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WALKING THE DOG FAST IN PRACTICE:
ALGORITHM ENGINEERING OF THE FRÉCHET DISTANCE

Karl Bringmann,∗Marvin Künnemann,† and André Nusser‡

Abstract. The Fréchet distance provides a natural and intuitive measure for the popu-
lar task of computing the similarity of two (polygonal) curves. While a simple algorithm
computes it in near-quadratic time, a strongly subquadratic algorithm cannot exist unless
the Strong Exponential Time Hypothesis fails. Still, fast practical implementations of the
Fréchet distance, in particular for realistic input curves, are highly desirable. This has even
lead to a designated competition, the ACM SIGSPATIAL GIS Cup 2017: Here, the challenge
was to implement a near-neighbors data structure under the Fréchet distance. The bottle-
neck of the top three implementations turned out to be precisely the decision procedure for
the Fréchet distance.

In this work, we present a fast, certifying implementation for deciding the Fréchet
distance, in order to (1) complement its pessimistic worst-case hardness by an empirical
analysis on realistic input data and to (2) improve the state of the art for the GIS Cup
challenge. We experimentally evaluate our implementation on a large benchmark consisting
of several data sets (including handwritten characters and GPS trajectories). Compared to
the winning implementation of the GIS Cup, we obtain running time improvements of up
to more than two orders of magnitude for the decision procedure and of up to a factor of 30
for queries to the near-neighbors data structure.

1 Introduction

A variety of practical applications analyze and process trajectory data coming from different
sources like GPS measurements, digitized handwriting, motion capturing, and many more.
One elementary task on trajectories is to compare them, for example in the context of
signature verification [33], map matching [17, 32, 19, 11], and clustering [13, 15]. In this
work we consider the Fréchet distance as curve similarity measure as it is arguably the most
natural and popular one. Intuitively, the Fréchet distance between two curves is explained
using the following analogy. A person walks a dog, connected by a leash. Both walk along
their respective curve, with possibly varying speeds and without ever walking backwards.
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Over all such traversals, we search for the ones which minimize the leash length, i.e., we
minimize the maximal distance the dog and the person have during the traversal.

Initially defined more than one hundred years ago [24], the Fréchet distance quickly
gained popularity in computer science after the first algorithm to compute it was presented
by Alt and Godau [2]. In particular, they showed how to decide whether two length-n curves
have Fréchet distance at most δ in time O(n2) by full exploration of a quadratic-sized search
space, the so-called free-space (we refer to Section 3.1 for a definition). Almost twenty years
later, it was shown that, conditional on the Strong Exponential Time Hypothesis (SETH),
there cannot exist an algorithm with running time O(n2−ε) for any ε > 0 [7]. Even for
realistic models of input curves, such as c-packed curves [21], exact computation of the
Fréchet distance requires time n2−o(1) under SETH [7]. Only if we relax the goal to finding
a (1 + ε)-approximation of the Fréchet distance, algorithms with near-linear running times
in n and c on c-packed curves are known to exist [21, 8].

It is a natural question whether these hardness results are mere theoretical worst-
case results or whether computing the Fréchet distance is also hard in practice. This line
of research was particularly fostered by the research community in form of the GIS Cup
2017 [31]. In this competition, the 28 contesting teams were challenged to give a fast
implementation for the following problem: Given a data set of two-dimensional trajectories
D, answer queries that ask to return, given a curve π and query distance δ, all σ ∈ D with
Fréchet distance at most δ to π. We call this the near-neighbors problem.

The three top implementations [6, 12, 22] use multiple layers of heuristic filters and
spatial hashing to decide as early as possible whether a curve belongs to the output set or
not, and finally use an essentially exhaustive Fréchet distance computation for the remaining
cases. Specifically, these implementations perform the following steps:

(0) Preprocess D.

On receiving a query with curve π and query distance δ:

(1) Use spatial hashing to identify candidate curves σ ∈ D.

(2) For each candidate σ, decide whether π, σ have Fréchet distance ≤ δ:

a) Use heuristics (filters) for a quick resolution in simple cases.
b) If unsuccessful, use a complete decision procedure via free-space exploration.

Let us highlight the Fréchet decider outlined in steps 2a and 2b: Here, filters refer to
sound, but incomplete Fréchet distance decision procedures, i.e., whenever they succeed to
find an answer, they are correct, but they may return that the answer remains unknown. In
contrast, a complete decision procedure via free-space exploration explores a sufficient part of
the free space (the search space) to always determine the correct answer. As it turns out, the
bottleneck in all three implementations is precisely Step 2b, the complete decision procedure
via free-space exploration. Especially [6] improved upon the naive implementation of the
free-space exploration by designing very basic pruning rules, which might be the advantage
because of which they won the competition. There are two directions for further substantial

http://jocg.org/


JoCG 12(1), 70–108, 2021 72

Journal of Computational Geometry jocg.org

improvements over the cup implementations: (1) increasing the range of instances covered by
fast filters and (2) algorithmic improvements of the exploration of the reachable free-space.

Our Contribution. We develop a fast, practical Fréchet distance implementation. To this
end, we give a complete decision procedure via free-space exploration that uses a divide-and-
conquer interpretation of the Alt-Godau algorithm for the Fréchet distance and optimize it
using sophisticated pruning rules. These pruning rules greatly reduce the search space for
the realistic benchmark sets we consider – this is surprising given that simple constructions
generate hard instances which require the exploration of essentially the full quadratic-sized
search space [7, 9]. Furthermore, we present improved filters that are sufficiently fast com-
pared to the complete decider. Here, the idea is to use adaptive step sizes (combined with
useful heuristic tests) to achieve essentially “sublinear” time behavior for testing if an in-
stance can be resolved quickly. Additionally, our implementation is certifying (see [27] for a
survey on certifying algorithms), meaning that for every decision of curves being close/far,
we provide a short proof (certificate) that can be checked easily; we also implemented a
computational check of these certificates. See Section 8 for details.

An additional contribution of this work is the creation of benchmarks to make fu-
ture implementations more easily comparable. We compile benchmarks both for the near-
neighbors problem (Steps 0 to 2) and for the decision problem (Step 2). For this, we used
publicly available curve data and created queries in a way that should be representative for
the performance analysis of an implementation. As data sets we use the GIS Cup trajec-
tories [29], a set of handwritten characters called the Character Trajectories Data Set [18]
from [20], and the GeoLife data set [25] of Microsoft Research [35, 34, 36]. Our benchmarks
cover different distances and also curves of different similarity, giving a broad overview over
different settings. We make the source code as well as the benchmarks publicly available
to enable independent comparisons with our approach.1 Additionally, we particularly focus
on making our implementation easily readable to enable and encourage others to reuse the
code.

Evaluation. The GIS Cup 2017 had 28 submissions, with the top three submissions2 (in
decreasing order) due to Bringmann and Baldus [6], Buchin et al. [12], and Dütsch and
Vahrenhold [22]. We compare our implementation with all of them by running their imple-
mentations on our new benchmark set for the near-neighbors problem and also comparing
to the improved decider of [6]. The comparison shows significant speed-ups up to almost a
factor of 30 for the near-neighbors problem and up to more than two orders of magnitude
for the decider.

1Code and benchmarks are available at https://gitlab.mpi-klsb.mpg.de/anusser/frechet_distance.
2The submissions were evaluated “for their correctness and average performance on a[sic!] various large

trajectory databases and queries”. Additional criteria were the following: “We will use the total elapsed wall
clock time as a measure of performance. For breaking ties, we will first look into the scalability behavior for
more and more queries on larger and larger datasets. Finally, we break ties on code stability, quality, and
readability and by using different datasets.”
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Related Work. The best known algorithm for deciding the Fréchet distance runs in time
O(n2 (log logn)

2

logn ) on the word RAM [10]. This relies on the Four Russians technique and is
mostly of theoretical interest. In light of the quadratic-time conditional lower bound in the
worst case [7], it is not surprising that faster algorithms are known only for some restrictive
classes of curves such as closed convex curves [3] and curves consisting of large segments
(compared to the Fréchet distance) [26]. If we additionally relax the goal to approximating
the Fréchet distance, strongly subquadratic algorithm are known for realistic input models
including κ-bounded, κ-straight, and c-packed curves [3, 21, 8]. Unfortunately, the algo-
rithmic techniques used for these results crucially rely on the input restrictions and/or are
inherently approximative rather than exact. Further results are known for variants of the
Fréchet distance, e.g., the discrete Fréchet distance [1, 23, 4].

After the GIS Cup 2017, several practical papers studying aspects of the Fréchet
distance appeared [5, 16, 30]. Some of this work [5, 16] addressed how to improve upon
the spatial hashing step (Step 1) if we relax the requirement of exactness. Since this is
orthogonal to our approach of improving the complete decider, these improvements could
possibly be combined with our algorithm. The other work [30] neither compared with the
GIS Cup implementations, nor provided their source code publicly to allow for a comparison,
which is why we have to ignore it here.

Organization. First, in Section 2, we present all the core definitions. Subsequently, we
explain our complete decider in Section 3. The following section then explains the decider
and its filtering steps. Then, in Section 5, we present a query data structure which enables
us to compare to the GIS Cup submissions. Section 6 contains some details regarding the
implementation to highlight crucial points that are relevant for similar implementations.
We conduct extensive experiments in Section 7, detailing the improvements over the current
state of the art by our implementation. Finally, in Section 8, we describe how we make our
implementation certifying and evaluate the certifying code experimentally.

2 Preliminaries

Our implementation as well as the description are restricted to two dimensions, however, the
approach can also be generalized to polygonal curves in d dimensions. Therefore, a curve
π is defined by its vertices π1, . . . , πn ∈ R2 which are connected by straight lines. We also
allow continuous indices as follows. For p = i+ λ with i ∈ {1, . . . , n} and λ ∈ [0, 1], let

πp := (1− λ)πi + λπi+1.

We call the πp with p ∈ [1, n] the points on π. A subcurve of π which starts at point p and
ends at point q on π is denoted by πp...q. In the remainder, we denote the number of vertices
of π (resp. σ) with n (resp. m) if not stated otherwise. We denote the length of a curve π
by ‖π‖, i.e., the sum of the Euclidean lengths of its line segments. Additionally, we use ‖v‖
for the Euclidean norm of a vector v ∈ R2. For two curves π and σ, the Fréchet distance
dF (π, σ) is defined as

dF (π, σ) := inf
f∈Tn
g∈Tm

max
t∈[0,1]

∥∥πf(t) − σg(t)∥∥ ,
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where Tk is the set of monotonically increasing continuous surjective functions f : [0, 1] →
[1, k]. We define a traversal as a pair (f, g) ∈ Tn × Tm. Given two curves π, σ and a query
distance δ, we call them close if dF (π, σ) ≤ δ and far otherwise. There are two problem
settings that we consider in this paper:

Decider Setting: Given curves π, σ and a distance δ, decide whether dF (π, σ) ≤ δ. (With
such a decider, we can compute the exact distance by using parametric search in theory
and binary search in practice.)

Query Setting: Given a curve dataset D, build a data structure that on query (π, δ)
returns all σ ∈ D with dF (π, σ) ≤ δ.

We mainly focus on the decider in this work. To allow for a comparison with previous
implementations (which are all in the query setting), we also run experiments with our
decider plugged into a data structure for the query setting.

2.1 Preprocessing

When reading the input curves we immediately compute additional data which is stored
with each curve:

Prefix Distances: To be able to quickly compute the curve length between any two vertices
of π, we precompute the prefix lengths, i.e., the curve lengths ‖π1...i‖ for every i ∈
{2, . . . , n}. We can then compute the curve length for two indices i < i′ on π by
‖πi...i′‖ = ‖π1...i′‖ − ‖π1...i‖.

Bounding Box: We compute the bounding box of all curves, which is a simple coordinate-
wise maximum and minimum computation.

Both of these preprocessing steps are extremely cheap as they only require a single pass
over all curves, which we anyway do when parsing them. In the remainder of this work we
assume that this additional data was already computed, in particular, we do not measure it
in our experiments as it is dominated by reading the curves.

3 Complete Decider

The key improvement of this work lies in the complete decider via free-space exploration.
Here, we use a divide-and-conquer interpretation of the algorithm of Alt and Godau [2]
which is similar to [6] where a free-space diagram is built recursively. This interpretation
allows us to prune away large parts of the search space by designing powerful pruning rules
identifying parts of the search space that are irrelevant for determining the correct output.
Before describing the details, we formally define the free-space diagram.
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Figure 1: Example of a free-space diagram for curves π (black) and σ (red). Curve π is
on the horizontal axis of the free-space diagram, while σ is on the vertical axis; we use this
convention in the remainder. The doubly-circled vertices mark the start. The free-space,
i.e., the pairs of indices of points which are close, is colored green. The non-free areas are
colored red. The threshold distance δ is roughly the distance between the first vertex of σ
and the third vertex of π.

3.1 Free-Space Diagram

The free-space diagram was first defined in [2]. Given two polygonal curves π and σ and a
distance δ, it is defined as the set of all pairs of indices of points from π and σ that are close
to each other, i.e.,

F := {(p, q) ∈ [1, n]× [1,m] | ‖πp − σq‖ ≤ δ}.

For an example see Figure 1. A path from a to b in the free-space diagram F is defined as a
continuous mapping P : [0, 1]→ F with P (0) = a and P (1) = b. A path P in the free-space
diagram is monotone if P (x) is component-wise at most P (y) for any 0 ≤ x ≤ y ≤ 1. The
reachable space is then defined as

R := {(p, q) ∈ F | there exists a monotone path from (1, 1) to (p, q) in F}.

Figure 2 shows the reachable space for the free-space diagram of Figure 1. It is well known
that dF (π, σ) ≤ δ if and only if (n,m) ∈ R.

This leads us to a simple dynamic programming algorithm to decide whether the
Fréchet distance of two curves is at most some threshold distance. We iteratively compute
R starting from (1, 1) and ending at (n,m), using the previously computed values. As R
is potentially a set of infinite size, we have to discretize it. A natural choice is to restrict
to cells. The cell of R with coordinates (i, j) ∈ {1, . . . , n − 1} × {1, . . . ,m − 1} is defined
as Ci,j := [i, i + 1] × [j, j + 1]. This is a natural choice as given R ∩ Ci−1,j and R ∩ Ci,j−1,
we can compute R ∩ Ci,j in constant time; this follows from the simple fact that F ∩ Ci,j
is convex [2]. We call this computation of the outputs of a cell the cell propagation. This
algorithm runs in time O(nm) and was introduced by Alt and Godau [2].
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Figure 2: Reachable space of the free-space diagram in Figure 1. The reachable part is blue
and the non-reachable part is red. Note that the reachable part is a subset of the free-space.
We use this color scheme in the remainder of this work.

3.2 Basic Algorithm

For integers 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m we call the set B = [i, i′] × [j, j′] a box. We
denote the left/right/bottom/top boundaries of B by Bl = {i}×[j, j′], Br = {i′}×[j, j′], Bb =
[i, i′] × {j}, Bt = [i, i′] × {j′}. The left input of B is BR

l = Bl ∩ R, and its bottom input is
BR
b = Bb ∩R. Similarly, the right/top output of B is BR

r = Br ∩R, BR
t = Bt ∩R. A box is

a cell if i+ 1 = i′ and j + 1 = j′. We always denote the lower left corner of a box by (i, j)
and the top right by (i′, j′), if not mentioned otherwise.

A recursive variant of the standard free-space decision procedure is as follows: Start
with B = [1, n]× [1,m]. At any recursive call, if B is a cell, then determine its outputs from
its inputs in constant time, as described by [2]. Otherwise, split B vertically or horizontally
into B1, B2 and first compute the outputs of B1 from the inputs of B and then compute the
outputs of B2 from the inputs of B and the outputs of B1. In the end, we just have to check
(n,m) ∈ R to decide whether the curves are close or far. This is a constant-time operation
after calculating all outputs.

Now comes the main idea of our approach: we try to avoid recursive splitting by
directly computing the outputs for non-cell boxes using certain rules. We call them pruning
rules as they enable pruning large parts of the recursion tree induced by the divide-and-
conquer approach. Our pruning rules are heuristic, meaning that they are not always appli-
cable, however, we show in the experiments that on practical curves they apply very often
and therefore massively reduce the number of recursive calls. The detailed pruning rules
are described in Section 3.3. Using these rules, we change the above recursive algorithm
as follows. In any recursive call on box B, we first try to apply the pruning rules. If this
is successful, then we obtained the outputs of B and we are done with this recursive call.
Otherwise, we perform the usual recursive splitting. Corresponding pseudocode is shown in
Algorithm 1.

In the remainder of this section, we describe our pruning rules and their effects.
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Algorithm 1 Recursive Decider of the Fréchet Distance
1: procedure DecideFréchetDistance(π, σ, δ)
2: ComputeOutputs(π, σ, [1, n]× [1,m])
3: return [(n,m) ∈ R]

4: procedure ComputeOutputs(π, σ,B = [i, i′]× [j, j′], δ)
5: if B is a cell then
6: compute outputs by cell propagation
7: else
8: use pruning rules I to IV to compute outputs of B
9: if not all outputs have been computed then

10: if j′ − j > i′ − i then . split horizontally
11: B1 = [i, i′]× [j, b(j + j′)/2c]
12: B2 = [i, i′]× [b(j + j′)/2c, j′]
13: else . split vertically
14: B1 = [i, b(i+ i′)/2c]× [j, j′]
15: B2 = [b(i+ i′)/2c, i′]× [j, j′]

16: ComputeOutputs(π, σ,B1)
17: ComputeOutputs(π, σ,B2)

Figure 3: Output computation of a box when inputs are empty. First we can compute the
outputs of the top left box and then the outputs of the right box. In this example, we then
know that the curves have a Fréchet distance greater than δ as (n,m) is not reachable.

3.3 Pruning Rules

In this section we introduce the rules that we use to compute outputs of boxes which are
above cell-level in certain special cases. Note that we aim at catching special cases which
occur often in practice, as we cannot hope for improvements on adversarial instances due
to the conditional lower bound of [7]. Therefore, we make no claims whether they are
applicable, only that they are sound and fast. In what follows, we call a boundary empty if
its intersection with R is ∅.

Rule I: Empty Inputs

The simplest case where we can compute the outputs of a box B is if both inputs are empty,
i.e. BR

b = BR
l = ∅. In this case no propagation of reachability is possible and thus the

outputs are empty as well, i.e. BR
t = BR

r = ∅. See Figure 3 for an example.
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Figure 4: This is an example of shrinking a box in case one of the inputs is empty and the
other one starts with an empty part. In this example the top left box has an empty input
on the left and the start of the bottom input is empty as well. Thus, we can shrink the box
to the right part.

πp

δ

σ′

Figure 5: Example of a point πp and a curve σ′ which lead to a simple boundary.

Rule II: Shrink Box

Instead of directly computing the outputs, this rule allows us to shrink the box we are
currently working on, which reduces the problem size. Assume that for a box B we have
that BR

b = ∅ and the lowest point of BR
l is (i, jmin) with jmin > j. In this case, no pair in

[i, i′]× [j, jmin] is reachable. Thus, we can shrink the box to the coordinates [i, i′]× [bjminc, j′]
without losing any reachability information. An equivalent rule can be applied if we swap
the role of Bb and Bl. See Figure 4 for an example of applying this rule.

Rule III: Simple Boundaries

Simple boundaries are boundaries of a box that contain at most one free component. To
define this formally, a set I ⊆ [1, n]× [1,m] is called an interval if I = ∅ or I = {p}× [q, q′]
or I = [q, q′] × {p} for real p and an interval [q, q′]. In particular, the four boundaries of a
box B = [i, i′]× [j, j′] are intervals. We say that an interval I is simple if I ∩ F is again an
interval. Geometrically, we have a free interval of a point πp and a curve σq...q′ (which is the
form of a boundary in the free-space diagram) if the circle of radius δ around πp intersects
σq...q′ at most twice. See Figure 5 for an example. We call such a boundary simple because
it is of low complexity, which we can exploit for pruning.

There are three pruning rules that we do based on simple boundaries (see Figure 6
for visualizations). They are stated here for the top boundary Bt, but symmetric rules apply
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a) b) c)

Figure 6: Visualization of the rules for computing outputs using simple boundaries. All
three cases are visualized with the top boundary being simple. In a) the boundary is non-
free and therefore no point on it can be reachable. In b) the boundary’s beginning is free
and reachable, enabling us to propagate the reachability to the entire free interval. In c)
we can propagate the reachability of a point on the bottom boundary, using a free interval
inside the box, to the beginning of the free interval of the top boundary and thus decide the
entire boundary. The rules for the right boundary being simple are equivalent.

to Br. Later, in Section 3.4, we then explain how to actually compute simple boundaries,
i.e., also how to compute Bt ∩ F . The pruning rules are:

(a) If Bt is simple because Bt ∩ F is empty then we also know that the output of this
boundary is empty. Thus, we conclude that BR

t = ∅ and we are done with Bt.

(b) Suppose that Bt is simple and, more specifically, of the form that it first has a free and
then a non-free part; in other words, we have (i, j′) ∈ Bt ∩ F . Due to our recursive
approach, we already computed the left inputs of the box and thus know whether the
top left corner of the box is reachable, i.e. whether (i, j′) ∈ R. If this is the case, then
we also know the reachable part of our simple boundary: Since (i, j′) ∈ R and Bt ∩ F
is an interval containing (i, j′), we conclude that BR

t = Bt ∩ F and we are done with
Bt.

(c) Suppose that Bt is simple, but the leftmost point (imin, j
′) of Bt ∩ F has imin > i.

In this case, we try to certify that (imin, j
′) ∈ R, because then it follows that BR

t =
Bt ∩ F and we are done with Bt. To check for reachability of (imin, j

′), we try to
propagate the reachability through the inside of the box, which in this case means
to propagate it from the bottom boundary. We test whether (imin, j) is in the input,
i.e., if (imin, j) ∈ BR

b , and whether {imin} × [j, j′] ⊆ F (by slightly modifying the
algorithm for simple boundary computations). If this is the case, then we can reach
every point in Bt ∩ F from (imin, j) via {imin} × [j, j′]. Note that this is an operation
in the complete decider where we explicitly use the inside of a box and not exclusively
operate on its boundaries.

We also use symmetric rules by swapping “top” with “right” and “bottom” with “left”.

Rule IV: Boxes at Free-Space Diagram Boundaries

The boundaries of a free-space diagram are a special form of boundary which allows us
to introduce an additional rule. Consider a box B which touches the top boundary of
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πi

σj

πic

σjc

≤ δ?

πi′

σj′

(a) HeurClose

πi

πi′

πic

σj

σj′

σjc

> δ?‖πic...i′‖

‖σjc...j‖

(b) HeurFar

Figure 7: Visualizations of heuristic checks HeurClose and HeurFar.

the free-space diagram, i.e., B = [i, i′] × [j,m]. Suppose the previous rules allowed us
to determine the output for BR

r . Since any valid traversal from (1, 1) to (n,m) passing
through B intersects Br, the output BR

t is not needed anymore, and we are done with B. A
symmetric rule applies to boxes which touch the right boundary of the free-space diagram.

3.4 Implementation Details of Simple Boundaries

It remains to describe how we test whether a boundary is simple, and how we determine the
free interval of a simple boundary. One important ingredient for the fast detection of simple
boundaries are two simple heuristic checks that check whether two polygonal curves are
close or far, respectively. The former check was already used in [6]. We first explain these
heuristic checks, and then explain how to use them for the detection of simple boundaries.

Heuristic check whether two curves are close. Given two subcurves π′ := πi...i′ and
σ′ := σj...j′ , this filter heuristically tests whether dF (π′, σ′) ≤ δ. Let ic := b i+i′2 c and
jc := b j+j′2 c be the indices of the midpoints of π′ and σ′ (with respect to hops). Then
dF (π′, σ′) ≤ δ holds if

max{‖πi...ic‖ , ‖πic...i′‖}+ ‖πic − σjc‖+ max{‖σj...jc‖ ,
∥∥σjc...j′∥∥} ≤ δ.

The triangle inequality ensures that this is an upper bound on all distances between two
points on the curves. For a visualization, see Figure 7a. Observe that all curve lengths
that need to be computed in the above equation can be determined quickly due to our
preprocessing, see Section 2.1. We call this procedure HeurClose(π′, σ′, δ).

Heuristic check whether two curves are far. Symmetrically, we can test whether all pairs
of points on π′ and σ′ are far by testing

‖πic − σjc‖ −max{‖πi...ic‖ , ‖πic...i′‖} −max{‖σj...jc‖ ,
∥∥σjc...j′∥∥} > δ.

We call this procedure HeurFar(π′, σ′, δ).
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Algorithm 2 Checks if the boundary in the free-space diagram corresponding to {p}×[q, q′]
is simple.
1: procedure isSimpleBoundary(πp, σq...q′)
2: if HeurFar(πp, σq...q′ , δ) or HeurClose(πp, σq...q′ , δ) then
3: return “simple”
4:

5: C ←
{
{σq} , if ‖πp − σq‖ ≤ δ
∅ , otherwise

. set of change points

6: s← 1, j ← q
7: while j < q′ do
8: if HeurClose(πp, σj...j+s, δ) then
9: j ← j + s

10: s← min{2s, q′ − j} . double s but do not overstep q′

11: else if HeurFar(πp, σj...j+s, δ) then
12: j ← j + s
13: s← min{2s, q′ − j} . double s but do not overstep q′

14: else if s > 1 then
15: s← s/2
16: else
17: P ← {j′ ∈ (j, j + 1] |

∥∥πp − σj′∥∥ = δ}
18: C ← C ∪ P
19: j ← j + 1
20: if |C| > 2 then
21: return “not simple”
22:
23: return “simple”

Computation of Simple Boundaries. Recall that an interval is defined as I = {p}× [q, q′]
(intervals of the form [q, q′] × {p} are handled symmetrically). The naive way to decide
whether interval I is simple would be to go over all the segments of σq...q′ and compute the
intersection with the circle of radius δ around πp. However, this is too expensive because
(i) computing the intersection of a disc and a segment involves taking a square root, which
is an expensive operation with a large constant running time, and (ii) iterating over all
segments of σq...q′ incurs a linear factor in n for large boxes, while we aim at a logarithmic
dependence on n for simple boundary detection.

We avoid these issues by resolving long subcurves σj..j+s using our heuristic checks
(HeurClose, HeurFar). Here, s is an adaptive step size that grows whenever the heuristic
checks were applicable, and shrinks otherwise. See Algorithm 2 for pseudocode of our simple
boundary detection. It is straightforward to extend this algorithm to not only detect whether
a boundary is simple, but also compute the free interval of a simple boundary; we call the
resulting procedure SimpleBoundary.
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3 4

21

Figure 8: A free-space diagram as produced by our final implementation (left) with the
corresponding curves (right). The beginnings of the curves are marked, and π is on the
horizontal axis of the free-space diagram, while σ is on the vertical axis. The curves are
taken from the SIGSPATIAL dataset. We number the boxes in the third level of the recursion
from 1 to 4.

3.5 Effects of Combined Pruning Rules

All the pruning rules presented above can in practice lead to a reduction of the number of
boxes that are necessary to decide the Fréchet distance of two curves. We exemplify this
on two real-world curves; see Figure 8 on page 13 for the curves and their corresponding
free-space diagram. We explain in the following where the single rules come into play. For
Box 1 we apply Rule IIIb twice – for the top and right output. The top boundary of Box
2 is empty and thus we computed the outputs according to Rule IIIa. Note that the right
boundary of this box is on the right boundary of the free-space diagram and thus we do
not have to compute it according to Rule IV. For Box 3 we again use Rule IIIb for the
top, but we use Rule IIIc for the right boundary – the blue dotted line indicates that the
reachability information is propagated through the box. For Box 4 we first use Rule II to
move the bottom boundary significantly up, until the end of the left empty part; we can do
this because the bottom boundary is empty and the left boundary is simple, starting with
an empty part. After two splits of the remaining box, we see that the two outputs of the
leftmost box are empty as the top and right boundaries are non-free, using Rule IIIa. For
the remaining two boxes we use Rule I as their inputs are empty.

This example illustrates how propagating through a box (in Box 3 ) and subsequently
moving a boundary (in Box 4 ) leads to pruning large parts. Additionally, we can see how
using simple boundaries leads to early decisions and thus avoids many recursive steps. In
total, we can see how all the explained pruning rules together lead to a free-space diagram
with only twelve boxes, i.e., twelve recursive calls, for curves with more than 50 vertices
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Algorithm 3 High-level code of the Fréchet decider.
1: procedure Decider(π, σ, δ)
2: if start points π1, σ1 or end points πn, σm are far then return “far”
3: for all f ∈ Filters do
4: verdict = f(π, σ, δ)
5: if verdict ∈ {“close”, “far”} then
6: return verdict
7: return CompleteDecider(π, σ, δ)

and more than 1500 reachable cells. Figure 9 shows what effects the pruning rules have by
introducing them one by one in an example.

4 Decider with Filters

Now that we introduced the complete decider, we are ready to present the decider. We first
give a high-level overview.

4.1 Decider

The decider can be divided into two parts:

1. Filters (see this section)

2. Complete decider via free-space exploration (see Section 3)

As outlined in Section 1, we first try to determine the correct output by using fast but
incomplete filtering mechanisms and only resort to the slower complete decider presented
in the last section if none of the heuristic deciders (filters) gave a result. The high-level
pseudocode of the decider is shown in Algorithm 3.

The speed-ups introduced by our complete decider were already explained in Sec-
tion 3. A second source for our speed-ups lies in the usage of a good set of filters. Interest-
ingly, since our optimized complete decider via free-space exploration already solves many
simple instances very efficiently, our filters have to be extremely fast to be useful – other-
wise, the additional effort for an incomplete filter does not pay off. In particular, we cannot
afford expensive preprocessing and ideally, we would like to achieve sublinear running times
for our filters. To this end, we only use filters that can traverse large parts of the curves
quickly. We achieve sublinear-type behavior by making previously used filters work with an
adaptive step size (exploiting fast heuristic checks), and designing a new filter.

In the remainder of this section, we describe all the filters that we use to heuristically
decide whether two curves are close or far. There are two types of filters: positive filters check
whether a curve is close to the query curve and return either “close” or “unknown”; negative
filters check if a curve is far from the query curve and return either “far” or “unknown”.
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reachable

Rule I

Rule III
a

Rule III
c

Rule II

Rule IIIb

Rule IV

Figure 9: A decider example introducing the pruning rules one by one. They are introduced
from top to bottom and left to right. The arrows denote the rules which are introduced in
between the two corresponding free-space diagrams. The curves of this example are shown
in Figure 8.
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a) b) c)

Figure 10: Sketches of the (a) greedy filter, (b) adaptive equal-time filter, and (c) negative
filter. These sketches should be read as follows: the first dimension is the index on the first
curve, while the second dimension is the index on the second curve. Recall that the green
color indicates that the corresponding points are in distance at most δ; otherwise they are
colored red. This visualization is similar to the free-space diagram.

4.2 Bounding Box Check

This is a positive filter already described in [22], which heuristically checks whether all pairs
of points on π, σ are in distance at most δ. Recall that we compute the bounding box of
each curve when we read it. We can thus check in constant time whether the furthest points
on the bounding boxes of π, σ are in distance at most δ. If this is the case, then also all
points of π, σ have to be close to each other and thus the free-space diagram is completely
free and a valid traversal trivially exists.

4.3 Greedy

This is a positive filter. To assert that two curves π and σ are close, it suffices to find a
traversal (f, g) satisfying maxt∈[0,1]

∥∥πf(t) − σg(t)∥∥ ≤ δ. We try to construct such a traversal
staying within distance δ by making greedy steps that minimize the current distance. This
may yield a valid traversal: if after at most n+m steps we reach both endpoints and during
the traversal the distance was always at most δ, we return “near”. We can also get stuck: if a
step on each of the curves would lead to a distance greater than δ, we return “unknown”. A
similar filter was already used in [6] and is a standard idea (see, e.g., [9, 26]), however, here
we present a variant with adaptive step size. This means that instead of just advancing to
the next node in the traversal, we try to make larger steps, leveraging the heuristic checks
presented in Section 3.4. We adapt the step size depending on the success of the last step.
For pseudocode of the greedy filter see Algorithm 4, and for a visualization see Figure 10a.

4.4 Adaptive Equal-Time

We also consider a variation of Greedy Filter, which we call Adaptive Equal-Time Filter.
The only difference to Algorithm 4 is that the allowed steps are now:

S :=

{
{(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}, if s = 1,{(
i+ s, j +

⌊
m−j
n−i · s

⌋)}
, if s > 1.
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Algorithm 4 Greedy filter with adaptive step size.
1: procedure GreedyFilter(π, σ, δ)
2: i, j, s← 1
3: while i < n or j < m do

4: S ←
{
{(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}, if s = 1

{(i+ s, j), (i, j + s)}, if s > 1
. possible steps

5: P ← {(i′, j′) ∈ S | i′ ≤ n & j′ ≤ m & HeurClose(πi...i′ , σj...j′ , δ)}
6: if P = ∅ then
7: if s = 1 then
8: return “unknown”
9: else

10: s← s/2

11: else
12: (i, j)← arg min(i′,j′)∈P

∥∥πi′ − σj′∥∥
13: s← 2s
14: return “close”

In contrast to Greedy Filter, this searches for a traversal that stays as close as possible to
the diagonal.

4.5 Negative

A negative filter was already used in [6] and [22]. However, changing this filter to use an
adaptive step size does not seem to be practical when used with our approach. Preliminary
tests showed that this filter would dominate our running time. Therefore, we developed a
new negative filter which is more suited to be used with an adaptive step size and thus can
be used with our approach.

Let (πi, σj) be the points at which Greedy Filter got stuck. We check whether some
point πi+2k , k ∈ N, is far from all points of σ using HeurFar. If so, we conclude that
dF (π, σ) > δ. We do the same with the roles of π and σ exchanged. See Algorithm 5 for the
pseudocode of this filter; for a visualization see Figure 10c.

5 Query Data Structure

In this section we give the details of extending the fast decider to compute the Fréchet
distance in the query setting. Recall that in this setting we are given a curve dataset D
that we want to preprocess for the following queries: Given a polygonal curve π (the query
curve) and a threshold distance δ, report all σ ∈ D that are δ-close to π. To be able to
compare our new approach to existing work (especially the submissions of the GIS Cup) we
present a query data structure here, which is influenced by the one presented in [6].

The most important component that we need additionally to the decider to obtain
an efficient query data structure is a mechanism to quickly determine a set of candidate
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Algorithm 5 Negative filter, where in the two if statements we do a search with adaptive
step size on σ and π, respectively.
1: procedure NegativeFilter(π, σ, δ)
2: (i, j)← last indices of close points in greedy filter
3: s← 1
4: while i+ s ≤ n do
5: if SimpleBoundary(πi+s, σ, δ) is non-free then
6: return “far”
7: s← 2s
8:
9: Repeat lines 3 to 7 with the roles of π and σ swapped

10:
11: return “unknown”

Algorithm 6 The function for answering a range query.
1: procedure FindCloseCurves(π, δ)
2: C ← kdtree.query(π, δ)
3: R← ∅
4: for all σ ∈ C do
5: if FrechetDistanceDecider(π, σ, δ) = “close” then
6: R← R ∪ {σ}
7: return R

curves on which we can then run the decider presented above. The candidate selection is
done using a kd-tree on 8-dimensional points, similar to the octree used in [6], see 5.1 for
more details. The high-level structure of the algorithm for answering queries is shown in
Algorithm 6.

5.1 Kd-Tree

Fetching an initial set of candidate curves via a space-partitioning data structure was already
used in [6, 12, 22]. We use a kd-tree which contains 8-dimensional points, each corresponding
to one of the curves in the data set. Four dimensions of the 8-dimensional points are used
for the start point and end point of the curve (two dimensions each). Note that two curves
can only be close with respect to the Fréchet distance if their start points are close (and
equivalently for the end points). Especially, if any of these four dimensions of two curves
differ by more than δ, then these curves have a Fréchet distance larger than δ. The remaining
four dimensions are used for the maximum/minimum coordinates in x/y direction. This is
because, if the extremal coordinate in one direction of one curve compared to another is larger
than δ, then the point that induces this large extremal coordinate cannot be matched to any
point on the other curve. We can then query this kd-tree with the threshold distance δ and
obtain a set of candidate curves. Note that this query does not have any false negatives, but
might contain false positives, which we then filter out in the later stages of our algorithm.
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6 Implementation Details

Square Root. Computing which parts are close and which are far between a point and a
segment involves intersecting a circle and a line segment, which in turn requires computing
a square root. As square roots are computationally quite expensive, we avoid them by:

• filtering out simple comparisons by heuristic checks not involving square roots

• testing x < a2 instead of
√
x < a (and analogous for other comparisons)

While these changes seem trivial, they have a significant effect on the running time due to
the large amount of distance computations in the implementation.

Recursion. Note that the complete decider (Algorithm 1) is currently formulated as a
recursive algorithm. Indeed, our implementation is also recursive, which is feasible due to
the logarithmic depth of the recursion. An iterative variant that we implemented turned
out to be equally fast but more complicated, thus we settled for the recursive variant.

7 Experiments

In the experiments, we aim to substantiate the following two claims. First, we want to verify
that our main contribution, the decider, actually is a significant improvement over the state
of the art. To this end, we compare our implementation with the – to our knowledge –
currently fastest Fréchet distance decider, namely [6]. Second, we want to verify that our
improvements in the decider setting also carry over to the query setting, also significantly
improving the state of the art. To show this, we compare to the top three submissions of
the GIS Cup.

We use three different data sets: the GIS Cup set (Sigspatial) [29], the hand-
written characters (Characters) [18], and the GeoLife data set (GeoLife) [25]. For all
experiments, we used a laptop with an Intel i5-6440HQ processor with 4 cores and 16GB of
RAM.

Hypotheses. In what follows, we verify the following hypotheses:

1. Our implementation is significantly faster than the fastest previously known imple-
mentation in the query and in the decider setting.

2. Our implementation is fast on a wide range of data sets.

3. Each of the described improvements of the decider speeds up the computation signifi-
cantly.

4. The running time of the complete decider is proportional to the number of recursive
calls.
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Table 1: Information about the data sets used in the benchmarks.

data set type #curves mean hops stddev hops
Sigspatial synthetic GPS-like 20199 247.8 154.0
Characters handwritten 2858 120.9 21.0
GeoLife GPS (multi-modal) 16966 1080.4 1844.1

The first two we verify by running time comparisons on different data sets. The third we
verify by leaving out single pruning rules and then comparing the running time with the
final implementation. Finally, we verify the fourth hypothesis by correlating the running
time for different decider computations against the number of recursive calls encountered
during the computation.

7.1 Data Sets Information.

Some properties of the data sets are shown in Table 1. Sigspatial has the most curves,
while GeoLife has by far the longest. Characters is interesting as it does not stem from
GPS data. By this selection of data sets, we hope to cover a sufficiently diverse set of curves.

Hardware. We used standard desktop hardware for our experiments. More specifically, we
used a laptop with an Intel i5-6440HQ processor with 4 cores (2.6 to 3.1 GHz) with cache
sizes 256KiB, 1MiB, and 6MiB (L1, L2, L3).

Code. The implementation is written in modern C++ and only has the standard library
and OpenMP as dependencies. The target platforms are Linux and OS X, with little work
expected to adapt it to other platforms. The code was optimized for speed as well as
readability (as we hope to give a reference implementation).

7.2 Decider Setting

In this section we test the running time performance of our new decider algorithm (Algorithm
3). We first describe our new benchmark using the three data sets, and then discuss our
experimental findings, in particular how the performance and improvement over the state
of the art varies with the distance and also the “neighbor rank” in the data set.

Benchmark. For the decider, we want to specifically test how the decision distance δ
and how the choice of the second curve σ influences the running time of the decider. To
experimentally evaluate this, we create a benchmark for each data set D in the following
way. We select a random curve π ∈ D and sort the curves in the data set D by their distance
to π in increasing order, obtaining the sequence σ1, . . . , σn. We define the neighbor rank of
σi with respect to π to be its index i in the ordering. To create the benchmark, for all
k ∈ {1, . . . , blog nc} we
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• select a curve σ ∈ {σ2k , . . . , σ2k+1−1} uniformly at random3,

• compute the exact distance δ∗ := dF (π, σ),

• for each l ∈ {−10, . . . , 0}, add benchmark tests (π, σ, (1−2l)·δ∗) and (π, σ, (1+2l)·δ∗).

By repeating this process for 1000 uniformly random curves π ∈ D, we create 1000 test cases
for every pair of k and l.

Running Times. First we show how our implementation performs in this benchmark. In
Figure 11 we depict timings for running our implementation on the benchmark for all data
sets. We can see that decision distances larger than the exact Fréchet distance are harder
than smaller decision distances. This effect is most likely caused by the fact that decider
instances with positive result need to find a path through the free-space diagram, while
negative instances might be resolved earlier as it already becomes clear close to the lower left
corner of the free-space diagram that there cannot exist such a path. Also, the performance
of the decider is worse for computations on (π, σ, c · δ∗) when σ has a small neighbor rank
(with respect to π) and c is close to 1. This seems natural, as curves which are closer are
more likely in the data set to actually be of similar shape, and similar shapes often lead to
bottlenecks in the free-space diagram (i.e., small regions where a witness path can barely
pass through), which have to be resolved in much more detail and therefore lead to a higher
number of recursive calls. It follows that the benchmark instances for low k and l close to 0
are the hardest; this is the case for all data sets. In Characters we can also see that for
k = 7 there is suddenly a rise in the running time for certain distance factors. We assume
that this comes from the fact that the previous values of k all correspond to the same written
character and this changes for k = 7.

We also run the original code of the winner of the GIS Cup, namely [6], on our
benchmark and compare it with the running time of our implementation. See Figure 12 for
the speed-up factors of our implementation over the GIS Cup winner implementation. The
speed-ups obtained depend on the data set. While for every data set a significant amount of
benchmarks for different k and l are more than one order of magnitude faster, for GeoLife
even speed-ups by 2 orders of magnitude are reached. Speed-ups tend to be higher for larger
distance factors. The results on GeoLife suggest that for longer curves, our implementation
becomes significantly faster relative to the current state of the art. Note that there also are
situations where our decider shows similar performance to the one of [6]; however, those are
cases where both deciders can easily recognize that the curves are far (due to, e.g., their
start or end points being far). We additionally show the percentage of instances that are
already decided by the filters in Figure 13.

7.3 Influence of the Individual Pruning Rules

We also verified that the improvements that we introduced indeed are all necessary. In
Section 3.3 we introduced six pruning rules. Rule I, i.e., “Empty Inputs”, is essential. If we

3Note that for k = blognc some curves might be undefined as possibly 2k+1 − 1 > n. In this case we
select a curve uniformly at random from {σ2k , . . . , σn}.
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Figure 11: Running times of the decider benchmark when we run our implementation on
it.
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Figure 12: The speed-up factors obtained over the GIS Cup winner on the decider bench-
mark.
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Figure 13: The percentage of queries that are decided by the filters on the decider bench-
mark.
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Table 2: Times (in ms) for running the decider benchmarks with leaving out pruning steps.
We only ran the first 100 queries for each k and l due to large running times when omitting
the third rule.

Sigspatial Characters GeoLife
omit none 99.085 153.195 552.661
omit Rule II 112.769 204.347 1382.306
omit Rule IIIa 193.437 296.679 1779.810
omit Rule IIIb 5317.665 1627.817 385031.421
omit Rule IIIc 202.469 273.146 2049.632
omit Rule IV 110.968 161.142 696.382

were to omit it, we would hardly improve over the naive free-space exploration algorithm.
The remaining five rules can potentially be omitted. Thus, for each of these pruning rules, we
let our implementation run on the decider benchmark with this single rule disabled; and once
with all rules enabled. See Table 2 for the results. Clearly, all pruning rules yield significant
improvements when considering the timings of the GeoLife benchmark. All rules, except
Rule IV, also show significant speed-ups for the other two data sets. Additionally, note
that omitting Rule IIIb drastically increases the running time. This effect results from Rule
IIIb being the main rule to prune large reachable parts, which we otherwise have to explore
completely. One can clearly observe this effect in Figure 9.

Filters. In Figure 13 we show what percentage of the queries are decided by the filters. We
can see that the closer we get to the actually distance δ∗ of two curves, the less likely it gets
that the filters can make a decision. Furthermore, for the distances that are greater than δ∗

the filters perform worse than for distances less than δ∗. We additionally observe that on
Characters the filters perform significantly worse than on the other two data sets. Also
the running times are inversely correlated with the percentage of decisions of the filters as
returning earlier in the decider naturally reduces the overall runtime.

7.4 Query Setting

We now turn to the experiments conducted for our query data structure, which we explained
in Section 5.

Benchmark. We build a query benchmark similar to the one used in [6]. For each k ∈
{0, 1, 10, 100, 1000}, we select a random curve π ∈ D and then pick a threshold distance δ
such that a query of the form (π, δ) returns exactly k+ 1 curves (note that the curve π itself
is also always returned). We repeat this 1000 times for each value of k and also create such
a benchmark for each of the three data sets.

Running Times. We compare our implementation with the top three implementations of
the GIS Cup on this benchmark. The results are shown in Table 3. Again the running
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Figure 14: Shows how much time a call to the complete decider takes plotted over the
number of boxes that the free-space diagram creates in total (i.e., even if a box is later split,
it is still counted). The data are all exact computations (i.e., those where neither kd-tree
nor filter decided) issued for the Sigspatial query benchmark. The black line is the linear
regression (r2 = 0.91).

time improvement of our implementation depends on the data set. For Characters the
maximal improvement factor over the second best implementation is 14.6, for Sigspatial
17.3, and for GeoLife 29.1. For Sigspatial and Characters it is attained at k = 1000,
while for GeoLife it is reached at k = 100 but k = 1000 shows a very similar but slightly
smaller factor.

To give deeper insights about the single parts of our decider, a detailed analysis of
the running times of the single parts of the algorithm is shown in Table 4. Again we witness
different behavior depending on the data set. It is remarkable that for Sigspatial the
running time for k = 1000 is dominated by the greedy filter. This suggests that improving
the filters might still lead to a significant speed-up in this case. However, for most of the
remaining cases the running time is clearly dominated by the complete decider, suggesting
that our efforts of improving the state of the art focused on the right part of the algorithm.

7.5 Other Experiments

The main goal of the complete decider was to reduce the number of recursive calls that we
need to consider during the computation of the free-space diagram. Due to our optimized
algorithm to compute simple boundaries with adaptive step size, we expect roughly a con-
stant (or possibly polylogarithmic) running time effort per box, essentially independent of
the size of the box. To test this hypothesis, we ask whether the number of recursive calls
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Table 3: Comparing the running times (in s) of the queries of the top three implementations of the GIS Cup 2017 with our new
implementation on the query benchmark on all data sets (1000 queries per entry).

Sigspatial Characters GeoLife
k 0 1 10 100 1000 0 1 10 100 1000 0 1 10 100 1000
[6] 0.094 0.123 0.322 1.812 8.408 0.187 0.217 0.421 2.222 17.169 0.298 0.741 4.327 33.034 109.44
[12] 0.421 0.618 1.711 7.86 35.704 0.176 0.28 0.611 3.039 17.681 3.627 6.067 26.343 120.509 415.548
[22] 0.197 0.188 0.643 5.564 76.144 0.142 0.147 0.222 1.849 22.499 2.614 4.112 16.428 166.206 1352.19
ours 0.017 0.007 0.026 0.130 0.490 0.004 0.020 0.058 0.301 1.176 0.027 0.089 0.341 1.108 3.642

Table 4: Timings (in s) of the single parts of our query algorithm on the query benchmark on all three data sets. To avoid
confusion, note that the sum of the times in this table do not match the entries in Table 3 as those are parallelized timings and
additionally the timing itself introduces some overhead.

Sigspatial Characters GeoLife
k 0 1 10 100 1000 0 1 10 100 1000 0 1 10 100 1000
spatial hashing 0.002 0.003 0.005 0.017 0.074 0.002 0.002 0.004 0.011 0.032 0.006 0.009 0.016 0.032 0.091
greedy filter 0.004 0.006 0.024 0.143 0.903 0.004 0.010 0.032 0.153 0.721 0.009 0.017 0.060 0.273 1.410
equal-time filter 0.000 0.001 0.006 0.030 0.088 0.001 0.004 0.018 0.088 0.424 0.005 0.017 0.063 0.273 1.211
negative filter 0.001 0.002 0.010 0.044 0.107 0.003 0.012 0.038 0.152 0.309 0.008 0.020 0.069 0.200 0.606
complete decider 0.002 0.011 0.044 0.214 0.330 0.005 0.030 0.109 0.671 2.639 0.062 0.210 0.998 3.025 8.760
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is indeed correlated with the running time. To test this, we measured the time for each
complete decider call in the query benchmark and plotted it over the number of boxes that
were considered in this call. The result of this experiment is shown in Figure 14. We can see
a practically (near-)linear correlation between the number of boxes and the running time.

8 Certificates

Whenever we replace a naive implementation in favor of a fast, optimized, but typically
more complex implementation, it is almost unavoidable to introduce bugs to the code. As
a useful countermeasure the concept of certifying algorithms has been introduced; we refer
to [27] for a survey. In a nutshell, we aim for an implementation that outputs, apart from
the desired result, also a proof of correctness of the result. Its essential property is that the
certificate should be simple to check (i.e., much simpler than solving the original problem).
In this way, the certificate gives any user of the implementation a simple means to check the
output for any conceivable instance.

Following this philosophy, we have made our implementation of the Fréchet decider
certifying : for any input curves π, σ and query distance δ, we are able to return, apart from
the output whether the Fréchet distance of π and σ is at most δ, also a certificate c. On
our realistic benchmarks, constructing this certificate slows down the Fréchet decider by
roughly 50%. The certificate c can be checked by a simple verification procedure consisting
of roughly 200 lines of code.

In Sections 8.1 and 8.2, we define our notion of YES and NO certificates, prove that
they indeed certify YES and NO instances and discuss how our implementation finds them.
In Section 8.3, we describe the simple checking procedure for our certificates. Finally, we
conclude with an experimental evaluation in Section 8.4.

8.1 Certificate for YES Instances

To verify that dF (π, σ) ≤ δ, by definition it suffices to give a feasible traversal, i.e., monotone
and continuous functions f : [0, 1]→ [1, n] and g : [0, 1]→ [1,m] such that for all t ∈ [0, 1],
we have (πf(t), σg(t)) ∈ F , where F = {(p, q) ∈ [1, n]×[1,m] | ‖πp−σq‖ ≤ δ} denotes the free-
space (see Section 3.1). We slightly simplify this condition by discretizing (f(t), g(t))t∈[0,1],
as follows.

Definition 1. We call T = (t1, . . . , t`) with ti ∈ [1, n]× [1,m] a YES certificate if it satisfies
the following conditions: (See also Figure 15 for an example.)

1. (start) t1 = (1, 1) ∈ F ,

2. (end) t` = (n,m) ∈ F ,

3. (step) For any tk = (p, q) and tk+1 = (p′, q′), we have either

(a) p′ = p and q′ > q: Here, we require that (p, q̄) ∈ F for all q̄ ∈ {q, dqe, . . . , bq′c, q′},
(b) q′ = q and p′ > p: Here, we require that (p̄, q) ∈ F for all p̄ ∈ {p, dpe, . . . , bp′c, p′},
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Figure 15: Example of a YES instance and its certificate. The right picture shows the
free-space of the instance. The left picture illustrates the parts of the free-space explored
by our algorithm and indicates the computed YES certificate by black lines.

(c) i ≤ p < p′ ≤ i + 1, j ≤ q < q′ ≤ j + 1 for some i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}:
Here, we require that (p, q), (p′, q′) ∈ F .

It is straightforward to show that a YES certificate T proves correctness for YES
instances as follows.

Proposition 1. Any YES certificate T = (t1, . . . , t`) with ti ∈ [1, n] × [1,m] proves that
dF (π, σ) ≤ δ.

Proof. View T as a polygonal curve in [1, n] × [1,m] and let τ : [0, 1] → [1, n] × [1,m] be
a reparameterization of T . Let f, g be the projection of τ to the first and second coordi-
nate, respectively. Note that by the assumption on T , f and g are monotone and satisfy
(f(0), g(0)) = (1, 1) and (f(1), g(1)) = (n,m). We claim that (f(t), g(t)) ∈ F for all
t ∈ [0, 1], which thus yields dF (π, σ) ≤ δ by definition.

To see the claim, we recall that for any cell [i, i+1]×[j, j+1], the free-space restricted
to this cell, i.e., F ∩ [i, i+ 1]× [j, j + 1], is convex (as it is the intersection of an ellipse with
[i, i+ 1]× [j, j+ 1], see [2]). Observe that for any segment from tk = (p, q) to tk+1 = (p′, q′),
we (implicitly) decompose it into subsegments contained in single cells (e.g., for p′ = p and
q′ > q, the segment from (p, q) to (p, q′) is decomposed into the segments connecting the
sequence (p, q), (dpe, q), . . . , (bp′c, q), (p′q′). As each such subsegment is contained in a single
cell, by convexity we see that the whole subsegment is contained in F if the corresponding
endpoints of the subsegment are in F . This concludes the proof.

It is not hard to prove that for YES instances, such a certificate always exists (in
fact, there always is a certificate of length O(n+m)). Furthermore, for each YES instance
in our benchmark set, our implementation indeed finds and returns a YES instance, in a
way we describe next.

Certifying positive filters. It is straightforward to construct YES certificates for instances
that are resolved by our positive filters (Bounding Box Check, Greedy and Adaptive Equal-
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Time): All of these filters implicitly construct a feasible traversal. In particular, for any
instance for which the Bounding Box Check applies (which shows that any pair of points
of π and σ are within distance δ), already the sequence ((1, 1), (n, 1), (n,m)) yields a YES
certificate.

For Greedy, note that the sequence of positions (i, j) visited in Algorithm 4 yields a
YES certificate: Indeed, any step from (i, j) is either a vertical step to (i, j+s) (corresponding
to case 3a), a horizontal step to (i+s, j) (corresponding to case 3b), or a diagonal step within
a cell to (i+ 1, j + 1) (corresponding to Case 3c of Definition 1). Furthermore, such a step
is only performed if it stays within the free-space.

Finally, for Adaptive Equal-Time, we also record the sequence of positions (i, j)
visited in Algorithm 4 (recall that here, we change the set of possible steps for s > 1 to
S = {(i+ s, j + s′)} with s′ = bm−jn−i · sc) – with the only difference that we need to replace
any step from (i, j) to (i + s, j + s′) by the sequence (i, j), (i + s, j), (i + s, j + s′). Note
that this sequence satisfies Condition (step) of Definition 1, as Adaptive Equal-Time only
performs this step if it can verify that all pairwise distances between πi...i+s and σj...j+s′ are
bounded by δ.

Certifying YES instances in the complete decider. Recall that the complete decider
via free-space exploration decides an instance by recursively determining, given the inputs
BR
l , B

R
b of a box B, the corresponding outputs BR

r , B
R
t . In particular, YES instances are

those with (n,m) ∈ BR
t (or equivalently (n,m) ∈ BR

r ) for the box B = [1, n] × [1,m]. To
certify such instances, we memorize for each point in BR

r and BR
t a predecessor of a feasible

traversal from (1, 1) to this point. Note that here, it suffices to memorize such a predecessor
only for the first, i.e., lowest or leftmost, point of each interval in BR

r and BR
t (as any

point in this interval can be reached by traversing to the first point of the interval and then
along this reachable interval to the destination point). This gives rise to a straightforward
recursive approach to determine a feasible traversal.

In the complete decider, whenever we determine some output BR
t , it is because of

one of the following reasons: (1) one of of our pruning rules is successful, (2) the box B is
on the cell-level, or (3) we determine BR

t as the union of the outputs (B1)
R
t , (B2)

R
t of the

boxes B1, B2 obtained by splitting B vertically. Note that we only need to consider the case
in which BR

t is determined as non-empty (otherwise nothing needs to be memorized). Let
us consider each case separately.

If reason (1) determines a non-empty BR
t , then this happens either by Rule IIIb or

by Rule IIIc. Note that in both cases, BR
t consists of a single interval. If Rule IIIb applies,

then the last, i.e., topmost, point on Bl is reachable and proves that the free prefix of BR
t is

reachable. Thus, we store the last interval of BR
l as the responsible interval for the (single)

interval in BR
t . Similarly, if Rule IIIc applies, then consider the first, i.e., leftmost, point

(i, jmax) on Bt. Since the rule applies, the opposite point (i, jmin) on Bl must be reachable
and the path {i}×[jmin, jmax] must be free. Thus, we can store the interval of BR

b containing
(i, jmin) as the responsible interval for the (single) interval in BR

t .

If reason (2) determines a non-empty BR
t , then we are on a cell-level. In this case,

either BR
l or BR

b is a non-empty interval, and we can store such an interval as the responsible
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interval for the (single) interval in BR
t . Finally, if reason (3) determines a non-empty BR

t ,
then we simply keep track of the responsible interval for each interval in (B1)

R
t and (B2)

R
t (to

be precise, if the last interval of (B1)
R
t and the first interval of (B2)

R
t overlap by the boundary

point, we merge the two corresponding intervals and only keep track of the responsible
interval of the last interval of (B1)

R
t and can safely forget about the responsible interval of

the first interval of (B2)
R
t .

Note that we proceed analogously for outputs BR
r . Furthermore, the required mem-

orization overhead is very limited.

It is straightforward to use the memorized information to compute a YES certificate
recursively: Specifically, to compute a YES certificate reaching some point x on an output
interval I, we perform the following steps. Let J be the responsible interval of I. We
recursively determine a YES certificate reaching the first point J . Then we append a point
to the certificate to traverse to the point of J from which we can reach the first point of
I (this point is easily determined by distinguishing whether we are on the cell-level, and
whether J is opposite to I or intersects I in a corner point). We append the first point of
I to the certificate, and finally append the point x to the certificate.4 By construction, the
corresponding traversal never leaves the free-space. Using this procedure, we can compute
a YES certificate by computing a YES certificate reaching (n,m) on the last interval of BR

t

for the initial box B = [1, n]× [1,m].

8.2 Certificate for NO Instances

We say that a point (p, q) lies on the bottom boundary if q = 1, on the right boundary if
p = n, on the top boundary if q = m, and on the left boundary if p = 1. Likewise, we say
that a point (p′, q′) lies to the lower right of a point (p, q), if p ≤ p′ and q ≥ q′.
Definition 2. We call T = (t1, . . . , t`) with ti ∈ [1, n]× [1,m] a NO certificate if it satisfies
the following conditions: (See also Figure 16 for an example.)

1. (start) t1 lies on the right or bottom boundary and t1 /∈ F ,

2. (end) t` lies on the left or upper boundary and t` /∈ F ,

3. (step) For any tk = (p, q) and tk+1 = (p′, q′), we have either

(a) p′ = p and q′ > q: Here, for any neighboring elements q̄1, q̄2 in q, dqe, . . . , bq′c, q′,
we require that ({p} × [q̄1, q̄2]) ∩ F = ∅,

(b) q′ = q and p′ < p: Here, for any neighboring elements p̄1, p̄2 in p′, dp′e, . . . , bpc, p,
we require that ([p̄1, p̄2]× {q}) ∩ F = ∅,

(c) tk+1 lies to the lower right of tk, i.e., p ≤ p′ and q ≥ q′.

We prove that a NO certificate T proofs correctness for NO instances as follows.

Proposition 2. Any NO certificate T = (t1, . . . , t`) with ti ∈ [1, n] × [1,m] proves that
dF (π, σ) > δ.

4To be precise, we only append a point if it is different from the last point of the current certificate.
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Figure 16: Example of a NO instance and its certificate. The right picture shows the
free-space of the instance. The left picture illustrates the parts of the free-space explored
by our algorithm and indicates the computed NO certificate by black lines.

Proof. We inductively prove that no feasible traversal from (1, 1) to (n,m) can visit any
point to the lower right of ti, for all 1 ≤ i ≤ `. As an immediate consequence, dF (π, σ) > δ,
since t` lies on the left or upper boundary and thus any feasible traversal must visit a point
to the lower right of t` – hence, such a traversal cannot exists.

As base case, note that t1 lies on the right or bottom boundary and is not contained
in the free-space. Thus, by monotonicity, no feasible traversal can visit any point to the
lower right of t1. Thus, assume that the claim is true for ti = (p, q) and consider the next
point ti+1 = (p′, q′) in the sequence. If ti+1 lies to the lower right of ti, the claim is trivially
fulfilled for ti+1 by monotonicity. If, however, p′ = p and q′ > q, then Condition 3a of
Definition 2 is equivalent to (p× [q, q′]) ∩ F = ∅. Note that any feasible traversal visiting a
point to the lower right of ti+1 must either visit a point to the lower right of ti – which is
not possible by inductive assumption – or must cross the path {p} × [q, q′] – which is not
possible as ({p} × [q, q′]) ∩ F = ∅. We argue symmetrically for the case that q′ = q and
p′ < p. This concludes the proof.

Note that our definition of NO certificate essentially coincides with the definition of
a cut of positive width in [14]. For NO instances, such a NO certificate always exists (in
contrast to YES certificates, the shortest such certificate is of length Θ(n2) in the worst
case). For all NO instances in our benchmark sets, our implementation manages to find and
return such a NO certificate, in a way we describe next.

Certifying the negative filter. It is straightforward to compute a NO certificate for in-
stances resolved by our negative filter. Note that this filter, if successful, determines an
index p ∈ {1, . . . , n} such that πp is far from all points on σ, or symmetrically an index
q ∈ {1, . . . ,m} such that σq is far from all points on π. Thus, in these cases, we can simply
return the NO certificate ((p, 1), (p,m)) or ((n, q), (1, q)), respectively.

http://jocg.org/


JoCG 12(1), 70–108, 2021 102

Journal of Computational Geometry jocg.org

Algorithm 7 High-level code for computing a NO certificate.
1: procedure ComputeNOCertificate(π, σ, δ)
2: N ← non-free segments determined by CompleteDecider(π, σ, δ)
3: Q← {I ∈ N | lowerRight(I) lies on bottom or right boundary}
4: Build orthogonal range search data structure D,
5: storing all I ∈ N \Q under the key lowerRight(I).
6: while Q 6= ∅ do
7: Pop any element I from Q
8: if upperLeft(I) lies on top or left boundary then
9: Reconstruct sequence of intervals leading to I

10: return corresponding NO certificate
11: else
12: Q′ ← D.ReportAndDelete(upperLeft(I))
13: . reports J if lowerRight(J) is to the lower right of upperLeft(I)
14: Q← Q ∪Q′

Certifying NO instances in the complete decider. Whenever the complete decider via
free-space exploration returns a negative answer, the explored parts of the free-space diagram
must be sufficient to derive a negative answer. This gives rise to the following approach:
Consider all non-free segments computed by the complete decider. We start from a non-free
segment touching the bottom or right boundary and traverse non-free segments (possibly
also making use of monotonicity steps according to Case 3c of Definition 2) and stop as soon
as we have found a non-free segment touching the left or top boundary.

Formally, consider Algorithm 7. Here, we use the notation that lowerRight(I) de-
notes the lower right endpoint of I, i.e., the right endpoint if I is a horizontal segment and
the lower endpoint if I is a vertical segment. Analogously, upperLeft(I) denotes the upper
left endpoint of I.

The initial set of non-free segments in Algorithm 7 consists of the non-free segments
of all simple boundaries determined by the complete decider via free-space exploration.
We maintain a queue Q of non-free segments, which initially contains all non-free seg-
ments touching the right or bottom boundary. Furthermore, we maintain a data structure
D of yet unreached non-free intervals. Specifically, we require D to store intervals I un-
der the corresponding key lowerRight(I) ∈ [1, n] × [1,m] in a way to support the query
ReportAndDelete(p): Such a query returns all I ∈ D such that lowerRight(I) lies to the
lower right of p and deletes all returned intervals from D.

Equipped with such a data structure, we can traverse all elements in the queue
as follows: We delete any interval I from Q and check whether it reaches the upper or
left boundary. If this is the case, we have (implicitly) found a NO certificate, which we
then reconstruct (by memorizing why each element of the queue was put into the queue).
Otherwise, we add to Q all intervals from D that can be reached by a monotone step
(according to Case 3c of Definition 2) from upperLeft(I); these intervals are additionally
deleted from D.
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To implement D, we observe that it essentially asks for a 2-dimensional orthogonal
range search data structure where the ranges are unbounded in two directions (and bounded
in the other two). Already for the case of 2-dimensional ranges with only a single unbounded
direction (sometimes called 1.5-dimensional), a very efficient solution is provided by a classic
data structure due to McCreight, the priority search tree data structure [28]. We can adapt it
in a straightforward manner to implement D such that it (1) takes time O(d log d) and space
O(d) to construct D on an initial set of size d and (2) supports ReportAndDelete(p)
queries in time O(k + log d), where k denotes the number of reported elements. Thus,
Algorithm 7 can be implemented to run in time O(|N | log |N |).

8.3 Certificate Checker

It remains to describe how to check the correctness of a given certificate T = (t1, . . . , t`).
For this, we simply verify that all properties of Definition 1 or Definition 2 are satisfied.

Checking YES certificates. Observe that the only conditions in the definition of YES
instances are either simple comparisons of neighboring elements tk, tk+1 in the sequence or
freeness tests, specifically, whether a give position p ∈ [1, n] × [1,m] is free, i.e, whether
πp1 and σp2 have distance at most δ. The latter test only requires interpolation along a
curve segment (to obtain πp1 and σp2) and a Euclidean distance computation. Thus, YES
certificates are extremely simple to check.

Checking NO certificates. Checking NO certificates involves a slightly more complicated
geometric primitive than the freeness tests of YES certificates. Apart from simple compar-
isons of neighboring elements tk, tk+1, the conditions in the definition involve the following
non-freeness tests: Given a (sub)segment πp..p′ with i ≤ p ≤ p′ ≤ i + 1 for some i ∈ [n],
as well as a point σq with q ∈ [1,m], determine whether all points on πp..p′ have distance
strictly larger than δ from σq. Besides the (simple) interpolation along a line segment to
obtain σq, we need to determine intersection points of the line containing πp..p′ and the circle
of radius δ around σq (if these exist). From these intersection points, we verify that πp..p′
and the circle do not intersect, concluding the check.

In summary, certificate checkers are straightforward and simple to implement.

8.4 Certification Experiments

We evaluate the overhead introduced by computing certificates using our benchmark sets for
the query setting. In particular, as our implementation can be compiled both as a certifying
and a non-certifying version, we compare the running times of both versions. The results
are depicted in Table 5. Notably, the slowdown factor introduced by computing certificates
ranges between 1.29 and 1.46 (Sigspatial), 1.44 and 1.67 (Characters) and 1.42 and
1.73 (GeoLife). As expected, the certificate computation time is dominated by the task of
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Table 5: Certificate computation and check times on query setting benchmark (in ms).
The first and second bold lines show the running time of our implementation compiled with-
out and with certification, respectively. For the certifying variant, we also give the times
to compute YES and NO certificates of the complete decider (note that filter certificates
are computed on the fly by the filters and hence cannot be separately measured; also, this
certificate computation time does not include the overhead to record additional information
during the complete decision procedure). Finally, we give running times for checking cor-
rectness of certificates.

Sigspatial
k 0 1 10 100 1000
computation without certification 6.9 21.3 84.5 429.4 1409.1
certifying computation 10.0 29.6 117.8 553.8 1840.2

–computation of certificates 1.0 3.7 12.0 40.9 65.7
–YES certificates (complete decider) 0.0 0.4 1.6 8.2 12.1
–NO certificates (complete decider) 1.0 3.3 10.0 31.4 50.0

checking certificates 6.4 13.9 63.7 426.5 3803.2
–checking filter certificates 6.0 11.3 51.6 361.2 3666.7
–checking complete decider certificates 0.4 2.6 12.1 65.3 136.5

Characters
k 0 1 10 100 1000
computation without certification 12.1 55.5 205.8 1052.8 4080.3
certifying computation 20.3 91.6 311.2 1589.8 5895.8
–computation of certificates 4.0 20.0 59.6 220.7 470.2
–YES certificates (complete decider) 0.0 0.5 2.3 24.9 181.3
–NO certificates (complete decider) 3.9 19.2 56.3 186.2 259.4

checking certificates 6.3 21.6 76.8 457.7 2626.1
–checking filter certificates 5.3 14.8 49.7 278.0 1759.8
–checking complete decider certificates 1.0 6.8 27.2 179.6 866.3

GeoLife
k 0 1 10 100 1000
computation without certification 82.2 251.1 1156.6 3663.1 11452.4
certifying computation 142.1 414.6 1834.4 5304.2 16248.7
–computation of certificates 40.1 100.7 388.0 767.7 1827.8
–YES certificates (complete decider) 0.0 3.2 20.0 87.6 247.5
–NO certificates (complete decider) 39.7 96.7 364.5 664.8 1517.1

checking certificates 70.9 185.2 733.7 3595.4 20188.4
–checking filter certificates 45.2 85.9 283.8 1754.0 12987.5
–checking complete decider certificates 25.7 99.4 450.0 1841.4 7200.9
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generating NO certificates (which is more complex than computing YES certificates), even
for large values of k for which most unfiltered instances are YES instances.

At first sight, it might be surprising that checking the certificates takes longer than
computing them. However, this is due to the fact that our filters often display sublinear
running time behavior (by using the heuristic checks and adaptive step sizes). However, to
keep our certificate checker elementary, we have not introduced any such improvements to
the checker, which thus has to traverse essentially all points on the curves. This effect is
particularly prominent for large values of k.

9 Conclusion

In this work we presented an implementation for computing the Fréchet distance which beats
the state-of-the-art by one to two orders of magnitude in running time in the query as well
as the decider setting. Furthermore, it can be used to compute certificates of correctness
with little overhead. To facilitate future research, we created two benchmarks on several
data sets – one for each setting – such that comparisons can easily be conducted. Given
the variety of applications of the Fréchet distance, we believe that this result will also be
of broader interest and implies significant speed-ups for other computational problems in
practice.

This enables a wide range of future work. An obvious direction to continue research
is to take it back to theory and show that our pruning approach provably has subquadratic
runtime on a natural class of realistic curves. On the other hand, one could try to find
further pruning rules or replace the divide-and-conquer approach by some more sophisticated
search. To make full use of the work presented here, it would make sense to incorporate
this algorithm in software libraries. Currently, we are not aware of any library with a
non-naive implementation of a Fréchet distance decider or query. Finally, another possible
research direction would be to work on efficient implementations for similar problems like
the Fréchet distance under translation, rotation or variants of map matching with respect to
the Fréchet distance. In summary, this paper should lay ground to a variety of improvements
for practical aspects of curve similarity.
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