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Abstract

In the Maximum Weight Independent Set of Rectangles problem (MWISR) we are given a

weighted set of n axis-parallel rectangles in the plane. The task is to �nd a subset of pairwise non-

overlapping rectangles with the maximum possible total weight. This problem is NP-hard and the best-

known polynomial-time approximation algorithm, due to by Chalermsook and Walczak (SODA 2021),

achieves approximation factorO(log log n). While in the unweighted setting, constant factor approxi-

mation algorithms are known, due to Mitchell (FOCS 2021) and to Gálvez et al. (SODA 2022), it remains

open to extend these techniques to the weighted setting.

In this paper, we considerMWISR through the lens of parameterized approximation. Grandoni et al.

(ESA 2019) gave a (1− ε)-approximation algorithm with running time kO(k/ε8)nO(1/ε8)
time, where k

is the number of rectangles in an optimum solution. Unfortunately, their algorithm works only in the

unweighted setting and they left it as an open problem to give a parameterized approximation scheme

in the weighted setting.

Our contribution is a partial answer to the open question of Grandoni et al. (ESA 2019). We give

a parameterized approximation algorithm for MWISR that given a parameter k ∈ N, �nds a set of

non-overlapping rectangles of weight at least (1− ε)optk in 2O(k log(k/ε))nO(1/ε)
time, where optk is

the maximum weight of a solution of cardinality at most k. Note that thus, our algorithm may return a

solution consisting of more than k rectangles. To complement this apparent weakness, we also propose

a parameterized approximation scheme with running time 2O(k2 log(k/ε))nO(1)
that �nds a solution

with cardinality at most k and total weight at least (1 − ε)optk for the special case of axis-parallel

segments.
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1 Introduction

In the �eld of parameterized complexity the goal is to design an algorithm that is e�cient not only in

terms of the input size, but also in terms of auxiliary parameters. On the other end of the spectrum, in the

�eld of approximation algorithms the goal is to design an algorithm that returns a solution that is only

slightly worse than the optimum one. These two notions are traditional frameworks to deal with NP-hard

problems. Recently, researchers started to combine the two concepts and try to design approximation

algorithms that run in parameterized time. Ideally, given ε > 0 and a parameter k ∈ N, for example the

size of the desired solution, one seeks an algorithm with running time of the form f(k, ε)ng(ε)
for some

functions f(k, ε) and g(ε), which returns a (1 + ε)-approximate solution. Such an algorithm is called

parameterized approximation scheme (PAS).

In this paper we continue this line of work and apply it to a fundamental geometric packing problem. In

the maximumweight independent set of rectangles (MWISR) problem we are given a setD consisting

of n axis-parallel rectangles in the plane alongside with a weight function ω : D → R. Each rectangle

R ∈ D is a closed set of points [x1, x2] × [y1, y2] fully characterized by the positions of its four corners.

A feasible solution S ⊆ D to the MWISR problem consists of rectangles that are pairwise disjoint, i.e., for

any two di�erent R,R′ ∈ S we have R ∩ R′ = ∅; we also call such a solution an independent set. The

objective is to �nd a feasible solution of maximum total weight. In this paper, we consider a parameterized

setting of the problem. We use parameter k ∈ N to denote the cardinality of the solution. Then optk(D)
denotes the maximum possible weight of an independent set in D whose cardinality is at most k.

MWISR is a fundamental problem in geometric optimization. It naturally arises in various applications,

such as map labeling [2, 10], data mining [14], routing [18], or unsplittable �ow routing [5]. MWISR is

well-known to be NP-hard [12], and it admits a QPTAS [1]. The currently best approximation factor

achievable in polynomial time is O(log log(n)) [8]. From the parameterized perspective, it is known that

the problem is W[1]-hard when parameterized by k, the number of rectangles in the solution, even in the

unweighted setting and when all the rectangles are squares [19]. Therefore, it is unlikely that there is an

exact algorithm with a running time of the form f(k)nO(1), even in this restricted setting. In particular,

this also excludes any (1− ε)-approximation algorithm running in f(ε)nO(1) time [4, 7]. We note that in

the case of weighted squares, there is a PTAS with running time of the form ng(ε)
[11].

Approximation of MWISR becomes much easier in the unweighted setting. With this restriction, even

constant factor approximation algorithms for MWISR are known [21, 15], and there is a QPTAS with

a better running time [9]. Grandoni et al. [16] were the �rst to consider parameterized approximation

for the MWISR problem, although in the unweighted setting. They gave a parameterized approximation

scheme for unweighted MWISR running in kO(k/ε
8)nO(1/ε

8)
time. As an open problem, they asked if one

can also design a PAS in the weighted setting.

Open Question 1 ([16]). Does Maximum Independent Set of Rectangles admit a parameterized ap-
proximation scheme in the weighted setting?

Our contribution. In this paper we partially answer the open question of Grandoni et al. [16] by proving

the following result:

Theorem1.1. SupposeD is a set of axis-parallel rectangles in the planewith positive weights. Then given k and
ε > 0, one can in 2O(k log(k/ε))|D|O(1/ε) time �nd an independent set inD of weight at least (1− ε)optk(D).

Note that there is a caveat in the formulation above: the returned solution may actually be of cardinality

larger than k, but there is a guarantee that it will be an independent set. This is what we mean by a

“partial” resolution of the question of Grandoni et al. [16]: ideally, we would like the algorithm to return

a solution of weight at least (1− ε)optk(D) and of cardinality at most k. At this point we are able to give
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such an algorithm only in the restricted case of axis-parallel segments (see Theorem 1.2 below), but let us

postpone this discussion till later and focus now on Theorem 1.1. Observe here that the issue with solutions

of cardinality larger than k becomes immaterial in the unweighted case, hence Theorem 1.1 applied to

the unweighted setting solves the problem considered by Grandoni et al. [16] and actually improves the

running time of their algorithm.

We now brie�y describe the technical ideas behind Theorem 1.1. Similarly to Grandoni et al. [16],

the starting point is a polynomial-time construction of a grid such that each rectangle in D contains at

least one gridpoint. However, in order to take care of the weights, our grid is of size (2k2/ε) × (2k2/ε).

Moreover, already in this step we may return an independent set of weight at least (1−ε)optk that consists

of more than k rectangles. This is the only step where the algorithm may return more than k rectangles.

After this step, the similarities to the algorithm of Grandoni et al. [16] end. We introduce the notion of

the combinatorial type of a solution. This is simply a mapping from each rectangle in the solution to the set

of all gridpoints contained in it. Observe that since the size of the grid is bounded by a function of k and ε,

we can a�ord to guess (by branching into all possibilities) the combinatorial type of an optimum solution in

f(k, ε) time. Notice that there may be many di�erent rectangles matching the type of a rectangle from the

optimum solution. However, it is possible that such a rectangle overlaps with the neighboring rectangles

(and violates independence). Therefore, we need constraints that prevent rectangles from overlapping. For

this, we construct an instance of Arity-2 Valued Constraint Satisfaction Problem (2-VCSP) based

on the guessed combinatorial type.

Next, we observe that this instance induces a graph that is “almost” planar, hence we may apply a

variant of Baker’s shifting technique [3]. This allows us to divide the instance into many independent

instances of 2-VCSP while removing only ε · optk weight from the optimum solution. Moreover, each of

these independent instances induces a graph of bounded treewidth, and hence can be solved exactly in

|D|O(1/ε) time. This concludes a short sketch of our approach.

Let us return to the apparent issue that our algorithm may return a solution of cardinality larger than k.

This may happen in the very �rst step of the procedure, during the construction of the grid. By employing

a completely di�erent technique, we can circumvent this problem in the restricted setting of axis-parallel

segments and prove the following result.

Theorem 1.2. Suppose D is a set of axis-parallel segments in the plane with positive weights. Then given k
and ε > 0, one can in 2O(k

2 log(k/ε))|D|O(1) time �nd an independent set in D of cardinality at most k and
weight at least (1− ε)optk(D).

Kára and Kratochvíl [17] and Marx [20] independently observed that the problem of �nding a maximum

cardinality independent set of axis-parallel segments admits an fpt algorithm. However, their approach

heavily relies on the fact that the problem is unweighted. In this setting our approach is di�erent: In fact, we

show that �nding a maximum weight independent set of axis-parallel segments admits an algorithm with

running time WO(k
2)|D|O(1), where W is the number of distinct weights present among the segments.

We proceed with an outline of the proof of Theorem 1.2 and highlight some technical ideas. First, we

modify the instance so that the number of di�erent weights is bounded. This is done through guessing

the largest weight of a rectangle in an optimum solution and rounding the weights down. This is the only

place where we lose accuracy on the optimal solution. In other words, the algorithm is �xed-parameter

tractable in k and the number of distinct weights W = (k/ε)O(1).
With this assumption, we then construct a grid withO(k2) lines hitting every segment of the instance.

We say that the grid is nice with respect to a segment I , if I contains a grid point; equivalently, I is nice

if it is hit by two orthogonal lines of the grid. Observe that the constructed grid is not necessarily nice

for every segment of the instance. We adapt the previously introduced notion of the combinatorial type
in order to also accommodate segments which do not contain a grid point. This is done by mapping the

segment to its four neighboring grid lines instead of the grid points contained inside the segment. Further,
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the weight of the segment is added to its combinatorial type. Similarly to before, the combinatorial type

of a segment only depends on the grid size and the number of distinct weights. This allows to guess (by

branching into all possibilities) the combinatorial type of the optimum solution S in kO(1) ·W time.

The goal is to construct a grid which is nice with respect to all segments of an optimal solution S . For

this, we start by guessing the combinatorial type of all nice segments of an optimal solution S . Then, we

incrementally guess the combinatorial type of the next heaviest segment in S for which the grid is not yet

nice. For each such combinatorial type, we �nd all possible candidate segments and add at most k lines to

the grid G. This ensures that a correct candidate segments is hit both directions. Repeating this procedure

at most k times we end up with a grid which is nice with respect to all the segments of S .

Given such a grid, it remains to guess the combinatorial type of all segments in S and solve resulting

instance. This can be done either greedily or by observing that the problem can be modeled as a 2-CSP

instance whose constraint graph is a union of paths. Both these cases work due to the fact that the segments

only interact with each other when they lie on the same grid line.

2 Preliminaries

Through the paper, we silently assume that every weight is positive (because we work on maximization,

we can simply disregard objects of non-positive weights). A tree decomposition of a graph H is a tree T
together with a function bag that maps nodes of T to subsets of vertices of H , called bags. The following

conditions must be satis�ed:

• for every vertex u of H , the nodes of T whose bags contain u must form a connected, nonempty

subtree of T ; and

• for every edge uv of H , there must exist a node of T whose bag contains both u and v.

The width of a tree decomposition (T, bag) is maxx∈V (T ) |bag(x)|−1. The treewidth of H is the minimum

possible width of a tree decomposition of H . By distH(u, v) we mean the distance between vertices u and

v in a graph H .

We use well-known results about Arity-2 Valued Constraint Satisfaction Problems (2-VCSPs).

An instance of 2-VCSP is a �nite set of variables X , a domain Dx for each variable x ∈ X , and a set

C of constraints. Each constraint c ∈ C binds an ordered pair xc ∈ X × X of variables in X (not

necessarily distinct) and is given by a mapping fc :
∏

x∈xc Dx → R. We assume that fc is given as the

set of pairs {(d, fc(d)) : d ∈
∏

x∈xc Dx}. The goal is to compute the maximum value of the function

f(u) :=
∑

c∈C fc(u|xc), over all possible assignments u ∈
∏

x∈X Dx of values in respective domains to

variables in X . The value f(u) will be called the revenue of the assignment u.

Observe that each instance of 2-VCSP induces an undirected graph, called the Gaifman graph: the

vertex set is the set of variables X , and for every pair of distinct variables x, y ∈ X , there is an edge xy if

and only if there is a constraint c ∈ C such that xc = (x, y). Given a class H of graphs, we can de�ne a

restriction of 2-VCSP to H by focusing only on instances whose Gaifman graph is in H. In this paper we

focus only on instances of 2-VCSP where the Gaifman graph has bounded treewidth. In this setting, it is

well-known that a standard dynamic programming solves 2-VCSP e�ciently [13]
1
.

Theorem 2.1 ([13]). 2-VCSP can be solved in time ∆O(t) · |X|O(1) when the Gaifman graph has treewidth
at most t and all domains are of size at most ∆.

In Section 4 we also use standard 2-CSPs. These can be modeled by 2-VCSPs where all the constraints

1

Freuder [13] actually considered only the unweighted 2-CSP, however, as pointed out in e.g., [6, 24], this dynamic-

programming approach can be adapted to the weighted setting. Also, Freuder assumes that a suitable tree decomposition is given

on input. Such a tree decomposition can be provided within the stated time complexity by, for instance, the 4-approximation

algorithm of Robertson and Seymour [23].
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are hard: revenue functions fc assign only values 0 (the constraint is satis�ed) or−∞ (the constraint is not

satis�ed). The task is to �nd a variable assignment that satis�es all constraints, that is, yields revenue 0.

3 Axis-parallel rectangles

In this section we prove Theorem 1.1. Therefore, we �x the given setD of weighted axis-parallel rectangles.

For a rectangle R ∈ D, the weight of R is ω(R) ∈ R. By optk(D) we denote the maximum possible weight

of a set consisting of at most k disjoint rectangles in D. We also �x any optimum solution, that is, a set

S ⊆ D of cardinality at most k satisfying ω(S) = optk(D).

We start with a simple preprocessing on D. First, we guess a rectangle Rmax ∈ S with maximum

weight among all rectangles of S . This can be done with an extra overhead of O(n) in the running time.

Observe that ω(Rmax) > optk(D)/k. Further, we remove from D every rectangle of weight larger than

ω(Rmax) and every rectangle of weight not exceeding εω(Rmax)/k; let the obtained instance be D′. Ob-

serve that this operation does not decrease the optimum signi�cantly, as none of the former rectangles

and at most k of the latter rectangles could be used in S . More precisely, we have

optk(D′) > optk(D)− k · ε · ω(Rmax)

k
> (1− ε)optk(D).

After this preprocessing, the optimum decreased by at most ε · optk(D). This concludes the description of

preprocessing. From now on, we silently assume that our instance is D := D′.

3.1 Constructing a grid

We �rst introduce relevant terminology.

De�nition 3.1. A grid is a �nite set of horizontal and vertical lines in the plane. The size |G| of a grid G
is the total number of lines it contains. A grid point of G is the intersection of a horizontal and a vertical
line of G. The set of grid points of G is denoted by points(G). The lines of the grid divide the plane into grid

cells. Thus, each grid cell is a rectangle, possibly with one or two sides extending to in�nity, and at most four
corners: the grid points lying on its boundary.

A grid G is good for a set of axis-parallel rectangles D, if for every rectangle R ∈ D there is a grid point
of G contained in R.

As mentioned in Section 1, our search for an optimal solution pivots around a bounded size grid that

is good for the optimum solution. The construction of this grid is encapsulated in the following lemma.

Lemma 3.2. Suppose we are given a set D of weighted axis-parallel rectangles and let ∆(D) be the ratio
between lowest and highest weight inD. Then, supposing∆(D) > ε/k for some ε > 0, one can, in polynomial
time, either

• compute a grid G of size |G| 6 2k2

ε that is good for S , or
• return an independent set I ⊆ D with ω(I) > optk(D).

Proof. We construct the grid G by �rst constructing the vertical lines of G, and then with basically the

same procedure we add the horizontal lines of G. For the construction of the vertical lines, we iteratively

pick vertically disjoint rectangles in a greedy fashion. For every rectangle R ∈ D, select a point pR ∈ R
very close to the top-right corner of R. We start with D1 := D. In iteration i ∈ N, we select a rectangle

Rver
i ∈ Di for which pi := pRver

i
is the leftmost among rectangles of Di. (In case of ties, select any of

the tying rectangles.) Then, add the vertical line `veri which contains pi to the grid. Next, delete every

rectangle from Di intersecting `veri , thus obtaining the next set Di+1. We repeat this procedure until no
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more rectangles are left inDi. To �nish the construction ofG, repeat the above algorithm in the orthogonal

direction, thus selecting vertically disjoint rectangles Rhor
i and adding to G horizontal lines `hori . This

concludes the construction of G; see Figure 1 for an illustration.

Figure 1: The grid constructed after applying the greedy procedure. Rectangles Rver
i are blue-�lled, and

rectangles Rhor
i are orange-�lled. Observe that every rectangle is hit by at least one grid point.

Trivially, the above algorithm runs in polynomial time. Moreover, it returns a good grid since every

rectangle in D is intersected by some horizontal and some vertical line from G. So if |G| 6 2k2

ε , we can

just return G as the output of the algorithm.

It remains to show that if |G| > 2k2

ε , then we can �nd an independent set of weight at least optk(D).

Assuming that |G| > 2k2

ε , either the vertical or the horizontal run of the greedy algorithm returned more

than
k2

ε lines. Without loss of generality assume that the vertical run constructed rectangles Rver

1 , . . . , Rver

m

for some m > k2

ε . Observe that these rectangles form an independent set, because after iteration i ∈ [m]
all rectangles with left side to the left of `i are removed. Since we assumed that the ratio between lowest

and highest weight of a rectangle in D is at least ε/k, we may estimate the weight of {Rver

1 , . . . , Rver

m } as

follows:
m∑
i=1

ω(Rver

i ) > m · ε · ω(Rmax)

k
> k · ω(Rmax) > optk(D),

whereRmax is the rectangle of highest weight inD. Therefore, the rectanglesRver

1 , . . . , Rver

m form a feasible

output for the second point of the lemma statement.

The �rst step of the algorithm is to run the procedure of Lemma 3.2. If this procedure returns an

independent set of weight at least optk(D), we just return it as a valid output and terminate the algorithm.

Otherwise, from now on we may assume that we have constructed a grid G of size at most 2k2/ε and this

grid is good for S .

3.2 Combinatorial types

Next, we de�ne the notion of the combinatorial type of a rectangle with respect to a grid. This can be

understood as a rough description of the position of the rectangle with respect to the grid.

De�nition 3.3 (Combinatorial Type). Let G be a grid. For an axis-parallel rectangle R, we de�ne the com-

binatorial type T (R) of R with respect to G as

TG(R) := R ∩ points(G).
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In other words, TG(R) is the set of grid points of G contained in R. For a set S of axis-parallel rectangles, the
combinatorial type of S is TG(S), that is, the image of S under TG. By ΛG

k we denote the set of all possible
combinatorial types with respect to G of sets S consisting of at most k axis-parallel rectangles.

We now observe that if a grid is small, there are only few combinatorial types on it.

Lemma 3.4. For every grid G and positive integer k, we have |ΛG
k | 6 2O(k log |G|). Moreover, givenG and k,

ΛG
k can be constructed in time 2O(k log |G|).

Proof. The combinatorial type of any axis-parallel rectangle R can be completely characterized by four

lines (or lack thereof) in G: the left-most and the right-most vertical line of G intersecting R, and the

top-most and the bottom-most horizontal line of G intersecting R. Hence, there are at most (|G| + 1)4

candidates for the combinatorial type of a single rectangle. It follows that the number of combinatorial

types of sets of at most k rectangles is bounded by

1 + (|G|+ 1)4 + (|G|+ 1)8 + . . . + (|G|+ 1)8k ∈ 2O(k log |G|).

To construct ΛG
k in time 2O(k log |G|)

, just enumerate all possibilities as above.

The next step of the algorithm is as follows. Recall that we work with a gridG of size at most 2k2/ε that

is good for S . By Lemma 3.4, we can compute ΛG
k in time 2O(k log(k/ε))

and we have |ΛG
k | 6 2O(k log(k/ε))

.

Hence, by paying a 2O(k log(k/ε))
overhead in the time complexity, we can guess T := TG(optk(G)), that

is, the combinatorial type of the optimum solution. Hence, from now on we assume that the combinatorial

type T is �xed. Since S is an independent set and G is good for S , we may assume that sets in T are

pairwise disjoint and nonempty.

3.3 Reduction to 2-VCSP

We say that a rectangle R ∈ D matches a subset of grid points A ⊆ points(G) if TG(R) = A, that is,

R ∩ points(G) = A. By DA ⊆ D we denote the set of rectangles from D that match A.

Based on the combinatorial type T we de�ne an instance IT of 2-VCSP as follows. The set of variables

is T . For every A ∈ T , the domain of A is DA ∪ {⊥}. That is, the set of rectangles from D that match

A plus a special symbol ⊥ denoting that no rectangle matching A is taken in the solution. Also, for every

A ∈ T we add a unary
2

constraint cA on A with associated revenue function fcA : DA∪{⊥} → R de�ned

as fcA(R) = ω(R) for each R ∈ DA and fcA(⊥) = 0.

It remains to de�ne binary constraints binding pairs of distinct variables in IT . Two distinct grid points

of G are adjacent if they lie on the same or on consecutive horizontal lines of G, and on the same or on

consecutive vertical lines of G. We put a binary constraint cA,B binding variables A ∈ T and B ∈ T if

there exist grid points p ∈ A and q ∈ B that are adjacent. The revenue function for cA,B is de�ned as

follows: for RA ∈ DA ∪ {⊥} and RB ∈ TB ∪ {⊥}, we set

fcA,B (RA, RB) =

{
−∞ if RA ∈ DA and RB ∈ DB intersect;

0 otherwise.

.

In other words, cA,B is a hard constraint: we require that the rectangles assigned to A and B are disjoint

(or one of them is nonexistent), as otherwise the revenue is −∞. This concludes the construction of the

instance of IT ; clearly, it can be done in polynomial time.

The instance IT is constructed so that it corresponds to the problem of selecting disjoint rectangles

from D that match the combinatorial type T . This is formalized in the following statement.

2

Formally, in the de�nition of 2-VCSP we allowed only binary constraints, but unary constraints — constraints involving only

one variable — can be modelled by binary constraints binding a variable with itself.

6



Figure 2: The instance after guessing the combinatorial type T . Rectangles that match the same type

A ∈ T are �lled with the same color. Each variable corresponds to a di�erent rectangle of the optimum

solution, equivalently to a di�erent type A ∈ T , equivalently to a di�erent color in the �gure. The domain

of a variable consists of all rectangles in the corresponding color.

Claim 3.5. If S ⊆ D is an independent set of rectangles of combinatorial type T , then there exists a solution
to IT with revenue equal to ω(S). Conversely, if there exists a solution to IT with revenue r > 0, then there
exists an independent set S ⊆ D of weight r and cardinality at most k.

Proof. For the �rst implication, we construct an assignment u : T → D by setting, for each A ∈ T , u(A)
to be the unique rectangle R ∈ S for which TG(R) = A. To see that the revenue of u is equal to ω(S),

note that for every A ∈ T the unary constraint cA yields revenue ω(u(A)), while all binary constraints

yield revenue 0, because the rectangles are pairwise disjoint.

For the second implication, let S ⊆ D be the image of the assignment u (possibly with ⊥ removed).

Clearly, |S| 6 |T | 6 k. Since u yields a nonnegative revenue, all binary constraints must give revenue 0,

hence ω(S) is equal to the revenue of u, that is, to r. It remains to argue that S is an independent set.

For this, take any distinct A,B ∈ T ; we need to argue that in case when rectangles RA := u(A) and

RB := u(B) are both not equal to ⊥, they are disjoint. Suppose, for contradiction, that RA and RB have

some common point x. Let Q be the cell of the grid G that contains x. Since x ∈ RA and A is nonempty

(recall that this is the assumption about all the sets in T , following from G being good for optk(D)), A
must contain at least one corner of Q, say p. Similarly, B contains a corner of Q, say q. Note that p and q
are adjacent grid points, hence in IT there is a constraint cA,B that yields revenue −∞ in the case when

the rectangles assigned to A and B intersect. As this is the case in u, we obtain a contradiction with the

assumption r > 0.

3.4 Almost planarity of the Gaifman graph

Let H be the Gaifman graph of IT ; see Figure 3 for an example. Recall that the vertex set of H is T , and

distinct A,B ∈ T are considered adjacent in H i� there is a grid cell Q of G such that both A and B
contain a corner of Q. Without loss of generality we assume that H is connected, as otherwise we solve a

IT by treating each connected component separately and joining the solutions.

Note that the graph H is not necessarily planar, as there might be crossings within cells; this happens

when all four corners belong to di�erent elements of T . However, the intuition is that the crossings within

cells are the only problem, hence H is almost planar. We would like to apply Baker’s technique on H . We

do it in an essentially direct way, except that we need to be careful about the aforementioned crossings.

For this, the following construction will be useful.

Call a grid cell Q a cross if Q has four corners and all those four corners belong to pairwise di�erent

elements of T . Note that then all those four elements form a clique in H . Construct a graph H• from H

7



Figure 3: The Gaifman graph H of the constructed 2-VCSP instance IT . The vertices are depicted in blue

and the edges are depicted in thick red. The graph H• is constructed from H by introducing a new vertex

at the intersection of every crossing (hence in the Figure we need to add green stroked vertices).

as follows: add every cross Q to the vertex set, make it adjacent to all four elements of T containing the

corners of Q, remove the edge connecting the elements of T containing the top-left and the bottom-right

corner of Q, and to the same for the top-right and bottom-left corners.

The reader may imagine H• as obtained from H by introducing a new vertex at the intersection of

diagonals within every cross Q; this new vertex is identi�ed with Q. See Figure 3. So we have the following

simple observation.

Claim 3.6. The graph H• is planar.

Proof. Let H•0 be the graph consisting of the grid points of G where two grid points are adjacent if they

are consecutive on the same line of G, plus we add a new vertex for every cell of G and make it adjacent

to all the corners of this cell. Clearly, H•0 is planar. Now, H• can be obtained from H•0 as follows:

• contract every A ∈ T to a single vertex;

• remove every element of points(G)−
⋃
T ; and

• for every grid cell Q of G that is not a cross, either contract the vertex corresponding to Q onto any

of its neighbors, or remove it if it has no neighbors.

So H• is a minor of a planar graph, hence it is planar as well.

We also have the following simple claim.

Claim 3.7. For all A,B ∈ T , distH•(A,B) 6 2 · distH(A,B).

Proof. By repeated use of triangle inequality along a shortest path connecting A and B, it su�ces to argue

the following: if A and B are adjacent in H , then they are at distance at most 2 in H•. For this, observe

that either A and B are still adjacent in H•, or they contain two opposite corners of some cross Q, which

becomes their common neighbor in H•.

We now apply Baker’s technique. Select any A ∈ T and partition T into layers according to the

distance in H from A: for a nonnegative integer t, layer Lt consists of all those vertices B ∈ T for which

distH(A,B) = t. Note that layers Lt form a partition of T due to the assumption that H is connected.

The following observation is crucial.

Lemma 3.8. For all integers 0 6 i < j, the treewidth of H[Li ∪ Li+1 ∪ . . . ∪ Lj ] is bounded by O(j − i).
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Proof. We shall assume that i > 0; at the end we will quickly comment on how the case i = 0 is resolved

in essentially the same way.

LetW ⊆ V (H•) be the union of all layersLt with i 6 t 6 j, plus all crossesQ that, inH•, are adjacent

to any element of those layers. Further, let K ⊆ V (H•) be the union of all layers Lt with 0 6 t < i, plus

all crosses Q that, in H•, are adjacent to any element of those layers, except those that are already included

inW . In this way, K andW are disjoint. Further, observe that from the de�nition of sets Lt as distance

layers from A it follows that both H•[K] and H•[K ∪W] are connected.

Let H ′ be the graph obtained from H•[K∪W] by contracting the subgraph H•[K] into a single vertex;

call it A′. As a minor of a planar graph, H ′ is again planar. Next, by the de�nition of the layers, for every

B ∈ Li ∪ . . . ∪ Lj there exists C ∈ Li−1 such that distH(C,B) 6 j − i + 1. By Claim 3.7, we have

distH•(C,B) 6 2(j − i + 1), implying that distH′(A
′, B) 6 2(j − i + 1). Since every cross included

inW is adjacent to some B as above, we conclude that H ′ is a connected planar graph of radius at most

2(j − i + 1) + 1 = 2(j − i) + 3. By standard bounds linking treewidth with radius in planar graphs (see

for instance [22, 2.7]), we conclude that H ′ has treewidth at most 6(j − i) + 10.

It remains to connect the treewidth of H ′ with the treewidth of H ′′ := H[Li ∪ Li+1 ∪ . . . ∪ Lj ]. For

this, let (T, bag) be a tree decomposition of H ′ of width at most 6(j − i) + 10. We turn (T, bag) into a

tree decomposition (T, bag′) of H ′′ as follows. For every cross Q ∈ W , let NQ be the set of (at most four)

neighbors of Q in H ′. Then (T, bag′) is obtained by �rst removing A′ from all bags, and then, for every

cross Q ∈ W , replacing Q with NQ in all bags of (T, bag) that contain Q. Since every pair B,B′ ∈ W that

is adjacent in H ′′ but not in H ′ has some cross Q ∈ W as a common neighbor, and elements of NQ are

adjacent to Q for every cross Q ∈ W , it is straightforward to verify that (T, bag′) is a tree decomposition

of H ′′. Finally, in the transformation described above the cardinalities of bags grow by a multiplicative

factor of at most 4, hence the width of (T, bag′) is at most 24(j − i) + 43 ∈ O(j − i).

This �nishes the proof for the case i > 0. If i = 0, we perform the same reasoning except that we do

not contractK (which now is empty). Thus, we simply work with H ′ = H•[W], and this graph has radius

at most 2(j − i) = 2j by Claim 3.7. The rest of the reasoning applies verbatim.

3.5 Proof of Theorem 1.1

We are now ready to �nish the proof of Theorem 1.1. Recall that the steps performed so far were as follows:

• We guessed a rectangle Rmax ∈ S (optimum solution) and removed all rectangles of weight larger

than ω(Rmax) or not exceeding ε · ω(Rmax)/k. This induced a loss of at most ε · optk(D) on the

optimum.

• We applied the algorithm of Lemma 3.2. This way, we either �nd an independent set with a suitably

large weight, or we construct a grid G of size |G| 6 2k2/ε.

• We used Lemma 3.4 to guess, by branching into 2O(k log(k/ε))
possibilities, the combinatorial type T

of an optimum solution.

• We constructed a 2-VCSP instance IT corresponding to the type T .

By Claim 3.5, it remains to �nd a solution to IT that yields revenue at least (1−ε)opt(IT ), where opt(IT )
is the maximum possible revenue in IT . (Note that by retracing previous steps, this will result in �nding

a solution to the original instance of MWISR of weight at least (1− 2ε)optk(D), so at the end we need to

apply the reasoning to ε scaled by a factor of 1/2.)

As argued before, we may assume that H , the Gaifman graph of IT , is connected. We partition T into

layers {Lt : t = 0, 1, 2, . . .} as in the previous section. Let ` := d1/εe, and de�ne

Mr :=
⋃

t≡r mod `

Lt for all r ∈ {0, 1, . . . , `− 1}.

Note that {Mr : r ∈ {0, 1, . . . , `− 1}} is a partition of T .
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Let u be an optimum solution to IT . Since it is always possible to assign ⊥ to every element of T ,

we have f(u) > 0, in particular all (hard) binary constraints are satis�ed under f . Therefore, f(u) =∑`−1
r=0 f(u|Mr). Since ` > 1/ε, there exists r0 ∈ {0, 1, . . . , ` − 1} such that f(u|Mr0

) 6 ε · f(u). The

algorithm guesses, by branching into ` possibilities, the value of r0.

Let I ′T be the 2-VCSP instance obtained from IT by deleting all variables contained inMr0 . Observe

that we have opt(I ′T ) > (1− ε) · opt(IT ), since u restricted to the variables of I ′T yields revenue at least

(1 − ε) · opt(IT ). Further, every solution to I ′T can be lifted to a solution to IT of the same revenue by

just mapping all variables ofMr0 to ⊥. Hence, it su�ces �nd an optimum solution to I ′T .

For this, observe that the Gaifman graph of I ′T is equal to H −Mr0 . This graph is the disjoint union

of several subgraphs, each contained in the union of at most ` − 1 consecutive layers Lt. By Lemma 3.8

we infer that the treewidth of H −Mr0 is bounded by O(`) = O(1/ε). We apply Lemma 2.1 to solve I ′T
optimally in time |D|O(1/ε) · kO(1). Together with the previous guessing steps, this gives time complexity

2O(k log(k/ε)) · |D|O(1/ε) in total, as wanted. This concludes the proof of Theorem 1.1.

4 Axis-parallel segments

In this section we prove Theorem 1.1. We use the same notation as in Section 3: D is the given set of

axis-parallel segments, ω : D → R is the weight function on D, and optk(D, ω) is the maximum possible

ω-weight of a set of at most k disjoint segments inD; we may dropω in the notation if the weight function is

clear from the context. Also, wheneverD, ω, and k are clear from the context, then by an optimum solution
we mean a set of pairwise disjoint segments S ⊆ D such that |S| 6 k and ω(S) = optk(D).

4.1 Reducing the number of distinct weights

We �rst apply the same preprocessing as in Section 3: we guess a segment Rmax ∈ S of maximum weight

and remove from D all segments of weight larger than ω(Rmax) or not exceeding ε · ω(Rmax)/k. Let

D′ ⊆ D be the obtained set of segments. As argued in Section 3, we have

optk(D′, ω) > (1− ε) · optk(D, ω).

As the next preprocessing step, we round all weights down to the set

M := {ω(Rmax)(1− ε)i : i ∈ {0, 1, . . . , dlog1−ε(ε/k)e}}.

That is, we de�ne the new weight function ω′ : D′ → R by setting ω′(R) to be the largest element of M
not exceeding ω(R). Since the weight of every segment is scaled down by a multiplicative factor of at most

1− ε, we have

optk(D′, ω′) > (1− ε) · optk(D′, ω) > (1− ε)2 · optk(D, ω) > (1− 2ε) · optk(D, ω).

Thus, the two preprocessing steps above reduce solving the instance (D, ω) to solving the instance (D′, ω′),

at the cost of losing 2ε · optk(D) on the optimum and a |D|O(1) overhead in the time complexity. Observe

that in (D′, ω′), the number of distinct weights of rectangles is bounded by |M | 6 O(ε log(k/ε)). We

show in the sequel, that the MWISR problem for axis-parallel segments can be solved in �xed-parameter

time when parameterized by both k and the number of distinct weights.

Theorem 4.1. Suppose D is a set of axis-parallel segments in the plane and ω is a positive weight function
on D. LetW be the number of distinct weights assigned by ω. Then given k, in time (kW )O(k

2) · |D|O(1) one
can �nd an optimum solution.

Note that Theorem 1.2 follows from combining Theorem 4.1 with the preprocessing described above

(applied to ε scaled by a factor of 1/2). Therefore, from now on we focus on proving Theorem 4.1.
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4.2 Constructing a grid

Let� be any total order onD that orders the segments by non-decreasing weights, that is, ω(R) < ω(R′)
entails R ≺ R′. Extend � to subsets of D in a lexicographic manner: S ≺ S ′ if S is lexicographically

smaller than S ′ where both sets are sorted according to�. Let Smax be the�-maximum optimum solution.

The next step is to guess (by branching into |D| options) the �-minimum segment Rmin of Smax.

Having done this, we safely remove from D all segments R satisfying R ≺ Rmin. Since Smax is the �-

maximum optimum solution, we achieve the following property: every optimum solution contains the

�-smallest segment of D. We proceed further with this assumption.

We now show that under this assumption, there must exist a grid of size at most k that hits every

segment from D. Here and later on, a segment is hit by a line if they intersect, and a segment is hit by a

grid if it is hit by a line in this grid.

Claim 4.2. Suppose every optimum solution contains the�-minimum segment ofD. Then there exists a grid
G of size at most k such that every segment in D is hit by G.

Proof. Let R0 be the �-minimum segment of D and let S be any optimum solution. Let G be the grid

comprising of, for every segment R ∈ S , the line containing R. Clearly, we have |G| 6 |S| 6 k. Suppose

for contradiction, that there is a segment R ∈ D which is not hit by any line of G. Clearly R 6= R0,

because R0 ∈ S by assumption. Consider S ′ := S − {R0} ∪ {R} and note that S ′ is an independent

set, because all segments of S are contained in lines of G, while R is disjoint with all those lines. Since

R0 ≺ R, we have ω(R0) 6 ω(R), hence ω(S ′) > ω(S). So S ′ is an optimum solution that does not

contain R0, a contradiction.

Note that the proof of Claim 4.2 is non-constructive, as the de�nition of the grid depends on the (un-

known) optimum solution S . However, we can give a polynomial-timeO(k)-approximation algorithm for

�nding a grid that hits all segments in D.

Lemma 4.3. There exists a polynomial time algorithm that, given a set D of axis-parallel segments in the
plane and an integer k, either correctly concludes that there is no grid of size at most k which hits all segments
of D, or �nds such a grid of size O(k2).

Proof. We construct a grid G as follows. Swipe a vertical line from left to right across D until the �rst

moment when the segments lying entirely to the left of the line can not be hit by k horizontal lines anymore.

Let x1 be the position of the line at this moment; in other words, x1 is the least real such that the segments

of D entirely contained in (−∞, x1]×R cannot be hit with k horizontal lines. We set x1 =∞ in case the

whole D can be covered with at most k horizontal lines. By the minimality of x1, the segments entirely

contained in (−∞, x1]×R can be covered by k+1 lines: the k horizontal lines required to cover segments

in (−∞, x1), plus one vertical line at x1 (in case x1 6=∞). We add all those k + 1 lines to G, delete from

D all segments hit by those lines, and repeat the procedure until no more segments are left inD. This way

we obtain numbers x1 6 x2 6 . . . 6 x` and a grid G of size at most (k + 1)`, where ` is the number of

iterations of the procedure. See Figure 4 for an illustration.

Clearly, G hits all segments in D. So if ` 6 k + 1, then |G| 6 (k + 1)2 = O(k2) and the algorithm

can provide G as a valid output. We now argue that if ` > k + 1, then the algorithm may safely conclude

that there is no grid of size at most k that hits all segments of D. For contradiction, suppose there is such

a grid G′. For i ∈ {1, . . . , `}, let Di be the set of all segments entirely contained in (xi−1, xi]× R, where

we set x0 = −∞. It is easy to see that Di is precisely the set of segments for which the algorithm in

iteration i decided that it cannot be hit by at most k horizontal lines. Hence, for each i ∈ {1, . . . , `}, G′
must contain at least one vertical line hitting at least one segment in Di. The x-coordinate of this vertical

line must belong to the interval (xi−1, xi], so these vertical lines must be pairwise di�erent. We conclude

that |G′| > ` > k, a contradiction.
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Figure 4: Example of the grid construction for k = 3. Subsequently, red, blue and then green segments are

removed in consecutive iterations. In each iteration we scan the segments from left to right until k + 1
horizontal lines are needed to cover the already seen segments. In the last iteration at most k horizontal

lines are selected. Lines added to G are dotted.

It remains to argue how to implement the algorithm so that it runs in polynomial time. Observe that

for a set of segments D′ ⊆ D, the minimum number of horizontal lines needed to hit all the segments of

D′ can be computed as follows: Projecting all the segments D′ on the vertical axis, and �nd the minimum

number of points that hit the obtained set of intervals (some of which are single points; these are projected

horizontal segments). This, in turn, can be done in timeO(|D′| log |D′|) using a standard greedy strategy.

It is now straightforward to use this sub-procedure to execute the construction of G described above in

polynomial time.

We now combine Claim 4.2 and Lemma 4.3 as follows. Run the algorithm of Lemma 4.3 on D with

parameter k. If the algorithm concludes that there is no grid of size at most k that hits all segments of

D, then by Claim 4.2 we can terminate the current branch, as clearly one of the previous guesses was

incorrect. Otherwise, we obtain a grid G of size O(k2) that hits every segment of D. With this grid we

proceed to the next steps.

For brevity of presentation, by adding four lines to G we may assume that all segments of D are

contained in the interior of the rectangle delimited by the left-most and the right-most vertical line of G
and the top-most and the bottom-most horizontal line of G. We will also say that a grid with this property

encloses D.

4.3 Constructing a nice grid

We use the same notion of niceness as in Section 3. That is, a grid G is nice with respect to a segment R,

if R contains at least one grid point of G; in other words, R is intersected by both a horizontal and a

vertical line in G. We will also say that R respects the grid G. The ugliness of a grid G with respect to some

optimum solution S is the number of segments of S that do not respect G. Then the ugliness of G is the

minimum over all optimum solutions S of the ugliness of G with respect to S . This way, a grid is nice if

its ugliness is 0, or equivalently, there exists an optimum solution S such that G is nice with respect to all

the segments in S .

In further considerations, it will be convenient to again rely on a suitable de�ned notion of a combina-

torial type of a segment with respect to a grid. Consider a grid G that encloses D. For a segment R ∈ D,

the combinatorial type of R with respect to G is the 6-tuple consisting of:

• The boolean value indicating whether R is horizontal or vertical.
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• The weight ω(R).

• The right-most line `← of G such that R entirely lies strictly to the right of `←.

• The left-most line `→ of G such that R entirely lies strictly to the left of `→.

• The bottom-most line `↑ of G such that R entirely lies strictly below `↑.
• The top-most line `↓ of G such that R entirely lies strictly above `↓.

In other words, (`←, `→, `↑, `↓) contain the sides of the inclusion-wise minimal rectangle R′ delimited by

the lines from G whose interior contains R. Note that the set of grid points of G contained in R is equal

to the set of grid points contained in the interior of R′. Assuming G is clear from the context, for a type

t we will denote this set of grid points by P (t). Observe that the number of di�erent combinatorial types

with respect to G is bounded by 2W |G|4, where W is the number of distinct weights assigned by ω.

Lemma 4.4. Given a �nite set D of axis-parallel segments in the plane, a positive weight function ω on D, a
positive integer k, and a gridG that enclosesD with a guarantee that the ugliness ofG is 0. Then an optimum
solution for D, ω, k can be found in time (W · |G|)O(k) · |D|O(1).

Proof. Fix any optimum solution S such that G is nice with respect to S . We guess, by branching into

all possibilities, the combinatorial types (with respect to G) of all the segments of S . Since there are at

most 2W |G|4 di�erent combinatorial types, this results in (W · |G|)O(k) branches. Let the guessed set of

combinatorial types be T . Since G is supposed to be nice with respect to S , we may assume that the sets

{P (t) : t ∈ T } are nonempty and pairwise disjoint; otherwise the branch can be discarded.

We construct an auxiliary 2-CSP instance I that models the choice of segments inS . The set of variables

is T . For every type t ∈ T , the domain Dt consists of all segments from D whose combinatorial type is t.
The constraints are as follows:

• If t, t′ ∈ T are distinct types of horizontal segments, and P (t) and P (t′) are two adjacent intervals

of grid points on the same horizontal line of G, then we put a constraint between t and t′ that among

Dt ×Dt′ , allows only pairs of disjoint segments.

• Analogous constraints are put for distinct types t, t′ ∈ T of vertical segments for which P (t) and

P (t′) are adjacent intervals on the same vertical line.

It is straightforward to verify that solutions to I correspond in one-to-one fashion to those independent

sets in D for which the set of combinatorial types is T . Moreover, observe that the Gaifman graph of I is

a disjoint union of paths, where every path t1 − . . . − tp corresponds to a sequence P (t1), . . . , P (tp) of

intervals on the same grid line such that P (ti) is adjacent to P (ti+1) for i ∈ {1, . . . , p− 1}. Therefore, it

su�ces to solve I optimally, which can be done in time |D|O(1) using, for instance, Lemma 2.1.

Lemma 4.4 suggests that we should aim to construct a grid with zero ugliness. So far, the grid G
constructed in the previous section may have positive ugliness: some segments of D may be intersected

by just one, and not two orthogonal lines, and there is no reason why an optimum solution should not

contain any such segments. Our goal is to reduce the ugliness of the grid by further branching steps. The

branching strategy is captured in the following lemma.

Lemma 4.5. Given a �nite set D of axis-parallel segments in the plane, a positive weight function ω on D, a
positive integer k, and a grid G that hits all segments of D and encloses D. Let W be the number of di�erent
weights assigned by ω. Then one can construct, in time (|G| ·W )O(k) · |D|O(1), a family G of grids with the
following properties:

(i) |G| 6 (|G| ·W )O(k);
(ii) for each G′ ∈ G, we have G′ ⊇ G and |G′ −G| 6 k; and
(iii) If the ugliness ofG is positive, then there isG′ ∈ G whose ugliness is strictly smaller than that ofG.

Proof. Fix an optimum solution S such that the ugliness of G with respect to S is minimum possible.

Assume that this ugliness is positive, since otherwise (iii) holds vacuously and any family G satisfying
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Figure 5: Illustration of Case 1 and Case 2 of the proof of Lemma 4.5. Red segments are the segments

fromN (they already contain a grid point). The green segment is the candidate segment Rmax (maximum

weight segment in the optimum solution not containing a grid point). The box B is the blue-stroked

rectangle. We greedily �nd a maximum-size region inside B containing candidate segments, depicted in

black, with the same combinatorial type as Rmax. If there are more than k independent candidates, we can

return an optimum solution (since Rmax has maximum weight). Otherwise we can add fewer than k grid

lines to the current grid (such that each candidate is hit by a newly added grid line).

(i) and (ii) is a valid output (this will be guaranteed by the algorithm). We construct G by a branching

algorithm that, intuitively, guesses a bounded amount of information about S and augments G according

to the guess, so that the augmented grid is nice with respect to at least one more segment of S . Thus,

di�erent members of G correspond to di�erent guesses on the structure of S .

LetN be the set of all segments in S that respectG. As the ugliness ofG is positive, S−N is nonempty.

Let Rmax be the maximum weight segment of S − N ; in case there are several with the same maximum

weight, pick any of them.

The algorithm guesses, by branching into all possibilities, the combinatorial types of all segments in

N ∪ {Rmax}; this results in at most (1 + 2W |G|4)k 6 (|G| ·W )O(k) branches. For every guess we shall

construct one grid G′ ⊇ G included in G. Therefore, we �x one guess and proceed to the description of

G′.
By symmetry, we may assume that Rmax is horizontal. Let T be the (already guessed) set of combi-

natorial types of segments fromN , and let tmax = (horizontal, w, `←, `→, `↑, `↓) be the (already guessed)

combinatorial type of Rmax. Similar to the proof of Lemma 4.4, we assume that the sets {P (t) : t ∈ T } are

nonempty and pairwise disjoint, as otherwise the guess can be safely discarded as incorrect. Also, note

that each P (t) is an interval consisting of consecutive grid points on a single line of G.

Let B be the rectangle delimited by (`←, `→, `↑, `↓). Since G is not nice with respect to Rmax, the

interior of B does not contain any grid point of G. So there are two cases to consider:

Case 1: `↑ and `↓ are consecutive horizontal lines of G. This is equivalent to Rmax lying in the interior of

the horizontal strip between `↑ and `↓. In particular Rmax is not contained in any line of G. Note

that since Rmax is hit by G (which is true about every segment of D), the two vertical lines `← and

`→ are non-consecutive in G. So B is the union of two or more horizontally adjacent grid cells of G.

Case 2: `↑ and `↓ are non-consecutive horizontal lines of G. Since Rmax is horizontal, there must exist

exactly one line of G between `↑ and `↓, say `, and ` must contain Rmax. Note that since Rmax

contains no grid point of G, `← and `→ must be two consecutive vertical lines of G. So B is the

union of two vertically adjacent grid cells of G.

We consider these two cases separately. See Figure 5 for an illustration.
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Case 1: Rmax does not lie on a grid line. We construct an auxiliary 2-CSP instance I that corresponds

to the choice of segments in N , exactly as in the proof of Lemma 4.4. That is, the set of variables is T ,

and the constraints are as described in the proof of Lemma 4.4. Again, solutions to I are in one-to-one

correspondence to those independent sets in D whose set of combinatorial types is T . Also, the Gaifman

graph H of I is a disjoint union of paths, where each path corresponds to a sequence of adjacent intervals

of grid points contained in a single grid line of G.

The idea is to compute a solution u to I that leaves “the most space” for the placement of Rmax. For

this, for every connected component C of H , we do the following. Recall that C is a path, and enumerate

the consecutive variables on C as t1, . . . , tp. Let P (C) :=
⋃p

i=1 P (ti); then P (C) is an interval of grid

points on one line of G, say `. We again consider two cases.

First, if ` is horizontal, or P (C) does not contain any grid point lying in the interior of a side of B;

compute any solution within C , say using the algorithm of Lemma 2.1.

Second, if ` is vertical and P (C) contains some grid point lying in the interior of a side of B, we do as

follows. Note that the intersection of ` with B is a segment. Let x↑ ∈ `↑ and x↓ ∈ `↓ be the endpoints of

this segment. Then x↑ and x↓ are two vertically adjacent grid points of G that lie in the interior of the top

and the bottom side of B, while P (C) contains one or both of x↑ and x↓. For concreteness, assume for now

that P (C) contains both x↑ and x↓; the other cases are simpler and will be discussed later. Assume that

there is no i ∈ {1, . . . , p} such thatP (ti) contains both x↑ and x↓, because then the corresponding segment

ofN would necessarily intersect Rmax; so if this occurs, we can discard the branch as incorrect. So, up to

reversing indexing if necessary, there exists i ∈ {1, . . . , p − 1} such that x↑ ∈ P (ti) and x↓ ∈ P (ti+1).

We compute a solution within C greedily as follows:

• First, process variables t1, . . . , ti in this order. When considering tj , assign the segment whose

lower endpoint is the highest possible among the available segments of Dtj (that is, disjoint with

the segment assigned to tj−1, for j > 1).

• Second, apply a symmetric greedy procedure to variables tp, tp−1, . . . , ti+1 in this order, always

picking an available segment with the lowest possible higher endpoint.

In case any of x↑ or x↓ does not belong to P (C), only one of the above greedy procedures is applied.

If I has a solution, the algorithm described above clearly succeeds in �nding some solution u to I .

Since we assume I to have a solution — witnessed by N — we may terminate the branch as incorrect

in case no solution to I is found by the algorithm. Let N ′ = u(T ) be the independent set of segments

found by the algorithm above. It is straightforward to see that the greedy choice of solutions within the

components of H justi�es the following claim.

Claim 4.6. It holds that intB ∩
⋃
N ′ ⊆ intB ∩

⋃
N , where intB denotes the interior of B. Consequently,

Rmax is disjoint with every segment in N ′.

Now, letR ⊆ D be the set of all segments in D whose combinatorial type is tmax and that are disjoint

with all segments in N ′. By Claim 4.6, we necessarily have Rmax ∈ R. Let L be the set comprising of all

(horizontal) lines containing some segment R ∈ R. We consider two cases.

• If |L| < k − |N |, then we add the grid G′ := G ∪ L to G.

• If |L| > k−|N |, then we add the grid G′ := G∪L′ to G, where L′ is any subset of L of size k−|N |.
It remains to argue that in both cases, the ugliness of G′ is strictly smaller than that of G.

In the case |L| < k − |N |, it su�ces to note that since Rmax is contained in some line of L, the grid

G′ = G ∪ L is nice with respect Rmax, while G is not nice with respect to Rmax by assumption.

Consider now the case |L| > k − |N |. For every line ` ∈ L′, pick any segment R` ∈ R that lies on

`. Let L := {R` : ` ∈ L′}. Note that the segments of L are pairwise disjoint due to lying on di�erent

horizontal lines, and they are also disjoint from all the segments ofN ′ by the de�nition ofR. SoN ′∪L is

an independent set of segments, and has size k. Furthermore, since the combinatorial type also features the

weight of a segment, and Rmax was chosen to be the heaviest segment within S − N , we have ω(N ′) =
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ω(N ) and ω(L) > ω(S − N ). It follows that ω(N ′ ∪ L) > ω(S), hence N ′ ∪ L is also an optimum

solution. But G′ = G ∪ L′ is nice with respect to all the segments of N ′ ∪ L, so the ugliness of G′ is 0.

Case 2: R lies on a grid line. This case works in a very similar fashion as the previous one, hence we

only outline the di�erences here.

Recall that in this case B consists of two vertically adjacent cells of G. Let S be the common side of

those cells; then our guess on the combinatorial type tmax of Rmax says that Rmax should be contained in

the interior of S.

We construct an instance I of 2-CSP in exactly the same manner as in Case 1. We solve it using a similar

greedy procedure, so that the space left for placing Rmax within the interior of s is maximized. Here, there

will be at most one connected component of the Gaifman graph of I where a greedy strategy is applied;

this is the horizontal component C such that P (C) contains one or both endpoints of S. Let N ′ be the

obtained solution to I . The analogue of Claim 4.6 now says the following: intS ∩
⋃
N ′ ⊆ intS ∩

⋃
N ,

hence Rmax is disjoint with every segment inN ′. Consequently, if we denote S′ := intS −
⋃
N ′, then S′

is an open segment that contains Rmax.

Now, letR be the set of all segments fromD contained in S′ and whose weight is equal to the guessed

weight of Rmax. Since all segments ofR lie on the same line, using a polynomial-time left-to-right greedy

sweep we may �nd a maximum independent set of segments withinR; call itL. Let L be the set of vertical

lines passing through the right endpoints of the segments in L. Note that by construction of L, L hits all

segments in L. We again consider two subcases:

• If |L| = |L| < k − |N |, then we add the grid G′ = G ∪ L to G.

• If |L| = |L| > k − |N |, then we add the grid G′ = G ∪ L′ to G, where L′ is any, arbitrarily chosen,

subset of L with size k − |N |.
A reasoning analogous to Case 1 shows the following. In the �rst subcase, G′ is nice with respect to Rmax,

hence the ugliness of G′ is strictly smaller than that of G. In the second case,N ′∪L is an optimum solution

and G′ is nice with respect to N ′ ∪ L, hence the ugliness of G′ is 0.

In both Case 1 and Case 2 we constructed a grid G′ ⊇ G with |G′ −G| 6 k whose ugliness is strictly

smaller than that of G. We conclude the proof by taking G to be the set of all grids G′ constructed in this

manner.

Finally, Lemma 4.5 can be applied in a recursive manner to obtain a nice grid.

Lemma 4.7. Given a �nite set D of axis-parallel segments in the plane, a positive weight function ω on D, a
positive integer k, and a grid G that hits all segments of D and encloses D. Let W be the number of di�erent
weights assigned by ω. Then one can in time (k ·W · |G|)O(k2) · |D|O(1) construct a family G of grids such
that:

(i) |G| 6 (k ·W · |G|)O(k2);
(ii) for each G′ ∈ G, we have G′ ⊇ G and |G′ −G| 6 k2; and
(iii) G contains at least one grid of ugliness 0.

Proof. Starting with G0 := {G}, we iteratively construct families of grids G1,G2, . . . ,Gk as follows: to

construct Gi from Gi−1, replace each grid G ∈ Gi−1 with the family G(G) obtained by applying Lemma 4.5

to G. A straightforward induction using properties (i) and (ii) of Lemma 4.5 shows that: |Gi| 6 (k ·W ·
|G|)O(ik), for each G′ ∈ Gi it holds that G′ ⊇ G and |G′ − G| 6 ik, and the construction of Gi takes

(k ·W · |G|)O(ik) · |D|O(1) time. Moreover, by property (iii) of Lemma 4.5, if the minimum ugliness among

grids in Gi−1 is positive, then the minimum ugliness among the grids in Gi is strictly smaller than that in

Gi−1. Since the ugliness of G is at most k, it follows that G := Gk satis�es all the required properties.
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4.4 Proof of Theorem 4.1

We are ready to assemble all the tools and prove Theorem 4.1.

Proof of Theorem 4.1. As discussed in Section 4.2, by preprocessing the instance and branching intoO(|D|)
possibilities, we may assume that we constructed a grid G of sizeO(k2) such that every segment inD is hit

by G. Adding four lines to G ensures that G enclosesD. Then we apply Lemma 4.7 to G, and we construct

a family of grids G that features at least one grid with ugliness 0. It now remains to apply Lemma 4.4 to

each grid in G and output the heaviest of the obtained solutions. Following directly from the guarantees

provided by Lemmas 4.4 and 4.7, this algorithm runs in time (kW )O(k
2) · |D|O(1).

As argued in Section 4.1, Theorem 1.2 follows from Theorem 4.1.
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