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Abstract

We revisit classic string problems considered in the area of parameterized complexity, and
study them through the lens of dynamic data structures. That is, instead of asking for a static
algorithm that solves the given instance efficiently, our goal is to design a data structure that
efficiently maintains a solution, or reports a lack thereof, upon updates in the instance.

We first consider the Closest String problem, for which we design randomized dynamic
data structures with amortized update times dO(d) and |Σ|O(d), respectively, where Σ is the al-
phabet and d is the assumed bound on the maximum distance. These are obtained by combining
known static approaches to Closest String with color-coding.

Next, we note that from a result of Frandsen et al. [J. ACM’97] one can easily infer a meta-
theorem that provides dynamic data structures for parameterized string problems with worst-
case update time of the form Ok(log log n), where k is the parameter in question and n is the
length of the string. We showcase the utility of this meta-theorem by giving such data structures
for problems Disjoint Factors and Edit Distance. We also give explicit data structures for
these problems, with worst-case update times O(k2k log log n) and O(k2 log log n), respectively.
Finally, we discuss how a lower bound methodology introduced by Amarilli et al. [ICALP’21]
can be used to show that obtaining update time O(f(k)) for Disjoint Factors and Edit
Distance is unlikely already for a constant value of the parameter k.
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1 Introduction

The field of parameterized complexity is based on the principle of parameterization: measuring the
usage of resources not only in terms of the total input size, but also in terms of auxiliary complexity
measures called parameters. Traditionally, the principle is applied to static algorithms and their
running times, but the idea can be — and has been — used within essentially every algorithmic
paradigm. Among these, a recent line of research has identified the area of dynamic data structures
as one where the application of the parameterized approach leads to new and interesting results,
see e.g. [3, 16, 18, 19, 24, 31]. In this work we continue this promising direction by investigating
classic string problems considered in parameterized complexity.

Arguably, the most widely known parameterized string problem is Closest String.

Closest String
Input: Integer d and words s1, s2, . . . , sn ∈ ΣL over an alphabet Σ, each of length L
Task: Decide whether there exists a word c ∈ ΣL such that for every i ∈ {1, . . . , n}, the
Hamming distance between si and c is at most d.

Closest String has several natural parameters: n, d, L, |Σ|. For the parameterization by
d and Σ, Gramm et al. [23] gave a dO(d) · (nL)O(1)-time algorithm, while Ma and Sun [30] gave a
|Σ|O(d) · (nL)O(1)-time algorithm. By now, these are literally textbook examples of the technique of
branching [17, Theorem 3.14 and Exercise 3.25], and their running times are known to be asymp-
totically optimal under the Exponential Time Hypothesis (ETH) [29]. For the parameterization by
n, the classic algorithm of Gramm et al. [23] solves the problem in time 2n

O(n) ·LO(1) by a reduction
to integer programming in dimension nO(n). Recently, Koutecký et al. [27] improved this running
time to nO(n2) ·LO(1) using exciting developments in parameterized algorithms for block-structured
integer programs. Kernelization algorithms for Closest String were studied in [8].

We study the dynamic variant of Closest String, which is to design a dynamic data structure
supporting the following operations:

• Initialize the data structure for a given instance of Closest String.

• Update the data structure upon modification of a single symbol in a single string si.

• Query whether the current instance is a yes-instance of Closest String.

Note that parameters n, d, L, and Σ are fixed on the initialization and do not change over the life
of the data structure; only the strings s1, . . . , sn can be modified, and by one symbol at the time.
Also, we assume that upon query, the data structure is only required to answer yes or no, and does
not need to provide the solution c.

For this variant we give randomized dynamic data structures whose update time match the
parametric factors in the runtimes of the algorithms of Gramm et al. [23] and of Ma and Sun [30].

Theorem 1.1. The dynamic variant of Closest String admits a randomized data structure with
initialization time 2O(d) ·nL|Σ|1+o(1), amortized update time 2O(d), and worst-case query time dO(d)

or |Σ|O(d), whichever is smaller. The answer to each query may result with a false positive with
probability at most 2−Ω(d); there are no false negatives.

In the proof of Theorem 1.1 we combine the classic approach to Closest String, originating
in [23, 30], with an interesting application of color-coding. The randomization comes from the
color-coding; we can dispose of it using standard derandomization techniques (see [17, Section 5.6]),
but at the cost of introducing an additional O(log(nL)) factor in the update time. Also, note that
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by the results of [29], under ETH one cannot expect to improve the query time to do(d) or |Σ|o(d),
even in the amortized sense.

Next, we turn attention to other problems. First, we note that combining a result of Frandsen
et al. [20] on dynamic word problem for aperiodic semigroups with the classic Schützenberger-
McNaughton-Papert Theorem [33, 38] yields the following meta-theorem.

Theorem 1.2. Suppose Σ is a finite alphabet and L ⊆ Σ? is a language definable in logic FO[Σ, <].
Then there exists a data structure that for a given word w ∈ Σ?, which can be updated over time by
replacing single symbols, maintains whether w ∈ L. The data structure can be initialized on a given
word w in time O(n) where n = |w|, and then every update takes worst-case time O(log log n).

Theorem 1.2 follows immediately from the combination explained above, so we consider it an
essentially known result (though we could not find this precise formulation in the literature). What is
new is the observation that this result is a very convenient tool for obtaining dynamic data structures
in the parameterized setting. We showcase this by considering the following two problems.

Disjoint Factors
Input: A word w ∈ {1, . . . , k}?, where k is an integer
Task: Decide whether there exists pairwise disjoint subwords w1, w2, . . . , wk of w such that
for each i ∈ {1, . . . , k}, wi has length at least 2 and begins and ends with symbol i.

Edit Distance
Input: Integer k and two words u, v ∈ Σ?, where Σ is an alphabet
Task: Decide whether ed(u, v) 6 k, that is, whether v can be obtained from u by a sequence
of at most k edits, each consisting of a deletion, insertion, or substitution of a single symbol.

Disjoint Factors has been introduced in [11] as a stepping stone for kernelization hardness
of the Disjoint Cycles and Disjoint Paths problems. We choose to use it in this work as an
example, because its simple combinatorial structure makes many basic ideas clearly visible. On the
other hand, Edit Distance is a problem of immense importance with multiple applications. It
can be solved in time O(n2) by standard dynamic programming (where n is the total length of the
words). The best currently known algorithm for Edit Distance runs in O(n2/ log(n)2) time [32]
and under the Strong ETH, there is no strongly subquadratic algorithm [7, 1, 14, 2]. Here, we
focus on parameterization by the size of the solution k. In terms of this parametrization Edit
Distance can be solved in O(n + k2) by the celebrated Landau and Vishkin algorithm [28] and
even in sublinear time when approximation is allowed [9, 6, 22].

We observe that both for Disjoint Factors and for Edit Distance, the language of yes-
instances can be defined in FO[Σ, <] using a sentence of length bounded in terms of the parameters.
Therefore, by simply applying Theorem 1.2, we obtain data structures for the dynamic variants of
Disjoint Factors and Edit Distance (defined similarly as for Closest String) with worst-
case update times Ok(log log n). As usual with meta-theorems, the parametric dependence in these
complexity guarantees is not explicit. For this reason, we also design explicit data structures for
both problems.

Theorem 1.3. The dynamic variant of Disjoint Factors admits a data structure with initializa-
tion time O(k2k + kn), worst-case query time O(1), and worst-case update time O(k2k log log n).

Theorem 1.4. The dynamic variant of Edit Distance admits a data structure with initialization
time O(kn), worst-case query time O(1), and worst-case update time O(k2 log log n)
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Theorems 1.3 and 1.4 are based on Lemmas 5.1 and 5.3 and the static algorithms shown under
these lemmas. Our key component are van Emde Boas trees [41]. This is not surprising, as van Emde
Boas trees are also the main tool underlying the proof of Theorem 1.2 (see [20]). In both cases, we
heavily build upon known static algorithms [28, 11]. We point out that these results serve mainly as
a demonstration that one can improve the dependence on the parameter guaranteed by Theorem 1.2
for concrete problems. We are not aware of any previous works on Disjoint Factors in exactly
this dynamic setting. Edit Distance was considered in the dynamic setting for unbounded values
of k and only polynomial in n updates are known [26, 15, 5].

Finally, we observe that we can use the hardness methodology proposed by Amarilli et al. [4]
to establish conditional lower bounds against improving the update time in Theorems 1.3 and 1.4.
More precisely, we prove that already for constant values of the parameters, the problems Disjoint
Factors and Edit Distance are prefix-U1 hard, which means that finding a data structure for
them is at least as hard as designing a data structure for the following problem: for a dynamic
word w over {0, 1}?, support queries of the form “given i, is the first symbol 1 in w at position 6 i”.
Amarilli et al. [4] conjectured that no data structure for this problem achieves update time O(1),
and our reduction carry this hardness over to the dynamic variants of Disjoint Factors and Edit
Distance. Let us point out that the two discussed problems are just examples, and the obtained
hardness methodology can be applied to a multitude of other dynamic string problems.

Organization In the Section 2 we give a short preliminaries. Next, in Section 3 we present a
proof of Theorem 1.1 and in Section 4 we prove Theorem 1.2. Subsequently, in Section 5 we give
dynamic data structures for Disjoint Factors and Edit Distance and in Section 6 we show
lower bounds for them. Appendix A contains omitted proofs.

2 Preliminaries

For a parameter `, we write O`(·) to hide factors depending only on `. The poly(n1, n2) denotes
(n1n2)O(1). We use a shorthand notation [n] := {1, . . . , n}. For two sets X,Y , X4Y denotes their
symmetric difference (X \ Y ) ∪ (Y \ X). For two words u, v ∈ ΣL, by dist(u, v) we denote the
Hamming distance between u and v. For a word u ∈ ΣL and a set X ⊆ [L], we write a[X] ∈ Σ|X|

for the word obtained from u by removing all positions outside of X. For 1 6 i 6 j 6 m, we write
u[i : j] ∈ Σj−i+1 for u[{i, . . . , j}].

Computation Model In this paper we work in the standard word-RAM model. In all our
results the O(log log n) factors come exclusively from application of van Emde Boas trees that solve
Predecessor problem, where one needs to maintain a set S of n w-bit integers. In update one
can insert/delete integers to/from set S. During query, for a given integer x one should returns
the largest integer y ∈ S such that x > y. Predecessor problem is a well-studied problem both
in terms of lower and upper bounds (see the recent survey [35]). In word-RAM the complexity of
Predecessor operations is well understood to be

Θ

max

1,min

logw(n),
log w

logw

log
(

log w
logw/ log logn

logw

) , log
log(2w − n)

logw


 (1)

The upper and lower bounds were given by Pătraşcu and Thorup [36], see also [10, 21]. This
means that strictly speaking O(log log n) factors in our paper, could be replaced with Equation 1 in
word-RAM model depending on word size. We are using the worse O(log log n) bound in order to
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keep the results transparent. Note that the O(log log n) bound for Predecessor is tight in more
restricted computation models (see, e.g., [34]).

3 Closest String

In this section, we show the first half of Theorem 1.1 by proving the following theorem.

Theorem 3.1. The dynamic variant of Closest String admits a randomized data structure with
initialization time 2O(d)nL, amortized update time 2O(d), and worst-case query time dO(d). The
answer to each query may result with a false positive with probability at most 2−Ω(d); there are no
false negatives.

Throughout this section we fix the parameter d ∈ N and denote S := {s1, . . . , sn} for brevity,
and call it a dictionary. Then updates on such a dictionary consist of replacing one symbol in
one word with another symbol. Our data structure is based on the static algorithm for Closest
String due to Gramm et al. [23].

3.1 Branching for Closest String

Algorithm ClosestString(S, d)
1 if there exist si, sj ∈ S such that dist(si, sj) > 2d then
2 return False
3 Set q to be any word from S
4 return ClosestStringRec(S, q, d)

Procedure ClosestStringRec(S, q, x)
5 if x < 0 then
6 return False
7 if there exists s ∈ S such that dist(s, q) > d then
8 Find P := {i ∈ [L] such that s[i] 6= q[i]} // Observe that |P | 6 3d
9 for i ∈ P do

10 Set q′[j] :=

{
s[i] if i = j,

q[j] otherwise.
11 if ClosestString(S, q′, x− 1) then
12 return True
13 return False
14 return True

Algorithm 1: Pseudocode of staticO((3d)dpoly(n,L)) time algorithm for Closest String.
To get a dynamic data structure, use Lemma 3.2 to perform manipulations on q.

Algorithm 1 presents a pseudocode for an (3d)dpoly(n,L) time algorithm for Closest String
loosely based on [23]. We first check if every pair of words of S are at distance at most more than
2d from each other; otherwise, by triangle inequality, we can safely terminate and return that there
is no solution. Following this, we run a recursive search that maintains a candidate q for a solution,
together with an upper bound x on how far from q, in terms of Hamming distance, we allow the
sought solution to be. These are initially set to be any word in S and d. Within the search, we first
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verify whether q is already a solution. If yes, then we can terminate, this time yielding a positive
answer. Otherwise, there is some s ∈ S at distance more than d from q. Observe that due to the
initial check and the fact that during recursion we modify q at most d times, it will be always the
case that s and q differ on at most 3d positions. Hence, we can branch over one of at most 3d
possibilities of modifying q by a single letter so that q gets closer to s. The nontrivial observation
is that if there exists a solution, one of the modifications will take us closer to it in terms of the
Hamming distance.

For the running time, observe that in each call we can make at most |P | 6 3d guesses. Moreover,
through the execution of the algorithm we can only modify at most d letters in q. This means that
the total size of the recursion tree is O((3d)d).1

Let us take a closer look at the polynomial factors of the algorithm presented above and discuss
problems with dynamization. In line 1 we need to check if there exist words si, sj ∈ S with
dist(si, sj) > 2d. Naively, one needs to iterate over every pair of words in S and compute the
distance exactly which already requires n2 iterations, where n = |S|. Even if somehow, this number
could be decreased, observe that in order to compute a distance between a fixed pair of words one
needs to at least read them in O(L) time, which is too slow. Later, manipulations on the candidate
word q also require O(nL) time in each call of the recursive procedure ClosestStringRec(), as q
is checked against all words in S.

We remedy these problems by introducing a data structure that maintains a dictionary S and
provides access to all operations needed in the algorithm presented above, including efficient ma-
nipulation of the candidate q. This data structure is described in the following lemma.

Lemma 3.2 (Far word data structure). There exists a randomized data structure that maintains
dictionary S of words in ΣL with amortized 2O(d) time updates; the initialization time is 2O(d)nL|Σ|.
The data structure provides the following method:

• QueryFarPair(): Decide if there exist s, s′ ∈ S with dist(s, s′) > 2d. The query may also
return a positive answer in case there are no s, s′ as above, but then it is guaranteed that the
answer to the instance (S, d) is negative.

Further, the data structure provides access to a special word q ∈ ΣL through the following methods:
• Reset(): Reset q to the first word in S.
• UpdateCandidate(i, a): Change the ith position of q to symbol a.
• QueryFarWord(): Query if there exists s ∈ S with dist(s, q) > d, and if so, return the pointer
to s and the set of positions where s and q differ.

Usage of the above requires the following promises:
• Usage of Reset() must be preceded by obtaining a negative answer to QueryFarPair().
• Following resetting q to s ∈ S through usage of Reset(), the user has to guarantee that the
assertion dist(q, s) 6 d will hold at all times till the next usage of Reset().

• Every update to any word in S resets q to be undefined, so that Reset() needs to be invoked
again to enable operations on q.

Methods QueryFarPair(), Reset(), UpdateCandidate(), QueryFarWord() work in worst-case time
2O(d). Queries QueryFarPair() and QueryFarWord() return a false negative with probability 2−Ω(d);
there are no false positives.

A few remarks are in place regarding the use of randomness in the data structure of Lemma 3.2.
Namely, random bits are used solely in the initialization of the data structure, and the correctness
of subsequent uses of query methods depends on those initial random bits. As a result, the events
that queries return correct answers are not independent, meaning that the error probability cannot

1With clever optimizations, one can decrease the running time to be O((d+ 1)dpoly(n,L)) [17].
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be improved in the standard way by repeating each query many times. Instead, one can improve
the error probability by setting up multiple independent copies of the data structure of Lemma 3.2.

With Lemma 3.2 stated, we can show how to derive Theorem 3.1 from it.

Proof of Theorem 3.1 assuming Lemma 3.2. We initialize and maintain α log d independent copies
of the data structure provided by Lemma 3.2 for some large enough constant α, to be determined
later. Each update and each query is accordingly relayed to all these data structures; the output
of a query is the disjunction of outputs provided by the individual data structures. In this way, we
may assume that we have one instance of the data structure of Lemma 3.2 where the probability of
a false negative is reduced to (2−Ω(d))α log d = (d−Ω(d))α. The cost for this is that the running times
of all methods are increased by a multiplicative factor of O(log d); this will be immaterial in the
forthcoming complexity analysis.

It remains to implement the query: we look for a word c that is at Hamming distance at
most d from all the words in S. The idea is to run Algorithm 1 with all operations replaced by
suitable invocations of methods of the data structure of Lemma 3.2. Lines 1 and 3 are replaced
by invocations of methods QueryFarPair() and Reset(), respectively. In line 7, we invoke method
QueryFarWord(). Finally, in line 10 we use one UpdateCandidate() operation before recursing,
and we roll-back this update (using the UpdateCandidate() method again) when returning from
the recursion. The running time and the correctness (assuming no false negatives from the data
structure of Lemma 3.2) follow from the correctness of the original static algorithm and Lemma 3.2.
It is also easy to verify that the promises required by the data structure of Lemma 3.2 are kept.

It remains to bound the probability of a false positive. Clearly, a false positive might arise only
if some invocation of a method of the data structure of Lemma 3.2 returns a false negative. Since
the recursion tree of procedure ClosestString() has depth at most d and branching at most 3d, it
has at most 2(3d)d nodes, hence in total there are at most 1 + 2(3d)d invocations of methods of the
data structure of Lemma 3.2. By setting α large enough, we have (1 + 2(3d)d) · (d−Ω(d))α 6 2−Ω(d).
So by the union bound, the probability of an error is bounded by 2−Ω(d).

Now, we discuss the technical ideas behind the proof of Lemma 3.2. The key idea is that we can
efficiently maintain an approximate solution, as explained in the lemma below.

Lemma 3.3 (Approximate Closest String). There exists a data structure that maintains a
dictionary S of words in ΣL with amortized update time O(|Σ|), as well as a word o ∈ ΣL with
the following guarantee: if the answer to the Closest String instance (S, d) is positive, then
dist(o, s) 6 4|Σ| · d for every s ∈ S. Data structure can be initialized in O(nL) time.

Moreover, the data structure also maintains the set ∆(o, s) := {i ∈ [L] | o[i] 6= s[i]} for every
s ∈ S and, upon request, can return ∆(o, s) in time O(|∆(o, s)|). Finally, the data structure can
check whether dist(o, s) 6 4|Σ| · d for all s ∈ S in time O(1).

In Section 3.2 we prove Lemma 3.3. Next, in Section 3.3 we use an approach based on color
coding to leverage Lemma 3.3 to a data structure achieving the first part of Lemma 3.2: maintaining
a dictionary S and implementing query QueryFarPair(). Adding the functionality concerning the
candidate word q uses similar arguments and is presented in Section 3.4. Looking at the statement of
Lemma 3.3, the reader might be at this point worried that this plan involves complexities dependent
also on |Σ|. However, in Section 3.3 we will show how to reduce |Σ| to O(d) using color coding.

3.2 Approximate Closest String

In this section we prove Lemma 3.3. The main idea is to define o ∈ ΣL through an approximate
majority vote for every position, maintained in a lazy fashion. We formalize this through the
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following definition.

Definition 3.4 (Origin Word). An origin word for a dictionary S of words in ΣL is a word o ∈ ΣL

such that
| {s ∈ S | s[i] = o[i]} | > |S|

2|Σ|
for every i ∈ [L].

We say that the origin word o is good if dist(o, s) 6 4|Σ| · d for every s ∈ S.

By definition, if an origin word is good, then it is a solution for the Closest String instance
(S, 4|Σ|d). We now show a reverse “soundness” implication: if some origin word is not good, then
for sure there is no solution for (S, d).

Lemma 3.5. If for an instance (S, d) there exists an origin word that is not good, then the answer
to (S, d) is negative.

Proof. For the sake of contradiction, let us assume that there exists c ∈ ΣL such that dist(c, s) 6 d
for every s ∈ S. Moreover, there exists some origin word o ∈ ΣL and a witness w ∈ S such that
dist(o, w) > 4d|Σ|.

Let Co,w be the total count of matches between o and all words in S at the positions where o
and w differ. That is,

Co,w := |{(i, s) ∈ [L]× S such that w[i] 6= o[i] and s[i] = o[i]}|.

Let us show a lower bound on Co,w. Observe that for a witness w ∈ S there are at least dist(o, w)
positions i that are taken into account when computing Co,w. Moreover, by the definition of origin
word o, for every position i ∈ [L] at least |S|/(2|Σ|) words match o on position i. Therefore,

|S| · dist(o, w)

2|Σ|
6 Co,w. (2)

On the other hand, we assumed that there exists c ∈ ΣL such that dist(c, s) 6 d for every s ∈ S.
Since w ∈ S, by triangle inequality we have dist(s, w) 6 2d for every s ∈ S. Hence

Co,w 6 2d · |S|. (3)

By combining (2) and (3) we conclude that dist(o, w) 6 4|Σ|d, a contradiction.

Next, we argue that in O(|Σ|) time we can maintain some origin word for a given dictionary.

Lemma 3.6. In O(nL) time we can initialize a data structure that for a given dictionary S of
words in ΣL maintains some origin word o ∈ ΣL with amortized update time O(|Σ|). The data
structure also maintains the set ∆(o, s) := {i ∈ [L] | s[i] 6= o[i]} for every s ∈ S and upon request,
can return each set ∆(o, s) in time O(|∆(o, s)|). Finally, the data structure can check whether o is
good in time O(1).

Proof. Upon initialization, we set o ∈ ΣL so that for every position i ∈ [L], o[i] is a symbol that
occurs the most often among s[i] for s ∈ S. Clearly, o constructed in this way is an origin word.
We also compute the relevant sets ∆(o, s).

The data structure stores the following additional data. For every position i ∈ [L] and every
symbol α ∈ Σ, we maintain a counter indicating the number of words s ∈ S such that s[i] = α.
Each set ∆(o, s) is stored as a linked list (with no assumption on the order), plus there is an
array of length L whose ith entry is either null if i /∈ ∆(o, s), or contains a pointer to the relevant
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object on the linked list representing ∆(o, s). Additionally, with each set ∆(o, s) we maintain
its size. Additionally, we store a single counter indicating the number of words s ∈ S such that
|∆(o, s)| > 4|Σ|d. This counter can be used to answer queries about the goodness of o in time O(1).
Upon initialization, all of the above can be computed in time O(nL) in a straightforward way.

We now explain how the data structure behaves upon an update. Suppose position sj [i] is
modified. We update the relevant counters for position i and update ∆(o, sj) accordingly. Next,
we check whether the counter for the symbol o[i] at position i did not drop below |S|/(2|Σ|). If
not, then o remains an origin word and there is no need to change o. Otherwise, we modify o[i]
as follows.

By iterating through all words in S, we compute the most frequent symbol among s[i] for s ∈ S,
and we set o[i] to be this symbol. Moreover, we iterate over all s ∈ S and update ∆(o, s) accordingly,
by adding or removing the position i if needed. These operations require total time O(|S|).

We now argue that the amortized update time is O(|Σ|). By the pigeon-hole principle, when
symbol o[i] gets modified, it is replaced by a symbol that occurs at least |S|/|Σ| times on position
i in words from S. Also, this is true for the symbol placed as o[i] upon initialization. Therefore,
before every update when o[i] gets modified, there are at least |S|/(2|Σ|) updates on position i
where o[i] was modified. We can charge the running time O(|S|) used when modifying o[i] to those
previous updates, thus obtaining amortized update time O(|Σ|).

Now Lemma 3.3 follows by combining Lemmas 3.6 and 3.5.

3.3 Detecting dissimilar words

In this section we prove the first part of Lemma 3.2: we present a data structure that maintains
the dictionary and implements the method QueryFarPair(), and for now we ignore the methods
for handling q.

In the data structure, we will maintain hashes of all words in S to the binary alphabet. More
precisely, upon initialization of the data structure, we uniformly at random sample a function
h : [L]× Σ→ {0, 1} that assigns a label 0 or 1 to every position and symbol in the alphabet. This
function is fixed for the whole life of the data structure and stored in it. In notation, we shall use a
natural lift of h : ΣL → {0, 1}L that applies h position-wise. In the data structure we store, together
with S, the hashed dictionary S̃ := {h(s) : s ∈ S}. Observe that upon every update to S we can
also update S̃ in constant time.

We also maintain an approximate solution o ∈ {0, 1}L for the dictionary S̃ using the data
structure of Lemma 3.3. Recall that we can query the data structure of Lemma 3.3 about whether
dist(o, s̃) 6 8d for all s̃ ∈ S̃ and if this is not the case, then we know for sure that the instance (S̃, d)
of Closest String has a negative answer. Note that this conclusion implies that the original
instance (S, d) also has a negative answer.

In addition to the approximate solution o, the data structure of Lemma 3.3 provides an access
to the sets ∆(o, s̃) of positions where o and s̃ differ, for all s̃ ∈ S̃.

Finally, we also hash positions as follows. Upon initialization, we sample uniformly at random a
function π : [L]→ [16d] which maps positions to a set of 16d colors (numbers from 1 to 16d). Again,
this function is fixed for the whole life of the data structure and stored in it. For a word s̃ ∈ S̃, let
colorso,π(s) = {π(i) | i ∈ [L] and s[i] 6= o[i]} be the set of colors assigned to the symbols in s̃ that
are on positions where s̃ does not match the origin word o ∈ {0, 1}L.

In the data structure we maintain, for every C ⊆ [16d], the set Φ(C) defined as follows:

Φ(C) = {s̃ ∈ S̃ | colorso,π(s̃) = C}.

8



In other words, Φ(C) is the set of words from S̃ that get assigned color set C. The next statement
shows that sets Φ(C) can be maintained in 2O(d) time per update.

Lemma 3.7. We can initialize in 2O(d) ·nL time a data structure that for every C ⊆ [16d] maintains
the set Φ(C) in amortized 2O(d) time per update to S. When queried about any C ⊆ [16d], the data
structure in O(1) time either returns any element from Φ(C), or asserts that Φ(C) is empty.

The proof of Lemma 3.7 is deferred to Appendix A. It is rather technical and builds on the data
structure of Lemma 3.3 by additionally storing sets Φ(C) as doubly-linked lists. Every modification
to S̃ and o triggers a number of modifications to lists representing Φ(C), consisting of moving some
elements from one list to another. The same amortization argument as the one used in the proof of
Lemma 3.3 shows that the amortized update time is 2O(d).

Method: QueryFarPair()
1 if it is not the case that dist(o, s̃) 6 8d for all s̃ ∈ S̃ then
2 return Answer to (S, d) is negative.
3 for every X,Y ⊆ [16d] with |X4Y | > 2d do
4 if Φ(X) and Φ(Y ) are both nonempty then
5 return There are words s, s′ ∈ S with dist(s, s′) > 2d.
6 return It holds that dist(s, s′) 6 2d for all s, s′ ∈ S.

Algorithm 2: Pseudocode for the method QueryFarPair().

We now present implementation of the query operation; see Algorithm 2 for a pseudocode. We
first check whether dist(o, s̃) 6 8d for all s̃ ∈ S̃. As argued in Lemma 3.5, if this is not the case,
then we can safely conclude that the answer to the instance (S, d) is negative. Otherwise, we iterate
over every pair of sets X,Y ⊆ [16d] with |X4Y | = |(X \ Y ) ∪ (Y \ X)| > 2d. Then, we check
whether both Φ(X) and Φ(Y ) are nonempty. If that is the case, then (as we will argue) any pair
(s̃, s̃′) ∈ Φ(X)×Φ(Y ) satisfies dist(s̃, s̃′) > 2d, implying that the original words s, s′ ∈ S also satisfy
dist(s, s′) > 2d. Otherwise, if for every such X and Y at least one of Φ(X) or Φ(Y ) is empty, we
conclude that there is no pair s, s′ ∈ S with dist(s, s′) > 2d.

Because the number of pairs X,Y ⊆ [16d] is 2O(d), the query algorithm runs in 2O(d) time in
total. The next lemma shows that if the algorithm finds some pair of words and reports that they
are at distance larger than 2d, then this answer is correct.

Lemma 3.8. Suppose Algorithm 2 finds a pair X,Y ⊆ [16d] with |X4Y | > 2d and Φ(X) 6= ∅ and
Φ(Y ) 6= ∅. Then there are s, s′ ∈ S such that dist(s, s′) > 2d.

Proof. Consider any pair (s̃, s̃′) ∈ Φ(X)×Φ(Y ). Observe that for every color r ∈ X \ Y , there is a
position i with π(i) = r such that s̃[i] 6= o[i] (due to r ∈ X), and we have o[i] = s̃′[i] (due to r /∈ Y ).
So s̃[i] 6= s̃′[i], implying s[i] 6= s′[i]. Similarly for every r ∈ Y \X. Positions i as above have to be
pairwise different due to receiving different colors in π, so we conclude that s and s′ differ on more
than 2d positions.

To finish the proof, it remains to analyze the success probability of Algorithm 2.

Lemma 3.9. If there exists a pair a, b ∈ S with dist(a, b) > 2d, then Algorithm 2 detects such a pair
with the probability at least 2−O(d), or concludes that the answer to the instance (S, d) is negative.

Note that in Lemma 3.2 we promised error probability bounded by 2−Ω(d), while Lemma 3.9
provides a bound of 1−2−O(d) on the error probability. This can be easily remedied by maintaining
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2Θ(d) independent copies of the data structure. This increases the time of update and initialization
by a 2O(d) factor.

Proof of Lemma 3.9. First, we argue that after hashing the alphabet, we still have dist(h(a), h(b)) >
2d with sufficiently high probability. Let P ⊆ {i ∈ [L] | a[i] 6= b[i]} be any set of size exactly 2d+ 1
consisting of positions where a and b differ.

Let ã = h(a) and b̃ = h(b). First, we claim that with probability at least 2−O(d) it holds that
dist(ã, b̃) > 2d. Observe that for a fixed position i ∈ P , the probability that h assigns different
symbols to a[i] and to b[i] is 1/2. Since h is sampled on each position i ∈ [L] independently, the
probability that this happens for all positions in P is 2−|P | = 2−O(d).

From now on, let us assume that dist(ã, b̃) > 2d. Moreover, by Line 1 we may assume that
dist(o, s̃) 6 8d for every s̃ ∈ S̃. Consider the set

∆o(ã, b̃) := {i ∈ [L] | ã[i] 6= o[i] or b̃[i] 6= o[i]}.

Observe that since dist(o, ã) 6 8d and dist(o, b̃) 6 8d, we have k := |∆o(ã, b̃)| ∈ [2d + 1, 16d].
Now, we claim that with probability 2−O(d) the function π assigns different colors to all positions
in ∆o(ã, b̃). There are (16d)k different colorings on ∆o(ã, b̃). However, only

(
16d
k

)
k! of them assign

different colors to ∆o(ã, b̃). Therefore the probability that π assigns different colors on ∆o(ã, b̃) is:

Pr
[
|{π(i) | i ∈ ∆o(ã, b̃)}| = k

]
=

(
16d
k

)
k!

(16d)k
=

(16d)

(16d)
· · · (16d− k + 1)

(16d)
>

(16d)!

(16d)16d
> e−16d

where the last inequality follows from the well-known bound n! > (n/e)n. Hence, the probability
that π assigns different colors to all positions in ∆o(ã, b̃) is 2−O(d). Now, we claim that if that
indeed happens, then Algorithm 2 detects a suitable pair.

Let X and Y be sets of colors such that ã ∈ Φ(X) and b̃ ∈ Φ(Y ). It suffices to show that
|X4Y | > 2d. Observe that every position where ã and b̃ differ belongs to ∆o(ã, b̃), hence these
(more than 2d) positions receive different colors in π. Further, for every position where ã and b̃
differ, the color of this position belongs to X4Y , for outside of positions of ∆o(ã, b̃) the words o, ã, b̃
all agree. It follows that |X4Y | > 2d.

3.4 Maintaining a candidate solution

In this section we finish the proof of Lemma 3.2 by implementing the operations on the candidate
word q. This proof builds upon the construction from Section 3.3 using the same ideas, so we only
briefly discuss the additional elements that need to be maintained.

Observe that q is always reset to the first word s1 ∈ S and operations on q are performed under
the promise that dist(q, s1) 6 d at all times. Therefore, we maintain q implicitly by remembering
only at most d positions on which s1 and q differ, and what are the symbols of q on those positions.
This allows us to implement the reset and update operations for q in time 2O(d). (Recall here that
in Section 3.3 we in fact maintained 2O(d) independent copies of the data structure in order to boost
the error probability.) Also, we maintain the hashed version q̃ := h(q).

The method QueryFarWord() is implemented using a similar mechanism as was used in Sec-
tion 3.3. For technical reasons, we extend the palette of colors used by π from [16d] to [17d]. Then
we maintain the sets Φ(C) ⊆ S̃ for C ⊆ [17d] as before. However, instead of iterating over all
pairs X,Y ⊆ [17d] with |X4Y | > 2d, we first compute Q := colorso,π(q̃) and then iterate over all
X ⊆ [17d] such that |X4Q| > d and check whether Φ(X) is nonempty. The same reasoning as in
Section 3.3 shows that if there exists s ∈ S with dist(q, s) > d, then with high enough probability
we will find such an s as any element of Φ(X).
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Note that in the description above we did not specify how the set colorso,π(q̃) is computed. This
can be done by first obtaining the set ∆(o, s̃1) from the data structure of Lemma 3.3, and then
inspecting all the positions of ∆(o, s̃1) ∪∆(s1, q), where ∆(s1, q) are the at most d positions where
s1 and q differ. Note here that we may assume that |∆(o, s̃1)| 6 8d, for otherwise the data structure
presented in Section 3.3 must have returned that the answer to (S, d) is negative when resetting q.
Further, this reasoning shows that |∆(o, q̃)| 6 9d at all times. Note that in the correctness argument
presented in Section 3.3 we used the assumption that dist(o, ã) 6 8d and dist(o, b̃) 6 8d, and this
is why we chose a palette of colors of size 16d. Now we have dist(o, q̃) 6 9d and dist(o, s̃) 6 8d, so
a palette of 17d colors suffices.

It remains to argue that if s with dist(q, s) > d is found, the set P of positions on which q and s
differ can be reported in time O(d). But again, P can be constructed by inspecting all positions of
∆(o, s̃1)∪∆(q, s1), and this set has size O(d) and can be obtained by a query to the data structure
of Lemma 3.3. This finishes the proof of Lemma 3.2.

3.5 Closest String for small alphabets

In this section we analyse the complexity of Closest String for small alphabets and show that our
techniques also apply in this setting. That is, we prove the second half of Theorem 1.1, presented
below.

Theorem 3.10. The dynamic variant of Closest String admits a randomized data structure
with initialization time 2O(d)nL|Σ|1+o(1), amortized update time 2O(d), and worst-case query time
(|Σ| − 1)d2O(d). The answer to each query may result with a false negative with probability at most
2−Ω(d); there are no false positives.

The strategy is exactly the same as in Section 3.1. First, we present a static algorithm with run-
ning time (|Σ|−1)d ·2O(d) ·(nL)O(1), which is essentially the algorithm proposed by Ma and Sun [23].
Next, we show how to use Lemma 3.2 to implement this static algorithm to the dynamic setting.
The algorithm is presented using pseudocode as Algorithm 3. We present it somewhat differently
than Ma and Sun in order to streamline the analysis of the dynamic variant. The algorithm main-
tains three global values. The first one is a set F ⊆ [L] of fixed indices. The second one is a word
q ∈ ΣL that is a candidate for the solution, which at the start is set to be any word from S. The
third one is a budget b ∈ N, initially set to d.

We imagine the algorithm as a nondeterministic procedure that, having in mind some solution
c ∈ ΣL, guesses parts of c along the execution and appropriately modifies q. The set F is used to
keep track of the positions that are already assumed to be fixed as in F . As usual, nondeterministism
is determined by branching over all possibilities, and the total number of branches determines the
running time of the algorithm. At every point, even in branches where guesses were inconsistent
with c, the algorithm maintains the following invariant:

(♦) There is s ∈ S such that s[F ] = q[F ] and b = d−dist(q[F ], s[F ]), where we denote F = [L]\F .

In this way, one may think of b as of the budget that is left for changing symbols positions in q
outside of F : at most b of them can be still changed, for otherwise the solution would be too far
from s.

Every step of the algorithm works as follows. First, we find a word s ∈ S with dist(s, q) > d. If
no such word exists, then the current candidate q is a solution and we can terminate the procedure
claiming a positive answer. Otherwise, we compute the set P of positions where s and q differ, and
we remove from it all positions that were fixed before.
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Algorithm: ClosestStringSmallAlphabet(S, d)
1 Set F := ∅
2 Set q to be the first word s1 ∈ S
3 Set b := d
4 while exists s ∈ S such that dist(s, q) > d do
5 Find P := {i ∈ [L] such that s[i] 6= q[i]} \ F
6 if dist(s, q) > 2d or P = ∅ then
7 return False
8 Guess Q = {i ∈ P such that c[i] 6= q[i]} // c ∈ ΣL denotes the sought solution
9 if |Q| > b or Q = ∅ then

10 return False
11 for i ∈ Q do
12 Guess c[i] ∈ Σ \ {q[i]}
13 Set q[i] := c[i]

14 F := F ∪ P
15 b := min(d− dist(s, q), b− |Q|)
16 if b < 0 then
17 return False
18 return True

Algorithm 3: Pseudocode of a (|Σ|−1)d ·2O(d) ·(nL)O(1)-time static algorithm for Closest
String. To get a dynamic data structure with query time (|Σ| − 1) · 2O(d), use Lemma 3.2
for operations on q.

Next, we check whether dist(s, q) > 2d, which translates to the condition dist(s[F ∪ P ], q[F ∪
P ]) > 2d. If this is the case, we terminate and provide a negative answer: there is no way to obtain
a word at distance at most d from s by changing at most d positions in q. If P = ∅, we can also
terminate and provide a negative answer: already on fixed positions, our candidate q and s differ
by more than d. Otherwise, when dist(s, q) 6 2d and P 6= ∅, we guess exactly the symbols in c at
positions from P and we modify q to have q[P ] = c[P ]. This is done through a two-stage process:
first we guess the set of positions Q ⊆ P where q needs to be modified, and then we guess the
symbols of c at positions of Q; for each there are |Σ| − 1 possibilities. Note that we may restrict
attention to sets Q that are nonempty (for dist(s, q) > d) and satisfy |Q| 6 b (by invariant (♦)).
Finally, we add P to the set F of fixed indices and update b to the minimum of the two values:
d−dist(s, q) and b−|Q|. It is straightforward to verify that this way invariant (♦) is still maintained:
either s or the previous witness for (♦) may serve as the new witness for (♦). Clearly, if b became
negative, it is safe to terminate the branch. Otherwise we continue the search until a candidate q
at distance at most d from all strings in S is found.

This concludes the description of the algorithm. The correctness is clear from the description
as we return True only if our candidate is at the distance at most d from all input strings.

It is now straightforward to turn this algorithm into a dynamic data structure just as we did
in the proof of Theorem 3.1. Namely, we maintain the data structure of Lemma 3.2, and use it to
operate on the candidate word q. All distance checks can be implemented in linear time by verifying
the O(d)-sized difference sets provided by this data structure. We will later show that the whole
recursion tree of Algorithm 3 has total size at most (|Σ| − 1)d · 2O(d). Hence, as the operations in
the data structure of Lemma 3.2 take amortized time 2O(d), the complexity guarantees promised in
Theorem 3.10 follow in the same way as it was the case for Theorem 3.1. As for the error probability,
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we can maintain α · log |Σ| independent copies of the data structure of Lemma 3.2 for some large
constant α, so that the probability that this composite data structure returns a false negative is
reduced to (|Σ|−Ω(d))α. Then, just as in the proof of Theorem 3.1, it follows from the union bound
that the probability of a false negative in Algorithm 3 is at most 2−Ω(d).

We are left with bounding the running time of Algorithm 3, or more precisely, showing that
the whole recursion tree has size at most (|Σ| − 1)d · 2O(d). The argument conceptually follows the
reasoning of Ma and Sun [23]; we present it for completeness.

Runtime The key observation is the following lemma.

Lemma 3.11. Consider ith iteration of the while loop in Algorithm 3 (with any guesses made).
Let bi be the value of b before this iteration, and bi+1 be the value of b after this iteration. Then
bi+1 6 bi/2.

We first argue that the claimed runtime of Algorithm 3 follows from Lemma 3.11. Consider
any root-to-leaf path in the recursion tree of the algorithm; this corresponds to a single run of
Algorithm 3 treated as a nondeterministic procedure, with some guesses made along the way. For
iterations i = 1, 2, . . . , p of the while-loop, where p is the total number of iterations made, let bi be
the value of b at the beginning of the ith iteration, and let `i be the size of the set Q considered in
the ith iteration. Observe the following:

• We have bi 6 d/2i−1 for all i ∈ [p] (because b1 = d and, by Lemma 3.11, bi+1 6 bi/2 for all
i ∈ [p− 1]).

• We have 1 6 `i 6 bi for all i ∈ [p] (because in the algorithm we consider only nonempty sets
Q satisfying |Q| 6 b).

• We have
∑p

i=1 `i 6 d (because b decreases by at least `i in the ith iteration, and the procedure
terminates once b becomes negative).

Therefore, every root-to-leaf path in the recursion tree can be uniquely described by specifying the
following data:

(A) Positive integers `1, . . . , `p satisfying
∑p

i=1 `i 6 d.

(B) For each i ∈ [p], a choice of a subset Qi of size `i of the set Pi, where Pi, Qi are the sets P,Q
considered in the ith iteration.

(C) For each i ∈ [p], a choice of symbols guessed to be fixed at the positions of Qi.

For (A), it is well-known that the number of representations of d as a sum of numbers `1, . . . , `p is
bounded by 2O(d). For (C), the total number of choices is bounded by

p∏
i=1

(|Σ| − 1)`i 6 (|Σ| − 1)d.

Finally, for (B) we shall use the following known bound.

Lemma 3.12 (cf. Lemma 124 in [37]). If m, k are nonnegative integers, then
(
m+k
k

)
6 22

√
xy.
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Since we always have |Pi| 6 2d, the number of choices for (B) is bounded as follows:

p∏
i=1

(
2d

`i

)
6

p∏
i=1

22
√

2d`i 6
p∏
i=1

22
√

2d·d/2i−1
= 22

√
2·d·

∑∞
i=0 2−i/2

= 2O(d).

So all in all, the total number of root-to-leaf paths in the recursion tree is bounded by

2O(d) · 2O(d) · (|Σ| − 1)d = (|Σ| − 1)d · 2O(d),

as claimed.
It remains to prove the Lemma 3.11.

Proof of Lemma 3.11. Let qi and qi+1 be the candidate word respectively at the beginning and at
the end of the ith iteration, that is, after guessing is performed.

Recall that there is s ∈ S with dist(s, qi) > d. Further, recall that

bi+1 = min(d− dist(s, qi+1), bi − |Q|).

To prove that bi+1 6 bi/2, it suffices to show that

(d− dist(s, qi+1)) + (bi − |Q|) 6 bi,

or equivalently,
d 6 dist(s, qi+1) + |Q|. (4)

By triangle inequality we have

d < dist(s, qi) 6 dist(s, qi+1) + dist(qi, qi+1),

but we also have
dist(qi, qi+1) = |Q|.

So this establishes (4) and finishes the proof.

4 Applications of Meta-Theorems

In this section we first state a meta-theorem for string problems definable in first-order logic FO;
this result follows easily from the work of Frandsen et al. [20] using the classic Schützenberger-
McNaughton-Papert theorem [33, 38]. Then we explain how to use the meta-theorem for the
following toy problems: Disjoint Factors and Edit Distance. As usual with meta-theorems,
the parametric factor in the complexity guarantees of the obtained data structures is not explicit,
and typically is much higher than if one constructs the data structure “by hand”. Therefore, we
next show how to derive concrete data structures with concrete complexity guarantees for Disjoint
Factors and Edit Distance. Finally, we discuss a methodology for lower bounds introduced by
Amarilli et al. [4], and we apply it to derive lower bounds for those two problems.

14



4.1 A meta-theorem

We first need to recall basic knowledge on different equivalent views on regular languages. This
material is standard in the area of algebraic theory of languages, so we refer an interested reader to
the book of Bojańczyk [13] for a broader introduction. In particular, we explain the contemporary
understanding of the material, and for appropriate references and historical remarks, we refer to [13].

The first view is through the lens of logic. Fix a finite alphabet Σ. We consider the logic
MSO[Σ, <] operating on words. In this logic there are variables for single positions (denoted with
small letters) and subsets of positions (denoted with capital letters). The atomic formulas are of
the following form:

• equality test x = y;

• test x ∈ X checking that position x belongs to position subset X;

• for every a ∈ Σ, test a(x) checking that at position x there is symbol a; and

• test x < y checking that position x appears before position y.

Formulas of MSO[Σ, <] can be obtained from atomic formulas using standard boolean connec-
tives and quantification (both universal and existential, and applicable to both types of variables).
FO[Σ, <] is a fragment of MSO[Σ, <] where we disallow variables for subsets of positions.

A sentence is a formula without free variables. By w |= ϕ we mean that the sentence ϕ is satisfied
in the word w. For a sentence ϕ ∈ MSO[Σ, <], the language defined by ϕ consists of all words w in
which ϕ is satisfied. A language L ⊆ Σ? is MSO-definable if L is defined by some ϕ ∈ MSO[Σ, <]
as above, and FO-definable if it is defined by some ϕ ∈ FO[Σ, <]. It appears that regular languages
exactly coincide with ones definable in MSO.

Theorem 4.1. A language of finite words over a finite alphabet is regular if and only if it is MSO-
definable.

The next view is through semigroup homomorphisms. Consider a language L ⊆ Σ?. By endowing
Σ? with the concatenation operation we can regard it as a semigroup. For another semigroup S
and a (semigroup) homomorphism h : Σ? → S, we say that h recognizes L if there exists A ⊆ S
such that L = h−1(A); in other words, whether w ∈ L can be recognized by looking at h(w) and
determining whether it belongs to A. It turns out that regular languages are also exactly those that
are recognized by homomorphisms to finite semigroups.

Theorem 4.2. A language of finite words over a finite alphabet is regular if and only if it is
recognized by a homomorphism to a finite semigroup.

Further, it is known that if L is regular, then there exists a unique minimal — in terms of
cardinality — semigroup S such that there is a homomorphism from Σ? to S recognizing L. This
semigroup is called the syntactic semigroup for S.

It turns out that FO-definable languages can be characterized in terms of algebraic properties
of their syntactic semigroups. Here, a semigroup is aperiodic (or group-free) if it does not contain
any non-trivial group.

Theorem 4.3 (Schützenberger-McNaughton-Papert Theorem, [33, 38]). A regular language L is
FO-definable if and only if its syntactic semigroup is aperiodic.
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With these standard tools recalled, we can proceed to the setting of dynamic data structures.

Fix a finite alphabet Σ and consider a language L ⊆ Σ?. The word problem for L is to design a
data structure that maintains a dynamic word w ∈ Σ? and supports the following operations:

• init(w): Initialize the data structure with the given word w.

• update(i, a): Update w by replacing the symbol at position i by symbol a ∈ Σ.

• query(): Determine whether w ∈ L.

The complexity guarantees of such a data structure is typically measured in terms of n := |w|. Note
that this value is fixed upon initialization and then stays the same throughout the life of the data
structure.

We can also consider the word problem for semigroups. Suppose S is a semigroup. Then the
word problem for S is defined as above for words over S (that is, words w ∈ S?), where query is
redefined as follows: Output the (left-to-right) product of all the symbols in w.

Observe that the word problem for a regular language L ⊆ Σ? easily reduces to the word
problem for its syntactic semigroup S. Indeed, if h : Σ? → S is the homomorphism recognizing L,
say L = h−1(A) for some A ⊆ S, then in the reduction we can map symbols a ∈ Σ to their images
h(a) ∈ S, and whether w ∈ L can be deduced by checking whether h(w) ∈ A.

Frandsen et al. [20] proposed an efficient dynamic data structure for the word problem in ape-
riodic semigroups.

Theorem 4.4 ([20]). Let S be a finite aperiodic semigroup. Then there is a data structure for the
word problem for S with initialization time O(n), worst-case update time O(log log n), and worst-
case query time O(1).

By combining Theorems 4.3 and 4.4 using the reduction presented above, we obtain the following.

Theorem 4.5. Let Σ be a finite alphabet and suppose L ⊆ Σ? is FO-definable. Then there is a
data structure for the word problem for L with initialization time O(n), worst-case update time
O(log log n), and worst-case query time O(1).

A few remarks are in order. First, the proof of Theorem 4.4 relies on induction on the Khron-
Rhodes decomposition of the semigroup S, where in each step of the induction one applies van Emde
Boas trees [41]. The induction has depth bounded by the size of S, so one can view this data structure
as O(|S|) van Emde Boas trees stacked “on top of each other”. Consequently, the constants hidden
in the O(·) notation in Theorem 4.4 depend on S, but not horribly: they are polynomial in |S|.
However, there is a much more significant complexity blow-up hidden in Theorem 4.2. Specifically,
if a regular language L is defined by an FO[Σ, <] sentence ϕ, then the syntactic semigroup of L has
size bounded by a function of |ϕ|, but this function is in general non-elementary — it is basically a
tower of height equal to the quantifier rank of ϕ. This non-elementary dependence is known to be
unavoidable [39]. Therefore, whenever one applies Theorem 4.5 in order to obtain data structures
for a problem based on its description in FO, one should bear in mind that the constants hidden in
the O(·) notation depend non-elementarily on the length of the description.

Second, recently Amarilli et al. [4] gave a characterization of regular languages for which data
structures with guarantees as in Theorem 4.4 exist. This characterization renders the tractability
region to be a bit broader than just FO-definability, for instance the languages “on every even
position there is symbol a” or “in total there is an even number of symbols a” are not FO-definable,
but admit data structures for the word problem with constant update time. The characterization
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is expressed in algebraic terms and we could not find natural examples of parameterized string
problems that would not be FO-definable, but fall under the characterization. So we refrain from
giving more details and point an interested reader to [4] instead.

We now explain how to use Theorem 4.5 in practice on two examples: Disjoint Factors and
Edit Distance. In each case, the task boils down to defining the problem in FO[Σ, <] for an
appropriate alphabet Σ. We start with Disjoint Factors.

Lemma 4.6. Let k ∈ N and Σk = [k]. There is a sentence ϕk ∈ FO[Σk, <], computable from k,
such that for every w ∈ Σ?

k, w is a yes-instance of Disjoint Factors for parameter k if and only
if w |= ϕk.

Proof. In the sentence ϕk, we first make a disjunction over all permutations π : [k]→ [k]. For each
such π, we verify that there exist positions x1 < y1 < x2 < y2 < . . . < xk < yk such that for each
i ∈ [k], both at position xi and at yi there is symbol π(i). It is straightforward to express this
condition using an FO[Σk, <] sentence.

By applying Theorem 4.5 to the language defined by sentence ϕk provided by Lemma 4.6, we
obtain the following.

Corollary 4.7. There is a data structure for the dynamic Disjoint Factors problem with ini-
tialization time Ok(n), worst-case update time Ok(log log n), and query time O(1).

Note here that the query time can be a constant independent of k, as we can always recompute
the answer to the query following every update.

For Edit Distance, the formula is more complicated. For two words u, v ∈ Σ?, by u ⊗ v we
denote the word over (Σ ∪ {⊥})2, where ⊥ is a symbol not present in Σ, defined as follows:

• The length of u⊗ v is max(|u|, |v|).

• For each 1 6 i 6 min(|u|, |v|), we put u⊗ v[i] = (u[i], v[i]).

• For each min(|u|, |v|) < i 6 max(|u|, |v|), we put u ⊗ v[i] = (u[i],⊥) or u ⊗ v[i] = (⊥, v[i]),
depending on whether max(|u|, |v|) = |u| or max(|u|, |v|) = |v|.

Lemma 4.8. Let k ∈ N and Σ be a finite alphabet. There is a sentence ψk,Σ ∈ FO[(Σ ∪ {⊥})2, <],
computable from k and Σ, such that for all u, v ∈ Σ?, we have ed(u, v) 6 k if and only if u⊗v |= ψk,Σ.

Proof. Denote Γ = (Σ∪{⊥})2 for brevity. Note that for two words u′, v′ ∈ Σ? we have ed(u′, v′) 6 k
if and only if there exist integers a, b, c > 0 with a+ b+ c 6 k such that one can remove a positions
from u′ and b positions from v′ so that the resulting strings have equal length and differ on exactly
c positions. In such case, we will call the pair (u′, v′) (a, b, c)-editable.

For all (a, b, c) ∈ {0, 1, . . . , k}3 with a + b + c 6 k and s, t ∈ {−k, . . . , k}, we shall construct a
formula αs,t,a,b,c(x, y) that satisfies the following: for two positions 1 6 x 6 y 6 max(|u|, |v|), we
have

u⊗ v |= αs,t,a,b,c(x, y) if and only if (u[x : y], v[x+ s : y + t]) is (a, b, c)-editable.

Here, we use the convention that if the specified range [x : y] or [x+ s : y + t] does not fit into the
corresponding word, or makes no sense due to x > y + 1 or x + s > y + t + 1, then αs,t,a,b,c(x, y)
should be false (this can be easily recognized in FO[Γ, <]). If we achieve the above, the formula
ψk,Σ can be defined as the disjunction of all formulas α0,t,a,b,c(1, nu) for a, b, c as above, where 1 is
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the first position, nu is the last position of u, and t ∈ {−k, . . . , k} is such that nu + t is the last
position of v (all these are easily definable from u⊗ v in FO[Γ, <]).

The construction is by induction on a + b. For the base case a = b = 0, we may define
αs,t,0,0,c(x, y) as follows: if s 6= t then the formula is always false, and otherwise it checks whether
there are exactly c different positions z such that x 6 z 6 y and u[z] 6= v[z + s]. This can be
checked by comparing the first coordinate of u ⊗ v[z] with the second coordinate of u ⊗ v[z + s].
Since |s| 6 k by assumption, it is straightforward to formulate this assertion in FO[Γ, <].

We proceed to the induction step. So assume a+ b > 0, say a > 0; the construction in the case
b > 0 is analogous, so we omit it. The idea is that we guess, by existential quantification, the first
position in u[x : y] that gets removed, and use simpler formulas given by the induction assumption.
More precisely, αs,t,a,b,c(x, y) can be defined as the conjunction of formulas

∃z. (x 6 z 6 y ∧ αs,r,0,b1,c1(x, z − 1) ∧ αr−1,t,a−1,b2,c2(z + 1, y)) ,

for all integers b1, b2 > 0 with b1 + b2 = b, c1, c2 > 0 with c1 + c2 = c, and r ∈ {−k+1, . . . , k}. Here,
z − 1 and z + 1 are a syntactic sugar for the predecessor and the successor of z, respectively, which
are easily definable in FO[Γ, <]. It is straightforward to see that the construction of αs,t,a,b,c(x, y)
as above satisfies the required properties.

Similarly as before, by combining Theorem 4.5 with Lemma 4.8 we obtain the following.

Corollary 4.9. There is a data structure for the dynamic Edit Distance problem with initializa-
tion time Ok,Σ(n), worst-case update time Ok,Σ(log log n), and query time O(1).

5 Improved data structures

In the Section 4, we showed that powerful meta-theorem seamlessly guarantee Ok(log log n) worst-
case update time for dynamic versions of Disjoint Factors and Edit Distance. Now, we
illustrate that the dependence on k can be significantly improved by exploiting combinatorial struc-
ture of this problems. In the Section 5.1 we give an improved dependence for Disjoint Factors
and in Section 5.2 we present a data structure for Edit Distance.

5.1 k-Disjoint Factors

Lemma 5.1. There is a data structure for the dynamic Disjoint Factors problem with initial-
ization time O(kn), worst-case update time O(log log n), and query time O(k2k log log n).

As a by product we also present an improved O(k2k + kn) time algorithm for static version
of Disjoint Factors problem. This improves an O(k2kn) time algorithm due to Bodlaender et
al. [12].

Corollary 5.2. Disjoint Factors can be statically solved in O(k2k + kn) time.

We calculate the solution to the Disjoint Factors with dynamic programming. The entries
of the dynamic programming are parameterized by sets S ⊆ Σ. For each entry, we store a minimal
integer ` ∈ [n], such that a word w[1 : `] can be represented as disjoint factors with letters from S.

We compute the entries of the dynamic programming in the bottom-up fashion. In the base
case S = ∅ the answer is ` = 1. When S is nonempty, we guess a letter s ∈ S. Next, we determine
the position of `s for set S \ {s}. Then, we look for the first s-factor after position `s in the word
and return the position of its right-endpoint. We summarize is as follows:
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DF[S] :=

{
mins∈S {next s-factor after DF[S \ {s}]} if S 6= ∅,
1 otherwise.

For correctness, observe that every optimal solution to Disjoint Factor can be represented
as a permutation π : [k] → [k] that corresponds to the order in which each factor appears in the
word. Moreover, if the solution to Disjoint Factor that is represented by permutation π exists,
then it can be detected by greedily taking subsequent factors in the word (cf., [12]).

Now, we focus on the exact implementation of determining a next factor after position `.

Proof of Corolary 5.2. It remains to show that there exists a data-structure that can be initialized
in O(kn) time and can answer queries of the form (s, `) ∈ Σ× [n]. The query returns a position of
the first right-endpoint of s-factor in the word w[` : n]. To achieve this, we store the table next[s, `]
for every s ∈ Σk and ` ∈ [n]. It stores the minimal position of a letter s ∈ Σk in the word w[` : n].
To compute next[s, `] for a fixed s ∈ Σk, we fill it starting from ` equal to n down to 1. Initially
next[s, n] = ∞ for every s ∈ Σk. If w[`] = s, then we set next[s, `] = `. Otherwise, we know
that the next position of a letter s is after ` and we set the value of the table next at s and ` to
next[s, `+ 1].

Therefore, to find the position of next s-factor after position ` we lookup the value of `′ :=
next[s, `]. This means that next s-factor starts at position `′. We return the position of next[s, `′]
as the right-endpoint of this s-factor.

Observe, that we can compute table next in time O(kn). Moreover, each next query takes O(1)
time. Hence, with DF procedure we can solve Disjoint Factor in O(k2k + kn) time.

Proof of Lemma 5.1. In the dynamic setting, we need to show that for every s ∈ Σk and ` ∈ [n]
the position of a next s-factor after position ` can be found in O(log log n) time. To achieve that,
for every letter s ∈ Σk we maintain a van Emde Boas tree Ts. In the data structure, Ts stores
the positions of a letter s in the updated word. Note, that a single update to Ts can be done in
O(log log n) time. During query, for a given s ∈ Σk and ` ∈ [n] we can ask for the next position of
a letter s after `. A single query to van Emde Boas tree takes O(log log n) times.

Similarly to the proof of Corollary 5.2, we can use Ts to find a position of s-factor after a
given position in O(log log n), with two queries to Ts. Observe, that during an update to Disjoint
Factor we need to update only two van Emde Boas trees. Hence update takes O(log log n) time.
Moreover, DF procedure can answer queries to Disjoint Factor in O(k2k log logn) time.

5.2 Edit Distance

Lemma 5.3. There is a data structure for the dynamic Edit Distance problem with initialization
time O(kn), worst-case update time O(k log logn), and query time O(k2 log log n).

The data structure is based on the classical result of Landau and Vishkin [28] who gave a static
O(n+k2) time algorithm for k-Edit Distance problem. Our simple observation is that LCE-queries
in their algorithm can be efficiently maintained with van Emde Boas trees.

Before we proceed with the proof of Lemma 5.3 let us recall the definition of Longest Common
Extension query. Let x, y be two strings of length at most n. We define LCE(i, j) as the largest
integer ` ∈ [n], such that x[i : i + `] = y[j : j + `]). We show, that with van Emde Boas data
structure, we can efficiently maintain an answer to the LCE queries when |i− j| is small.

Proposition 5.4 (Dynamic LCE-queries). For any k ∈ N, there is a data structure that maintains
words x, y ∈ Σn and supports the following operations:
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• init(x, y): Initialize the data structure with the given words x, y,

• update(w, i, s): Update a word w ∈ {x, y} by replacing the symbol at position i with s ∈ Σ,

• query(i, j): if |i− j| 6 k return LCE(i, j) of x, y.

The init operation requires O(kn) worst-case time. Operations update and query can be executed in
worst-case time O(k log log n) and O(log log n), respectively.

Proof. For every fixed p ∈ {−k, . . . , k} we maintain the van Emde Boas data-structure Tp. Each Tp
maintains a set Sp ⊆ [n] defined as:

Sp := {i ∈ [n] such that x[i] 6= y[i+ p]}.

Observe, that sets Sp can be efficiently maintained with van Emde Boas data structures. During
each update to word x[i] we iterate over every p ∈ {−k, . . . , k}, check if x[i] 6= y[i+ p] and update
Tp accordingly. Single query to LCE can be done with a single query to Tp.

With that data-structure to answer LCE-queries under text updates we can proceed with the
description of the dynamic data structure for k-Edit Distance with O(k log logn) worst-case
update time.

Proof of Lemma 5.3. When length of x and y differ by more than k then the edit distance between
x and y must be greater than k and we can conclude that the answer is negative. Our algorithm is
based on the static algorithm of Landau and Vishkin [28]. They consider the dynamic programming
table D[i, j] := ed(x[1 : i], y[1 : j]) for edit distance. They claim that it suffices to touch only O(k2)
entries of the table D in order to retrieve D[|x|, |y|] (if its value is O(k)).

The main observation of the static O(n+ k2) time algorithm of Landau and Vishkin [28] is that
D[i+1, j+1] ∈ {D[i, j], D[i, j]+1}. Therefore, it is always beneficial to greedily take LCE to compute
the next value in the table D. Because we assumed that the edit distance between x and y is at
most k, we need to perform at most k queries to LCE. Note that we consider only values D[i, i+ p]
for p ∈ {−k, . . . , k}. Hence we need to touch at most 2k + 1 entries with value exactly ` for every
` ∈ [k]. In total number of entries in table D touched by Landau and Vishkin algorithm is O(k2).

It remains to augment this static algorithm into the dynamic setting. We keep track of O(k)
data structures from Proposition 5.4 to emulate LCE queries (each data-structure corresponds to
one diagonal p ∈ {−k, . . . , k} of Landau-Vishkin algorithm). Single update may require modifi-
cation to O(k) of this data structures which result in O(k log log(n)) update time. Single query
to Edit Distance problem takes O(k2 log logn) time because we Vishkin and Landau algorithm
performs O(k2) queries to LCE (each can be done in O(log log(n)) time with a data structure from
Proposition 5.4).

6 Lower bounds

In the prefix-U1 problem the task is to maintain a subset S of the universe {1, . . . , n} under dele-
tions and insertions, and support threshold queries: given i ∈ [n], decide whether S contains some
element that is 6 i. The prefix-U1 problem can be solved in deterministic O(log log(n)) time with
a predecessor search [41, 36] or in expected O(

√
log log n) time if randomization is allowed [40, 25].

(Here, by time we mean the worse of the update and query times.) Unfortunately, no unconditional
lower bounds is known for prefix-U1.
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Amarilli et al. [4] presented a large class of problems that are at least as hard as the prefix-U1

problem. Moreover, they showed that there are problems equivalent to prefix-U1. These led them
to conjecture that there is no data structure for prefix-U1 that offers updates and queries in O(1).

Conjecture 6.1 ([4]). There is no data structure for prefix-U1 that achieves O(1) amortized time
for updates and queries in the word-RAM model.

For large enough word-size w the complexity of even harder Predecessor is O(1) in the word-
RAM model [21]. However, for general w and n, there are tight lower bounds [36]. In Conjecture 6.1
we just expect that the complexity of prefix-U1 cannot be O(1) for general w and n.

We say that a problem P is prefix-U1-hard if assuming that P admits a data structure achieving
amortized O(1) time of operations, the same can be said also about prefix-U1. In this section we
show that the dynamic versions of Disjoint Factors and of Edit Distance are prefix-U1-hard.

6.1 Lower bound for Disjoint Factors

Now we prove that the k-Disjoint Factors problem is prefix-U1-hard for k = 3. We complement
our result and show that Disjoint Factors for k = 2 admits a data structure with operations
taking O(1) time.

Lemma 6.2. Unless Conjecture 6.1 fails, there does not exist a data structure for the dynamic
variant of Disjoint Factors for k > 3 with O(1) amortized update and query time.

Proof. We show a reduction from prefix-U1 to Disjoint Factors on alphabets of size 3. Without
loss of generality let us assume that Σ := {0, 1,#}. Assume that S ⊆ [n] is the set maintained in
the prefix-U1 problem. Based on S we construct a word:

w(S) := 1 α1 α2 . . . αn 0 # 0 0,

where αi is 1 if i ∈ S and 0 otherwise. On w(S) we maintain the assumed data structure for
Disjoint Factors. The updates to set S are relayed to w(S) in a natural manner. For a threshold
query to prefix-U1 of form i ∈ [n] we do the following:

• Temporarily change the symbol at position (i+ 2) of w(S) to #.

• Query the data structure for Disjoint Factors to decide whether the current word is a
positive instance, and return this answer as the answer to the query.

• Finally, revert the word back to the original w(S).

This concludes the construction of the reduction. Observe, that each step of that reduction can be
implemented in (amortized) O(1) time.

For correctness, observe that after a query i ∈ [n] the input to Disjoint Factors is of the
form (when i < n):

1 α1 . . . αi # αi+2 . . . αn 0 # 0 0.

In the resulting word, there are only two occurrences of symbol #. Therefore, if the answer to
Disjoint Factors is positive, then word #αi+2 . . . αn# is a #-factor. Observe that two last letters
0 0 already form a 0-factor. We are left with determining the position of a 1-factor. However, all
factors need to be pairwise disjoint. Hence 1-factor exists iff at least one of α1, . . . , αi is 1. This is
possible only if [i] ∩ S 6= ∅, which proves the correctness of our reduction.
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Now we show that Disjoint Factors for k = 2 can be maintained in O(1) time. We first need
a simple lemma.

Lemma 6.3. For any word w ∈ Σ?, if every symbol in w occurs more than |Σ| times, then the
answer to Disjoint Factors on w is positive.

Proof. Let k := |Σ|. We prove the statement by induction on k > 1. In the base case k = 1 the
statement trivially holds. Let w ∈ Σ? be a word over alphabet of size k were each letter appears
at least k + 1 times. Let i ∈ [n] be the maximal index such that no symbol from Σ is repeated in
w[1 : i]. It follows that in w[i+ 1 : n] each symbol occurs at least k times. By the maximality of i
the symbol α := w[i+ 1] occurs twice in w[1 : i+ 1]. Let us greedily take these two occurrences of
α as an α-factor.

Consider the word w[i + 1 : n] and delete from it all occurrences of α. This word contains
k − 1 symbols and each symbol occurs at least k times. Therefore, by the induction assumption it
contains k− 1 disjoint factors. By combining them with our α-factor, we see that the original word
w contains k disjoint factors.

Now, we show that Disjoint Factors for binary alphabets can be dynamically maintained in
O(1) time.

Lemma 6.4. There exists a data-structure for the dynamic variant of Disjoint Factors for
k = 2 that supports updates and queries in amortized time O(1).

Proof. Consider Lemma 6.3 for an alphabet of size 2, say Σ = {0, 1}. If both symbols occur at least
3 times in a given word, then the answer to Disjoint Factors is positive. On the other hand, if
one symbol appears less than twice, then the answer to Disjoint Factors must be negative.

It remains to consider the situation when one of the symbols occurs exactly twice. Let w ∈ Σn

be the considered word Without loss of generality let 1 be the symbol that occurs twice in w on
positions i, j ∈ [n]. Therefore, we need to take these positions to construct a 1-factor. Observe,
that if an answer to Disjoint Factors is positive then the 0-factor must be contained in either
w[1, i − 1] or w[j + 1 : n]. Since the symbol 1 appears only twice, both of these words consist of
symbol 0 exclusively. Hence the answer to Disjoint Factors is negative iff i 6 2 and j > n− 1.

Necessary information to store and verify this procedure can be easily maintained in O(1)
update/query time.

6.2 Lower bound for Edit Distance

Next, we prove a lower bound for Edit Distance problem for k = 2. In this section we consider
words over alphabet Σ = {a, b, c}. Before we proceed let us consider a simple gadget.

Claim 6.5. Consider any word w ∈ {a, b}n. Then the edit distance between words

acaw cac and cacw aca

is equal to 2 if w = an. Otherwise, if w contains any symbol b, then the edit distance is strictly
greater than 2.

We postpone the proof of Claim 6.5 for a moment. Let us now use it to prove the prefix-U1-
hardness of Edit Distance for distances at least 2.

Lemma 6.6. Unless Conjecture 6.1 fails, there does not exist a data structure for the dynamic
variant of Edit Distance for k > 2 that supports updates and queries in amortized time O(1).
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Proof. We reduce prefix-U1 to 2-Edit Distance on Σ = {a, b, c}. Let S ⊆ [n] be the set
maintained in the prefix-U1 problem. Based on S we maintain the following input words to the
Edit Distance problem:

xS := a c aα1 . . . αn a a a

yS := c a cα1 . . . αn a a a

where αi := b if i ∈ S and αi := a otherwise. Updates to S are naturally relayed to xS and yS .
During a query i ∈ [n] to the prefix-U1 problem we make the following modifications in xS

and yS . First, we replace symbols in xS [i + 3 : i + 5] with cac and in yS [i + 3 : i + 5] with aca.
After the modification our two words look as follows (when i < n− 3):

a c aα1 . . . αi c a cαi+4 . . . αna a a

c a cα1 . . . αi a c aαi+4 . . . αna a a

Next we query the data structure for Edit Distance to find out whether the edit distance between
these two words is larger than 2. If so, we conclude that the answer to prefix-U1 query is positive,
and otherwise it is negative. Then, we clean up and restore the words to the original form of xS
and yS . This concludes the description of our reduction. Observe that all the steps can be done in
(amortized) O(1) time.

For the correctness, observe that during a query, the input words to Edit Distance are of
the following form: acaw cac v and cacw aca v, for some w, v ∈ {a, b}?. By Claim 6.5 the edit
distance between these two words is 2 iff w = a?. This happens iff S ∩ [i] = ∅, which concludes the
correctness proof.

The remaining proof of Claim 6.5 can be shown by a diligent case analysis.

Proof of Claim 6.5. Observe that the edit distance between words is at least 1. Indeed, on one hand
the words have equal length hence only a single substitution is possible. On the other hand, the
Hamming distance between words is 6 so a single substitution operation is not sufficient.

Hence, we need to verify when it is possible to transform the first word into the second word
by using two edit operations. Because the words have an equal length and the Hamming distance
between them is 6, two substitutions are not sufficient. Therefore, only insertions and deletions are
possible. We cannot perform just two insertions or just two deletions to the first word, because the
words have the same length. Therefore, we can only do one insertion and one deletion.

Observe that initially the number of symbols a, b, and c is the same in the both words. Therefore,
the letter we insert and the letter we delete must be the same letter. On the other hand, the words
differ at the first and the last position. Hence, we can only (a) insert c to the first position of the
first word and delete c from the last position of the first word; or (b) delete a from the first position
of the first word and insert a to the last position of the first word. Now, observe that (i) if w = an

then the words are the same after applying (a), and (ii) if there is at least one symbol b in w, then
regardless whether we apply (a) or (b), the operations cause a misalignment at the position of bs
and the words differ.
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A Omitted proofs

Proof of Lemma 3.7. We assume the familiarity with the proof of Lemma 3.3, as our data structure
will extend the one proposed there. Recall that in the context of Lemma 3.7, we maintain the data
structure of Lemma 3.3 for the dictionary S̃ and o is the maintained word.

The data structure of Lemma 3.3 stores, for every s̃ ∈ S̃, the following set:

∆(o, s̃) = {i ∈ [L] | o[i] 6= s̃[i]}.

As, we have a fixed coloring π : [L]→ [16d], we can maintain a table of counters

T (s̃, c) := |{i ∈ [L] | π(i) = c and i ∈ ∆(o, s̃)}| for all s̃ ∈ S̃ and c ∈ [16d].

Upon initialization, we explicitly compute T (s̃, c) for every s̃ ∈ S̃ and c ∈ [16d] in O(nL + nd)
time. During an update to the position i ∈ [L] of a word s̃ ∈ S̃ we check if o[i] 6= s̃[i] and update
the number of colors in T (s̃, c) based on π(i) accordingly. It may happen that the update to s̃ at
position i triggered a modification of the word o at position i. Then we need to change T (s̃, π(i))
for every s̃ ∈ S̃. Note that this alone requires O(|S|) time. However, recall that in the proof of
Lemma 3.3 we argued that before update when the position i of the word o changes, there were at
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least |S̃|/4 updates to that position where o was not modified (recall here that we work over the
binary alphabet). Therefore, as in the proof of Lemma 3.3, we may charge the running time O(|S|)
to those previous updates to argue that the amortized update time is O(1).

Observe that based on the table T , we can compute the set colorso,π(s̃) = {π(i) | i ∈ [L] and s̃[i] =
o[i]} for any given s̃ in time O(d), because it is enough to iterate through all c ∈ [16d] and check
whether T (s̃, c) > 0.

Now we describe how to maintain the sets

Φ(C) = {s̃ ∈ S̃ | colorso,π(s̃) = C} for every C ⊆ [16d].

Each set Φ(C) is stored as a doubly-linked list of pointers to words from S̃. Upon initialization, we
iterate over every s̃ ∈ S̃, lookup the value of Cs̃ := colorso,π(s̃) and add a pointer to s̃ to the list
Φ(Cs̃). Observe, that this operation can be implemented in total time 2O(d) + nL time, as we can
compute sets Cs̃ for all s̃ ∈ S̃ in total time O(nL).

Next, when a word s̃ is updated on some position and is changed to s̃′, we compute the previous
set of colors C := colorso,π(s̃) and the new set of colors C ′ := colorso,π(s̃′). As argued, this operation
can be done in O(d) time. Next, we delete the pointer to the word s̃ from the list Φ(C) and append
a pointer to s̃′ to list Φ(C ′). Alongside s̃ we store the pointer to its list entry in the list Φ(C ′) in
order to be able to remove it efficiently. Both of these operations can be implemented in O(1) time.
During a query C ⊆ [16d] we return any element from the list Φ(C) or assert that it is empty in
O(1) time.

27


	1 Introduction
	2 Preliminaries
	3 Closest String
	3.1 Branching for Closest String
	3.2 Approximate Closest String
	3.3 Detecting dissimilar words
	3.4 Maintaining a candidate solution
	3.5 Closest String for small alphabets

	4 Applications of Meta-Theorems
	4.1 A meta-theorem

	5 Improved data structures
	5.1 k-Disjoint Factors
	5.2 Edit Distance

	6 Lower bounds
	6.1 Lower bound for Disjoint Factors
	6.2 Lower bound for Edit Distance

	A Omitted proofs

