P t, d`) = m(P t, r) + i1 − i0

67

and so, the weight of P t is at least

M3m(P t, Db) + 4m(P t, d) + 4m(P t, 2d) + 5m(P t, d`) + 4m(P t, `) + 4m(P t, r)

= (n− j1)M3 + 4m(P t, d) + 4m(P t, 2d) + 5m(P t, d`) + 4m(P t, `) + 4m(P t, r)

≥ (n− j1)M3 + 4(n2 − j1n− (n− j1)) +m(P t, d`) + 4m(P t, `) + 4(m(P t, `)

+m(P t, d`)− (i1 − i0))

≥ (n− j1)M3 + 4(n− 1)(n− j1) + 5m(P t, d`) + 8m(P t, `)− 4(i1 − i0)

≥ (n− j1)M3 + 4(n− 1)(n− j1) + 5(m(P t, d`) +m(P t, `))− 4(i1 − i0)

≥ (n− j1)M3 + 4(n− 1)(n− j1) + (i1 − i0)

as m(P t, d`) +m(P t, `) ≥ i1 − i0 which proves our claim. y

Let (x2n,j′0
, r′j1) be a jth1 right internal sink edge contained in E (recall that rj2 ∈ V (E) and

j2 = j1 by Claim 5.11). Further let xi′0,(j1−1)n+1 be the tail of the (j1 − 1)th downward bridge
in E if j1 > 1 (recall that by Claim 5.10, E contains exactly one such edge) and the tail of
the bottom sink edge contained in E otherwise (note that in this case i′0 = n + i2). Then by
connectedness of E, there exists a path P b in dMGS [E] from xi′0,(j1−1)n+1 to the tail of the

bottom sink edge in E; we next lower bound the weight of P b.

Claim 5.14. The weight of P b is at least (j1 − 1)M3 + 4(n− 1)(j1 − 1) + 4(n+ i2 − i′0).

Proof. Observe first that since by Claims 5.9 and 5.11, E contains a jth1 right bridge edge and
no other right bridge edge, necessarily i′0 ≥ n + 1. Furthermore, since dMGS [Vr] contains no
edge r-move, the following holds.

Observation 5.15. i′0 ≤ n+ i2.

Now P b must cross every column i′0 ≤ i ≤ n+ i2 and every row 1 ≤ j ≤ (j1 − 1)n+ 1; thus

m(P b, Db) +m(P b, d) +m(P b, 2d) = (j1 − 1)n and m(P b, r) +m(P b, dr) = n+ i2 − i′0.

Since by Claim 5.10, P b contains exactly j1 − 1 downward bridge edges, it follows that the
weight of P b is at least

M3m(P b, Db) + 4m(P b, d) + 4m(P b, 2d) + 4m(P b, r) + 5m(P b, dr)

= (j1 − 1)M3 + 4(m(P b, d) +m(P b, 2d)) + 4m(P b, r) + 5m(P b, dr)

≥ (j1 − 1)M3 + 4((j1 − 1)n− (j1 − 1)) + 4(m(P b, r) +m(P b, dr))

≥ (j1 − 1)M3 + 4(j1 − 1)(n− 1) + 4(n+ i2 − i′0)

which proves our claim. y

Let xn+1,t be the head of the jth1 right bridge edge in E (recall that by Claims 5.9 and
5.11, E contains exactly one jth1 right bridge edge and no other right bridge edge). Then by
connectedness of E, there exist in dMGS [E] a path P and a path P ′ from xi0,j1n to x1,j0 and
from xi0,j1n to xn,t respectively; we next lower bound the weight of P ∪P ′. To this end, denote
by xi′,t′ the last vertex in V (P) belonging to V (P ′) ∩ Vj1 .

Observation 5.16. max{t, j0} ≤ t′ and n+ 1− i′ ≤ t′ − (j1 − 1)n.

Indeed, since xi′,t′ can reach both x1,j0 and xn,t, t
′ ≥ j0 and t′ ≥ t. Now if n + 1 − i′ >

t′ − (j1 − 1)n then by Observation 5.6, xi′,t′ cannot reach xn,t as t− (j1 − 1)n ≥ 1 = n+ 1− n,
a contradiction.

68

Observation 5.17. i0 ≤ i′.

Indeed, if i0 > i′ then, in particular, i0 > 1 and so, n + 1 − i0 < n = j1n − (j1 − 1)n; but
then, by Observation 5.6, xi0,j1n cannot reach xi′,t′ as n+ 1− i0 < n+ 1− i′ ≤ t′− (j1− 1)n by
Observation 5.16, a contradiction.

Claim 5.18. The weight of P ∪ P ′ is at least

4(n− 1) + 4(t′ − t) + 4(j1n− j0) + 4(i′ − i0)− 3(p1 +m(P, d`))

where

p1 =

{
1 if (i′, j1) ∈ S, e`i′,j1 ∈ E(P) and xi′,t′−1 ∈ V (P ′)

0 otherwise.

Proof. Denote by e the down or down subdivided edge with tail xi′,t′ (note that e is a down
subdivided edge if and only if (i′, j1) ∈ S). Then by definition of xi′,t′ , the weight of P ∪ P ′
is at least the sum of the weights of P ′ and P [xi′,t′ , x1,j0] minus the weight of e whenever
(i′, j1) ∈ S and e ∈ E(P ′) ∩ E(P [xi′,t′ , x1,j0]). Let us therefore lower bound the weights of P ′

and P [xi′,t′ , x1,j0].
First note that since for any left shortcut edge f with head xp,q ∈ Vj , it holds that n+1−p >

q − (j − 1)n, xp,q cannot reach any vertex xp′,q′ ∈ Vj such that n + 1 − p′ ≤ q′ − (j − 1)n by
Observation 5.6. Further note that since the tail of f can only be reached through xp−1,q−1

where n+1− (p−1) < (q−1)− (j−1)n, no vertex xp′,q′ ∈ Vj such that n+1−p′ > q′− (j−1)n
can reach the tail of f by Observation 5.6. It follows that P ′ and P [xi0,j1n, xi′,t′] contain no left
shortcut edge (recall that n+ 1− i′ ≤ t′− (j1− 1)n by Observation 5.16) and that P [xi′,t′ , x1,j0]
contains at most one left shortcut edge, that is, the following holds.

Observation 5.19. m(P ′, d`) = m(P [xi0,j1n, xi′,t′], d`) = 0 and m(P, d`) ∈ {0, 1}.

Now P ′ must cross every row t ≤ j ≤ j1n and P [xi′,t′ , x1,j0] must cross every row j0 ≤ j ≤ t′

(recall that max{t, j0} ≤ t′ by Observation 5.16); thus

m(P ′, d) +m(P ′, 2d) = j1n− t and

m(P [xi′,t′ .x1,j0], d) +m(P [xi′,t′ .x1,j0], 2d) +m(P [xi′,t′ .x1,j0], d`) = t′ − j0.

Similarly, P ′ must cross every column i0 ≤ i ≤ n and P [xi′,t′ , x1,j0] must cross every column
1 ≤ i ≤ i′ (recall that i0 ≤ i′ by Observation 5.17); thus

m(P ′, `) +m(P ′, r) ≥ n− i0 and

m(P [xi′,t′ .x1,j0], `) +m(P [xi′,t′ .x1,j0], d`) ≥ i′ − 1.

Now note that p1 = 1 if and only if (i′, j1) ∈ S and e belongs to both P and P [xi′,t′ , x1,j0]: indeed,
if p1 = 1 then clearly (i′, j1) ∈ S and e ∈ E(P)∩E(P [xi′,t′ , x1,j0]). Conversely, if (i′, j1) ∈ S and
e belongs to both P and P [xi′,t′ , x1,j0] then since by definition of xi′,t′ , xi′,t′−1 cannot belong to
both P ′ and P [xi′,t′ , x1,j0], and P ′ contains no left shortcut edge by Observation 5.19, it must
be that P ′ contains xi′,t′−1 while P [xi′,t′ , x1,j0] contains the left shortcut edge e`(i′,j1), that is,

p1 = 1. It follows that the weight of P ∪ P ′ is at least

4(m(P ′, d) +m(P ′, 2d)) + 4(m(P ′, `) +m(P ′, r)) + 4(m(P [xi′,t′ .x1,j0], d) +m(P [xi′,t′ .x1,j0], 2d))

+ 5(m(P [xi′,t′ .x1,j0], d`)− p1) + 2p1 + 4m(P [xi′,t′ .x1,j0], `)

≥ 4(j1n− t) + 4(n− i0) + 4(t′ − j0) +m(P [xi′,t′ .x1,j0], d`)− 3p1

+ 4(i′ − 1−m(P [xi′,t′ .x1,j0], d`))

≥ 4(n− 1) + 4(t′ − t) + 4(j1n− j0) + 4(i′ − i0)− 3(p1 +m(P [xi′,t′ .x1,j0], d`))

which proves our claim as m(P [xi′,t′ .x1,j0], d`) = m(P, d`) by Observation 5.19. y

69

Note that if p1 = 1 then, since xi′−1,t′−1 ∈ V (P) can reach x1,j0 and xi′,t′−1 ∈ V (P ′) can
reach xn,t, the following holds.

Observation 5.20. If p1 = 1 then j0 ≤ t′ − 1 and t ≤ t′ − 1.

Now by connectedness of E, there exist in dMGS [E] a path Q and a path Q′ from xn+1,t to
xi′0,(j1−1)n+1 and from xn+1,t to x2n,j′0

, respectively; we next lower bound the weight of Q ∪Q′.
To this end, denote by xi′′,t′′ the last vertex in V (Q′) belonging to V (Q) ∩ Vj1 .

Claim 5.21. The weight of Q ∪Q′ is at least

4(n− 2) + 4(i′0 − i′′) + 4(t′′ − j′0) + 4(t− (j1 − 1)n)− 2p2

where

p2 =

{
1 if (i′′ − n, j1) ∈ S and eri′′−n,j1 ∈ E(Q′),

0 otherwise.

Proof. First note that since xn+1,t can reach xi′′,t′′ , and xi′′,t′′ can reach both x2n,j′0
and xi′0,(j1−1)n+1,

the following holds.

Observation 5.22. j′0 ≤ t′′ ≤ t and i′′ ≤ i′0.

Now denote by e the down or down subdivided edge with tail xi′′,t′′ (note that e is a down
subdivided edge if and only if (i′′−n, j1) ∈ S). Then by definition of xi′′,t′′ , the weight of Q∪Q′
is at least the sum of the weights of Q and Q′[xi′′,t′′ , x2n,j′0

] minus the weight of e whenever
(i′′ − n, j1) ∈ S and e ∈ E(Q) ∩ E(Q′[xi′′,t′′ , x2n,j′0

]). Let us therefore lower bound the weights
of Q and Q′[xi′′,t′′ , x2n,j′0

].
Since Q must cross every row (j1 − 1)n + 1 ≤ j ≤ t and Q′[xi′′,t′′ , x2n,j′0

] must cross every
row j′0 ≤ j ≤ t′′ (recall that j′0 ≤ t′′ ≤ t by Observation 5.22), it follows that

m(Q, d) +m(Q, 2d) = t− ((j1 − 1)n+ 1) and

m(Q′[xi′′,t′′ , x2n,j′0
], d) +m(Q′[xi′′,t′′ , x2n,j′0

], 2d) = t′′ − j′0.

Similarly, Q must cross every column n + 1 ≤ i ≤ i′0 and Q′[xi′′,t′′ , x2n,j′0
] must cross every

column i′′ ≤ i ≤ 2n (recall that i′′ ≤ i′0 by Observation 5.22); thus

m(Q, r) +m(Q, dr) = i′0 − (n+ 1) and

m(Q′[xi′′,t′′ , x2n,j′0
], r) +m(Q′[xi′′,t′′ , x2n,j′0

], dr) = 2n− i′′.

Now note that p2 = 1 if and only if (i′′ − n, j1) ∈ S and e belongs to both Q and Q′: indeed,
if p2 = 1 then by definition (i′′ − n, j1) ∈ S, e ∈ E(Q′) and xi′′+1,t′′ ∈ V (Q′) which implies,
by definition of xi′′,t′′ , that xi′′+1,t′′ /∈ V (Q) and so, e ∈ E(Q). Conversely, if (i′′ − n, j1) ∈ S
and e belongs to both Q and Q′ then, by definition of xi′′,t′′ , it must be that xi′′,t′′−1 belongs to
one of Q and Q′ while xi′′+1,t′′ belongs to the other. However, if xi′′+1,t′′ belongs to Q (and so,
xi′′,t′′−1 ∈ V (Q′)) then, since Q crosses row (j1 − 1)n+ 1 and Q′ crosses column 2n, necessarily
Q[xi′′+1,t′′ , xi′0,(j1−1)n+1]∩Q′[xi′′,t′′−1, x2n,j′0

]∩Vj1 6= ∅, a contradiction to the definition of xi′′,t′′ .
Thus, xi′′+1,t′′ ∈ V (Q′) and so, er(i′′−n,t′′) ∈ E(Q′), that is, p2 = 1. It follows that the weight of

Q ∪Q′ is at least

4(m(Q, d) +m(Q, 2d)) + 4m(Q, r) + 5m(Q, dr) + 4(m(Q′[xi′′,t′′ , x2n,j′0
], d)

+ m(Q′[xi′′,t′′ , x2n,j′0
], 2d)) + 4m(Q′[xi′′,t′′ , x2n,j′0

], r) + 5(m(Q′[xi′′,t′′ , x2n,j′0
], dr)− p2) + 2p2

≥ 4(t− ((j1 − 1)n+ 1)) + 4(m(Q, r) +m(Q, dr)) + 4(t′′ − j′0) + 4(2n− i′′)
+ m(Q′[xi′′,t′′ , x2n,j′0

], dr)− 3p2

≥ 4(t− ((j1 − 1)n+ 1)) + 4(i′0 − (n+ 1)) + 4(t′′ − j′0) + 4(2n− i′′)
+ m(Q′[xi′′,t′′ , x2n,j′0

], dr)− 3p2

≥ 4(n− 2) + 4(i′0 − i′′) + 4(t′′ − j′0) + 4(t− (j1 − 1)n)− 2p2

70

which proves our claim. y

In the following, we write j0 = (j1 − 1)n+ p0 and j′0 = (j1 − 1)n+ p′0 and further let

W = |i1 − i0|+ 4(n+ i2 − i′′) + 4(i′ − i0) + 4(t′ − j0) + 4(t′′ − j′0)− (8 + 3(p1 +m(P, d`)) + 2p2).

Observe that by Claims 5.13, 5.14, 5.18 and 5.21, the weight of the union of P t, P b, P, P ′, Q and
Q′ is at least

(n− 1)M3 + 4n(n+ 1) +W

and so, by Claims 5.8, 5.9, 5.10 and 5.11, the weight of E is at least

2M5 +M4 + (n− 1)M3 +M2 + (4n+ 1)(n+ 1) + p0 − p′0 +W. (2)

Claim 5.23. The following hold.
(1) i1 = i2 and (i1, j1) ∈ S.
(2) W = −12 and p0 = p′0.

Proof. Since the weight of E is at most M∗n, it follows from Equation (2) that

M∗n = 2M5 +M4 + (n− 1)M3 +M2 + (4n+ 1)(n+ 1)− 12

≥ 2M5 +M4 + (n− 1)M3 +M2 + (4n+ 1)(n+ 1) + p0 − p′0 +W.

Thus, by definition of W ,

p0 − p′0 + |i1 − i0|+ 4(n+ i2 − i′′) + 4(i′ − i0) + 4(t′ − j0) + 4(t′′ − j′0)

≤ −4 + 3(p1 +m(P, d`)) + 2p2

≤ 4

(3)

as p1, p2 ∈ {0, 1} by definition and m(D, d`) ∈ {0, 1} by Observation 5.19. Now suppose to
the contrary that p′0 > p0 or, equivalently, that j′0 > j0. Then since t′ ≥ t ≥ t′′ ≥ j′0 by
Observations 5.16 and 5.22, p′0 − p0 = j′0 − j0 ≤ t′ − j0 and so,

p0 − p′0 + 4(t′ − j0) + |i1 − i0|+ 4(n+ i2 − i′′) + 4(i′ − i0) + 4(t′′ − j′0)

≥ 3(t′ − j0) + |i1 − i0|+ 4(n+ i2 − i′′) + 4(i′ − i0) + 4(t′′ − j′0).

But n+ i2 ≥ i′′, i′ ≥ i0 and t′ ≥ t′′ ≥ j′0 > j0 by Observations 5.15, 5.16, 5.17 and 5.22, hence

3(t′ − j0) + |i1 − i0|+ 4(n+ i2 − i′′) + 4(i′ − i0) + 4(t′′ − j′0) ≥ 3.

It then follows from Equation (3) and the above that p1 = m(P, d`) = p2 = 1 and t′ = j0 + 1;
however, by Observation 5.20, if p1 = 1 then t′ ≥ t + 1 and so, by Observation 5.16, j′0 ≤ t ≤
t′ − 1 = j0, a contradiction. Thus, p0 ≥ p′0 and so,

p0 − p′0 + |i1 − i0|+ 4(n+ i2 − i′′) + 4(i′ − i0) + 4(t′ − j0) + 4(t′′ − j′0) ≥ 0 (4)

by Observations 5.15, 5.16, 5.17 and 5.22. Now suppose for a contradiction that p1 = 0. Then
by Equation (3),

p0 − p′0 + |i1 − i0|+ 4(n+ i2 − i′′) + 4(i′ − i0) + 4(t′ − j0) + 4(t′′ − j′0) ≤ 1

and so, by Observations 5.15, 5.16, 5.17 and 5.22, we must have n+ i2 = i′′, t′ = j0, t′′ = j′0 and
i0 = i′. But then, by Observations 5.12 and 5.16, p0 = n+ 1− i0 which implies that P contains
no left shortcut edge as t′ = j0; thus, by Equation (3),

p0 − p′0 + |i1 − i0|+ 4(n+ i2 − i′′) + 4(i′ − i0) + 4(t′ − j0) + 4(t′′ − j′0) ≤ −2,

71

as m(P, d`) = 0, a contradiction to Equation (4). Hence, p1 = 1 and so, m(D, d`) = 1 as well.
Now by Observation 5.20, t′ ≥ j0 + 1 and so, by Equation (3),

4 ≤ 4(t′ − j0) ≤ p0 − p′0 + |i1 − i0|+ 4(n+ i2 − i′′) + 4(i′ − i0) + 4(t′ − j0) + 4(t′′ − j′0) ≤ 2 + 2p2.

Therefore, p2 = 1 and t′ − 1 = j0 = j′0 = t′′, i1 = i0 = i′ and n+ i2 = i′′ by Observations 5.15,
5.16, 5.17 and 5.22; in particular, W = −12. Now since p1 = 1, (i′, j1) ∈ S by definition and
so, t′ = j1n + 2 − i′ by construction; and since p2 = 1, (i′′ − n, j1) ∈ S by definition and so,
t′′ = j1n+ 1− (i′′−n) by construction. As t′− 1 = t′′, i′ = i1 and i2 = i′′−n, we conclude that
i1 = i2 and (i1, j1) ∈ S. y

It now follows from Claims 5.11 and 5.23(1) that E represents the pair (i1, j1) ∈ S; and by
combining Equation (2) with Claim 5.23(2), we conclude that the weight of E is at least M∗n
and thus exactly M∗n which completes the proof.

Up Main Gadget. Given an integer n > 0, the up main gadget uMGS represents a set
S ⊆ [n]× [n]5 and is constructed as follows. It is an edge-weighted planar digraph consisting of
a 2n× n2 grid, where the vertex lying at the intersection of column i and row j is denoted by
xi,j , and 6n additional vertices `1, . . . , `n, `

′
1, . . . , `

′
n, r1, . . . , rn, r

′
1, . . . , r

′
n, t1, . . . , tn, b1, . . . , bn.

The adjacencies and edge weights are defined as follows.
• Source edges: for every i ∈ [n], there is an edge (bi, xn+i,1). Together these edges are

called source edges. The weight of each such edge is set to M5.
• Top sink edges: for every i ∈ [n], there is an edge (xi,n2 , ti). Together these edges are

called top sink edges. The weight of each such edge is set to M5.
• Left sink edges: for every j ∈ [n], there is an edge (`′j , `j) whose weight is set to Mj.

Together these edges are called left sink edges.
• Right sink edges: for every j ∈ [n], there is an edge (r′j , rj) whose weight is set to M2−Mj.

Together these edges are called right sink edges.
• Left internal sink edges: for every j ∈ [n] and every (j − 1)n + 1 ≤ p ≤ jn, there is an

edge (x1,p, `
′′
j) whose weight is set to p − (j − 1)n. For every fixed j ∈ [n], these edges

together are called the jth left internal sink edges.
• Right internal sink edges: for every j ∈ [n] and every (j − 1)n + 1 ≤ p ≤ jn, there is an

edge (x2n,p, r
′′
j) whose weight is set to n+ 1− (p− (j− 1)n). For every fixed j ∈ [n], these

edges together are called the jth right internal sink edges.
• Left bridge edges: for every j ∈ [n], and every (j − 1)n + 1 ≤ p ≤ jn, there is an edge

(xn+1,p, xn,p). For every fixed j ∈ [n], these edges together are called the jth right bridge
edges. The weight of each jth left bridge edge is set to M4.

• Upward bridge edges: for every j ∈ {pn | p ∈ [n− 1]} and every i ∈ [2n], there is an edge
(xi,j , xi,j+1). For every fixed j ∈ {pn | p ∈ [n− 1]}, these edges together are called the jth

upward bridge edges. The weight of each jth downward bridge edge is set to M3.
• Up edges: for every i ∈ [2n], every j ∈ [n] and every (j − 1)n + 1 ≤ p ≤ jn − 1, there is

an edge (xi,p, xi,p+1). Together these edges are called up edges. The weight of each such
edge is set to 4.

• Left edges: for every j ∈ [n], every (j−1)n+ 1 ≤ p ≤ jn−1 and every 2 ≤ q ≤ jn+ 1−p,
there is an edge (xq,p, xq−1,p); and for every j ∈ [n], every (j − 1)n+ 1 ≤ p ≤ jn− 1 and
every 2 ≤ i ≤ n, there is an edge (xi,p, xi−1,p. Together these edges are called left edges.
The weight of each such edge is set to 4.

• Right edges: for every j ∈ [n], every (j−1)n+2 ≤ p ≤ jn and every jn+1−p ≤ q ≤ n−1,
there is an edge (xn+q,p, xn+q+1,p). Together these edges are called right edges. The weight
of each such edge is set to 4.

5Recall that, by assumption, 1 < x, y < n holds for every (x, y) ∈ S.

72

• Shortcut edges: for every s = (i, j) ∈ S, we introduce two shortcut edges e`s, e
r
s as follows.

Set p = jn+ 1 then
– subdivide the edge (xi,p−i, xi,p+1−i) by adding a vertex yi,j and the edge (xi,p−i, yi,j)

(of weight 3) with the edge (yi,j , xi,p+1−i) (of weight 1);
– subdivide the edge (xn+i,p−1−i, xn+i,p−i) by adding a vertex zi,j and the edge

(xn+i,p−1−i, zi,j) (of weight 3) with the edge (zi,j , xn+i,p−i) (of weight 1).
The introduced edges are called down subdivided edges. Then

– e`s = (yi,j , xi−1,p−i) and its weight set to 2;
– ers = (zi,j , xn+i+1,p−i) and its weight set to 2.

The edges e`s are called left shortcut edges and the edges ers are called right shortcut edges.
This concludes the construction of the up main gadget uMGS (see Figure 15 for an illustration
of the up main gadget uMGS with n = 4 representing S = {(2, 2), (2, 3), (3, 2)}). We call the
vertices `1, . . . , `n the left vertices, the vertices r1, . . . , rn the right vertices, the vertices t1, . . . , tn
the top vertices and the vertices b1, . . . , bn the bottom vertices.

A set E ⊆ E(uMGS) satisfies the connectedness property if the following hold in E:
• a bottom vertex can reach a top vertex;
• a bottom vertex can reach a left vertex;
• a bottom vertex can reach a right vertex.

A set E ⊆ E(uMGS) satisfying the connectedness property represents a pair (i, j) ∈ [n] × [n]
if the only source edge in E is the one incident to bi, the only top sink edge in E is the one
incident to ti, the only left sink edge in E is the one incident to `j and the only right sink edge
in E is the one incident to rj (see Figure 15 for a set of edges representing (2, 2)). Symmetrical
to Lemma 5.7, we have the following.

Lemma 5.24. For any n > 0 and any S ⊆ [n] × [n], the up main gadget uMGS satisfies the
following properties.

(1) For every (i, j) ∈ S, there exists a set Ei,j ⊆ E(uMGS) of weight M∗n representing (i, j).
(2) If there exists a set E ⊆ E(uMGS) of weight at most M∗n satisfying the connectedness

property then E has weight exactly M∗n and represents a pair (i, j) ∈ S.

Reduction. Given an instance (k, n, {Si,j | i, j ∈ [k]}) of Grid Tiling, we construct an
equivalent instance (G,T,D) of (edge-weighted) Planar A1-Steiner Network where G is
defined as follows (see Figure 16).

• We introduce a total of k2 (down/up) main gadgets and k(k + 1) connector gadgets.
• For every set Si,j of the Grid Tiling instance such that i is odd, we introduce an up

main gadget uMGi,j representing Si,j . The up main gadget uMGi,j is surrounded by
two connector gadgets: CGi,j lying to its left and CGi+1,j lying to its right. We identify
each right vertex of CGi,j with the left vertex of uMGi,j of the same index, and each
left vertex of CGi+1,j with the right vertex of uMGi,j of the same index. Furthermore,
for every j ∈ [k − 1], uMGi,j lies above uMGi,j+1 and we identify each bottom vertex of
uMGi,j with the top vertex of uMGi,j+1 of the same index.

• For every set Si,j of the Grid Tiling instance such that i is even, we introduce a down
main gadget dMGi,j representing Si,j . The down main gadget dMGi,j is surrounded by
two connector gadgets: CGi,j lying to its left and CGi+1,j lying to its right. We identify
each right vertex of CGi,j with the left vertex of dMGi,j of the same index, and each
left vertex of CGi+1,j with the right vertex of dMGi,j of the same index. Furthermore,
for every j ∈ [k − 1], dMGi,j lies above dMGi,j+1 and we identify each bottom vertex of
dMGi,j with the top vertex of dMGi,j+1 of the same index.

• We introduce k terminals t1, . . . , tk and add the following edges of weight 0: for every odd
i ∈ [k], we add an edge from each top vertex of uMGi,1 to ti and for every even i ∈ [k],

73

b1 b2 b3 b4

t1 t2 t3 t4

`′1

`1

`′2

`2

`′3

`3

`′4

`4

r′1

r1

r′2

r2

r′3

r3

r′4

r4

Figure 15: The up main gadget uMGS with n = 4 representing S = {(2, 2), (2, 3), (3, 2)} (the
red edges are the shortcut edges). A set of edges representing (2, 2) is highlighted.

74

CG1,1

CG1,2

CG1,3

CG2,1

CG2,2

CG2,3

CG3,1

CG3,2

CG3,3

CG4,1

CG4,2

CG4,3

uMG1,1··
·

··
·

uMG1,2··
·

··
·

uMG1,3··
·

··
·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

dMG2,1··
·

··
·

dMG2,2··
·

··
·

dMG2,3··
·

··
·

uMG3,1··
·

··
·

uMG3,2··
·

··
·

uMG3,3··
·

··
·

t1

· · ·

t2

· · ·

t3

· · ·

r1

· · ·

··
·

··
·

··
·

··
·

··
·

··
·

r2

· · · · · ·

Figure 16: An illustration of the reduction from Grid Tiling to Planar A1-Steiner Net-
work with k = 3 (the black vertices are the terminals).

we add an edge from each bottom vertex of dMGi,k to ti.
• We introduce two vertices r1 and r2 and add the following edges of weight 0: there is an

edge from r1 to every terminal ti such that i ∈ [k] is odd; for every even i ∈ [k], there is an
edge from r1 to every top vertex of dMGi,1; for every j ∈ [k], there is an edge from r1 to
every left vertex of CG1,j ; and if k is odd then for every j ∈ [k], there is an edge from r1

to every right vertex of CGk+1,j . Similarly, there is an edge from r2 to every terminal ti
such that i is even; for every odd i ∈ [k], there is an edge from r1 to every bottom vertex
of dMGi,k; and if k is even then for every j ∈ [k], there is an edge from r1 to every right
vertex of CGk+1,j .

This concludes the construction of G. The set T of terminals consists of the union of the
two terminal vertices in each connector gadget and {r1, r2} ∪ {ti | i ∈ [k]} (note that |T | =
2k(k+ 1) + k+ 2). The demand graph D is the pure out-diamond on vertex set T where r1 and
r2 are the two vertices of in-degree 0. In the following, we let

W ∗n = k2M∗n + k(k + 1)C∗n.

Lemma 5.25. The Grid Tiling instance (k, n, {Si,j | i, j ∈ [k]}) has a solution if and only if
the (edge-weighted) Planar A1-Steiner Network instance (G,T,D) has a solution of weight
at most W ∗n .

75

Proof. Assume first that the instance (k, n, {Si,j | i, j ∈ [k]}) of Grid Tiling has a solution,
that is, for every i, j ∈ [k], there is an entry (xi,j , yi,j) ∈ Si,j such that

• for every i ∈ [k], xi,1 = xi,2 = . . . = xi,k = αi and
• for every j ∈ [k], y1,j = y2,j = . . . = yk,j = βj .

We construct a solution E for the Planar A1-Steiner Network instance (G,T,D) of weight
at most W ∗n as follows. Include in E

• for every odd i ∈ [k], the edge (r1, ti) of weight 0 and for every even i ∈ [k], the edge
(r2, ti) of weight 0;

• for every even i ∈ [k], the edge from r1 to the top vertex of index αi in dMGi,1 of weight
0 and for every odd i ∈ [k], the edge from r2 to the bottom vertex of index αi in dMGi,k
of weight 0;

• for every j ∈ [k], the edge from r1 to the left vertex of index βj in CG1,j of weight 0;
• if k is odd then for every j ∈ [k], the edge from r1 to the right vertex of index βj in
CGk+1,j of weight 0 and if k is even then for every j ∈ [k], the edge from r2 to the right
vertex of βj in CGk+1,j of weight 0;

• for every j ∈ [k] and every i ∈ [k], the set ECi,j ⊆ E(CGi,j) of weight C∗n representing βj
whose existence is guaranteed by Lemma 5.2(1);

• for every j ∈ [k] and every odd i ∈ [k], the set EMi,j ⊆ E(uMGi,j) of weight M∗n representing
(αi, βj) whose existence is guaranteed by Lemma 5.24(1); and

• for every j ∈ [k] and every even i ∈ [k], the set EMi,j ⊆ E(dMGi,j) of weight M∗n represent-
ing (αi, βj) whose existence is guaranteed by Lemma 5.7(1).

It is not difficult to see that the weight of E is k2M∗n + k(k + 1)C∗n = W ∗n and that by the
connectedness of the sets ECp,j and EMi,j for every i, j ∈ [k] and p ∈ [k + 1], r1 and r2 can reach
every terminal in T \ {r1, r2} in E.

Conversely, assume that the Planar A1-Steiner Network instance (G,T,D) has a so-
lution E of weight at most W ∗n . We contend that for every i ∈ [k + 1] and every j ∈ [k],
E ∩ E(CGi,j) satisfies the connectedness property. Indeed, if this is not the case for some
i ∈ [k + 1] and j ∈ [k], say no left vertex of V (CGi,j) can reach the terminal p ∈ V (CGi,j) in
E (the other cases are symmetric) then either i is even in which case r2 cannot reach p in E,
or i is odd in which case r1 cannot reach p in E, a contradiction in both cases. Similarly, the
restriction of E to any (down/up) main gadget satisfies the connectedness property: indeed, if
for some j ∈ [k] and for some even i ∈ [k] (we argue similarly if i is odd), E ∩ E(dMGi,j) does
not satisfy the connectedness property, then either no top vertex of dMGi,j can reach a bottom
vertex of dMGi,j in E in which case r2 cannot reach ti in E; or no top vertex of dMGi,j can
reach a left (or right) vertex of dMGi,j in E in which case r2 (or r1) cannot reach the terminal
vertices of CGi,j in E, a contradiction in both cases.

Next, we argue that the weight of the restriction of E to any connector gadget is C∗n and
that the weight of the restriction of E to any (down/up) main gadget is M∗n. To this end, let c
and C be the number of connector gadgets whose weight in E is at most C∗n and greater than
C∗n, respectively. Then c + C = k(k + 1) and by Lemma 5.2(2), any connector gadget whose
weight in E is at most C∗n has in fact a weight of exactly C∗n in E. Similarly, let m and M
be the number of (down/up) main gadgets whose weight in E is at most M∗n and greater than
M∗n respectively. Then m+M = k2 and by Lemmas 5.7 and 5.24, any (down/up) main gadget
whose weight in E is at most M∗n has in fact a weight of exactly M∗n in E. Now by definition of
W ∗n ,

W ∗n = k2M∗n + k(k + 1)C∗n

≥ mM∗n +M(M∗n + 1) + cC∗n + C(C∗n + 1)

= k2M∗n +M + k(k + 1)C∗n + C

76

which implies that M = C = 0. Thus, every connector gadget has weight C∗n in E and every
(down/up) main gadget has weight M∗n in E. From Lemmas 5.2(2), 5.7(2) and 5.24(2), it then
follows that

• for every j ∈ [k] and every i ∈ [k + 1], the restriction of E to the connector gadget CGi,j
represents an integer β′i,j ∈ [n];

• for every j ∈ [k] and every even i ∈ [k], the restriction of E to the down main gadget
dMGi,j represents a pair (αi,j , βi,j) ∈ [n]× [n]; and

• for every j ∈ [k] and every odd i ∈ [k], the restriction of E to the up main gadget uMGi,j
represents a pair (αi,j , βi,j) ∈ [n]× [n].

Let us show that for every i, j ∈ [k] the entries (αi,j , βi,j) ∈ Si,j form a solution to the Grid
Tiling instance (k, n, {Si,j | i, j ∈ [k]}) which if true, would conclude the proof. To this end, we
first prove that for every i, j ∈ [k], β′i,j = βi,j . Consider an even i ∈ [k]. Then by Lemma 5.7(2),
the only left sink edge in E incident to a left vertex of dMGi,j is the one incident to the left
vertex of index βi,j ; and by Lemma 5.2(2), the only right source edge in E incident to a right
vertex of CGi,j is the one incident to the right vertex of index β′i,j . Thus, if β′i,j 6= βi,j then r1

cannot reach the terminal vertices of CGi,j in E, a contradiction. We conclude similarly if i is
odd.

Second, we show that for every i, j ∈ [k], β′i+1,j = βi,j . Consider an even i ∈ [k]. Then by
Lemma 5.7(2), the only right sink edge in E incident to a right vertex of dMGi,j is the one
incident to the right vertex of index βi,j ; and by Lemma 5.2(2), the only left source edge in E
incident to a left vertex of CGi+1,j is the one incident to the left vertex of index β′i,j . Thus,
if β′i,j 6= βi,j then r2 cannot reach the terminal vertices of CGi+1,j in E, a contradiction. We
conclude similarly if i is odd.

It follows from the above that for every i ∈ [k − 1] and every j ∈ [k], βi+1,j = β′i+1,j = βi,j ;
we next show that for every i ∈ [k] and every j ∈ [k − 1], αi,j = αi,j+1. Consider an even
i ∈ [k]. Then by Lemma 5.7(2), the only bottom sink edge in E incident to a bottom vertex of
dMGi,j is the one incident to the bottom vertex of index αi,j ; and by Lemma 5.7(2), the only
source edge in E incident to a top vertex of dMGi,j+1 is the one incident to the top vertex of
index αi,j+1. Thus, if αi,j 6= αi,j+1 then r1 cannot reach the terminal ti in E, a contradiction.
We conclude similarly if i is odd. Therefore, the entries (αi,j , βi,j) ∈ Si,j form a solution to the
Grid Tiling instance (k, n, {Si,j | i, j ∈ [k]}) as claimed.

Let us finally explain how to get rid of the edge-weights (we use the same trick as in [8]).
We replace every edge (x, y) of weight w in the instance (G,T,D) of (edge-weighted) Planar
C1-Steiner Network constructed above, with a directed path from x to y of length w · n+ 1
where n = |V (G)|. We let G′ be the resulting graph. Then similarly to [8, Theorem A.1],
we can show that the instance (G,T,D) of edge-weighted Planar C1-Steiner Network has
a solution of weight at most W if and only if the instance (G′, T,D) of Planar C1-Steiner
Network has a solution of size at most Wn+ n.

5.3 Hard patterns

The aim of this section is to prove that for every ` ∈ [8104], Planar C`-Steiner Network
is W[1]-hard parameterized by the number k of terminals and does not admit a f(k) · no(k)

algorithm for any computable function f , unless ETH fails. For each ` ∈ [8104], we give a
reduction which transforms an instance of k×k-Grid Tiling (see Section 5.2 for a definition of
this problem) into an instance of (edge-weighted)6 Planar C`-Steiner Network with O(k)
terminals. The constructed instances in each case are very similar and are based on a construc-
tion developed in the proof of [8, Theorem 1.4], which we describe below as the main gadget.

6We then use the same trick as in Section 5.2 to get rid of the edge-weights.

77

We then show how to built upon this construction to handle the hard matching patterns (see
Section 5.3.1) and the hard biclique patterns (see Section 5.3.2).

Main Gadget. As mentioned above, we use the same construction as in the proof of [8,
Theorem 1.4]. More precisely, given an integer n > 0 and a subset S ⊆ [n] × [n]7, we first
construct an edge-weighted planar digraph G(S) as follows. The graph G(S) consists of an
n× n grid where the horizontal edges are oriented towards the right and the vertical edges are
oriented towards the bottom, that is, denoting by xi,j the vertex lying at the intersection of
column i and row j, there is an edge

• (xi+1,j , xi,j) (of weight 2) for every i ∈ [n− 1] and j ∈ [n], and
• (xi,j , xi,j+1) (of weight 2) for every i ∈ [n] and j ∈ [n− 1].

Then for every (i, j) ∈ S, we subdivide the edge (xi−1,j , xi,j), by adding a vertex yi,j and the
edges (xi−1,j , yi,j) and (yi,j , xi,j) (both of weight 1), and further add the edge (xi,j−1, yi,j) (of
weight 1). This concludes the construction of G(S). In the following, we call the vertices
x1,1, x1,2, . . . , x1,n the left vertices, the vertices xn,1, xn,2 . . . , xn,n the right vertices, the vertices
x1,n, x2,n, . . . , xn,n the top vertices and the vertices x1,1, x2,1, . . . , xn,1 the bottom vertices.

Now given a collection S = {Si,j | i, j ∈ [k]} of k2 subsets of [n] × [n], the main gadget
MG(S) for S is constructed as follows.

• For every set Si,j ∈ S, we introduce a copy of the graph G(Si,j) as constructed above.
For every i ∈ [n] and j ∈ [n − 1], the graph G(Si,j+1) lies below the G(Si,j); we add an
edge (of weight 2) from each top vertex of G(Si,j+1) to the bottom vertex of G(Si,j) of
the same index. Similarly, for every i ∈ [n − 1] and j ∈ [n], the graph G(Si,j) lies to the
left of the graph G(Si+1,j); we add an edge (of weight 2) from each right vertex of G(Si,j)
to the left vertex of G(Si+1,j) of the same index.

• We introduce 4k additional vertices a1, . . . , ak, b1, . . . , bk, c1, . . . , ck, d1, . . . , dk and the fol-
lowing edges (we fix ∆ = 5n2).

– For every j ∈ [k] and every i ∈ [n], there is an edge from aj to the left vertex of
G(S1,j) of index i of weight ∆(n+ 1− i).

– For every j ∈ [k] and every i ∈ [n], there is an edge from the right vertex of G(Sn,j)
of index i to bj of weight ∆i.

– For every j ∈ [k] and every i ∈ [n], there is an edge from cj to the top vertex of
G(Sj,1) of index i of weight ∆(n+ 1− i).

– For every j ∈ [k] and every i ∈ [n], there is an edge from the bottom vertex of G(Sj,n)
of index i to dj of weight ∆i.

This concludes the construction of the main gadget MG(S) for S (see Figure 17 for an il-
lustration of the main gadget MG(S) with n = 4 for S = {Si,j | i, j ∈ [3]} where S1,1 =
{(2, 2), (2, 3), (3, 3)} and Si,j = ∅ for every (i, j) 6= (1, 1)). We now set I = {ai, bi, ci, di | i ∈ [k]}
and let M be the induced matching {(ai, bi), (ci, di) | i ∈ [k]}. We further set

B∗ = 2k(∆(n+ 1) + 2(k + 1) + 2k(n− 1)).

Lemma 5.26 ([8]). The k × k-Grid Tiling instance (k, n,S) has a solution if and only if
the (edge-weighted) Planar M-Steiner Network instance (MG(S), I,M) has a solution of
weight at most B∗ − k2.

5.3.1 Hard matching patterns

The aim of this section is to prove hardness for the hard matching patterns. We restate here
the definition of these graphs for the reader’s convenience.

7Recall that, by assumption, 1 < x, y < n holds for every (x, y) ∈ S.

78

G(S1,3)

a3
4∆

3∆

2∆

∆

d1

∆ 2∆ 3∆ 4∆

G(S1,2)

a2
4∆

3∆

2∆

∆

G(S1,1)

a1
4∆

3∆

2∆

∆

c1

4∆ 3∆ 2∆ ∆

G(S2,3)

d2

∆ 2∆ 3∆ 4∆

G(S2,2)

G(S2,1)

c2

4∆ 3∆ 2∆ ∆

G(S3,3)

b3
∆

2∆

3∆

4∆

d3

∆ 2∆ 3∆ 4∆

G(S3,2)

b2
∆

2∆

3∆

4∆

G(S3,1)

b1
∆

2∆

3∆

4∆

c3

4∆ 3∆ 2∆ ∆

Figure 17: The main gadget MG(S) with n = 4 for S = {Si,j | i, j ∈ [3]} where S1,1 =
{(2, 2), (2, 3), (3, 3)} and Si,j = ∅ for every (i, j) 6= (1, 1).

79

Definition 5.27 (t-hard matching pattern). A t-hard matching pattern is an (acyclic) digraph
G constructed the following way. We start with disjoint vertex sets A = {a1, . . . , at}, B =
{b1, . . . , bt}, C = {c1, . . . , ct} and D = {d1, . . . , dt} and introduce the edges (ai, bi) and (ci, di)
for every i ∈ [t]. Furthermore, we introduce into G any combination of the following items:

1. either the directed path a1 → a2 → . . . → at → d1 → d2 → . . . → dt, or any of the
directed paths a1 → a2 → . . .→ at and d1 → d2 → . . .→ dt;

2. either the directed path c1 → c2 → . . .→ ct → b1 → b2 → . . .→ bt, or any of the directed
paths b1 → b2 → . . .→ bt and c1 → c2 → . . .→ ct;

3. an S-source for exactly one S ∈ {A,B,C,D,A ∪ C,B ∪D,B ∪ C,A ∪D};
4. an S-sink for exactly one S ∈ {A,B,C,D,A ∪ C,B ∪D,B ∪ C,A ∪ d};
5. a vertex rAD such that N−(rAD) = A and N+(rAD) = D;
6. a vertex rCB such that N−(rCB) = Y and N+(rCB) = B.

In particular, there are 5 · 5 · 9 · 9 · 2 · 2 types of t-hard matching patterns: we let C5, . . . , C8104 be
the 8100 classes that each contain all the t-hard matching patterns of a specific type for every t.

Formally, we aim to prove the following.

Lemma 5.27. For every ` ∈ [5, 8104], Planar C`-Steiner Network is W[1]-hard parameter-
ized by the number k of terminals and does not admit a f(k) ·no(k) algorithm for any computable
function f , unless ETH fails.

To prove the lemma, we use the construction described above and further add vertices and
edges so as to take into account the specific combination of the items in Definition 1.4 for each
fixed ` ∈ [5, 8104].

Reduction. Consider ` ∈ [7, 2031]. Given an instance (k, n,S = {Si,j | i, j ∈ [k]}) of k × k-
Grid Tiling, we construct an equivalent instance (G(S), T,D) of (edge-weighted) Planar
C`-Steiner Network as follows. Let MG(S) be the main gadget for S as constructed above.
Then T contains {ai, bi, ci, di | i ∈ [k]} (and possibly, as described below, some additional vertices
depending on the class C`) where {(ai, bi) | i ∈ [k]} and {(ci, di) | i ∈ [k]} are the two perfect
matchings contained in D. The graph G(S) is then obtained from MG(S) by introducing the
directed paths

a1 → . . .→ ak, d1 → . . .→ dk, c1 → . . .→ ck and b1 → . . .→ bk

where the weight of each newly added edge is set to 0. Furthermore, if the patterns in the class
C` contain

• a source (that is, a vertex of item 3 in Definition 1.4) then we add a vertex s to G(S) and
T , and the edges (s, a1) and (s, c1), both of weight 0;

• a sink (that is, a vertex of item 4 in Definition 1.4) then we add a vertex t to G(S) and
T , and the edges (bk, t) and (dk, t), both of weight 0;

• the vertex of item 5 in Definition 1.4, then we add a vertex rAD to G(S) and T , and the
edges (ak, rAD) and (rAD, d1), both of weight 0;

• the vertex of item 6 in Definition 1.4, then we add a vertex rCB to G(S) and T , and the
edges (ck, rCB) and (rCB, b1), both of weight 0.

This concludes the construction of G(S). We let D be the corresponding k-hard matching
pattern of C` on vertex set T . Lemma 5.27 then follows from Lemma 5.26 and the lemma below.

Lemma 5.28. The (edge-weighted) Planar C`-Steiner Network instance (G(S), T,D) has
a solution of weight at most B∗ − k2 if and only if the (edge-weighted) Planar M-Steiner
Network instance (MG(S), I,M) has a solution of weight at most B∗ − k2.

80

Proof. If E is a solution of (MG(S), I,M) of weight at most B∗− k2 then it is easy to see that
E ∪ (E(G(S))\E(MG(S))) is a solution of (G(S), T,D) of weight at most B∗−k2. Conversely,
if E is a solution of (G(S), T,D) of weight at most B∗− k2 then the restriction of E to MG(S)
is readily seen to be a solution of (MG(S), I,M) of weight at most B∗ − k2.

5.3.2 Hard biclique patterns

The aim of this section is to prove hardness for the hard biclique patterns. We restate here the
definition of these graphs for the reader’s convenience.

Definition 5.29 (t-hard biclique pattern). A t-hard biclique pattern is an (acyclic) digraph D
constructed the following way. We start with two disjoint sets A and B with |A| = |B| = t and
introduce every edge from A to B. Furthermore, we introduce into D any combination of the
following items (see Figure 1):

1. an A-source;
2. a B-sink.

In particular, there are 2 · 2 types of t-hard biclique patterns: we let C1, . . . , C4 be the 4 classes
that each contain all the t-hard biclique patterns of a specific type for every t.

Formally, we aim to prove the following.

Lemma 5.29. For every ` ∈ [4], Planar C`-Steiner Network is W[1]-hard parameterized
by the number k of terminals and does not admit a f(k) · no(k) algorithm for any computable
function f , unless ETH fails.

We only formally prove the statement for the class of all hard biclique patterns containing
no further vertices as it will become clear from the proof that to handle the classes of all hard
biclique patterns containing

• the sink vertex, it suffices to add a vertex t and an edge (ti, t) for each i ∈ [2k + 1] in the
construction below; or

• the source vertex, it suffices to add a vertex s and an edge (s, si) for each i ∈ [2k + 1] in
the construction below.

In the following, we assume that the class of all hard biclique patterns with no further vertices
is C1.

Reduction. Given an instance (k, n,S = {Si,j | i, j ∈ [k]}) of k × k-Grid Tiling, we con-
struct an equivalent instance (G(S), T,D) of (edge-weighted) Planar C1-Steiner Network
as follows. We start by constructing an auxiliary planar digraph H consisting of 2(2k + 1)
distinguished vertices s1, . . . , s2k+1, t1, . . . , t2k+1, and 2(2k+ 1) edge-disjoint directed paths Pi,j
with i ∈ [2k+ 1] and j ∈ {i, i+ 1} (where indices are taken modulo 2k+ 1 henceforth), defined
as follows.

• For every i ∈ [2k + 1], Pi,i = siu
1
i . . . u

2k−1
i ti is a directed path from si to ti of length 2k.

• For every i ∈ [2k + 1], Pi,i+1 is the directed path siu
1
i−1u

2
i−2 . . . u

j
i−j . . . u

2k−1
i+2 ti+1 from si

to ti+1 of length 2k.
(For k = 3, the graph H can be obtained from the graph depicted in Figure 18 by ignoring the
blue vertices and contracting every grey box into a single vertex.) Note that by construction,
the following holds.

Observation 5.30. For every i ∈ [2k+1], there is a unique path from si to ti (ti+1, respectively)
in H, namely Pi,i (Pi,i+1, respectively).

The graph G(S) is then obtained from H as follows (see Figure 18).

81

s1

s2

s3

s4

s5

s6

s7

t1

t2

t3

t4

t5

t6

t7

a3

a2

a1

b3

b2

b1

d1 d2 d3

c1 c2 c3

Figure 18: An illustration of the reduction from k × k-Grid Tiling to Planar C1-Steiner
Network with k = 3 (the red vertices are the terminals and the dashed blue square together
with the grey boxes represent the main gadget).

• We subdivide the edge (sk+1, u
k+1
1) by adding the vertex a1 and the edges (sk+1, a1) and

(a1, u
k+1
1); and for every 2 ≤ i ≤ k, we subdivide the edge (uik+1−i, u

i
k+2−i) by adding the

vertex ak+2−i and the edges (uik+1−i, ak+2−i) and (ak+2−i, u
i
k−i).

• We subdivide the edge (u2
2k−1, t2) by adding the vertex bk and the edges (u2

2k−1, bk) and
(bk, t2); and for every 3 ≤ i ≤ k + 1, we subdivide the edge (ui2k+1−i, u

i
2k+2−i) by adding

the vertex bk+2−i and the edges (ui2k+1−i, bk+2−i) and (bk+2−i, u
i
2k+2−i).

• We subdivide the edge (sk+2, u
k+1
1) by adding the vertex c1 and the edges (sk+2, c1) and

(c1, u
k+1
1); and for every k + 3 ≤ i ≤ 2k + 1, we subdivide the edge (uk+2

i−k−2, u
k+1
i−k−2) by

adding the vertex ci−k−1 and the edges (uk+2
i−k−2, ci−k−1) and (ci−k−1, u

k+1
i−k−2).

• For every k+ 2 ≤ i ≤ 2k+ 1, we subdivide the edge (u2
i−k−2, u

1
i−k−2) by adding the vertex

di−k−1 and the edges (u2
i−k−2, di−k−1) and (di−k−1, u

1
i−k−2).

• For every 1 ≤ i, j ≤ k, we replace the vertex uj+1
k−j+i with a copy of the graph G(Si,k+1−j)

and add the necessary edges so that the subgraph of G induced by {ai, bi, ci, di | 1 ≤ i ≤
k}∪

⋃
1≤i,j≤k V (G(Si,j)) is isomorphic to MG(S) (and has the same edge-weight function).

The weight of each edge outside the copy of the main gadget MG(S) is set to 0. This concludes
the construction of G(S). We set T = {si, ti | i ∈ [2k + 1]} and let the demand graph D be
the corresponding ({si | i ∈ [2k + 1]}, {ti | i ∈ [2k + 1]})-biclique. Lemma 5.29 for ` = 1 then
follows from Lemma 5.26 and the lemma below.

Lemma 5.31. The (edge-weighted) Planar C1-Steiner Network instance (G(S), T,D) has

82

a solution of weight at most B∗ − k2 if and only if the (edge-weighted) Planar M-Steiner
Network instance (MG(S), I,M) has a solution of weight at most B∗ − k2.

Proof. If E is a solution of (MG(S), I,M) of weight at most B∗ − k2 then it is not difficult to
see that E ∪ (E(G(S)) \ E(MG(S))) is a solution of (G(S), T,D) of weight at most B∗ − k2.
Conversely, let E be a solution of (G(S), T,D) of weight at most B∗ − k2. Since for every 2 ≤
i ≤ k+1, there is a unique path in H from si to ti, namely Pi,i, and for every k+2 ≤ i ≤ 2k+1,
there is a unique path in H from si to ti+1, namely Pi,i+1, the restriction E′ of E to MG(S) is
a solution of (MG(S), I,M); and since every edge in E(G(S)) \ E(MG(S)) has weight 0, the
weight of E′ is that of E, that is, E′ has weight at most B∗ − k2.

References

[1] M. Bateni, C. Chekuri, A. Ene, M. T. Hajiaghayi, N. Korula, and D. Marx,
Prize-collecting Steiner Problems on Planar Graphs, in Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, Cal-
ifornia, USA, January 23-25, 2011, 2011, pp. 1028–1049.

[2] M. Bateni, M. T. Hajiaghayi, and D. Marx, Approximation Schemes for Steiner
Forest on Planar Graphs and Graphs of Bounded Treewidth, J. ACM, 58 (2011), pp. 21:1–
21:37.

[3] P. Berman, A. Bhattacharyya, K. Makarychev, S. Raskhodnikova, and
G. Yaroslavtsev, Approximation algorithms for spanner problems and directed steiner
forest, Inf. Comput., 222 (2013), pp. 93–107.

[4] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets möbius:
fast subset convolution, in Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, San Diego, California, USA, June 11-13, 2007, D. S. Johnson and U. Feige,
eds., ACM, 2007, pp. 67–74.

[5] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li,
Approximation Algorithms for Directed Steiner Problems, J. Algorithms, 33 (1999), pp. 73–
91.

[6] R. Chitnis, H. Esfandiari, M. T. Hajiaghayi, R. Khandekar, G. Kortsarz, and
S. Seddighin, A Tight Algorithm for Strongly Connected Steiner Subgraph on Two Ter-
minals with Demands, Algorithmica, 77 (2017), pp. 1216–1239.

[7] R. Chitnis, A. E. Feldmann, and P. Manurangsi, Parameterized Approximation
Algorithms for Bidirected Steiner Network Problems, in 26th Annual European Symposium
on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, 2018, pp. 20:1–20:16.

[8] R. H. Chitnis, A. E. Feldmann, M. T. Hajiaghayi, and D. Marx, Tight bounds for
planar strongly connected steiner subgraph with fixed number of terminals (and extensions),
SIAM J. Comput., 49 (2020), pp. 318–364.

[9] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer Publishing Com-
pany, Incorporated, 1st ed., 2015.

[10] É. C. de Verdière, Multicuts in planar and bounded-genus graphs with bounded number
of terminals, Algorithmica, 78 (2017), pp. 1206–1224.

83

[11] P. Dvorák, A. E. Feldmann, D. Knop, T. Masaŕık, T. Toufar, and P. Veselý,
Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner
Vertices, in 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, 2018, pp. 26:1–26:15.

[12] E. Eiben, D. Knop, F. Panolan, and O. Suchý, Complexity of the Steiner Network
Problem with Respect to the Number of Terminals, in 36th International Symposium on
Theoretical Aspects of Computer Science (STACS 2019), R. Niedermeier and C. Paul, eds.,
vol. 126 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany,
2019, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 25:1–25:17.

[13] J. Feldman and M. Ruhl, The Directed Steiner Network Problem is Tractable for a
Constant Number of Terminals, SIAM J. Comput., 36 (2006), pp. 543–561.

[14] A. E. Feldmann and D. Marx, The complexity landscape of fixed-parameter directed
steiner network problems, in 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, vol. 55 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016, pp. 27:1–27:14.

[15] F. V. Fomin, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh, Subexponential parameterized algorithms for planar and apex-minor-free
graphs via low treewidth pattern covering, in IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, I. Dinur, ed., IEEE Computer Society, 2016, pp. 515–524.

[16] J. Guo, R. Niedermeier, and O. Suchý, Parameterized complexity of arc-weighted
directed steiner problems, SIAM J. Discrete Math., 25 (2011), pp. 583–599.

[17] S. L. Hakimi, Steiner’s problem in graphs and its implications, Networks, 1 (1971),
pp. 113–133.

[18] R. M. Karp, Reducibility Among Combinatorial Problems, in Proceedings of a Symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, USA, 1972, pp. 85–103.

[19] P. N. Klein and D. Marx, Solving planar k -terminal cut in $o(nˆ{c \sqrt{k}})$ time,
in Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012,
Warwick, UK, July 9-13, 2012, Proceedings, Part I, A. Czumaj, K. Mehlhorn, A. M. Pitts,
and R. Wattenhofer, eds., vol. 7391 of Lecture Notes in Computer Science, Springer, 2012,
pp. 569–580.

[20] , A subexponential parameterized algorithm for subset TSP on planar graphs, in Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, C. Chekuri, ed., SIAM, 2014,
pp. 1812–1830.

[21] A. Levin, Algorithm for the shortest connection of a group of graph vertices, Soviet Math.
Dokl., 12 (1971), pp. 1477–1481.

[22] C. Li, S. T. McCormick, and D. Simchi-Levi, The point-to-point delivery and con-
nection problems: complexity and algorithms, Discrete Applied Mathematics, 36 (1992),
pp. 267–292.

84

[23] D. Lokshtanov, S. Saurabh, and M. Wahlström, Subexponential parameterized odd
cycle transversal on planar graphs, in IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012,
Hyderabad, India, D. D’Souza, T. Kavitha, and J. Radhakrishnan, eds., vol. 18 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 424–434.

[24] D. Marx, On the Optimality of Planar and Geometric Approximation Schemes, in 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October
20-23, 2007, Providence, RI, USA, Proceedings, 2007, pp. 338–348.

[25] , A tight lower bound for planar multiway cut with fixed number of terminals, in Au-
tomata, Languages, and Programming - 39th International Colloquium, ICALP 2012, War-
wick, UK, July 9-13, 2012, Proceedings, Part I, A. Czumaj, K. Mehlhorn, A. M. Pitts, and
R. Wattenhofer, eds., vol. 7391 of Lecture Notes in Computer Science, Springer, 2012,
pp. 677–688.

[26] D. Marx and M. Pilipczuk, Optimal parameterized algorithms for planar facility location
problems using voronoi diagrams, ACM Trans. Algorithms, 18 (2022), pp. 13:1–13:64.

[27] D. Marx, M. Pilipczuk, and M. Pilipczuk, On subexponential parameterized algo-
rithms for steiner tree and directed subset TSP on planar graphs, in 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, M. Thorup, ed., IEEE Computer Society, 2018, pp. 474–484.

[28] M. Natu and S. Fang, The Point-to-point Connection Problem - Analysis and Algo-
rithms, Discrete Applied Mathematics, 78 (1997), pp. 207–226.

[29] J. Nederlof, Detecting and counting small patterns in planar graphs in subexponential
parameterized time, in Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, K. Makarychev,
Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, eds., ACM, 2020, pp. 1293–1306.

[30] S. Ramanathan, Multicast tree generation in networks with asymmetric links, IEEE/ACM
Trans. Netw., 4 (1996), pp. 558–568.

[31] N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a planar graph, J.
Comb. Theory, Ser. B, 62 (1994), pp. 323–348.

[32] H. F. Salama, D. S. Reeves, and Y. Viniotis, Evaluation of Multicast Routing Algo-
rithms for Real-Time Communication on High-Speed Networks, IEEE Journal on Selected
Areas in Communications, 15 (1997), pp. 332–345.

[33] P. Winter, Steiner problem in networks: A survey, Networks, 17 (1987), pp. 129–167.

85

	1 Introduction
	1.1 Overview of our main result
	1.2 Details of Statement (iii): the f(k) nO(k) algorithm

	2 Formal definition of a t-tough-pair
	3 The structure theorem
	3.1 A subexponential algorithm
	3.2 A tree of segments
	3.3 Region slicing
	3.4 Finding a t-tough pair

	4 Cleaning: Identifying to a t-hard-pattern
	4.1 Simplifying the t-tough-pair
	4.2 Simplifying a biclique
	4.2.1 When Dcontr has a long path
	4.2.2 No long path in Dcontr

	4.3 Cleaning the ordered tough-pair
	4.3.1 Semi-cleaning
	4.3.2 From semi-cleaned ordered tough-pair to hard-pattern

	4.4 Cleaning the induced-biclique with minimal edges

	5 Hardness proofs and lower bounds
	5.1 Finding a star
	5.2 Diamonds
	5.3 Hard patterns
	5.3.1 Hard matching patterns
	5.3.2 Hard biclique patterns

