
Learning-Augmented Algorithms for Online TSP on the Line

Themis Gouleakis1, Konstantinos Lakis2, and Golnoosh Shahkarami3

1National University of Singapore, tgoule@nus.edu.sg
2National and Kapodistrian University of Athens, konstlakis@gmail.com

3Max Planck Institut für Informatik, Universität des Saarlandes,
gshahkar@mpi-inf.mpg.de

Abstract

We study the online Traveling Salesman Problem (TSP) on the line augmented with
machine-learned predictions. In the classical problem, there is a stream of requests released
over time along the real line. The goal is to minimize the makespan of the algorithm. We
distinguish between the open variant and the closed one, in which we additionally require
the algorithm to return to the origin after serving all requests. The state of the art is
a 1.64-competitive algorithm and a 2.04-competitive algorithm for the closed and open
variants, respectively [10]. In both cases, a tight lower bound is known [6,10].

In both variants, our primary prediction model involves predicted positions of the requests.
We introduce algorithms that (i) obtain a tight 1.5 competitive ratio for the closed variant
and a 1.66 competitive ratio for the open variant in the case of perfect predictions, (ii) are
robust against unbounded prediction error, and (iii) are smooth, i.e., their performance
degrades gracefully as the prediction error increases.

Moreover, we further investigate the learning-augmented setting in the open variant by
additionally considering a prediction for the last request served by the optimal offline
algorithm. Our algorithm for this enhanced setting obtains a 1.33 competitive ratio with
perfect predictions while also being smooth and robust, beating the lower bound of 1.44
we show for our original prediction setting for the open variant. Also, we provide a lower
bound of 1.25 for this enhanced setting.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the most fundamental and widely studied
problems in computer science, both in its offline version [16], where the input is known in
advance, and the online version [6] where it arrives sequentially. In this paper, we consider the
online Traveling Salesman Problem (TSP) on the real line. This version of the problem arises
in real-world scenarios such as one dimensional delivery/collection tasks. Such tasks include
the operation of elevator systems, robotic screwing/welding, parcel collection from massive
storage facilities and cargo collection along shorelines [5, 22]. Furthermore, one can think
of other relevant practical settings such as the movement of emergency evacuation vehicles
along a perilous highway, where there cannot be knowledge in advance regarding the time and
location of persons requiring assistance. However, the great availability of data as well as the
improved computer processing power and machine learning algorithms can make it possible for
predictions to be made on these locations (e.g combining information from historical data, the
weather forecast, etc). In a line of work that started a few years ago [17] and sparked a huge

1

ar
X

iv
:2

20
6.

00
65

5v
1

 [
cs

.D
S]

 1
 J

un
 2

02
2

mailto:tgoule@nus.edu.sg
mailto:konstlakis@gmail.com
mailto:gshahkar@mpi-inf.mpg.de

interest [1, 2, 13,23–26], it has been demonstrated that such prior knowledge about the input
of an online algorithm has the potential to achieve improved performance (i.e competitive
ratio) compared to known algorithms (or even lower bounds) that do not use (resp. assume
the absence of) any kind of prediction. Therefore, it is natural to consider ways to utilize this
information in this problem using a so-called learning-augmented approach.

The input to our online algorithm consists of a set of requests, each associated with a position
on the real line as well as a release time. An algorithm for this problem faces the task of
controlling an agent that starts at the origin and can move with at most unit speed. The agent
may serve a request at any time after it is released. The algorithm’s objective is to minimize
the makespan, which is the total time spent by the agent before serving all requests. We have
two different variants of the problem, depending on whether the agent is required to return to
the origin after serving all the requests or not. This requirement exists in the closed variant,
while it does not in the open variant. The makespan in the closed variant is the time it takes
the agent to serve the requests and return to the origin.

We quantify the performance of an online algorithm by its competitive ratio, i.e., the maximum
ratio of the algorithm’s cost to that of an optimal offline algorithm OPT , over all possible
inputs. We say that an algorithm with a competitive ratio of c is c-competitive. Under
this scope, the online TSP on the line has been extensively studied and there have been
decisive results regarding lower and upper bounds on the competitive ratio for both variants
of the problem. Namely, a tight bound of ≈ 1.64 was given for the closed variant, while the
corresponding value for the open variant was proven to be ≈ 2.04 [6, 10].

1.1 Our setup

First of all, to define our prediction model and algorithms, it is necessary to know the number of
requests n 1. This setting shows up in various real world scenarios. For example, in the case of
item collection from a horizontal/vertical storage facility, the capacity of the receiving vehicle,
which awaits the successful collection of all items in order to deliver them to customers, dictates
the number of items to be collected. We note that since n is known, we can assume that each
prediction corresponds to a specific request determined by a given labeling, which is shared by
both sets (requests and predictions). Under this assumption, we define the LOCATIONS
prediction model. In this model, the predictions are estimates for the positions of the requests.
The error η increases along with the maximum distance of a predicted location to the actual
location of the identically labeled request and is normalized by the length of the smallest
interval containing the entire movement of the optimal algorithm. We also define an enhanced
prediction model for the open variant named LOCATIONS + FINAL (LF in short) that
additionally specifies a request which is predicted to be served last by OPT . In this model, we
additionally consider the error metric δ, which increases with the distance of the predicted
request to the request actually served last by OPT . We also normalize δ in the same way as η.
These models and their respective errors are defined formally in Section 2.

1Since this (slightly) modifies the original problem definition, the previous competitive ratio results for the
classical problem do not necessarily hold for our setup even without predictions. We show in the Appendix
that the bound of 1.64 still holds for the closed variant and that a tight bound of 2 holds for the open variant.

2

Properties of learning-augmented algorithms. In the following we formalize the con-
sistency, robustness and smoothness properties. We say that an algorithm is:

1) α-consistent, if it is α-competitive when there is no error.

2) β-robust, if it is β-competitive regardless of prediction error.

3) γ-smooth for a continuous function γ(err), if it is γ(err)-competitive, where err is the
prediction error. Note that err could potentially be a tuple of error types.

In general, if c is the best competitive ratio achievable without predictions, it is desirable to
have α < c, β ≤ k · c for some constant k and also the function γ should increase from α to β
along with the error err. We note that c, α, β and the outputs of γ may be functions of the
input and not constant.

1.2 Our contributions

Throughout this paper, we give upper and lower bounds for our three different settings
(closed variant-LOCATIONS, open variant-LOCATIONS, and open variant-LF). The
lower bounds refer to the case of perfect predictions and are established via different attack
strategies. That is, we describe the actions of an adversary ADV , who can control only the
release times of the requests and has the goal of maximizing the competitive ratio of any
algorithm ALG. We emphasize that ADV is given the power to observe ALG’s actions and
act accordingly. In more detail, ADV does not need to specify the release times in advance,
but can release a request at time t, taking the actions of ALG until time t into account. This
is, in fact, the most powerful kind of adversary. The upper bounds are established via our
algorithms and are defined for every value of the error(s). Recall that η and δ refer to the two
types of error we consider. Our algorithms and attack strategies are intuitively described in
their respective sections. We now present the main ideas and our results.

Closed variant under LOCATIONS. We will start by intuitively describing our algorithm
for this setting and then continue with our lower bound. We design the algorithm FARFIRST .
The main idea is that we first focus entirely on serving the requests on the side with the
furthest extreme, switching to the other side when all such requests are served. When serving
the requests on one side, we prioritize them by order of decreasing amplitude. The intuition
is that we have the least possible amount of leftover work for our second departure from the
origin, which limits the ways in which an adversary may attack us. We obtain the theorem
below. More details are given in Section 3.

Theorem 1. The algorithm FARFIRST is min
{

3(1+η)
2 , 3

}
-competitive.

We emphasize that for η = 0, this competitive ratio remarkably matches our lower bound of
1.5, making FARFIRST optimal.

Our lower bound for this setting is accomplished via an attack strategy that is analogous to a
cunning magician’s trick. Suppose that the magician keeps a coin inside one of their hands.
They then ask a pedestrian to make a guess for which hand contains the coin. If the pedestrian
succeeds, they get to keep the coin. However, the magician can always make it so that the
pedestrian fails, for example by having a coin up each of their sleeves and producing the one

3

not chosen by the pedestrian. One can draw an analogy from this trick to our attack strategy,
which is described in Section 3 in more detail. In this way, we obtain the theorem below.

Theorem 2. For any ε > 0, no algorithm can be (1.5− ε)-competitive for closed online TSP
on the line under the LOCATIONS prediction model.

Open variant under LOCATIONS. The algorithm we present for this setting is named
NEARFIRST . This algorithm first serves the requests on the side opposite to the one
FARFIRST would choose. Another divergence from FARFIRST that should be noted is
that for the side focused on second, NEARFIRST prioritizes requests that are predicted to
be closer to the origin, since there is no requirement to return to it, thus avoiding unnecessary
backtracking. More details about the algorithm and the proof of the following theorem are
given in Section 4.1.

Theorem 3. The algorithm NEARFIRST is min {f(η), 3}-competitive, where

f(η) =

{
1 + 2(1+η)

3−2η , for η < 2
3

3, for η ≥ 2
3

.

As in the previous setting, we utilize the "magician’s trick" in order to design a similar attack
strategy. We describe exactly how this is done in Section 4.1. This leads to the establishment
of a lower bound, as stated below.

Theorem 4. For any ε > 0, no algorithm can be
(
1.44− ε

)
-competitive for open online TSP

on the line under the LOCATIONS prediction model.

Open variant under LOCATIONS+FINAL. Our algorithmic approach to this setting
is again similar to the one implemented in NEARFIRST . The difference is that instead of
choosing the side with the near extreme first, we choose the side whose extreme is further away
from the predicted endpoint of OPT . We name this algorithm PIV OT , to emphasize that
the prediction for the last request acts as a pivot for the algorithm to decide the first side it
will serve. A theorem about PIV OT is presented below, the proof of which has been given in
Section 4.2.

Theorem 5. The algorithm PIV OT is min {f(η, δ), 3}-competitive, where

f(η, δ) =

{
1 + 1+2(δ+3η)

3−2(δ+2η) , 3− 2(δ + 2η) > 0

3, 3− 2(δ + 2η) ≤ 0
.

For this setting, we reuse the attack strategy initially designed for the closed variant. The only
difference is that we add another request at the origin with a release time of 4. We explain
how we derive the following theorem in Section 4.2.

Theorem 6. For any ε > 0, no algorithm can be (1.25− ε)-competitive for open online TSP
on the line under the LF prediction model.

We briefly summarize our results in Table 1. Note that the lower and upper bound entries
correspond to the no error case. We emphasize that these results are for the case where the
number of requests n is known.

4

Table 1: Summary of results.

Setting Lower bound Upper bound Best competitive ratio

Closed variant without predictions 1.64 1.64 1.64

Closed variant under LOCATIONS 1.5 1.5 min
{

3(1+η)
2 , 3

}
Open variant without predictions 2 2 2

Open variant under LOCATIONS 1.44 1.66 min
{

1 + 2(1+η)
3−2η , 3

}
Open variant under LF 1.25 1.33 min

{
1 + 1+2(δ+3η)

3−2(δ+2η) , 3
}

1.3 Related work

Online TSP. The online TSP for a general class of metric spaces has been studied by
Ausiello et al. in [6], where the authors show lower bounds of 2 for the open variant and
1.64 for the closed variant. These bounds are actually shown on the real line. Additionally, a
2.5-competitive algorithm and a 2-competitive algorithm are given for the general open and
closed variants respectively. A stronger lower bound of 2.04 was shown for the open variant
in [10] by Bjelde et al., where both bounds are also matched in the real line. For the restriction
of the closed online TSP to the non-negative part of the real line, Blom et al. [11] give a
tight 1.5-competitive algorithm. By imposing a fairness restriction on the adversary, they also
obtain a 1.28-competitive algorithm. Jaillet and Wagner [14] introduce the "online TSP with
disclosure dates", where each request may also be communicated to the algorithm before it is
released. The authors show improvements to the competitive ratios of previous algorithms as
a function of the difference between disclosure and release dates.

Learning-augmented algorithms. Learning-Augmented algorithms have received signifi-
cant attention since the seminal work of Lykouris and Vassilvitskii [17], where they introduced
the online caching problem. Based on that model, Purohit et al. [23] proposed algorithms
for the ski-rental problem as well as non-clairvoyant scheduling. Subsequently, Gollapudi and
Panigrahi [13], Wang et al. [25], and Angelopoulos et al. [1] improved the initial ski-rental
problem. The latter also proposed algorithms with predictions for the list update and bin
packing problem and demonstrated how to show lower bounds for algorithms with predictions.
Several works, including Rohatgi [24], Antoniadis et al. [2], and Wei [26], improved the initial
results regarding the caching problem.

The scheduling problems with machine-learned advice have been extensively studied in the
literature. Lattanzi et al. [21] considered the makespan minimization problem with restricted
assignments, while Mitzenmacher [19] using predicted job processing times in different schedul-
ing scenarios. Bamas et al. [7], and Antoniadis et al. [3] focused on the online speed scaling
problem using predictions for workloads and release times/deadlines, respectively.

There is literature on classical data structures. Examples include the indexing problem, Kraska
et al. [15], bloom filters, Mitzenmacher [18]. Further learning-augmented approaches on online
selection and matching problems [4,12] and a more general framework of online primal-dual
algorithms [8] also emerged, and there is a survey by Mitzenmacher et al. [20].

5

Independent work. Compared to the problem considered in this paper, a more general one,
the online metric TSP, as well as a more restricted version in the half-line, have been studied
in [9] under a different setting, concurrently to our work. We note that only the closed variant
is considered in [9]. Since the prediction model is different (predictions for the positions as
well as release times of the requests are given) and also a different error definition is used, the
results are incomparable.

2 Preliminaries

The problem definition. In the online TSP on the line, an algorithm controls an agent
that can move on the real line with at most unit speed. We have a set Q = {q1, . . . , qn} of
n requests. The algorithm receives the value n as input. Each request q has an associated
position and release time. To simplify notation, whenever a numerical value is expected from a
request q (for a calculation, finding the minimum of a set, etc.) the term q will refer to the
position of the request. Whenever we need the release time of a request, we will use rel(q).
Additionally, the algorithm receives as input a set P = {p1, . . . , pn} of predictions regarding
the positions of the requests. That is, each pi attempts to approximate qi. We assume without
loss of generality that Q always contains a request q0 at the origin with release time 0 and P
contains a perfect prediction p0 = 0 for this request2.

We use t to quantify time. To describe the position of the agent of an algorithm ALG at time
t ≥ 0, we use posALG(t). We may omit this subscript when ALG is clear from context. We can
assume without loss of generality that pos(0) = 0. The speed limitation of the agent is given
formally via |pos(t′)− pos(t)| ≤ |t′ − t|, ∀t, t′ ≥ 0. A request q is considered served at time t if
∃ t′ : pos(t′) = q, rel(q) ≤ t′ ≤ t, i.e., the agent has moved to the request no earlier than it is
released. We will say that a request q is outstanding at time t, if ALG has not served it by
time t, even if rel(q) > t, i.e. q has not been released yet. Let tserve denote the first point in
time when all requests have been served by the agent. Also, let |ALG| denote the makespan of
an algorithm ALG, for either of the two variants. Then, for the open variant |ALG| = tserve
while for the closed one |ALG| = min{t : pos(t) = 0, t ≥ tserve}. For any sensible algorithm,
this is equivalent to tserve + |pos(tserve)|, since the algorithm knows the number of requests and
will immediately return to the origin after serving the last one. The objective is to minimize
the value |ALG|, utilizing the predictions.

Notation. We define L = min(Q) and R = max(Q). Recall that Q contains a request at
the origin and thus L ≤ 0 and R ≥ 0. We refer to each of these requests as an extreme request.
If |L| > |R|, we define Far = L,Near = R. Otherwise, Far = R,Near = L. That is, Far is
the request with the largest distance from the origin out of all requests. Then, Near is simply
the other extreme. We will also refer to the value |q| as the amplitude of request q.

We denote withO(t) the set of outstanding requests at time t. Then, LO(t) = min(O(t) ∪ {pos(t)})
and RO(t) = max(O(t) ∪ {pos(t)}). We additionally define L(t) = min(O(t) ∪ {R}) and
R(t) = max(O(t) ∪ {L}). The difference between LO(t), RO(t) and L(t), R(t) is that the

2This can be seen to be without loss of generality by considering a "handler" algorithm ALG0 which adds
this request/prediction pair to any input and copies the actions of any of our algorithms ALG for the modified
input. We observe that |OPT | is unchanged and |ALG0| = |ALG|.

6

former also consider the position of ALG to determine the interval that must be traveled to
serve all the requests while the latter assume that ALG is already somewhere inside the interval
of outstanding requests (which may not be true due to ALG moving to a bad prediction).

For technical reasons, we have two different notions (and thus terms) for unreleased requests.
We will use the same notation for convenience but the terms we introduce will slightly differ
for the closed and open variant. For the closed variant, we let Llim = 0, Rlim = 0 while
Llim = R,Rlim = L for the open variant. Thus, we define

LU [t] = min({q ∈ Q : rel(q) ≥ t} ∪ {Llim}),

RU [t] = max({q ∈ Q : rel(q) ≥ t} ∪ {Rlim}),

while also letting
LU (t) = min({q ∈ Q : rel(q) > t} ∪ {Llim}),

RU (t) = max({q ∈ Q : rel(q) > t} ∪ {Rlim}).

The former will be used to prove the upper bounds while the latter will be used to prove the
lower bounds.

Recall that we assume without loss of generality that 0 ∈ P . We define LP = min(P) and
RP = max(P). We will say that a prediction p is (un)released/outstanding/served if the
associated request q is (un)released/outstanding/served. For a request q ∈ Q matched with a
prediction p ∈ P , we define π(q) = p and π−1(p) = q. That is, the function π takes us from the
requests to the associated predictions and π−1 takes us from the predictions to the requests.

The LOCATIONS prediction model. We now introduce the LOCATIONS prediction
model. Let q1, ..., qn be a labeling of the requests in Q. The predictions consist of the values
p1, ..., pn, where each pi attempts to predict the position of qi.

Error definition for the LOCATIONS prediction model. To give an intuition for the
metric we will introduce, let us first describe what it means for a prediction to be bad. In any
well-posed definition, the further pi is from qi, the worse it should be graded. However, we
must also take into account the "scale" of the problem, meaning the length of the interval
[L,R] that must be traveled by any algorithm, including OPT . The larger this interval, the
more lenient our penalty for pi should be. Therefore, we define the error as

η[Q,P] =
maxi{|qi − pi|}
|L|+ |R|

.

Additionally, we define M = η · (|L|+ |R|).

An important lemma for the LOCATIONS prediction model. We now present a
lemma that gives us some intuition about this prediction model.

Lemma 1. Let LP = min(P), RP = max(P). Then, |LP | ≥ |RP | implies |L| ≥ |R| − 2M ,
and |RP | ≥ |LP | implies |R| ≥ |L| − 2M .

Proof. The following claim constitutes the main part of our proof.

7

Claim 2.1. |LP − L| ≤M and |RP −R| ≤M .

Proof. If LP = π(L) =⇒ |LP − L| = |π(L) − L| or L = π−1(LP) =⇒ |LP − L| =
|LP − π−1(LP)| then we see that |LP − L| ≤M . Thus, we assume the contrary for the rest of
the proof.

Since LP is by definition the leftmost prediction, we know that LP < π(L). Additionally, since
L is the leftmost request, we know that L < π−1(LP).

Let X ≤ Y ≤ Z ≤ W represent the values of the set {L, π−1(LP), LP , π(L)} in ascending
order. It should be easy to see that X must be equal to either L or LP . Otherwise, one of
LP < π(L) or L < π−1(LP) is violated, leading to a contradiction. We distinguish two cases.

Case 1. X = L. In this case, LP comes after L but before π(L) in the X,Y, Z,W ordering.
Therefore, |L− LP | ≤ |L− π(L)| ≤M .

Case 2. X = LP . Similarly, L comes after LP but before π−1(LP) in the X,Y, Z,W ordering.
Thus, |LP − L| ≤ |LP − π−1(LP)| ≤M .

The inequality |RP −R| ≤M can be seen in a symmetric way.

Using this claim, we can now conclude the proof of Lemma 1. We focus on the case |LP | ≥ |RP |;
the other case is symmetrical. By Claim 2.1, we have

|RP −R| ≤M =⇒ |RP | − |R| ≤M =⇒ |R| ≤ |RP |+M.

Additionally, we have

|LP − L| ≤M =⇒ |LP | − |L| ≤M =⇒ |L| ≥ |LP | −M.

Combining these inequalities with |LP | ≥ |RP | proves the lemma.

Enhanced prediction model for the open variant. Motivated by the performance of
our algorithm under the LOCATIONS prediction model, we enhance it with a prediction f ′

which attempts to guess the label f of a request on which OPT may finish. We name this new
model LF (short for LOCATIONS +FINAL). The error η is unchanged. We also introduce
a new error metric δ. Let qf ′ be the request associated with the prediction pf ′ . We then choose
qf to be a request on which OPT may finish that minimizes the distance to qf ′ . We then
define the new error as

δ[Q, qf , qf ′] =
|qf ′ − qf |
|L|+ |R|

.

Similarly to before, we define ∆ = δ · (|L|+ |R|).

3 Closed Variant

In this section, we consider the closed variant under the LOCATIONS prediction model. We
provide the FARFIRST algorithm, which obtains a competitive ratio of 1.5 with perfect
predictions and is also smooth and robust. Additionally, we give an attack strategy that
implies a lower bound of 1.5 for the competitive ratio of any algorithm in this setting, making
FARFIRST optimal.

8

The FARFIRST algorithm. Before giving the algorithm, we define the FARFIRST
ordering on the predictions of an input. For simplicity, we assume that the furthest prediction
from the origin is positive. Let r1, . . . , ra be the positive predictions in descending order of
amplitude and l1, . . . , lb be the negative predictions ordered in the same way. The FARFIRST
ordering is r1, . . . , ra, l1, . . . , lb. Any predictions on the origin are placed in the end. Ties are
broken via an arbitrary label ordering.

We present the algorithm through an update function used whenever a request is released. This
update function returns the plan of moves to be executed until the next release of a request.
Note that ext(side, set) returns the extreme element of the input set in the side specified,
where side = true means the right side. Also, the ⊕ symbol is used to join moves one after
another. When all the moves are executed, the agent waits for the next release. This only
happens when waiting on a prediction.

Algorithm 1: FARFIRST update function.
Input :Current position pos, set O of unserved released requests, first unreleased

prediction p in FARFIRST ordering or 0 if none exist, the side farSide with
the furthest prediction from the origin.

Output :A series of (unit speed) moves to carry out until the next request is released.
posSide← (pos > 0);
pSide← (p > 0);
if pos = 0 then posSide← farSide ;
if p = 0 then pSide← posSide ;
return move(ext(posSide,O ∪ {pos}))⊕move(ext(pSide,O ∪ {p}))⊕move(p);

In order to give some further intuition on FARFIRST , we first give the definition of a phase.

Definition 1. A phase of an algorithm ALG is a time interval [ts, te] such that posALG(ts) = 0,
posALG(te) = 0 and posALG(t′) 6= 0, ∀ t′ ∈ (ts, te). That is, ALG starts and ends a phase at
the origin and does not cross the origin at any other time during the phase.

In the following, when we refer to the far side, we mean the side with the furthest prediction
from the origin. The near side is the one opposite to that. We see that FARFIRST works
in at most three phases. The first phase ends when all predictions on the far side have been
released and the agent has managed to return to the origin with no released and outstanding
request on the far side. During this phase, any request on the far side is served as long
as FARFIRST does not move closer to the origin than the far side’s extreme unreleased
prediction. Note that some surprise requests may appear, i.e., far side requests that were
predicted to lie on the near side. These requests are also served in this phase. The second
phase lasts while at least one prediction is unreleased. During this phase, the agent serves any
request released on the near side, using the predictions as guidance, similarly to the first phase.
Requests released on the far side are ignored during this phase. Note that no surprises can
occur here, since all far side predictions were released during the first phase. A third phase may
exist if some requests were released on the far side during the second phase. These requests’
amplitudes are bounded by M , since they were predicted to be positioned on the near side.
This simple algorithm is consistent, smooth and robust, as implied by the following theorem.

Theorem 1. The algorithm FARFIRST is min
{

3(1+η)
2 , 3

}
-competitive.

9

Let us begin with the intuition behind the proof. The 3-robustness is seen using an absolute
worst case scenario in which FARFIRST is |OPT | units away from the origin at time |OPT |
(due to the unit speed limitation), and all the requests to serve are on the opposite side. For
the consistency and smoothness, we note that |OPT | ≥ 2(|Near|+ |Far|). It is therefore
sufficient to prove that

|FARFIRST | − |OPT | ≤ |Near|+ |Far|+ 3η · (|Near|+ |Far|) = |Near|+ |Far|+ 3M.

We refer to the left hand side as the delay of FARFIRST . We now see why this bound holds
intuitively. We first describe a worst case scenario. In this scenario, OPT first serves the near
side completely, and then does the same for the far side, without stopping. Let te denote the
end time of the first phase. We see that te ≤ |OPT |+M , because FARFIRST follows the
fastest possible route serving the requests on the far side, except for a possible delay of M
attributable to a misleading prediction. Note that in this worst case, all requests on the near
side must have been released by te. Therefore, FARFIRST accumulates an extra delay of at
most 2 times the maximum amplitude of these requests. By Lemma 1, this value is at most
|Near|+ |Far|+ 2M . There are also other possibilities than this worst case, but they also
can incur a delay of at most |Near|+ |Far|+ 3M , because |OPT | and |FARFIRST | both
increase when such cases occur.

We now give the formal proof of Theorem 1. We will first prove the robustness part of this
theorem.

Lemma 2. The algorithm FARFIRST is 3-robust.

Proof. Let tf denote the latest release time for a fixed instance of the problem. We assume
w.l.o.g. that posFARFIRST (tf) ≤ 0. Note that after tf , FARFIRST will move to L(tf), then
to R(tf) and then back to the origin. Thus, we observe that

|FARFIRST | = tf + |pos(tf)− L(tf)|+ |L(tf)−R(tf)|+ |R(tf)|. (1)

We distinguish two cases based on the position of FARFIRST at time tf . Case 1. pos(tf) ≥
L(tf). In this case, we see that

(1) =⇒ |FARFIRST | = tf + pos(tf)− L(tf) +R(tf)− L(tf) + |R(tf)| ≤

tf + 2(|L(t)|+ |R(tf)|) ≤ tf + 2(|L|+ |R|) ≤ 2|OPT | ≤ 3|OPT |.

Case 2. pos(tf) < L(tf). Similarly, we have

(1) =⇒ |FARFIRST | = tf + L(tf)− pos(tf) +R(tf)− L(tf) + |R(tf)| ≤

2tf + 2|R(t)| ≤ 2tf + 2|R| ≤ 3|OPT |.

Now, to prove Theorem 1, it remains to show the consistency/smoothness part, which is given
by the following lemma.

Lemma 3. The algorithm FARFIRST is f(η)-smooth, where f(η) = 3(1+η)
2 .

10

To prove this lemma, we will bound FARFIRST ’s delay, i.e. the value |FARFIRST |−|OPT |,
as shown below.

|FARFIRST | − |OPT | ≤ |Near|+ |Far|+ 3M (2)

This is sufficient because Equation (2) along with the elementary bound of |OPT | ≥ 2 (|Near|+ |Far|)
prove Lemma 3. Thus, we now state and prove the following claim.

Claim 3.1. For any input, we have |FARFIRST | − |OPT | ≤ |Near|+ |Far|+ 3M .

We assume w.l.o.g. that |LP | ≤ |RP |. Thus, by Lemma 1 we see that

|L| ≤ |R|+ 2M =⇒ 2|L| ≤ |R|+ |L|+ 2M =

|Near|+ |Far|+ 2M =⇒ 2|L|+M ≤ |Near|+ |Far|+ 3M.

Therefore, it also suffices to show that

|FARFIRST | − |OPT | ≤ 2|L|+M (3)

We now describe the way in which we will prove Equation (3) or Equation (2). Recall the
definition of a phase given in Definition 1. We note here that we will also use the term delay to
refer to how much later a phase ends compared to |OPT |. We will use another claim stating
that for a single phase, FARFIRST will serve the requests on the side of the phase as fast
as possible or OPT is seen to finish at most M time units before FARFIRST finishes the
phase, thus "resetting" the delay counter. Using this claim for the (at most) three phases of
FARFIRST , we can indeed show Claim 3.1. In the following, we will consider a phase in the
right side of the origin. We now define a term that is similar to RU [t].

Let RU ′[t] = max({q : q ∈ Q, rel(q) ≥ t, π(q) > 0} ∪ {0}). It should be obvious that RU ′[t] ≤
RU [t]. Note that when RU

′[t] = 0, this means that all requests associated with positive
predictions have been released by time t, thus prompting FARFIRST to conclude the phase.

We should explain here that RU [t] works as a block for OPT (since it has to wait for a request
to be released in order to serve it). Similarly RU ′[t] works in the same way for FARFIRST ,
which must serve all requests associated with a positive prediction before ending the phase.
We observe a useful relationship between these two blocks, which implies that if FARFIRST
is blocked on a request to the right of M , then so is OPT . This relationship is encapsulated in
the following claim.

Claim 3.2. If RU [t] > M , then RU ′[t] = RU [t].

Proof. We see that π(RU [t]) ≥ RU [t] −M > 0. Therefore, π(RU [t]) is a positive prediction
and thus RU ′[t] = RU [t].

The next definition is about the time it would take (after t) for FARFIRST to serve all
requests (to the right of RU [t]) and then reach RU [t]. If this is not more than M , we can
see that FARFIRST is not too far behind OPT . If it is more than M , we shall see that
FARFIRST has enough information to progress through the phase as fast as possible.

11

D(t) denotes the least amount of time necessary to serve all requests to the right of RU [t]
(assuming they have been released) and then move toRU [t], starting at position posFARFIRST (t).
This amounts to

D(t) = |posFARFIRST (t)−RO(t)|+ |RO(t)−RU [t]|.

This function exhibits a useful bound property. If it drops to M or below at some time t, it
can only increase above M again due to a request release. This property is described more
formally in the following claim. But first, another useful definition is given.

We define RP [t] as the rightmost positive prediction released at time t or later. If no such
prediction exists, then RP [t] = 0. Note that FARFIRST never moves to the left of this
prediction. We now give a relevant claim.

Claim 3.3. |RP [t]−RU [t]| ≤M .

Proof. We can see that |RP [t]−RU ′[t]| ≤M by the definition of these terms. If RU [t] > M ,
the claim immediately follows by Claim 3.2.

Otherwise, RU [t] ≤ M . We have RP [t] ≥ 0 =⇒ RU [t] − RP [t] ≤ M . Additionally, we
know that RU ′[t] ≤ RU [t] and RP [t] ≤ RU

′[t] +M =⇒ RP [t]− RU [t] ≤ M , concluding the
proof.

Claim 3.4. Let tdrop be a time point such that D(tdrop) ≤ M . If tnext is the earliest release
time of a request after tdrop, then

D
(
t′
)
≤M, ∀ t′ ∈ [tdrop, tnext].

Proof. Observe that RU [t] is constant throughout the interval [tdrop, tnext]. Let RU denote this
constant value. The same is true for RP [t], which is always equal to a specific value p. We
split the interval [tdrop, tnext] into three parts.

Part 1. This part lasts while FARFIRST is moving towards a released request to the right
of max{p, pos(t)}. This decreases the value |pos(t) − RO(t)| while |RO(t) − RU | is constant
and thus D(t) cannot increase.

Part 2. This part lasts while FARFIRST is moving towards p. No released requests exist
to the right of pos(t) during this time, since that is taken care of in Part 1. Thus, we have
RO(t) = max(pos(t), RU). Either way, we see that D(t) = |RU − pos(t)| during this part. At
the start of this part, we have D(t) ≤M . When p is reached, we still have D(t) ≤M , because
p has a distance of at most M to RU by Claim 3.3. Thus, we have D(t) ≤M throughout this
part also.

Part 3. This part lasts while pos(t) = p, i.e. FARFIRST is waiting on top of p. It can be
seen that D(t) is constant throughout this part and also not larger than M .

We are now ready to present and prove the main claim we discussed.

Claim 3.5. Assume without loss of generality that FARFIRST is focusing on the right side
during a phase. FARFIRST finishes this phase as fast as possible or does so at most M time

12

units after OPT finishes. More precisely, if the phase spans the time interval [ts, te] and the
rightmost request served during this phase is Rphase, then

(te − ts = 2|Rphase|) ∨ (te − |OPT | ≤M).

First of all, note that if at least one request is unreleased at time te, then obviously |OPT | ≥
te =⇒ te − |OPT | ≤ M . Thus, we can assume in the following that all requests will have
been released before the end of the phase.

We now draw our attention to a point in time that is very central to our proof.

Let trelease be the latest release time of a positive request associated with a positive prediction.
Note that RU ′[t] = 0, ∀ t > trelease. Then, we define

tchase = min{t : ts ≤ t ≤ trelease,
(
D
(
t′
)
> M, ∀ t < t′ ≤ trelease

)
}.

Intuitively, tchase signifies the start of a series of unit speed moves executed by FARFIRST
that lead to a final state in which FARFIRST has made sufficient progress through the phase
and is also not too far behind OPT . After it reaches this state, it is easier to prove Claim 3.5.
We now describe what exactly we mean by this state.

Definition 2 (Final state). We say that FARFIRST has reached a final state in a phase at
time tstate if pos(tstate) ≤M and there are no outstanding requests or unreleased predictions to
the right of position M .

We see why this final state is important in the following claim.

Claim 3.6. If FARFIRST is in a final state at time tstate with pos(tstate) = xstate ≤ M ,
then

(te − tstate = |xstate|) ∨ (te − |OPT | ≤M).

Proof. If FARFIRST moves straight to the origin after tstate, the first part is true. On the
other hand, there are only two possible ways for FARFIRST not to return straight to the
origin, both of which provide new lower bounds for |OPT |, thus "resetting" the delay. One of
them is for FARFIRST to wait for a prediction p ≤M with π−1(p) ≤ 0. Because OPT also
has to wait for this request and since FARFIRST will ignore it for this phase, the delay is
seen to be at most M after such a case. The other case is for a request q on the right side to
be released that was predicted to be on the left side, implying that q ≤M . Again, it can take
up to 2|q| time units for FARFIRST to serve this request and return but also OPT needs to
spend at least |q| time units to terminate after it is released. Again, the delay is seen to be at
most M .

Now that our goal has been somewhat clarified, we proceed with the main part of the proof.
We now show that after tchase, FARFIRST moves to a final state as soon as possible.

Claim 3.7. Let xstate = min{M,RO(tchase)}. Then, FARFIRST reaches a final state at
time tstate and pos(tstate) = xstate, where

tstate = tchase + |pos(tchase)−RO(tchase)|+ |RO(tchase)− xstate|.

13

Proof. This can be seen by considering the moves followed by FARFIRST after tchase.
First of all, we show that FARFIRST moves straight to RO(tchase), starting at tchase. If
pos(tchase) = RO(tchase), the claim is obvious. Thus, by the definition of RO(t), we can assume
that pos(tchase) < RO(tchase). It suffices to show that FARFIRST moves to the right until it
reaches RO(tchase). We split this move into two possible parts.

Part 1. This part only applies if pos(tchase) < RO(tchase) −M . In this part, we show that
FARFIRST moves straight to the point RO(tchase) −M . Indeed, if RO(tchase) is released
at some point during this part, then FARFIRST will surely move to RO(tchase) (let alone
RO(tchase) −M) in order to serve it. If RO(tchase) is not released during this part, then
RU [t] = RO(tchase) throughout this part. But because RU [t] = RO(tchase) > M , Claim
3.2 implies that RU [t] = RU

′[t] =⇒ RP [t] ≥ RU
′[t] −M = RO(tchase) −M . Therefore,

FARFIRST will move to RO(tchase)−M because of the predictions in this case.

Part 2. This part refers to the move from the point x = max{RO(tchase)−M,pos(tchase)} to
RO(tchase). In any case (whether Part 1 applies or not), when pos(tx) = x, RO(tchase) must
have been released. Indeed, assume for the sake of contradiction that rel(RO(tchase)) > tx.
Note then that RU [t] = RO(tchase) until rel(RO(tchase)). We can see that

|pos(t)−RO(tchase)| = |pos(t)−RU [t]| ≤M ∀ t ∈ [tx, rel(RO(tchase))].

If RU [t] ≤ M for such t, the claim can be seen by noting that RU [t] −M ≤ 0 and that
RU [t] +M ≥ RU ′[t] +M and because FARFIRST won’t exit the interval [0, RU

′[t] +M] due
to RP [t].

Otherwise, by Claim 3.2, we have that RU [t] = RU
′[t] for such t. This means that FARFIRST

will not move to the left of RO(tchase)−M due to RP [t] and also the rightmost point that may
be travelled to is RO(tchase) +M , again because of RP [t]. But that would mean that there
exists t′ : tchase < t′ ≤ trelease with D(t′) ≤M , a contradiction. Therefore since RO(tchase) is
released at tx, FARFIRST will move towards it immediately.

It now remains to show that FARFIRST will move to xstate immediately after reaching
RO(tchase). If xstate = RO(tchase), the claim is obvious. Therefore, we can assume that
xstate = M and xstate < RO(tchase). We again split this move into two parts.

Part 1. This part lasts while t ≤ trelease and xstate = M has not yet been reached. This
means that throughout this part, we have

D(t) > M =⇒ RU [t] < pos(t)−M =⇒ RU
′[t] +M < pos(t) =⇒ RP [t] < pos(t).

Thus, since RP [t] and RU [t] are always to the left of pos(t), FARFIRST neither stops to wait
for a prediction nor backtracks to serve a request during this part.

Part 2. This part starts after Part 1 and lasts until xstate = M is reached. Again, FARFIRST
trivially does not stop to wait for a prediction, since all the positive ones are released by now.
Additionally, we can see that RU [t] ≤M for this part, since all unreleased predictions are not
positive. Thus, RU [t] ≤ pos(t) also holds for this part, prohibiting backtracking.

We can see that in both parts FARFIRST moves to the left with unit speed.

Therefore, two unit speed moves are followed after tchase, one to RO(tchase) and one to
xstate = min{M,RO(tchase)}. Also, after these moves, FARFIRST has reached a final state,

14

because no outstanding request or unreleased prediction exists to the right of xstate ≤M . End
of proof.

We will now use claims 3.6 and 3.7 along with the definition of tchase to prove Claim 3.5.

Proof of Claim 3.5. We distinguish two cases.

Case 1. tchase = ts. In this case, Claim 3.7 implies that FARFIRST reaches a final state by
time tstate = ts + |Rphase|+ |Rphase − xstate|, where xstate = min{Rphase,M}. Then, by Claim
3.6, we have

(te − tstate = |xstate|) ∨ (te − |OPT | ≤M) =⇒ (te − ts = 2|Rphase|) ∨ (te − |OPT | ≤M).

Thus, Claim 3.5 holds in this case.

Case 2. tchase > ts. In this case, we first show that tstate ≤ |OPT |+max{M −RO(tchase), 0},
where tstate is as described in Claim 3.7. To achieve this, we note that D(tchase) = M .
Indeed, let tprev be the latest release time before tchase, or ts if none exist. If D(t′) > M
for all t′ : tprev < t′ ≤ tchase, then the definition of tchase is violated. Thus, there exists a
t′ : tprev < t′ ≤ tchase such that D(t′) ≤ M and we have D(tchase) ≤ M by Claim 3.4. We
now distinguish two subcases.

Case 2.1. M ≤ RO(tchase) =⇒ xstate = M . In this case, we see that

D(tchase) ≤M =⇒ |pos(tchase)−RO(tchase)|+ |RO(tchase)−RU [tchase]| ≤M =⇒

RU [tchase] ≥ |pos(tchase)−RO(tchase)|+ |RO(tchase)−M | =⇒

tchase +RU [tchase] ≥ tchase + |pos(tchase)−RO(tchase)|+ |RO(tchase)−M | =⇒

|OPT | ≥ tstate.

Case 2.2. M > RO(tchase) =⇒ xstate = RO(tchase). Because D(tchase) ≤M , we must have

|pos(tchase)−RO(tchase)| ≤M −RO(tchase) +RU [tchase] =⇒

tstate ≤ |OPT |+M −RO(tchase).

In both of these subcases, by Claim 3.6 we have

(te − tstate = |xstate|)∨(te − |OPT | ≤M) =⇒ (te = |xstate|+ tstate)∨(te − |OPT | ≤M) =⇒

(te ≤ |OPT |+M) ∨ (te − |OPT | ≤M).

Claim 3.5 is now proved in all cases.

We can finally use Claim 3.5 to prove Claim 3.1 by showing that Equation (3) or Equation (2)
holds.

15

Proof of Claim 3.1. Let ts(1), te(1) be the start and end times of the first phase of FARFIRST
and ts(2), te(2) are similarly defined for the second phase. We can see that ts(1) = 0 and
ts(2) = te(1). We distinguish two cases based on the possible existence of a third phase.

Case 1. No requests are released on the right side after te(1). Thus, we see that |FARFIRST | =
te(2). By Claim 3.5, we see that te(1) ≤ |OPT |+M . Using Claim 3.5 for the second phase
also, we see that

(te(2)− ts(2) = 2|L|) ∨ (te(2)− |OPT | ≤M) =⇒

(te(2)− te(1) = 2|L|) ∨ (te(2)− |OPT | ≤M) =⇒ (3) =⇒ (2).

Case 2. At least one request is released on the right side after te(1). Let qM be the
rightmost such request. We can see that qM ≤ M , since it is necessarily associated with a
non-positive prediction. We can see that |FARFIRST | = te(2) + 2|qM |. We also know that
|OPT | ≥ rel(qM) + |qM | ≥ te(1) + |qM |. By Claim 3.5 for the second phase, we have

(te(2)− ts(2) = 2|L|) ∨ (te(2)− |OPT | ≤M) =⇒

(te(2)− te(1) = 2|L|) ∨ (te(2)− |OPT | ≤M) =⇒

(te(2) + 2|qM | = 2|L|+ te(1) + 2|qM |) ∨ (te(2) + 2|qM | ≤ |OPT |+M + 2|qM |) =⇒

(|FARFIRST | ≤ |OPT |+ 2|L|+ |qM |) ∨ (|FARFIRST | ≤ |OPT |+M + 2|qM |) =⇒

(|FARFIRST | ≤ |OPT |+ 2|L|+M) ∨ (|FARFIRST | ≤ |OPT |+ 3M) =⇒

(3) ∨ (2) =⇒ (2).

We can now use Claim 3.1 to prove Lemma 3.

Proof of Lemma 3. We know that |OPT | ≥ 2(|L|+ |R|), since it must at least travel to both L
and R and back. Also, by Claim 3.1, we have |FARFIRST |−|OPT | ≤ |Near|+ |Far|+3M =
|L|+ |R|+ 3M . These inequalities imply

|FARFIRST |
|OPT |

= 1 +
|FARFIRST | − |OPT |

|OPT |
≤ 1 +

|L|+ |R|+ 3M

2(|L|+ |R|)
=

3(1 + η)

2
.

We can finally prove Theorem 1.

Proof of Theorem 1. By Lemma 2, FARFIRST is 3-robust. Additionally, by Lemma 3,
FARFIRST is

(
3(1+η)

2

)
-smooth. Thus, the theorem holds.

16

A 1.5-attack. Based on the magician analogy presented in Section 1.2, we design an attack
strategy that yields the following theorem.

Theorem 2. For any ε > 0, no algorithm can be (1.5− ε)-competitive for closed online TSP
on the line under the LOCATIONS prediction model.

We first describe in high level the main ideas in the proof of this theorem. In our attack
strategy, we have arbitrarily many requests evenly placed in the interval [−1, 1]. The more of
these requests we have, the closer the competitive ratio we achieve will be to 1.5.

For a given set QX of request positions, we now describe how the release times of the requests
at these positions are decided. The strategy is that we release requests on both sides as long
as ALG has not yet approached a released request. This is the first phase of releases and
it is structured in such a way that OPT could begin serving either of the two sides as fast
as possible. In the magician analogy we described, this corresponds to the time before the
pedestrian chooses a hand.

When ALG approaches a released request, we "freeze" the requests on ALG’s side. That is, if
ALG moves close to a released request on the left side, say one placed at −1

2 , all requests in
the interval [−1

2 , 0] have their release time delayed such that OPT can still serve the entire
right side and then come back to serve the left side by t = 4. This corresponds to the magician
producing the coin on the right hand while the pedestrian has chosen the left hand. However,
ALG is now faced with a dilemma. Should it wait for these "frozen" requests or should it
travel all the way to 1 in order to serve the right side first? We will see that both options are
bad, in the sense that |ALG| can be seen to be arbitrarily close to 6. We now proceed with
the formal proof.

We describe a family FC of inputs that is structured as follows. For a given rank n ≥ 2, we
place exactly n requests evenly spaced across the interval [−1, 1]. For an instance f of the
family FC , α(f) is defined as the distance between any consecutive pair of requests in f .

Claim 3.8. If an instance f of the family FC has rank n, then α(f) = 2
n−1 .

Proof. There are n requests that delimit an interval of length 2. Thus, there are n− 1 equal
subintervals, whose lengths’ sum is equal to 2. Therefore, each subinterval has length 2

n−1 .

All that is left to determine is the release times of the requests. We split the release times into
two "phases". The first phase takes place for as long as LU (t) < posALG(t) < RU (t). During
this phase, ADV releases any request with distance d from the origin at time 2− d. Note that
this release method allows OPT to eagerly start serving any side of the origin first without
waiting for requests to release.

Now for the second phase’s releases, assuming that ALG exits the interval to its left side (i.e.
commits to the left extreme), the requests to the right side are released as during the first
phase. However, for any unreleased request to the left side with distance d from the origin, its
release time is delayed to 4− d. If ALG exits from the right instead, ADV releases the left
requests as in the first phase and delays the right requests. The input (positions and release
times of requests) is now fully specified. For the following, we will define tcommit as the start
time of the second phase. That is,

tcommit = min({t : ¬(LU (t) < posALG(t) < RU (t))}).

17

We immediately observe the following inequality, which guarantees that the second phase of
the requests starts in a timely manner.

Claim 3.9. 1 ≤ tcommit ≤ 2.

Proof. For the sake of contradiction, assume that tcommit < 1. Then, |pos(tcommit)| ≥ 1 since
[LU (t), RU (t)] = [−1, 1] for t < 1. However, because any algorithm is limited to unit speed,
tcommit < 1 =⇒ |pos(tcommit)| < 1, a contradiction.

On the other hand, assume that tcommit > 2. This means that LU (2) < pos(2) < RU (2). But,
since the first phase has not stopped until t = 2, we have LU (2) ≥ 0, RU (2) ≤ 0, which clearly
leads to a contradiction.

We now state a lemma ensuring that OPT finishes in the absolute least time possible for any
such input. This allows us to maximize the competitive ratio we achieve against ALG.

Lemma 4. For any instance f in the family FC , |OPT | = 4.

Proof. We observe that the requests of one side (the one ALG did not exit from) are released
such that OPT can serve them all and return to the origin by t = 2. Additionally, the other
side’s requests are released such that OPT never has to stop for them either, i.e. it can serve
them all and return to the origin by t = 4. Thus, |OPT | = 4.

However, ALG has commited to one side (by exiting the interval) and we will prove that it
requires at least 6− 2α(f) time units to terminate. This will be our main lemma. We state it
here for reference but will prove it later.

Lemma 5. For any instance f in the family FC and for any ALG, we have that |ALG| ≥
6− 2α(f).

Before proving this lemma, we give some more claims. For the following, we assume without
loss of generality that ALG exits the interval [LU (t), RU (t)] from the left, i.e. it commits to
the left side.

Claim 3.10. For any instance f in the family FC ,

LU (tcommit)− α(f) ≤ posALG(tcommit) ≤ LU (tcommit).

Proof. The claim can be seen by examining two cases. If ALG exited the unreleased requests
interval itself by moving out of it, then posALG(tcommit) = LU (tcommit). In the other case,
ALG was forced out of the interval by a request release. Thus, right before this release
(which occurs at precisely tcommit), ALG was inside the interval. The previous interval was
[LU (tcommit)− α(f), RU (tcommit) + α(f)]. Thus, the inequality holds.

We now draw attention to one particular value, which constitutes the backbone of our attack.
We define dcommit = |LU (tcommit)|, where tcommit is the start of the second phase of releases.

We now show some claims that allow us to use this value to get a lower bound for |ALG|.

Claim 3.11. For any instance f in the family FC , tcommit ≥ 2− dcommit − α(f).

18

Proof. If LU (tcommit) = −1 =⇒ dcommit = 1, then by Claim 3.9, we have tcommit ≥ 1 ≥
2 − dcommit − α(f). Therefore, we can assume that a request Lprev exists with Lprev =
LU (tcommit)−α(f) < LU (tcommit). We see that if t < 2− dcommit −α(f), then LU (t) ≤ Lprev,
because Lprev is unreleased until 2− dcommit − α(f). Therefore, tcommit ≥ 2− dcommit − α(f),
since otherwise we would have LU (tcommit) ≤ Lprev, a contradiction.

The following claim states that ALG has essentially made no progress until tcommit. If tcommit
is close to 2, we can easily see why this is bad for ALG. On the other hand, an early commit
means that dcommit will be large (due to Claim 3.11), posing problems again for ALG.

Claim 3.12. ALG has not served any request during the first phase, i.e. up to time tcommit.

Proof. This is due to the fact that ALG has not exited the interval of unreleased requests until
tcommit. Therefore, it cannot have moved to a released request. Since ALG has to move to a
request to serve it, the claim holds.

Now we are ready to prove Lemma 5.

Proof of Lemma 5. Let us examine the options that ALG has in order to terminate after tcommit.
By Claim 3.12, we know that ALG has not yet served the requests at −1, LU (tcommit), 1. We
examine cases based on the order in which it chooses to do so from tcommit on.

Case 1. ALG serves 1 before −1. Then, ALG at the very least needs to travel from
posALG(tcommit) to 1, then to −1 and then back to the origin. Using Claims 3.11 and 3.10,
this takes at least

|ALG| ≥ tcommit + |posALG(tcommit)− 1|+ |1− (−1)|+ | − 1− 0| ≥

(2− dcommit − α(f)) + (dcommit + 1) + 2 + 1 = 6− α(f).

Case 2. ALG serves −1, then 1 and then LU (tcommit). Again using Claims 3.11 and 3.10,
this takes

|ALG| ≥ tcommit+|posALG(tcommit)−(−1)|+|(−1)−1|+|1−LU (tcommit)|+|LU (tcommit)−0| ≥

(2− dcommit − α(f)) + (1− dcommit − α(f)) + 2 + (1 + dcommit) + dcommit = 6− 2α(f).

Case 3. ALG serves LU (tcommit) before 1. In this case, ALG has to first wait for LU (tcommit)
to be released and then go to serve 1. Because LU (tcommit) is a request to the left of the origin
released during the second phase, we have

|ALG| ≥ rel(LU (tcommit))+ |LU (tcommit)−1|+ |1−0| ≥ (4− dcommit)+(1 + dcommit)+1 = 6.

These cases are exhaustive and thus Lemma 5 is proved.

With all the above, we can finally prove Theorem 2.

Proof of Theorem 2. By Lemma 5 and Lemma 4, we have a competitive ratio of at least
6−2α(f)

4 for any algorithm ALG. By Claim 3.8, we can see that α(f) can be arbitrarily small
and thus this competitive ratio can be arbitrarily close to 1.5, proving our claim.

19

4 Open Variant

In this section, we consider the open variant. We have two prediction models for this vari-
ant. The first one is the LOCATIONS prediction model and the second is the enhanced
LOCATIONS + FINAL model (LF in short). For both settings, we give algorithms and
lower bounds.

4.1 The LOCATIONS prediction model

Under the LOCATIONS prediction model, we design the NEARFIRST algorithm, which
achieves a competitive ratio of 1.66 with perfect predictions and is also smooth and robust.
We complement this result with a lower bound of 1.44 using a similar attack strategy to the
one used for the closed variant.

The NEARFIRST algorithm. As we mentioned in the introduction, NEARFIRST is
similar to FARFIRST and actually slightly simpler. In essence, NEARFIRST simply picks
a direction in which it will serve the requests. Then, it just serves the requests either from
left to right or from right to left, using the predictions as guidance. The pseudocode for
NEARFIRST is given below. Recall that move(x)⊕move(y) is used to indicate a move to
x followed by a move to y.

Algorithm 2: NEARFIRST update function.
Input :Current position pos, set O of unserved released requests, set P of predictions.
Output :A series of (unit speed) moves to carry out until the next request is released.
P ′ ← the unreleased predictions in P ;
if P ′ is empty then

if pos < max(O)+min(O)
2 then return move(min(O))⊕move(max(O)) ;

else return move(max(O))⊕move(min(O)) ;
end
if |min(P)| < |max(P)| then return move(min(P ′ ∪O))⊕move(min(P ′)) ;
else return move(max(P ′ ∪O))⊕move(max(P ′)) ;

We present the following theorem regarding the competitive ratio of NEARFIRST .

Theorem 3. The algorithm NEARFIRST is min {f(η), 3}-competitive, where

f(η) =

{
1 + 2(1+η)

3−2η , for η < 2
3

3, for η ≥ 2
3

.

We first describe the main ideas used in the proof of this theorem. As in the case of FARFIRST ,
the 3-robustness holds because at time |OPT |, NEARFIRST has "leftover work" of at
most 2|OPT | time units (to return to the origin and then copy OPT). For the consis-
tency/smoothness, we draw our attention to the request qf served last by OPT . For the
following, we assume that NEARFIRST serves the requests left to right. Let d = |qf −R|.

20

We will show that the delay of NEARFIRST is bounded by M + d. Let tqf be the time
when NEARFIRST has served all requests to the left of qf , including qf . It turns out that
tqf ≤ |OPT |+M , because NEARFIRST serves this subset of requests as fast as possible,
except for a possible delay of M due to a misleading prediction. Then, in this worst case,
NEARFIRST accumulates an extra delay of at most d, proving our claim.

Finally, we bound OPT from below as a function of d. We see that OPT can either serve the
requests L,R, qf in the order L,R, qf or in the order R,L, qf . The worst case is the latter,
where we see that |OPT | ≥ 2|R|+ |L|+ (|L|+ |R| − d) = 3|R|+ 2|L| − d. Since d ≤ |L|+ |R|,
we obtain

|NEARFIRST |
|OPT |

= 1 +
|NEARFIRST | − |OPT |

|OPT |
≤ 1 +

M + |L|+ |R|
2|R|+ |L|

.

Because NEARFIRST considers L the near extreme due to the predictions, by Lemma 1 we
find that |R| ≥ 1−2η

2 (|L|+ |R|), which in turn proves our bound.

We now give the formal proof of Theorem 3. First of all, we present two lemmas that are very
important. Their proofs are deferred to the Appendix, since they also refer to the PIV OT
algorithm, which is introduced later.

Lemma 6. Let ALG be either NEARFIRST or PIV OT . Then, ALG is 3-robust.

Lemma 7. Let ALG be either NEARFIRST or PIV OT . Also, let qf be the request served
last by OPT . Assume without loss of generality that ALG serves requests from left to right.
Let d = |qf −R|. Then, we have |ALG| − |OPT | ≤M + d.

The robustness part of Theorem 3 is implied by Lemma 6.

Now, to prove Theorem 3, it remains to show the consistency/smoothness part, which is given
by the following lemma.

Lemma 8. The algorithm NEARFIRST is f(η)-smooth for η < 2
3 , where f(η) = 1 + 2(1+η)

3−2η .

Proof. Assume w.l.o.g. that NEARFIRST serves the left extreme first. By Lemma 7, we see
that |NEARFIRST | − |OPT | ≤M + d, where d is the distance of R to the request qf served
last by OPT . We distinguish two cases based on the order in which OPT serves the requests
in {L,R, qf}. Case 1. OPT serves L,R and then qf . It can be seen then that

|NEARFIRST |
|OPT |

≤ 1 +
M + d

2|L|+ |R|+ d
.

The derivative of the right hand side with respect to d is

|R|+ 2|L| −M
(d+ |R|+ 2|L|)2

.

Because η < 2
3 , it must hold that M < 2

3(|L|+ |R|) =⇒ |R|+ 2|L| −M
(d+ |R|+ 2|L|)2

> 0. Thus, we

may maximize d to get an upper bound that is valid for any value of d. Because d ≤ |L|+ |R|
we see that

|NEARFIRST |
|OPT |

≤ 1 +
M + |L|+ |R|

3|L|+ 2|R|
.

21

Case 2. OPT serves R,L and then qf . It can be seen then that

|NEARFIRST |
|OPT |

≤ 1 +
M + d

2|R|+ |L|+ (|L|+ |R| − d)
= 1 +

M + d

3|R|+ 2|L| − d
.

We can see that the right hand side is an increasing function of d. Thus, we may again
maximize d to get an upper bound.

|NEARFIRST |
|OPT |

≤ 1 +
M + |L|+ |R|

2|R|+ |L|
. (4)

In both cases, the bound of Equation (4) is valid. Noting that |LP | ≤ |RP | (because
NEARFIRST chose to go to the left first), we now use Lemma 1 to finalize our proof.

|LP | ≤ |RP | =⇒ |R| ≥ |L| − 2M =⇒ 2|R| ≥ |L|+ |R| − 2M =

(|L|+ |R|)(1− 2η) =⇒ |R| ≥ 1− 2η

2
(|L|+ |R|) =⇒

1 +
M + |L|+ |R|

2|R|+ |L|
≤ 1 +

(1 + η)(|L|+ |R|)(
1 + 1−2η

2

)
(|L|+ |R|)

= 1 +
2(1 + η)

3− 2η
=⇒

|NEARFIRST |
|OPT |

≤ 1 +
2(1 + η)

3− 2η
.

We now give the proof of Theorem 3.

Proof of Theorem 3. By Lemma 6, NEARFIRST is 3-robust. Additionally, by Lemma 8,
NEARFIRST is

(
1 + 2(1+η)

3−2η

)
-smooth. Thus, Theorem 3 holds.

A 1.44-attack. For this setting, we use an attack strategy that is very similar to the one
introduced in Section 3. This allows us to obtain the following theorem.

Theorem 4. For any ε > 0, no algorithm can be
(
1.44− ε

)
-competitive for open online TSP

on the line under the LOCATIONS prediction model.

The logic behind the attack we give here is exactly the same as the one used to prove Theorem
2. There are two main differences demanded by the nature of the open variant.

One is that the first phase is shorter in this attack. Instead of stopping when ALG exits
[LU (t), RU (t)], the phase now stops when ALG exits the interval [3LU (t) + 2, 3RU (t)−2]. This
is so that both options of ALG (switch to the other side or wait for the "frozen" requests) are
equally hurtful.

The other difference lies in the release times of the second phase. Each request on the side
chosen by ALG now has its release time delayed to 2 + d (instead of 4 − d), where d is the
request’s distance from the origin. This is so OPT can finish by t = 3, which is the fastest
possible even if all requests are released immediately.

22

In the following, we assume without loss of generality that ALG exits the interval [3LU (t) +
2, 3RU (t)− 2] from the left side. We define the family FO of inputs just like we defined FC in
the proof of Theorem 2. Of course, the release times are different as explained in the previous
paragraphs.

An immediate observation that we have already mentioned is the following lemma.

Lemma 9. For any instance f in the family FO, |OPT | = 3.

Proof. Since ALG exits the interval from the left side, each request qr on the right side is
released at time 2 − |qr|. Thus, by moving to 1 and back, OPT serves all the requests on
the right side. Additionally, each request ql on the left side is released no later than 2 + |ql|,
allowing OPT to serve these requests by just moving to −1 after reaching the origin at t = 2.
Therefore, OPT can serve all the requests by time 3, i.e. |OPT | = 3.

The next piece of the puzzle is a lower bound on ALG. This is given by the following lemma.

Lemma 10. For any instance f in the family FO and any algorithm ALG, |ALG| ≥ 13
3 −3α(f),

where α(f) is the distance between consecutive requests in f .

To prove this lemma, we will use some claims, many of which are very similar to claims used
for Lemma 5. To present these claims, we introduce two important terms.

We denote with tcommit the start time of the second phase, i.e.

tcommit = min({t : ¬(3LU (t) + 2 < posALG(t) < 3RU (t)− 2)}).

Additionally, we draw attention to the value dcommit = |LU (tcommit)|, which is very important
for the attack.

We now present the claims which are very similar to those used for the closed variant. Claims
4.1, 4.2 and 4.3 can be seen in the same way as Claims 3.9, 3.10 and 3.11, respectively.

Claim 4.1. 1 ≤ tcommit ≤ 1 + 1
3 .

Claim 4.2. pos(tcommit) ≤ 3LU (tcommit) + 2.

Claim 4.3. For any instance f in the family FO, tcommit ≥ 2− dcommit − α(f).

Moreover, we also have the following claim.

Claim 4.4. For any instance f of the family FO, dcommit ≥ 2
3 − α(f).

Proof. By Claim 4.3, we have dcommit ≥ 2− tcommit − α(f). Additionally, Claim 4.1 implies
that tcommit ≤ 4

3 . The claim follows.

We are now ready to prove Lemma 10.

23

Proof of Lemma 10. We distinguish cases based on the order in which ALG chooses to serve
−1, 1, LU (tcommit) after tcommit. Case 1. ALG serves 1 before −1. By Claims 4.3, 4.2 and
4.4, this takes at least

|ALG| ≥ tcommit + |pos(tcommit)|+ 2 + 1 ≥

2− dcommit − α(f) + |3LU (tcommit) + 2|+ 2 + 1 =

2− dcommit − α(f) + 3dcommit − 2 + 2 + 1 = 3 + 2dcommit − α(f) ≥

3 +
4

3
− 3α(f) ≥ 13

3
− 3α(f).

Case 2. ALG serves LU (tcommit) before 1. By the definition of the second phase’s release
times and Claim 4.4, we have

|ALG| ≥ rel(LU (tcommit)) + |LU (tcommit)|+ 1 = 2 + dcommit + dcommit + 1

3 + 2dcommit ≥
13

3
− 2α(f).

Case 3. ALG serves in the order −1, 1, LU (tcommit). By Claim 4.4, we easily obtain

|ALG| ≥ 2 + 2 +
2

3
− α(f) ≥ 13

3
− α(f).

These cases are exhaustive and thus Lemma 10 follows.

We can now use Lemmas 9 and 10 to prove Theorem 4.

Proof of Theorem 4. By Lemma 9, we have |OPT | = 3. On the other hand, by Lemma 10, we

see that |ALG| ≥ 13
3 − 3α(f). Thus, we obtain a competitive ratio of at least

13
3
−3α(f)
3 . For

arbitrarily small α(f), this value can be arbitrarily close to 1.44, proving the Theorem.

4.2 The LOCATIONS+FINAL prediction model

In our final setting we consider the open variant under the LF prediction model. We give the
PIV OT algorithm, which is 1.33-competitive with perfect predictions and is also smooth and
robust. We also reuse the attack strategy described for the closed variant to achieve a lower
bound of 1.25.

The PIV OT algorithm. The final algorithm we present works in the same way asNEARFIRST ,
except for the order in which it focuses on the two sides of the origin. Instead of heading to
the near extreme first, PIV OT prioritizes the side whose extreme is further away from the
predicted endpoint of OPT , which is provided by the LF prediction model. The pseudocode
for PIV OT is given below. Note that Pf ′ refers to the element in P with label f ′.

As for the previous algorithms, we show a theorem that pertains to PIV OT ’s competitive
ratio for different values of the η and δ errors.

24

Algorithm 3: PIV OT update function.
Input :Current position pos, set O of unserved released requests, set P of predictions,

label f ′ of OPT ’s predicted endpoint.
Output :A series of (unit speed) moves to carry out until the next request is released.
P ′ ← the unreleased predictions in P ;
if P ′ is empty then

if pos < max(O)+min(O)
2 then return move(min(O))⊕move(max(O)) ;

else return move(max(O))⊕move(min(O)) ;
end
if Pf ′ >

max(P)+min(P)
2 then return move(min(P ′ ∪O))⊕move(min(P ′)) ;

else return move(max(P ′ ∪O))⊕move(max(P ′)) ;

Theorem 5. The algorithm PIV OT is min {f(η, δ), 3}-competitive, where

f(η, δ) =

{
1 + 1+2(δ+3η)

3−2(δ+2η) , 3− 2(δ + 2η) > 0

3, 3− 2(δ + 2η) ≤ 0
.

The proof is very similar to the one used for NEARFIRST ’s competitive ratio. In fact, the
robustness is shown in exactly the same way. For the consistency/smoothness, the delay is
bounded by M + d in the same way, where d is the distance of the last request qf served by
OPT to the extreme served second by PIV OT . The same lower bounds for |OPT | hold as
well. We additionally bound d as a function of the error-dependent values ∆ and M . When
there is no error, we can bound d to be at most |L|+|R|2 instead of |L| + |R|, which gives a
better competitive ratio than that of NEARFIRST . An important distinction is that we do
not make use of Lemma 1, since the algorithm does not consider the amplitudes of L and R.

The formal proof of Theorem 5 is given here. The robustness part of Theorem 5 is implied by
Lemma 6. To prove Theorem 5, it remains to show the consistency/smoothness part, which is
given by the following lemma.

Lemma 11. The algorithm PIV OT is f(η, δ)-smooth for 3− 2(δ + 2η) > 0, where

f(η, δ) = 1 +
1 + 2(δ + 3η)

3− 2(δ + 2η)
.

We assume without loss of generality that PIV OT first serves the left extreme. By Lemma 7,
we see that |PIV OT | − |OPT | ≤M + d, where d is the distance of R to the request qf served
last by OPT . We now show a bound on the value of d that depends on η and δ.

Claim 4.5. d = |R− qf | ≤ (|L|+ |R|)
(
1
2 + δ + 2η

)
.

Proof. We first show two inequalities that will be used later to prove the claim. Note that
|R−RP | ≤M and |L− LP | ≤M by Claim 2.1. The first inequality is

|R−RP | ≤M =⇒ R−Rp ≤M =⇒ RP − qf ≥ R− qf −M =⇒

25

RP − qf ≥ |R− qf | −M. (5)

Similarly, we see that

|L− LP | ≤M =⇒ LP − L ≥ −M =⇒ qf − L+M ≥ qf − LP

|qf − L|+M ≥ qf − LP . (6)

Because of PIV OT ’s choice to go left first, we see that

|RP − pf ′ | ≤ |LP − pf ′ | =⇒ RP − pf ′ ≤ pf ′ − LP =⇒ pf ′ ≥
RP + LP

2
=⇒

qf ′ ≥
RP + LP

2
−M =⇒ qf ≥

RP + LP
2

−M −∆ =⇒

qf − LP +M + ∆ ≥ RP − qf −M −∆
(5),(6)
=⇒

|qf − L|+ 2M + ∆ ≥ |R− qf | − 2M −∆ =⇒

|qf − L|+ |R− qf |+ 2M + ∆ ≥ 2|R− qf | − 2M −∆ =⇒

d = |R− qf | ≤ (|L|+ |R|)
(

1

2
+ δ + 2η

)
.

Using Claim 4.5, we can prove Lemma 11.

Proof of Lemma 11. We distinguish two cases based on the order in which OPT serves the
requests of the set {L,R, qf}. Case 1. OPT serves in the order L,R, qf . Thus, we know that

|PIV OT |
|OPT |

≤ 1 +
M + d

2|L|+ |R|+ d
.

The derivative of the right part with respect to d is

|R|+ 2|L| −M
(d+ |R|+ 2|L|)2

.

Since we have assumed 3− 2(δ + 2η) > 0 =⇒ η < 1, this value is always positive. Therefore,
we can set d to the maximum value described in Claim 4.5 to obtain the following bound.

|PIV OT |
|OPT |

≤ 1 +
(|L|+ |R|)

(
1
2 + δ + 2η

)
+ η(|L|+ |R|)

2|L|+ |R|+ (|L|+ |R|)
(
1
2 + δ + 2η

) ≤
1 +

1 + 2δ + 6η

3 + 2δ + 4η
≤ 1 +

1 + 2(δ + 3η)

3− 2(δ + 2η)
.

Case 2. OPT serves in the order R,L, qf . In that case, we have

|PIV OT |
|OPT |

≤ 1 +
d+M

2|R|+ |L|+ (|L|+ |R| − d)

4.5
≤

26

1 +
(|L|+ |R|)

(
1
2 + δ + 2η

)
+ η(|L|+ |R|)

2|R|+ |L|+ (|L|+ |R|)
(
1
2 − δ − 2η

) ≤ 1 +
1 + 2δ + 6η

3− 2δ − 4η
=

1 +
1 + 2(δ + 3η)

3− 2(δ + 2η)
.

In both cases, we have shown the smoothness bound. Therefore, the proof is complete.

We now give the proof of Theorem 5.

Proof of Theorem 5. By Lemma 6, PIV OT is 3-robust. Also, by Lemma 11, it is
(

1 + 1+2(δ+3η)
3−2(δ+2η)

)
-

smooth. Thus, Theorem 5 follows.

A 1.25-attack. We make use of the original attack strategy of Section 3 yet again to obtain
a lower bound for this setting. Our final theorem is presented here.

Theorem 6. For any ε > 0, no algorithm can be (1.25− ε)-competitive for open online TSP
on the line under the LF prediction model.

To prove this theorem, we will again utilize the attack strategy given in the proof of Theorem
2. The inputs generated are the same, except for a new request q0 placed at the origin and
released at t = 4. Let FC ′ denote this new family of inputs. We observe the following lemmas.

Lemma 12. For any instance f in the family FC ′, |OPT | = 4.

Proof. We see that the requests of the side which ALG did not exit from are released such
that OPT can serve them all and return to the origin by t = 2. Additionally, the other side’s
requests are released such that OPT never has to stop for them either, i.e. it can serve them all
and return to the origin by t = 4. The request on the origin is released at exactly t = 4, so this
is also served right as OPT returns to the origin from the second trip. Thus, |OPT | = 4.

In the following, α(f) will refer to the distance of consecutive requests in f , disregarding q0.

Lemma 13. For any instance f in the family FC ′, |ALG| ≥ 5− 2α(f).

Proof. Suppose for the sake of contradiction that |ALG| < 5 − 2α(f). We can see that
|posALG(|ALG|)| ≤ 1. Thus, an algorithm ALG′ could copy ALG until it serves all requests
and then return to the origin. That would mean that ALG′ solves the closed variant of f such
that |ALG′| < 6− 2α(f). Observe that there exists an instance f ′ ∈ FC that is identical to f
except for q0. We can see that ALG′ also solves f ′ in less than 6− 2α(f) = 6− 2α(f ′) time
units, since f ′ only contains a subset of the requests in f . Therefore, we have a contradiction
to Lemma 5.

We can now prove Theorem 6.

Proof of Theorem 6. By Lemma 12, we see that |OPT | = 4. We also see that |ALG| ≥ 5−2α(f)

by Lemma 13. Thus, we get a competitive ratio of at least 5−2α(f)
4 , which can be arbitrarily

close to 1.25, concluding the proof.

27

5 Experimental Evaluation

We have generated synthetic instances and corresponding predictions and tested our algorithms
on them. In this section, we explain how this data was generated and present the results we
acquired.

Note that mirroring of the positions of the requests and/or uniform scaling of the positions
and release times does not affect the competitive ratio of any algorithm. Therefore, we choose
to generate the inputs as explained below.

Generating inputs. In the following, any reference of randomness will correspond to a
uniform distribution. We have a maximum number of requests nmax ≥ 2 and a maximum release
time rmax. Our generator first randomly chooses an integer number of requests n ∈ [2, nmax].
Then it randomly chooses a value c′ ∈ [1, c]. We then generate the positions of the requests
as follows. We always have a request at −1 and one at c′. The other n − 2 requests are
randomly placed in the interval [−1, c′]. The release time of each request is randomly chosen
from [0, rmax].

Generating predictions. We now briefly explain how the predictions of the LOCATIONS
model are generated. Each input generated also comes with a prediction "mould". This mould
contains n scalars mi ∈ [−1, 1], one for each request. At least one of these scalars has an
absolute value of 1. For a given error η, we calculate M and then add an offset of mi ·M
to the position of request qi to get the prediction pi. In this way, at least one prediction is
guaranteed to have a distance of M to its associated request.

For the LF prediction model, we simply try each label of the generated input as a different
prediction. Each label choice corresponds to a different error δ, which is calculated after
choosing the label.

Results. We generated 7500 random input-predictions pairs with at most 20 requests. A
value of c = 2 was chosen, since higher values of c in general only benefit our algorithms. The
maximum release time was set to 6. Again, higher release times in general lead to better
competitive ratios for our algorithms, because they increase |OPT |.

The error η of these predictions varied from 0 to 1. We ran FARFIRST and NEARFIRST
on each of these instances. Additionally, for each of these instances, we ran PIV OT with
each of the instance’s request labels as the prediction of the LF prediction model. Thus, the
PIV OT algorithm was ran approximately 75000 times.

We did not compare the results of our algorithms to the classical algorithms because that
would be unfair. That is because our algorithms have the benefit of knowing the number of
requests n which helps in practice, even if the theoretical lower bounds are almost identical.
In contrast, the theoretically optimal classical online algorithms resort to waiting techniques,
which in turn almost always maximizes their competitive ratio to the theoretical bound.

The experiments were executed on a typical modern laptop computer (CPU: AMD Ryzen
7 4700U 2.0 Ghz 8 cores, RAM: 16GB). The execution time did not exceed 2 minutes. We
present our results via various graphs in the following subsections.

28

5.1 FARFIRST

Figure 1 shows the maximum competitive ratio observed for the FARFIRST algorithm in all
instances with error η up to the value of the x axis. In figure 2, we have also provided a plot
that depicts the maximum competitive ratio observed for x % of the best instances with error
η up to the value of the y axis. We note that the grid turns red near the very edge, which
means that high competitive ratios are rare.

0.0 0.2 0.4 0.6 0.8 1.0

Error eta

1.5

1.6

1.7

1.8

1.9

2.0

2.1

M
ax

co
m

p
et

it
iv

e
ra

ti
o

Figure 1: FARFIRST ’s competitive ratio for
increasing error. As can be seen in the figure,
the competitive ratio never surpasses ≈ 2.15
for η ≤ 1. Additionally, we find that the com-
petitive ratio even with zero error is close to
the theoretical upper bound of 1.5. It should
also be noted that the theoretical lower bound
of 1.64 (without predictions) is broken for η
roughly up to 0.2.

20 40 60 80 100

Percentage of inputs considered

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
et

a

1.000

1.159

1.318

1.477

1.636

1.795

1.954

2.113

Figure 2: FARFIRST ’s competitive ratio for
increasing error and percentage of inputs con-
sidered, sorted by the competitive ratio that
FARFIRST obtains on them. The narrow-
ness of the red portion of the grid suggests
that high competitive ratios are rare. We
note that the colors of the grid are generally
blue, i.e. FARFIRST exhibits a relatively
low competitive ratio in most cases.

5.2 NEARFIRST

The figures presented here are analogous to those of Section 5.1. Figure 3 shows the maximum
competitive ratio observed for the NEARFIRST algorithm in all instances with error η up
to the value of the x axis. In figure 4, a plot analogous to that seen in figure 2 is shown for the
NEARFIRST algorithm. The red portion of the grid is again quite limited as in the case for
FARFIRST .

5.3 PIVOT

In this final subsection we condsider the PIV OT algorithm. In figure 5, the color of the pixel
in coordinates (x, y) corresponds to the maximum competitive ratio observed for all instances
with errors δ ≤ x and η ≤ y. We should explain here that the colors change abruptly in this
figure since the δ error does not vary smoothly in the generated predictions. This is because we

29

0.0 0.2 0.4 0.6 0.8 1.0

Error eta

1.6

1.7

1.8

1.9

2.0

M
a
x

co
m

p
et

it
iv

e
ra

ti
o

Figure 3: NEARFIRST ’s competitive ratio
for increasing error. As can be seen in the
figure, the competitive ratio never surpasses
≈ 2.05 for η ≤ 1. Additionally, we find that
the competitive ratio even with zero error is
close to the theoretical upper bound of 1.66. It
should also be noted that the theoretical lower
bound of 2 (without predictions) is broken
even for η very close to 1.

20 40 60 80 100

Percentage of inputs considered

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
et

a

1.000

1.150

1.299

1.449

1.598

1.748

1.897

2.047

Figure 4: NEARFIRST ’s competitive ratio
for increasing error and percentage of inputs
considered, sorted by the competitive ratio
that NEARFIRST obtains on them. The nar-
rowness of the red portion of the grid suggests
that high competitive ratios are rare. We note
that the colors of the grid are generally blue,
i.e. NEARFIRST exhibits a relatively low
competitive ratio in most cases.

only have a discrete set of choices for the label f ′ of the LF prediction model through which δ
is calculated.

6 Conclusion

We have examined the online TSP on the line and provided lower bounds as well as algorithms
for three different learning-augmented settings. An immediate extension of our results would be
to bridge the gap between the lower and upper bounds we have shown for the open variant. Also,
it would be interesting to establish error-dependent lower bounds and/or optimal consistency-
robustness tradeoffs. Moreover, an improvement would be to remove the assumption of knowing
the number of requests n. A technique that could perhaps allow an algorithm to achieve that
is to periodically make sure that the algorithm terminates in case no new requests appear.
Finally, more general versions of online TSP could be investigated like the case of trees.

30

Figure 5: PIVOT ’s competitive ratio for increasing errors δ and η. The color of the pixel in
coordinates (x, y) corresponds to the maximum competitive ratio observed for all instances
with errors δ ≤ x and η ≤ y. We observe that the competitive ratio is more sensitive to η than
to δ, as was to be expected by the corresponding theoretical bound. With perfect predictions,
the maximum competitive ratio is not greater than ≈ 1.11, which is considerably lower than
the theoretical upper bound of 1.33. In general, the competitive ratio increases smoothly along
the main diagonal of the grid. Finally, PIV OT ’s competitive ratio surpasses the lower bound
of 2 (without predictions) only for large values of δ, η.

31

References

[1] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc P. Renault.
Online computation with untrusted advice. In ITCS, 2020.

[2] Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon.
Online metric algorithms with untrusted predictions. In ICML, 2020.

[3] Antonios Antoniadis, Peyman Jabbarzade Ganje, and Golnoosh Shahkarami. A novel
prediction setup for online speed-scaling. CoRR, 2021.

[4] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and
online matching problems with machine learned advice. In NeurIPS, 2020.

[5] N. Ascheuer, M. Grötschel, S. O. Krumke, and J. Rambau. Combinatorial online opti-
mization. In Operations Research Proceedings, 1999.

[6] Giorgio Ausiello, Esteban Feuerstein, S. Leonardi, L. Stougie, and Maurizio Talamo.
Algorithms for the on-line travelling salesman. Algorithmica, 2001.

[7] Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning aug-
mented energy minimization via speed scaling. In NeurIPS, 2020.

[8] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In NeurIPS, 2020.

[9] Giulia Bernardini, Alexander Lindermayr, Alberto Marchetti-Spaccamela, Nicole Megow,
Leen Stougie, and Michelle Sweering. A universal error measure for input predictions
applied to online graph problems. CoRR, 2022.

[10] Antje Bjelde, Jan Hackfeld, Yann Disser, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Miriam SchlÖter, Kevin Schewior, and Leen Stougie. Tight bounds for online
tsp on the line. ACM Trans. Algorithms, 2021.

[11] Michiel Blom, Sven O. Krumke, Willem E. De Paepe, and Leen Stougie. The online tsp
against fair adversaries. INFORMS journal on computing, 2001.

[12] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries
with advice. In EC, 2021.

[13] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with
expert advice. In ICML, 2019.

[14] Patrick Jaillet and Michael R. Wagner. Online routing problems: Value of advanced
information as improved competitive ratios. Transportation Science, 2006.

[15] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for
learned index structures. In SIGMOD, 2018.

[16] E.L. Lawler. The Travelling Salesman Problem: A Guided Tour of Combinatorial Opti-
mization. Wiley-Interscience series in discrete mathematics and optimization. John Wiley
& Sons, 1985.

32

[17] Thodoris Lykouris and Sergei Vassilvtiskii. Competitive caching with machine learned
advice. In ICML, 2018.

[18] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching.
In NeurIPS, 2018.

[19] Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In
ITCS, 2020.

[20] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Beyond
the Worst-Case Analysis of Algorithms. Cambridge University Press, 2020.

[21] Benjamin Moseley, Sergei Vassilvitskii, Silvio Lattanzi, and Thomas Lavastida. Online
scheduling via learned weights. In SODA, 2020.

[22] Harilaos N. Psaraftis, Marius M. Solomon, Thomas L. Magnanti, and Tai-Up Kim. Routing
and scheduling on a shoreline with release times. Management Science, 1990.

[23] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. In NeurIPS, 2018.

[24] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
SODA, 2020.

[25] Shufan Wang and Jian Li. Online algorithms for multi-shop ski rental with machine
learned predictions. In AAMAS, 2020.

[26] Alexander Wei. Better and simpler learning-augmented online caching. In AP-
PROX/RANDOM, 2020.

33

A Lemmas for the case of known n

Lemma 14. For any ε > 0, no algorithm can be (2− ε)-competitive for open online TSP on
the line without predictions when the number of requests n is known. Also, there exists an
algorithm that matches this lower bound.

Proof. A very simple attack can be used to show the lower bound of 2. If posALG(1) ≤ 0, we
present a request at 1 with a release time of 1. In the other case, the request’s position is −1.
It is easy to see that |OPT | = 1, while |ALG| ≥ 2, proving the bound. There also exists a
very simple algorithm that matches this bound. Such an algorithm need only wait until all
requests have been released and then copy OPT ’s actions, which are at this point computable.
The waiting part does not take more than |OPT | and neither does the moving part, which
implies a competitive ratio of 2 for such an algorithm.

Lemma 15. For any ε > 0, no algorithm can be (1.64− ε)-competitive for closed online TSP
on the line without predictions when the number of requests n is known. Also, there exists an
algorithm that matches this lower bound.

Proof. By taking a close look at the attack strategy described in Section 3.3 of [6], we observe
that the number of requests is never higher than a specific value nmax. In fact, it turns out
that nmax = 3, i.e. the attack never uses more than 3 requests. We modify this attack so that
it can also be used when n is known. Any instance of the modified attack will have exactly
nmax requests. Thus, the algorithm will be informed that there will indeed be nmax requests.

We first give a brief description of the original attack strategy for context. Let ρ = 9+
√
17

8 ≈ 1.64,
I = [−(2ρ− 3), (2ρ− 3)], I ′ = [−(7− 4ρ), (7− 4ρ)]. Note that I is contained in I ′ and both
of them are contained in [−1, 1]. If posALG(1) /∈ I, then a single request at −1 or 1 (released
at t = 1) suffices to achieve the competitive ratio. Assuming that posALG(1) ∈ I, we
simultaneously present two requests at −1 and 1 at t = 1. At t = 3, ALG cannot have possibly
served both of these requests. If posALG(3) ∈ I ′, then another request at −1 or 1 (released
at t = 3) is sufficient. Therefore, we continue assuming that posALG(3) /∈ I ′. This means
that ALG is close to one extreme and still has not served the other. When ALG crosses the
origin to serve the other extreme at time 3 + x, a request is placed at either 1 + x or −(1 + x)
(depending on which extreme ALG has not served). The competitive ratio turns out to be at
least ρ in this (final) case also.

We now describe our modification of this strategy. Initially, the original attack strategy is
followed. Let qwin be the last request released by the original attack strategy, after the release
of which the competitive ratio is guaranteed to be at least 1.64 in case no new requests
appear. Let noriginal be the number of requests released via the original attack strategy. If
noriginal < nmax, then nmax − noriginal extra requests are released at time rel(qwin), placed
arbitrarily between the origin and qwin. These extra requests are served by OPT on the way
back from qwin, without incurring extra cost. In other words, |OPT | does not increase with
the addition of these requests. Also, |ALG| certainly cannot decrease since we only added
requests. Therefore, the same lower bound holds even for known n.

The algorithm is exactly the same as the one for unknown number of requests, since it can just
ignore the number n and still achieve the same competitive ratio.

34

B Omitted proofs from section 4

In this subsection, we give the formal proofs of two lemmas which we used to prove Theorems
3 and 5.

Lemma 6. Let ALG be either NEARFIRST or PIV OT . Then, ALG is 3-robust.

Proof. Let tf denote the latest release time for a fixed instance of the problem. We assume

w.l.o.g. that posALG(tf) ≤ L(tf)+R(tf)
2 . Note that after tf , ALG will move to L(tf) and then

to R(tf). Thus, we observe that

|ALG| = tf + |pos(tf)− L(tf)|+ |L(tf)−R(tf)|. (7)

We distinguish two cases based on the position of ALG at time tf . Case 1. pos(tf) ≥ L(tf).
In this case, we see that

(7) =⇒ |ALG| = tf + pos(tf)− L(tf) +R(tf)− L(tf) ≤

tf +
L(tf) +R(tf)

2
− L(tf) +R(tf)− L(tf) =

tf +
3(|L(tf)|+ |R(tf)|)

2
≤ 2.5|OPT | ≤ 3|OPT |.

Case 2. pos(tf) < L(tf). Similarly, we have

(7) =⇒ |ALG| = tf + L(tf)− pos(tf) +R(tf)− L(tf) ≤

2tf + |R(tf)| ≤ 3|OPT |.

Lemma 7. Let ALG be either NEARFIRST or PIV OT . Also, let qf be the request served
last by OPT . Assume without loss of generality that ALG serves requests from left to right.
Let d = |qf −R|. Then, we have |ALG| − |OPT | ≤M + d.

To prove this lemma, we first give some definitions. Note first that LU [t] is sort of a "checkpoint"
for OPT , meaning that OPT must be located at LU [t] for some point in time on or after t
in order to serve that request. Then, it must move from LU [t] to qf . This idea helps us keep
track of |OPT | so we can compare it with |ALG|.

D(t) denotes the least amount of time necessary to serve all requests to the left of LU [t]
(assuming they have been released) and then move to LU [t], starting at position posALG(t).
This amounts to

D(t) = |posALG(t)− LO(t)|+ |LO(t)− LU [t]|.

This function exhibits a useful bound property. If it drops to M or below at some time t, it
can only increase above M again due to a request release. This property is described more
formally in the following claim. But first, another useful definition is given.

We define LP [t] as the leftmost prediction that is released on or after t. That is, LP [t] =
min({p ∈ P : rel(π(q)) ≥ t}). If this set is empty, then LP [t] = R.

Using this definition, the following claim can be seen in the same way as Claim 3.4.

35

Claim B.1. Let tdrop be a time point such that D(tdrop) ≤M . If tnext is the earliest release
time of a request after tdrop, then

D
(
t′
)
≤M, ∀ t′ ∈ [tdrop, tnext].

We now draw our attention to a point in time that is very central to our proof.

Let trelease be the latest release time of a request. Note that LU [t] = R, ∀ t > trelease. Then,
we define

tchase = min{t : ts ≤ t ≤ trelease,
(
D
(
t′
)
> M, ∀ t < t′ ≤ trelease

)
}.

In essence, similarly to the definition in the previous section, tchase denotes the time after
which ALG gets to finish as soon as possible without waiting for predictions or backtracking for
requests. In the following, we assume for simplicity and without loss of generality that ALG
always serves the requests left to right, even if at time trelease it is clear that going to the right
first is faster. It is true that our algorithm may indeed make such a decision at time trelease,
but that is a trivial optimization that does not invalidate our proof, since it can only decrease
|ALG| and by extension, the value |ALG| − |OPT |. Under this assumption, we proceed by
showing that after tchase, ALG moves to LO(tchase) and then straight to LU [tchase], serving all
intermediate requests on the way. In fact, it also keeps moving to the right until it reaches R
and finishes. The following claim can be seen in the same way as Claim 3.7.

Claim B.2. Let t′ = tchase +D(tchase). Then, pos(t′) = LU [tchase].

Also, |ALG| = t′ + |pos(t′)−R|.

We now give the proof of Lemma 7.

Proof of Lemma 7. We distinguish two cases.

Case 1. tchase = ts. This easily implies that |ALG| = 2|L|+ |R| by Claim B.2. It remains to
show that |OPT | ≥ 2|L|+ |R| −M − d.

If OPT follows the order L −→ R −→ qf , then

|OPT | ≥ 2|L|+ |R|+ d ≥ 2|L|+ |R| −M − d.

On the other hand, if OPT follows the order R −→ L −→ qf , then

|OPT | ≥ 2|R|+ |L|+ (|L|+ |R| − d) ≥ 3|R|+ 2|L| − d ≥ 2|L|+ |R| −M − d.

Case 2. tchase > ts. It can be seen then by Claim B.1 that D(tchase) ≤M . It is easy to see
that |OPT | ≥ tchase + |LU [tchase]− qf |. At the same time, by Claim B.2 we see that

|ALG| = tchase +D(tchase) + |LU [tchase]−R| ≤

tchase +M + |LU [tchase]− qf |+ |qf −R| ≤ |OPT |+M + d.

36

	1 Introduction
	1.1 Our setup
	1.2 Our contributions
	1.3 Related work

	2 Preliminaries
	3 Closed Variant
	4 Open Variant
	4.1 The LOCATIONS prediction model
	4.2 The LOCATIONS+FINAL prediction model

	5 Experimental Evaluation
	5.1 FARFIRST
	5.2 NEARFIRST
	5.3 PIVOT

	6 Conclusion
	A Lemmas for the case of known n
	B Omitted proofs from section 4

