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Abstract

We prove that for any triangle-free intersection graph of n axis-parallel segments in the plane,
the independence number α of this graph is at least α > n/4 + Ω(

√
n). We complement this with

a construction of a graph in this class satisfying α 6 n/4 + c
√
n for an absolute constant c, which

demonstrates the optimality of our result.
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1 Introduction

For a graphG, the independence number α(G) is the maximum size of an independent set inG. Both lower
and upper bounds on the independence number were intensively studied in various graph classes. In this
paper, we study the independence number in classes of geometric intersection graphs.

For a family of geometric objects S in the plane, the intersection graph G(S) has vertex set S and two
objects are considered adjacent if they intersect. Naturally, the independence number α(S) is de�ned as
the maximum size of a subset of objects that are pairwise disjoint.

A simple lower bound on the independence number can be often obtained by studying the chromatic
number χ(G) — the minimum number of colors needed to properly color the vertices of G — and using
the obvious inequality α(G) > n/χ(G). This strategy does not alway provide optimum lower bounds,
which will be also the case in this work.

Speci�cally, we consider intersection graphs of axis-parallel segments in the plane where no three
segments intersect at a single point. For simplicity, we will denote this class of graphs by Gseg. Observe
that we have χ(G) 6 4 for everyG ∈ Gseg, because we can use two colors to properly color the horizontal
segments, and another two for the vertical segments. Hence, ifG ∈ Gseg has n vertices, then α(G) > n/4.

Our two main results, presented below, prove that this simple lower bound can be always improved
by an additive term of the order

√
n, but no further improvement is possible.

Theorem 1. Let G be a graph in Gseg with n vertices. Then the independence number of G is at least

α(G) >
n

4
+ c1
√
n,

for some absolute constant c1.

Theorem 2. For any n ∈ N there exists a graph G in Gseg on n vertices with independence number

α(G) 6
n

4
+ c2
√
n,

for some absolute constant c2.

Consequences. The independence number is often studied in relation to the clique covering number.
A clique in a graph is a set of pairwise adjacent vertices, and the clique covering number θ(G) of a graph
G is de�ned as the minimal size of a partition of the vertex set of G into cliques. For any graph G, the
clique covering number θ(G) is a natural upper bound on the independence number α(G). Indeed, an
independent set contains at most one vertex from each clique. This implies that for any graph G the ratio
θ(G)/α(G) is at least one. Giving an upper bound on this ratio is a question that was studied for several
classes of intersection graphs (e.g. [6], [7]). In this topic, the main open question concerns the relation
between the independence number and the clique covering number in intersection graphs of axis-parallel
rectangles.

Conjecture 1 (Wegner [8], 1965). Let G be the intersection graph of a set of axis-parallel rectangles in the
plane. Then

θ(G) 6 2α(G)− 1.

For an intersection graph G of axis-parallel rectangles the best known bound on the clique covering
number is θ(G) = O(α(G) log2(log(α(G)))) by Correa et. al. [1]. In particular, no linear upper bounds
are known. Even, obtaining lower bounds on the maximal ratio θ/α was until recently an elusive task.
For nearly thirty years after Wegner formulated his conjecture, the largest known ratio remained 3/2,
obtained by taking �ve axis-parallel rectangles forming a cycle. In 1993, Fon-Der-Flaass and Kostochka

1



presented a family of axis-parallel rectangles with clique cover number 5 and independence number 3 [3].
Only in 2015, Jelínek constructed families of rectangles with ratio θ/α arbitrarily close to 2, showing that
the constant of 2 in Wegner’s conjecture cannot be improved1.

One consequence of our results is a proof that the ratio 2 in Wegner’s conjecture cannot be improved
even in the highly restricted case of axis-parallel segments, even with the assumption of triangle-freeness.
More precisely, we have the following corollary.

Corollary 1. For any ε > 0, there exists a graph G in Gseg such that

θ(G) > (2− ε)α(G).

Corollary 1 is a consequence of the full version of Theorem 2 (see Section 3).
Corollary 1 can be further strengthened to the fractional setting, implying a lower bound on the inte-

grality gap of the standard LP relaxation of the independent set problem. Namely, consider the fractional
independence number of a graph G, denoted α?(G), which is de�ned similarly to α(G), but every vertex
u can be included in the solution with a fractional multiplicity xu ∈ [0, 1], and the constraints are that
xu + xv 6 1 for every edge uv of G. Similarly, in the fractional clique cover number θ?(G) every clique
K in G can be included in the cover with a fractional multiplicity yK ∈ [0, 1], and the constraints are
that

∑
K : v∈K yK > 1 for every vertex v. In triangle-free graphs the linear programs de�ning α?(G) and

θ?(G) are dual to each other, hence

α(G) 6 α?(G) = θ?(G) 6 θ(G) for every triangle-free G.

The proof of Corollary 1, based on the full version of Theorem 2, actually gives the following.

Corollary 2. For any ε > 0, there exists a graph G in Gseg such that

α?(G) > (2− ε)α(G).

Consequently, the integrality gap of the standard LP relaxation of the maximum independent set problem in
graphs from Gseg is not smaller than 2.

We note that recently, Gálvez et al. gave a polynomial-time (2 + ε)-approximation algorithm for
the maximum independent set problem in intersection graphs of axis-parallel rectangles [4, 5]. Thus,
Corollary 2 shows that one cannot improve upon the approximation ratio of 2 by only relying on the
standard LP relaxation, even in the case of axis-parallel segments. Note that in this case, obtaining a
2-approximation algorithm is very easy: restricting attention to either horizontal or vertical segments
reduces the problem to the setting of interval graphs, where it is polynomial-time solvable.

2 The lower bound: proof of Theorem 1

The goal of this section is to prove Theorem 1. For this, we examine a graphG ∈ Gseg, and we exhibit three
di�erent independent sets in G by constructing three di�erent subsets of disjoint segments. A trade-o�
between these three independent sets then results in a lower bound.

The set of geometric objects S is called a representation of its intersection graph G(S) (note that a
graph can have multiple representations). Our proof starts with some observations on the possible sets of
segments representing a graph in the class Gseg. Let G be a graph in Gseg with n vertices and let S be a
representation of G. Thus, S consists of axis-parallel segments, no three of which meet at one point. We

1The former construction is attributed to Jelínek in [1, Ackowledgment].

2



may assume that in S every two parallel segments that intersect meet at a single point, called the meeting
point. If two segments do not meet at a single point, we can choose any common point and shorten both
segments up to this common point. Since no three segments of S meet at one point, all intersections are
preserved and the modi�ed set of segments is still a representation of G. Further, we may assume that if
two orthogonal segments intersect, their intersection point lies in the interiors of both of them. Indeed,
otherwise we could slightly extend one or both of these segments around the meeting point. Finally, we
may assume that the segments of S lie on a grid of size `horizontal × `vertical so that the segments lying on
the same grid line induce a path in the intersection graph. Indeed, if on a single grid line the segments
induce a disjoint union of several paths, then we can move these paths slightly so that they are realized on
separate grid lines. A representation S of G with the properties described above is called favorable.

To give constructions for the subsets of pairwise disjoint segments in a favorable representation S, we
�rst need some notation. Suppose the `horizontal × `vertical grid has `even grid lines with an even number
of segments and `odd grid lines with an odd number of segments. In total there are seven segments which
lie on a grid line with an even number of segments and sodd segments which lie on a grid line with an odd
number of segments. The maximum number of segments lying on a single grid line is t.

The following three lemmas correspond each to a di�erent set of pairwise disjoint segments in S. In
all three lemmas, we assume S to be a favorable representation of a graph in Gseg with n vertices.

Lemma 1. There exists a subset of S consisting of n
4 + `odd

4 pairwise disjoint segments.

Lemma 2. There exists a subset of S consisting of n
4 + t

4 pairwise disjoint segments.

Lemma 3. There exists a subset of S consisting of n
4 +

√
2seven
4 − `odd

4 pairwise disjoint segments.

Before proving these lemmas, we use them to conclude Theorem 1.

Proof of Theorem 1. LetG be a graph in the classGseg withn vertices and letS be a favorable representation
ofG. A subset of pairwise disjoint segments in S corresponds to an independent set in G of the same size.
We distinguish three cases. If `odd >

√
n/c for some constant c, by Lemma 1 G has an independent set of

size at least
n

4
+

1

4c
·
√
n.

If `odd 6
√
n/c and seven > 2n/c2, by Lemma 3 G has an independent set of size at least

n

4
+

√
2seven

4
− `odd

4
>
n

4
+

√
4n

4c
−
√
n

4c

>
n

4
+

1

4c
·
√
n.

If `odd 6
√
n/c and seven 6 2n/c2, we get sodd > n(1−2/c2) using seven+sodd = n. Then the maximum

number of segments t lying on a single line is at least

t >
sodd
`odd

>
n(1− 2/c2)√

n/c
=
c2 − 2

c
·
√
n.

By Lemma 2 we get an independent set of G of size at least

n

4
+
c2 − 2

4c
·
√
n.

Setting c =
√

3 gives the desired result: there is always an independent set of size at least n
4 + 1

4
√
3
·
√
n.
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It remains to prove the three lemmas.

Proof of Lemma 1. This construction exploits grid lines with an odd number of segments on them. For each
grid line, select every second segment lying on that line, starting from the leftmost. If the grid line has an
even number of segments, exactly half of the segments are selected. If the grid line has an odd number of
segments, the selected number of segments is half rounded up. This corresponds to selecting exactly half
of all the segments and adding 1/2 for each grid line with an odd number of segments. In total,

n

2
+
`odd

2

segments are selected.
By construction of this subset, two segments are only intersecting if one is horizontal and the other one

is vertical. The set can be partitioned into horizontal and vertical segments with both parts only containing
pairwise disjoint segments. By the pigeonhole principle, one of the two parts contains at least half of the
selected segments.

Proof of Lemma 2. This construction exploits a single grid line with many segments on it. Let ghorizontal
be a horizontal grid line with the maximum number of segments thorizontal lying on it. Let svertical be the
total number of vertical segments. Let Shorizontal be the set of consisting of all segments lying on ghorizontal
and all vertical segments. Analogously de�ne gvertical, tvertical, shorizontal, and Svertical. Now we choose
the larger set among Svertical and Shorizontal. The size of this set is

max{shorizontal + tvertical, svertical + thorizontal} >
shorizontal + tvertical + svertical + thorizontal

2

>
n+ t

2

For the second inequality, we use assertions shorizontal + svertical = n and t = max{thorizontal, tvertical}.
We now observe that the intersection graphs of both sets Svertical and Shorizontal are bipartite. Indeed,

any cycle in the intersection graph has to contain at least two horizontal segments lying on thwo di�erent
horizontal grid lines, and two vertical segments lying on two di�erent vertical grid lines. But Svertical con-
tains horizontal segments from only one horizontal grid line, while Shorizontal contains vertical segments
from only one vertical grid line. In a bipartite graph the vertices can be partitioned into two independent
sets A and B, one of which contains at least half of the vertices. Hence, the larger of the sets Svertical and
Shorizontal contains an independent set of size at least n+t

4 .

The proof of Lemma 3 heavily depends on the following classic theorem of Erdős and Szekeres, here
rephrased in the plane setting. We say that a sequence of points in the plane is non-decreasing if both
their �rst and second coordinates are non-decreasing along the sequence; it is non-increasing if the �rst
coordinate is non-decreasing along the sequence while the second is non-increasing.

Theorem 3 (Erdős, Szekeres [2]). Given n distinct points on the plane, it is always possible to choose at least√
n of them and arrange into a sequence so that this sequence is either non-increasing or non-decreasing.

Proof of Lemma 3. The construction exploits grid lines with an even number of segments. With the help
of Theorem 3 we �rst construct a polyline that cuts through the segments. Then we use this polyline to
de�ne two sets of pairwise disjoint segments in S, one of which has the desired size.

Recall that meeting points are the points in which two parallel segments intersect. A meeting point on
a grid line naturally partitions the segments lying on this line into two parts: those to the left of it and to
the right of it (for horizontal lines), or those above it and below it (for vertical lines). Call a meeting point
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a candidate point if both those parts have odd cardinalities. Note that thus, candidate points only occur on
grid lines with an even number of segments. Further, in total there are seven/2 candidate points.

By Theorem 3, there exists either a non-increasing or a non-decreasing sequence of
√
seven/2 can-

didate points. Suppose without loss of generality that the sequence is non-increasing and of maximum
possible length. We call cutting points the candidate points in the sequence and we use C to denote the
number of cutting points. Observe that C >

√
seven/2. For every two consecutive cutting points, con-

nect them with a segment. Then consider two half-lines with negative inclinations, one ending at the �rst
cutting point and one starting at the last cutting point. This gives a polyline intersecting all vertical and
horizontal grid lines. We call this path the cut.

Figure 1: Selection of the two independent sets in the proof of Lemma 3. Crosses are the meeting points,
disks are the candidate points, and gray disks are the cut points. The black dotted line is the cut. Dashed
blue and solid orange segments are those chosen to the sets Sblue and Sorange, respectively.

Using the cut, we construct two sets of segments Sblue and Sorange; see Figure 1.

Construction of Sblue: The set Sblue is constructed as follows. For each vertical grid line, start from
the segment with the lowest endpoint and choose every second segment with the upper endpoint on the
cut or below. Next, for each horizontal grid line, start from the segment with the right-most endpoint and
choose every second segment with the left endpoint on the cut or to the right.

Construction of Sorange: The set Sorange is symmetrically to Sblue. Namely, for each vertical grid
line, start from the segment with the highest endpoint and choose every second segment with the lower
endpoint on the cut or above. For each horizontal grid line, start from the segment with the left-most
endpoint and choose every second segment with the right endpoint on the cut or to the left.

If the sequence would be non-decreasing, the choice strategy for horizontal segments would be inverted
between Sblue and Sorange.
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We argue that the segments of Sblue are pairwise disjoint. Note that the segments lying in the bottom-
left side of the cut are vertical and pairwise disjoint by the construction, whole those lying in the top-right
side of the cut are horizontal and pairwise disjoint. So it remains to argue that there is no pair of a vertical
segment and a horizontal from Sblue that would intersect at a point lying on the cut. Recall that since the
representation is favorable, this intersection point would lie in the interiors of both segments. This would
imply that either the vertical segment would have the top endpoint strictly above the cut, or the hori-
zontal segment would have the left endpoint strictly to the left of the cut. This is a contradiction with the
construction of Sblue. A symmetric argument shows that also the segments of Sorange are pairwise disjoint.

It remains to show that Sblue ∪ Sorange has at least n
2 +

√
2seven
2 − `odd

2 segments.
Consider a grid line with an even number of segments. For each candidate point on this line which is

not a cutting point, exactly one segment containing this cutting point is in Sblue ∪ Sorange. However, for
each cutting point on this line, both segments meeting at this point are included in Sblue∪Sorange, as there
is an odd number of segments on either side. This means that on each such grid line, the total number of
segments included in Sblue ∪ Sorange is exactly half of all the segments, plus one segment for each cutting
point on the grid line.

Consider now a grid line with an odd number of segments. The sets Sblue and Sorange contain every
second segment starting from the outermost ones. Without the cut, this would include half of the segments
lying on the line rounded up. Since there is an odd number of segments on the grid line, the cut crosses
it only at one point. So at most one segment is removed from Sblue ∪ Sorange due to this. This means
that among the segments lying on the line, at least half rounded down is included in Sblue ∪ Sorange. This
means we lose at most 1/2 of a segment for each odd grid line.

Together, this gives that Sblue ∪ Sorange contains at least

seven
2

+ C +
sodd

2
− `odd

2
>
n

2
+

√
2seven

2
− `odd

2

segments. By choosing the larger of the two sets, we obtain an independent set of the desired size.

3 The upper bound: proof of Theorem 2

In this section, we construct families of axis-parallel segments whose intersection graphs satisfying the
requirements of Theorem 2. In fact, we prove the following stronger statement.

Theorem 4 (Full version of Theorem 2). For any integer k > 1, there exists a graph Gk in Gseg on 4k2

vertices with clique covering number θ(Gk) = 2k2, fractional independence number α?(Gk) = 2k2, and
independence number

α(Gk) = k2 + 3k − 2.

Note that Corollaries 1 and 2 follow from Theorem 4 by considering G = Gk for k large enough
depending on 1/ε. The remainder of this section is devoted to the proof of Theorem 4.

Fix an integer k > 1. We construct a set of 4k2 axis-parallel segmentsMk. The setMk will consist of
k sets with 4k segments each; these sets will be called k-boxes. A k-box is a set of 4k axis-parallel segments
distributed on k horizontal and k vertical lines, each with exactly two segments on it. For every line, the
two segments on this line intersect at a single point, which we call their meeting point. In the construction
of a k-box, the meeting points are arranged in a diagonal from the top left to the bottom right, see the
case k = 6 in Figure 2. The up segments (resp. down segments) of a k-box are the segments lying vertically
above (resp. below) a meeting point. Similarly, we de�ne the left and right segments of a k-box.

To constructMk, consider a large square and place k di�erent k-boxes {Bi}ki=1 along its diagonal from
the bottom left to the top right. Then, prolong each segment away from the meeting point until it touches a
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u1 · · · uk

r1

rk

· · ·

d1 · · · dk

l1

lk

· · ·

Figure 2: A 6-box. The meeting points are represented with crosses. Thus, every line contains two segments
of the box, whose only intersection is the meeting point on this line.

side of the square, see Figure 3. The construction results in the setMk consisting of 4k2 segments. We note
thatMk is a favorable representation of its intersection graph in the sense introduced in Section 2. Also,
perhaps not surprisingly, the construction is inspired by a tight example for the Erdős-Szekeres Theorem
(Theorem 3), so that it proves tightness of the bound provided by Lemma 3.

B1

B2

B3

Figure 3: The setM3. The meeting points are represented by crosses. The dashed lines indicate the sides
of the large square and of the k-boxes.

We are left with verifying the asserted properties ofMk. First, we introduce some notation and de�-
nitions. Let I be a set of pairwise disjoint segments inMk. A k-box Bi ofMk is said to be interesting for
I if Bi ∩ I contains either at least one down segment and one right segment, or at least one up segment
and one left segment. Otherwise, the k-box is boring for I . Distinguishing between interesting and boring
boxes allows more precise estimates on the maximum possible cardinality of I .

In the next two lemmas, we consider I to be a set of pairwise disjoint segments inMk.

Lemma 4. For any k-box B inMk, |B ∩ I| 6 2k. Moreover, if B is boring for I , then |B ∩ I| 6 k + 1.

7



Proof. The �rst statement holds because I contains at most one segment per line, and there are 2k lines
in a box: k vertical and k horizontal.

Assume now that B is a box that is boring for I . Enumerate the up and down segments of B from left
to right as U = {u1, . . . , uk} and D = {d1, . . . , dk}, and the right and left segments from top to bottom
as R = {r1, . . . , rk} and L = {l1, . . . , lk}; see Figure 2. If all segments of B ∩ I are pairwise parallel (that
is, they are either all vertical or all horizontal), then |B ∩ I| 6 k since I can contain only one segment
per line. Then, there are two cases left to check: either B contains only up and right segments, or only
down and left segments. Observe that U ∪R can be partitioned into k + 1 parts as follows: u1 and rk are
in singleton parts, and we have k − 1 pairs of intersecting segments {ui+1, ri}k−1i=1 . Similarly, D ∪ L can
be partitioned into k pairs of intersecting segments {di, li}ki=1. The independent set I can contain at most
one segment from each part of these partitions. Hence, |B ∩ I| 6 k + 1 in both cases.

Lemma 5. There are at most two boxes that are interesting for I .

Proof. We show that there is at most one interesting box with at least one up and one left segment included
in I . Then a symmetric argument shows that there is at most one interesting box with at least one down
and one right segment included in I , implying that there are at most two interesting boxes in total.

For the sake of contradiction, assumeMk there are two distinct interesting boxesB,B′ of the �rst kind.
Then, either an up segment of B∩I intersects a left segment of B′ ∩I , or vice-versa. This contradicts the
fact that segments of I are pairwise disjoint.

With the lemmas in place, we are in position to �nish the proof of Theorem 4. LetGk be the intersection
graph ofMk. By construction, the setMk consists of 4k2 axis-parallel segments and Gk is in Gseg.

First, we compute the clique covering number and the fractional independence number ofGk. Observe
that Gk is triangle-free, hence every clique in Gk is of size at most 2. It follows that every clique covering
of Gk is of size at least |Mk|

2 = 2k2, that is, θ(Gk) 6 2k2. On the other hand, taking every vertex of Gk

with multiplicity 1/2 gives a fractional independent set of size |Mk|
2 = 2k2, implying that α?(Gk) > 2k2.

Since θ(H) > α?(H) for every triangle-free graph H , we conclude that

θ(Gk) = α?(Gk) = 2k2.

It remains to prove that α(Gk) = k2 + 3k − 2. We give a set of pairwise disjoint segments inMk,
corresponding to an independent set in Gk. This shows that α(Gk) > k2 + 3k − 2. The set of segments
inMk consists of: (i) the left and up segments of B1, and (ii) the right and down segments of B2, and (iii)
the right segments and the topmost up segment ofBi, for each 3 6 i 6 k. This is a set of pairwise disjoint
segments inMk and it contains 2 · (2k) + (k − 2)(k + 1) = k2 + 3k − 2 segments.

To show that α(Gk) 6 k2+3k−2 we apply Lemma 4 and Lemma 5 to obtain, for any set I of pairwise
disjoint segments inMk, that

|I| = |Mk ∩ I| =
k∑

i=1

|Bi ∩ I| 6 2 · (2k) + (k − 2)(k + 1) = k2 + 3k − 2.

This concludes the proof of Theorem 4.
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