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Abstract

We consider the problem of maximizing the Nash social welfare when allocating a set G of

indivisible goods to a set N of agents. We study instances, in which all agents have 2-value
additive valuations: The value of a good g ∈ G for an agent i ∈ N is either 1 or s, where s is an

odd multiple of 1/2 larger than one. We show that the problem is solvable in polynomial time.

In [ACH+22] it was shown that this problem is solvable in polynomial time if s is integral and

is NP-hard whenever s = p/q, p ∈N and q∈N are co-prime and p> q ≥ 3. For the latter situation,

an approximation algorithm was also given. It obtains an approximation ratio of at most 1.0345.

Moreover, the problem is APX-hard, with a lower bound of 1.000015 achieved at p/q = 5/4. The
case q = 2 and odd p was left open.

In the case of integral s, the problem is separable in the sense that the optimal allocation

of the heavy goods (= value s for some agent) is independent of the number of light goods (=

value 1 for all agents). This leads to an algorithm that first computes an optimal allocation of

the heavy goods and then adds the light goods greedily. This separation no longer holds for

s = 3/2; a simple example is given in the introduction. Thus an algorithm has to consider heavy

and light goods together. This complicates matters considerably. Our algorithm is based on

a collection of improvement rules that transfers any allocation into an optimal allocation and

exploits a connection to matchings with parity constraints.

1 Introduction

The current paper extends [ACH+22]. It is therefore appropriate to quote parts of the introduction.

“Fair division is an important area at the intersection of economics and computer science. While fair

division with divisible goods is relatively well-understood in many contexts, the case of indivisible
goods is significantly more challenging. Recent work in fair division has started to examine exten-

sions of standard fairness concepts such as envy-freeness to notions such as EF1 (envy-free up to one

good) [LMMS04] or EFX (envy-free up to any good) [CKM+16], most prominently in the case of

non-negative, additive valuations of the agents. In this additive domain, notions of envy-freeness are
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closely related to the Nash social welfare (NSW), which is defined by the geometric mean of the valu-

ations. An allocation maximizing the Nash social welfare is Pareto-optimal, satisfies EF1 [CKM+16]

and in some cases even EFX [ABF+20]. An important question is, thus, if we can efficiently compute

or approximate an allocation that maximizes NSW. This is the question we study in this paper.

More formally, we consider an allocation problem with a set N of n agents and a set G of m
indivisible goods. Each agent i ∈ N has a valuation function vi : 2G →Q≥0. We assume all functions

to be non-negative, non-decreasing, and normalized to vi( /0) = 0. For convenience, we assume every

vi maps into the rational numbers, since for computation these functions are part of the input. The

goal is to find an allocation of the goods A = (A1, . . . ,An) to maximize the Nash social welfare, given

by the geometric mean of the valuations

NSW(A) =

(

n

∏
i=1

vi(Ai)

)1/n

.

Clearly, an allocation that maximizes the NSW is Pareto-optimal. By maximizing the NSW, we

strike a balance between maximizing the sum-social welfare ∑i vi(Ai) and the egalitarian social wel-

fare mini vi(Ai). Notably, optimality and approximation ratio for NSW are invariant to scaling each

valuation vi(Ai) by an agent-specific parameter ci > 0. This is yet another property that makes NSW

an attractive objective function for allocation problems. It allows a further normalization – we can

assume every vi : 2G → N0 maps into the natural numbers.

Maybe surprisingly, finding desirable approximation algorithms for maximizing the NSW has

recently become an active field of research. For instances with additive valuations, where vi(A) =
∑g∈A vig for every i ∈ N, in a series of papers [CDG+17, CG18, AGSS17, BKV18a] several al-

gorithms with small constant approximation factors were obtained. The currently best factor is

e1/e ≈ 1.445 [BKV18a]. The algorithm uses prices and techniques inspired by competitive equilibria,

along with suitable rounding of valuations to guarantee polynomial running time.

Even for identical additive valuations, the problem is NP-hard, and a greedy algorithm with factor

of 1.061 [BKV18b] as well as a PTAS [NR14] were obtained. In terms of inapproximability, the best

known lower bound for additive valuations is
√

8/7 ≈ 1.069 [GHM18]. Notably, this lower bound

applies even in the case when the additive valuation is composed of only three values with one of them

being 0 (i.e., vig ∈ {0, p,q} for all i ∈ N, g ∈ G, where p,q ∈ N). For the case of two values with one

0 and one positive value (i.e., vig ∈ {0,q} for all i ∈ N, g ∈ G), an allocation maximizing the NSW

can be computed in polynomial time [BKV18b].” (end of quote).

The paper [ACH+22] considers computing allocations with (near-)optimal NSW when every

agent has a 2-value valuation with both values non-zero. In such an instance, vig ∈ {1,s} for ev-

ery i ∈ N and g ∈ G, where s = p/q, p,q ∈ N, and p > q. In 2-value instances any optimal allocation

satisfies EFX, which is not true when agents have 3 or more values [ABF+20]. [ACH+22] gives a

polynomial algorithm for the case of integral s; for general s, the algorithm guarantees an approxima-

tion factor of at most 1.035. This is drastically lower than the constant factors obtained for general

additive valuations [CDG+17, CG18, BKV18a]. An approximation algorithm for 2-value instances

with approximation factor 1.061 has been obtained in [GM21].

Complementing these positive results, the paper also establishes new hardness results for 2-value

instances. Maximizing the NSW is NP-hard whenever p and q are co-prime and q ≥ 3. Maximizing

the NSW in 2-value instances can even be APX-hard. A lower bound on the approximation factor of

1.000015 is shown for s = 5/4. The case q = 2 and odd p was left open.
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Contribution and Results. We give a polynomial time algorithm for the case s = p/2 and p any odd
integer greater than 2. Call a good heavy if it has value s for some agent and light if it has value 1

for all agents. A heavy good is allocated as a heavy good if it is allocated to an agent that considers it

heavy. As in [ACH+22], we first compute an optimal allocation under the additional assumption that

all heavy goods must be allocated as heavy goods. In a second step, we then relax this assumption.

It is not always best to allocate heavy goods as heavy as the following example shows: Assume that

there are two agents and two goods. One agent values all goods as heavy and the other agent values

no good as heavy. The only allocation with non-zero NSW allocates one good to each agent; then a

heavy good is allocated as a light good.

Assume now that all heavy goods have to be allocated as heavy goods. In the case of integral s,

the problem is separable in the sense that the optimal allocation of the heavy goods is independent of

the number of light goods. So one first computes the optimal allocation of the heavy goods and then

allocates the light goods greedily. This separation no longer holds. Consider two agents with identical

valuations. There are two heavy goods and either two or three light goods. If there are two light

goods, each agent should receive a heavy and a light good. Then both have value 5/2. If there are three

light goods, one agent receives two heavy goods and the other agent receives three light goods. Then

both have value 3. As the problem is no longer separable, an algorithm has to consider heavy and

light goods together. This complicates matters considerably. Our algorithm is based on a collection of

improvement rules that transfers any allocation into an optimal allocation and exploits a connection

to matchings with parity constraints.

This paper is structured as follows. In Section 2, we give an informal introduction to the im-

provement rules. The bulk of the paper is Section 3, where we characterize optimal allocations under

the assumption that all heavy goods are allocated as heavy goods. We first introduce a set of basic

improvement rules (Section 3.1) and show that all not-small-valued bundles are identified after the

application of these rules (Section 3.2). More precisely, let A be the allocation maintained by the al-

gorithm and let x be the minimal value of a bundle in A after the application of the basic improvement

rules. Then all bundles of value larger than x+1 also exist in an optimal allocation. We remove these

bundles and are left with an allocation in which all bundles have values in {x,x+ 1/2,x+1}. We deal

with such allocations in Section 3.3. We introduce an additional improvement rule in Section 3.3.2

and show that whenever A is suboptimal, one of the improvement rules is applicable. In Section 4,

we give the algorithm. Here, we make the connection to matchings with parity constraints. Finally,

Section 5 removes the assumption that all heavy goods must be allocated as heavy goods. Section H

discusses certificates of optimality; it is preliminary.

1.1 Related Work

We again quote [ACH+22]. “In addition to additive valuations, the design of approximation algo-

rithms for maximizing NSW with submodular valuations has been subject to significant progress very

recently. While small constant approximation factors have been obtained for special cases [GHM18,

AMGV18] (such as a factor e1/e for capped additive-separable concave [CCG+18] valuations), (rather

high) constants for the approximation of NSW with Rado valuations [GHV21] and also general non-

negative, non-decreasing submodular valuations [LV21] have been obtained.

Interestingly, for dichotomous submodular valuations where the marginal valuation of every agent

for every good g has only one possible non-negative value (i.e., vi(S∪{g})−v(S) ∈ {0, p} for p ∈N),

an allocation maximizing the NSW can be computed in polynomial time [BEF21]. In particular, in

this case one can find in polynomial time an allocation that is Lorenz dominating, and simultaneously

minimizes the lexicographic vector of valuations, and maximizes both sum social welfare and Nash
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social welfare. Moreover, this allocation also has favorable incentive properties in terms of misreport-

ing of agents.

Approximation algorithms for maximizing NSW have also been obtained for subadditive valua-

tions [BBKS20, CGM21] and asymmetric agents [GKK20], albeit thus far not with constant approxi-

mation ratios.”

2 Improvement Rules

As already mentioned in the introduction, the goal is to identify improvement rules that transform

any suboptimal allocation into an optimal allocation. So if A is a suboptimal allocation, one of the

rules applies and improves the NSW of A. In this section, we give an informal introduction to our

collection of improvement rules. For this discussion we assume that all heavy goods are allocated as

heavy goods, and that s = 3/2.

Example 1 Consider a light good. A light good can be given to any agent. So if one has two bundles
of values x and y with x < y, and an unallocated light good, one should allocate the good to the lighter
bundle, since (x+ 1)/x > (y+ 1)/y and hence allocating the light good to the lighter bundle leads
to a greater increase in NSW. This rule is called greedy allocation of light goods. Another way of
stating this rule is: If x is the minimum value of any bundle and there is a bundle of value larger than
x+1 containing a light good, move the light good to the bundle of value x.

Example 2 We turn to the allocation of heavy goods and the interaction between heavy and light
goods. Assume we have two agents i and j owning bundles of value x and x+ 1, respectively, and i
likes a heavy good in j’s bundle and owns a light good. Then moving a heavy good from j to i and a
light good from i to j would give both bundles value x+1/2 and improve NSW. The connection between
i and j does not have to be direct, but can go through an alternating path as the following example
shows:

i Ā— g A— u Ā— g′ A— j.

In this example, i owns a light good and likes a heavy good g which u owns, who in turn likes a heavy
good g′ owned by j. In this diagram, an edge between an agent and a good indicates that the good is
heavy for the agent. The superscript A indicates that the good is allocated to the agent, the superscript
Ā indicates that the good is not allocated to the agent. We move g′ from j to u and g from u to i and
move a light good from i to j. The change in the allocation of heavy goods is akin to augmenting the
path from i to j to AH; here AH denotes the allocation of the heavy goods in A. Of course, the path
from i to j might have more than one intermediate agent.

Augmenting alternating paths is powerful, but not enough. We give four examples to illustrate

this point. The first three examples reillustrate that it is advantageous to have bundles of value x+ 1

containing a light good. In Example 5, we even make a preparatory move to create such a bundle.

Example 3 Assume agents i and j own bundles of value x and agent h owns a bundle of value x+1

containing a light good. i owns a light good and likes a heavy good in j’s bundle. i takes the heavy
good from j in return for a light good and j gets another light good from h. There are three agents
involved in the update. Before the update, i and j own bundles of value x and h owns a bundle of
value x+1. After the update, we have two bundles of value x+ 1/2 and one bundle of value x. There
is another way to interpret this change. We first make a move that does not change NSW: we move a
light good from h to j turning h into a bundle of value x and j into a bundle of value x+1. In a second
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step, we have the exchange between i and j; i receives a heavy good from j in return for a light good.
We will refer to h as a facilitator, a bundle of value x+1 containing a light good.

Example 4 We can also start with two bundles of value x+ 1 and one bundle of value x. One of the
bundles of value x+1 contains two light goods and its owner likes a heavy good in the other bundle
of value x+1. He takes the heavy good in return for a light good and gives the other light good to a
bundle of value x. As an effect both bundles of value x+ 1 turn into bundles of value x+ 1/2 and the
bundle of value x becomes a bundle of value x+1.

Example 5 We have four bundles with values x, x, x+ 1/2 and x+1, respectively. One of the bundles
of value x likes a heavy good in the other bundle of value x and owns a light good. We would be in the
situation of the third example, if the bundle of value x+1 would contain a light good. Assume it does
not, but the bundle of value x+ 1/2 likes a heavy good in the bundle of value x+ 1 and contains two
light goods. It pulls a heavy good from the bundle of value x+1 in return for a light good. So the two
bundles swap values and the utility profile does not change. However, we now have a bundle of value
x+1 containing a light good. Such bundles facilitate transactions.

Example 6 The final example shows that we need structures that go beyond augmenting paths. Con-
sider the following structure

i A— g1
Ā— h Ā— g2

A— j

and assume that h owns three light goods and i and j own bundles of value x and x+ 1 respectively.
Note that h is interested in g1 and g2. h gives two light goods to i and one light good to j and we
change the heavy part of the allocation to

i Ā— g1
A— h A— g2

Ā— j

Note that the value of h’s bundle does not change; h gives away three light goods and obtains two
heavy goods; i and j now own bundles of value x+ 1/2.

3 All Heavy Goods are Allocated as Heavy Goods

Throughout this section we assume that all heavy goods are allocated as heavy. We drop this assump-

tion in Section 5. When we refer to the value of a bundle we mean the value to its owner. A is our

current allocation which the algorithm tries to change into an optimal allocation by the application

of improvement rules, O is either any optimal allocation or an optimal allocation closest to A in a

sense to be made precise below. We use x to denote the minimum value of any bundle in A and Ad

to denote the set of agents that own a bundle of value x+ d. We will use this notation only with

d ∈ {−1/2,0, 1/2,1, 3/2}. We will use the short-hand “a bundle in Ad” for a bundle owned by an agent

in Ad .

Ai is the bundle owned by agent i. We use h, i, j and sometimes u and v to denote agents and g
and g′ to denote goods. vi is the valuation function of agent i and wi :=vi(Ai) is the value of i’s bundle

for i in A. We say that a bundle is heavy-only if it does not contain a light good. A bundle of value

x+1 containing a light good is called a facilitator.

Our goal is to transform A into an optimal allocation by the application of improvement rules.

Each improvement lexicographically increases the potential function:

Φ = (NSW(A), number of agents in A1 owning a light good).
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Let GH be the bipartite graph with agents on one side and heavy goods on the other side. There is

an edge connecting an agent i and a good g, if g is heavy for i. We use AH and OH to denote the heavy

part of the allocations A and O. They are subsets of edges of GH . The allocation O is closest to A if

AH ⊕OH has minimum cardinality among all optimal allocations.

The improvement rules are based on alternating paths. We will consider two kinds of alternating

paths in GH : A-Ā-alternating paths and A-O-alternating paths. In an A-B-alternating path, the edges in

AH \BH and BH \AH alternate. We will use A-Ā-alternating paths in the algorithm and A-O-alternating

paths for showing that some improvement rule applies to any suboptimal A.

Let i and j be agents. An A-B-alternating path from i to j is an A-B-alternating path with endpoints

i and j in which i is incident to an edge in A (and hence j is incident to an edge in B). So a B-A-

alternating path from i to j uses a B-edge incident to i.

3.1 Basic Improvement Rules

Lemma 1 Let A be any allocation and let x be the minimum value of any bundle in A. Let i be any
agent. For parts b) to g), let j be any other agent, and let p be an A-Ā-alternating path from i to j.

a) If wi > x+ 1 and Ai contains a light good, moving the light good to a bundle of value x improves
the NSW of A.

b) If wi ≥ w j + ⌈s⌉, augmenting p to A improves the NSW of A.

c) If wi ≥ w j +1 and A j contains more than s− (wi−w j) light goods, augmenting p to A and moving
max(0,

⌈

s− (wi −w j)+ 1/2

⌉

) light goods from j to i improves the NSW of A.

d) If wi ∈ {x+1,x+ 3/2}, w j = x+1, and A j contains ⌈s⌉ light goods, augmenting p to A and moving
⌊s⌋ light goods from A j to Ai and another light good from A j to any bundle of value x improves the
NSW of A.

e) If j owns two heavy goods less than i and wi ≥ x+ 3/2, one of the cases b), c), or d) applies and A
can be improved.

f) If wi = x, w j = x+ 1, and A j contains ⌈s⌉ light goods, augmenting p to A and moving ⌈s⌉ light
goods from A j to Ai improves the NSW of A.

g) If wi = x+1, w j = x+ 1/2, Ai is heavy-only, and A j contains at least ⌈s⌉ light goods, augmenting
p to A and moving ⌊s⌋ light goods from A j to Ai leaves the NSW of A unchanged and increases the
number of bundles of value x+1 containing a light good.

For the proof see Appendix B.

3.2 Range Reduction

We need a finer distinction of the rules in Lemma 1. Let x = xA be the minimum value of a bundle in
A and let k0 be minimal such that k0s > x+1. We call the rules a) to d) when applied with an agent i
of value larger than x+1 reduction rules. An allocation A is reduced if no reduction rule applies to it.

We will show that for a reduced allocation A and an optimal allocation O closest to A, the bundles of

value ks in A and O are identical for all k ≥ k0. This will allow us to restrict attention to the bundles

of value x, x+ 1/2, and x+1 in A and to the bundles of value x, x± 1/2, and x+1 in O.
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Observation 1 If O is an optimal allocation closest to A, AH ⊕OH is acyclic.

We decompose D :=AH ⊕ OH into alternating paths. Let hdegA
i (hdegO

i ) be the number of A-

edges (O-edges) incident to i in AH (OH). For i, we form min(hdegA
i ,hdegO

i )−|AH
i ∩OH

i | pairs of A
and O-edges incident to i. Then max(hdegA

i ,hdegO
i )−min(hdegA

i ,hdegO
i ) alternating paths start in i.

Depending on which degree is larger, the paths start with an A- or an O-edge. The decomposition of

AH ⊕OH into alternating paths is not unique.

Lemma 2 Let A be reduced and let O be an optimal allocation closest to A. Let k0 be minimal with
k0s> x+1. For k ≥ k0 let Rk be the set of agents that own a bundle of value ks in A and let Sk =∪ j≥kR j

be the agents that own a bundle of value at least ks in A. Agents in Rk own k heavy goods and no light
good in A. O agrees with A on Sk0

, i.e., Ai = Oi for all i ∈ Sk0
. Moreover, in A and O each agent in

[n]\Sk0
owns at most k0 −1 heavy goods.

Proof: We use downward induction on k to show that O and A agree on Sk. Assume that they agree

on Sk+1; then agents in Sk+1 have degree zero in AH ⊕OH . Since Sk is empty for large enough k, the

induction hypothesis holds for large enough k. Throughout this proof we use y as an abbreviation for

ks, i.e., y := ks ≥ x+ 3/2 and let

R′
k :=Rk ∪{ j; j 6∈ Sk+1 and there is an A-O-alternating path from i ∈ Rk to j} .

The proofs of the following claims can be found in Appendix C.

Claim 1 In A, the bundles in R′
k \Rk contain exactly k−1 heavy goods.

Claim 2 In O, each bundle in [n]\Sk+1 contains at most k heavy goods.

Claim 3 All heavy goods assigned to agents in R′
k by A are also assigned to them in O.

Claim 4 O assigns k heavy goods to at least |Rk| agents in R′
k.

Claim 5 xO +1 ≤ ks.

Claim 6 Agents in Rk own k heavy goods in O.

Claim 7 O agrees with A on Rk, i.e., Oi = Ai for all i ∈ Rk. Bundles owned by agents in [n] \Sk do
not contain k heavy goods in either A or O.

We have now shown that A and O agree on Sk0
. Also agents in [n]\Sk0

own at most k0 −1 heavy

goods in A by definition of Sk0
and in O by Claim 7. Finally, xO +1 ≤ k0s by Claim 5.

At this point, we know that Ai = Oi for all i ∈ Sk0
, where k0 is minimal with k0s > x+1 and Sk0

is

the set of agents that own bundles of value at least k0s in A. We may therefore remove the agents in

Sk0
and their bundles from further consideration. We call A and O shrunken after this reduction. The

remaining bundles have value x, x+ 1/2, and x+1 in A and value xO, xO + 1/2, . . . in O. Moreover, the

remaining bundles contain at most k0 − 1 heavy goods in both A and O and xO ≤ x+ 1/2. The latter

holds since the average value of a bundle in Alow = A0 ∪A1/2 ∪A1 is strictly less than x+1 as there is

at least one bundle of value x and the average for O is the same.

Theorem 1 Let A be reduced and let O be an optimal allocation closest to A. Then O consists of A
restricted to the agents in Sk0

and an optimal allocation for the bundles in Alow = A0 ∪A1/2 ∪A1.

Proof: By the previous lemma, Ai = Oi for all i ∈ Sk0
. The remaining bundles in A belong to Alow.

O allocates the goods in these bundles optimally to the agents in Alow.
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3.3 Only Bundles of Value x, x+ 1/2, and x+1 in A

We derive further properties of optimal allocations for Alow and then introduce an additional reduction

rule.

3.3.1 Further Properties of Optimal Allocations

The proofs of all Lemmas in this section can be found in Appendix D.

Lemma 3 Let A be reduced and shrunken. If there is an optimal allocation having at least as many
bundles of value x+ 1 as A does, A is optimal. In particular, if A has no bundles of value x+ 1, A is
optimal.

Lemma 4 Let A be reduced and shrunken and let O be an optimal allocation closest to A. Then
xO ≥ x− 1/2.

Lemma 5 Let A be reduced and shrunken and let O be an optimal allocation closest to A. There is
no bundle of value more than x+1 in O.

In the technical introduction (Section 2) we pointed to the importance of bundles of value x+ 1

containing a light good. The following Lemma formalizes this observation.

Lemma 6 Let A be reduced and shrunken and assume further that Lemma 1g) is not applicable. Let
O be an optimal allocation closest to A, and consider an agent i ∈ A1. If Ai is heavy-only, Oi is
heavy-only and has value x+1. If all bundles in A1 are heavy-only, A is optimal.

In the rest of this section, we briefly summarize what we have obtained so far. Let A be reduced

and shrunken and let O be an optimal allocation closest to A. Assume further that Lemma 1g) is not

applicable to A. Let x be the minimum value of any bundle in A and let k0 be minimal such that

k0s > x+1.

• The bundles in A have value x, x+ 1/2, or x+1, and there is a bundle of value x.

• x− 1/2 ≤ xO ≤ x+ 1/2.

• In A and O bundles contain at most k0−1 heavy goods. Any bundle of value more than (k0−1)s
must contain a light good.

• If Ai has value x+ 1 and is heavy-only, Oi has value x+ 1 and is heavy-only. If all bundles of

value x+ 1 in A are heavy-only, A is optimal. Conversely, if A is suboptimal, there is a bundle

of value x+1 in A containing a light good.

• Bundes in O have value at least xO and at most x+ 1. Since xO ≥ x− 1/2, bundles in O have

values in {x− 1/2,x,x+ 1/2,x+1}.

In the next section, we will introduce improving walks as an additional improvement rule and

then show that an allocation to which no improvement is applicable is optimal. For the optimality

proof, we consider a suboptimal allocation and an optimal allocation closest to it and then exhibit an

applicable improvement rule. In the light of Lemma 6, we may assume that A contains a bundle of

value x+1 containing a light good.
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3.3.2 Improving Walks

As already mentioned in the introductory section on improvement rules (Section 2), we need more

general improving structures than alternating paths. We need improving walks that we introduce

in this section. Improving walks are also used in the theory of parity matchings, e.g., generalized

matchings in which degrees are constrained to a certain parity; see, for example, the chapter on parity

factors in [AK11].

Our goal is to show that, whenever A is suboptimal, an improving walk exists. Improving walks

use only edges in AH ⊕OH . So assume that A is suboptimal. We will first show that there is an agent

i ∈ (A0 ∪A1)∩O1/2 and that for such an agent |AH
i | 6= |OH

i |. The type of an edge is either A or O and

we use T for the generic type. If T = A, T̄ denotes O. If T = O, T̄ denotes A. Missing proofs are

contained in Appendix E.

Lemma 7 1. The parity of the number of heavy goods is the same in bundles of value x and x+1

and in bundles of value x− 1/2 and x+ 1/2 and the former parity is different from the latter.

2. The parity of the number of bundles of value x or x+1 is the same in A and O and equally for
the number of bundles of value x− 1/2 or x+ 1/2. More precisely, for d ∈ {−1/2,0, 1/2,1} let ad

and od be the number of bundles of value x+ d in A and O respectively, and let a1 = o1 + z.
Then (the first equation is trivial; it is there for completeness)

a−1/2 = 0 = o−1/2 −o−1/2 a0 = o0 +2o−1/2 + z

a1/2 = o1/2 −2z−o−1/2 a0 +a1 = o0 +o1 +2(o−1/2 + z).

3. Let A be a suboptimal allocation and let O be an optimal allocation. Then z > o−1/2 ≥ 0,
(A0 ∪A1)∩O1/2 is non-empty. In particular, O contains a bundle of value x+ 1/2.

Remark: It is not true that A0 ∩O±1/2 is guaranteed to be non-empty. Same for A1 ∩O±1/2.

We will next prove a number of Lemmas that guarantee ownership of light goods for certain

agents. The heavy parity of a bundle is the parity of the number of heavy goods in the bundle. A node

v is unbalanced if |AH
v | 6= |OH

v |. A node v is A-heavy if |AH
v |> |OH

v | and O-heavy if |AH
v |< |OH

v |.

Lemma 8 Let v be unbalanced and let Av and Ov have the same heavy parity.

• If v is A-heavy, Ov contains at least 2s light goods (except if v ∈ O0∩A1 or v ∈ A1/2 ∩O−1/2, then
2s−1 light goods).

• If v is O-heavy, Av contains at least 2s light goods (2s−1 if v ∈ O1 ∩A0).

Lemma 9 Let v ∈ A0 ∪A1 be unbalanced.

• If v is A-heavy, Ov contains at least ⌊s⌋ light goods if v ∈ O1/2 and at least 2s−1 light goods if
v ∈ O0 ∪O1. If v ∈ O−1/2, Ov contains at least ⌊s⌋−1 light goods.

• If v is O-heavy, Av contains at least ⌊s⌋ light goods. If v ∈ O±1/2, v contains at least ⌊s⌋ light
goods if v ∈ A0 and at least ⌈s⌉ light goods if v ∈ A1.

Lemma 10 Let v ∈ (O0 ∪O1)∩A1/2 be unbalanced.
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• If v is A-heavy, Ov contains at least ⌊s⌋ light goods if v ∈ O0 and at least ⌈s⌉ light goods if
v ∈ O1.

• If v is O-heavy, Av contains at least ⌊s⌋ light goods. If v ∈ O0, Av contains at least ⌈s⌉ light
goods.

An A-O-walk from i to j is a sequence of i = h0, e0, h1, . . . eℓ−1, hℓ−1, eℓ, hℓ = j of agents and

edges such that:

1. i and j are agents, i is unbalanced and lies in (A0 ∪A1)∩O1/2, j is unbalanced and j ∈ A0∪A1∪
O0 ∪O1 ( j 6∈ A1/2 ∩O±1/2).

2. All edges belong to AH ⊕OH .

3. For 1 ≤ t < ℓ, if ht is a good, et−1 and et have different types (one in AH , one in OH).

4. For 1 ≤ t < ℓ, ht is a through-node if the edges et and et+1 have different types and is a T -hinge

if both edges have type T . Hinges lie in A1/2 ∩O±1/2 and are unbalanced.

i and j are the endpoints of the walk and h1 to hℓ−1 are intermediate nodes. The type of i is the type

of e0 and the type of j is the type of eℓ. Goods have degree zero or two in AH ⊕OH . We will augment

A-O-walks to either A or O. Augmentation to A will improve A and augmentation to O will either

improve O or move O closer to A. We allow i = j; we will augment such A-O-walks to O. There is no

requirement on ownership of light goods by hinges and endpoints. We will later show that A-hinges

own 2s light goods in O and O-hinges own 2s light goods in A and that endpoints own an appropriate

number of light goods.

Lemma 11 Let W be an A-O-walk. Then |W ∩A|= |W ∩O|.

Lemma 12 If A is sub-optimal, an A-O-walk exists. If i = j and the walk starts and ends with an edge
of the same type, |AH

i | and |OH
i | differ by at least two.

Proof: We construct the walk as follows. The walk uses only edges in D = AH ⊕OH and visits each

good at most once. We start with a node i ∈ (A0 ∪A1)∩O1/2; by Lemma 7 such a node exists. For

such a node the parities of |AH
i | and |OH

i | differ. If |AH
i | > |OH

i |, we start tracing a walk starting at i
with an A-edge, otherwise, we start with an O-edge.

Suppose we reach a node h on a T -edge e where T ∈ {A,O}. If there is an unused edge, i.e., not

part of the walk, of type T̄ incident to h, we continue on this edge. This will always be the case for

goods. We come back to this claim below.

So assume that there is no unused edge of type T̄ incident to h. Then h is an unbalanced T -heavy

agent. This can be seen as follows. Any visit to a node uses edges of different types for entering and

leaving the node as long as an unused edge of a different type is available for leaving the node. Any

later visit either uses the same type for entering and leaving or uses up the last unused edge incident

to the node.

If h = i, we stop. Note that if the first and the last edge of the walk have the same type, say T , the

number of T -edges incident to i is at least two more than the number of T̄ -edges.

So assume h 6= i. If h ∈ A0 ∪A1 ∪O0 ∪O1, we stop; j = h. Otherwise, h ∈ A1/2 ∩O±1/2 and hence

the number of heavy edges of both types incident to h has the same parity. Thus there is an unused

T -edge incident to h. We pick an unused T -edge incident to h and continue on it.

10



Since the walk always proceeds on an unused edge and the first visit to a good uses up the A- and

the O-edge incident to it, the walk visits each good at most once.

A walk is not necessarily a simple path. A walk is semi-simple if for different occurrences of

the same agent, the incoming edges have different types. In particular, any agent can appear at most

twice. Goods appear at most once on a walk.

Lemma 13 If there is an A-O-walk, there is a semi-simple walk with the same endpoints.

Hinge nodes lie in A1/2 ∩O±1/2. If none of the basic improvement rules applies to A, hinge nodes

actually lie in O1/2 and T -hinges own 2s light goods in the allocation T̄ for T ∈ {A,O} as we show

next.

Lemma 14 If A is reduced, all hinge nodes belong to O1/2, A-hinges own at least 2s light goods in O
and O-hinges own at least 2s light goods in A.

Proof: By definition, the hinge nodes are unbalanced and lie in A1/2 ∩O±1/2. Consider two consecu-

tive hinges h and h′ and the alternating path p connecting them. Assume that their values in O differ

by one, i.e, one has value x+ 1/2 and the other value x− 1/2. The A-endpoint of the path owns at

least 2s−1 light goods in O according to Lemma 8. When we augment the path to O, the A-endpoint

receives an additional heavy good and the Ā-endpoint loses a heavy good. Depending on whether the

A-endpoint is the heavier endpoint or not, it moves ⌈s⌉ or ⌊s⌋ light goods to the other endpoint. This

improves the NSW of O, a contradiction. We have now shown that all hinge nodes have the same

value in O.

It remains to show that the first hinge of the walk lies in O1/2; call it h. Assume h ∈ O−1/2. We

distinguish cases according to whether i is A-heavy or not.

If i is O-heavy, h is A-heavy and hence owns at least 2s− 1 light goods in O (Lemma 8). We

augment p to O and move ⌊s⌋ light goods from h to i. After the change i and h1 belong to O0 and the

NSW of O has improved, a contradiction.

If i is A-heavy, i owns at least 2s−1 light goods in O (Lemma 8). We augment p to O and move

⌈s⌉ light goods from i to h. After the change i and h belong to O0 and the NSW of O has improved, a

contradiction.

We now know that all hinges are unbalanced and belong to A1/2 ∩O1/2. Thus Lemma 8 applies and

A-hinges own at least 2s light goods in O and O-hinges own at least 2s light goods in A.

At this point, we have established the existence of an A-O-walk with endpoint i ∈ (A0∪A1)∩O1/2.

If A is reduced, all hinge nodes belong to A1/2∩O1/2 and T -hinges own 2s light goods in the allocation

T̄ . We will next show that we can use the A-O walk to improve A. We distinguish cases according to

whether i is O-heavy or A-heavy.

3.3.3 i ∈ (A0 ∪A1)∩O1/2 and i is O-heavy

The value of Ai is x or x+1 and the value of Oi is x+ 1/2 and Ai contains fewer heavy goods than Oi.

Therefore Ai must contain at least ⌈s⌉ light goods if i ∈ A1 and at least ⌊s⌋ light goods if i ∈ A0. Let

W be an O-A-walk starting in i and let j be the endpoint of the walk. The types of the hinges alternate

along the path, the type of the first (last) hinge is opposite to the type of i ( j). Each A-hinge holds 2s
light goods in O and each O-hinge holds 2s light goods in A (Lemma 10). If the types of i and j differ,

the number of hinges is even, if the types are the same, the number of hinges is odd.
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We distinguish three cases: j ∈ A0 ∪A1 and i 6= j, j ∈ A0 ∪A1 and i = j, and j ∈ (O0 ∪O1)∩A1/2.

In the first case, we show how to improve A and in the other two cases we will derive a contradiction

to the assumption that O is closest to A.

Case j ∈ A0 ∪A1, and i 6= j: We augment the walk to A. The heavy parity of i and j changes; i
gains a heavy edge and j gains or loses. The heavy parity of all intermediate nodes does not change.

Each O-hinge releases 2s light goods and each A-hinge requires 2s light goods. If j is an O-endpoint,

j gains a heavy edge and the number of A-hinges exceeds the number of O-hinges by one.

Assume first that i and j are O-endpoints. Each of them gives up ⌈s⌉ light goods if in A1 and ⌊s⌋
light goods if in A0; i and j own that many light goods (Lemma 9). So we have between 2s− 1 and

2s+ 1 light goods; 2s of them are needed for the extra A-hinge. If we have 2s+ 1, one goes to an

arbitrary bundle in A0 and if we have 2s− 1, we take a light from an arbitrary bundle in A1. Recall

that if A is suboptimal, there is a bundle in A1 containing a light good.

If j is an A-endpoint, i gains a heavy edge and j loses a heavy edge, i has ⌊s⌋ or ⌈s⌉ light goods.

We move ⌊s⌋ light goods from i to j. If j ∈ A0, we put an additional light good on j which we either

take from i or from a bundle in A1 containing a light good. If j ∈ A1 and i had ⌈s⌉ light goods, we put

the extra light good on any bundle in A0.

In either case, we increased the number of agents in A1/2 by two and hence improved A.

Case j ∈ A0∪A1, and i= j: We augment the walk to O. For the intermediate nodes the heavy parity

does not change. For i the heavy parity also does not change; it either gains and loses a heavy good or

it loses two heavy goods. It remains to show that there are sufficiently many light goods to keep the

values of all bundles in O unchanged.

If i looses and gains a heavy good, the number of A- and O-hinges is the same and we use the

light goods released by the A-hinges for the O-hinges. If i loses two heavy goods, there is one more

A-hinge and we use the light goods from the extra A-hinge for i. The change brings O closer to A, a

contradiction to the choice of O. Hence this case cannot arise.

Case j ∈ (O0 ∪O1)∩A1/2: We augment the walk to O. The heavy parity of the intermediate nodes

does not change. The heavy parity of i and j changes. i loses a heavy good and j either gains or loses

a heavy good. It remains to show that there are sufficiently many light goods to keep the utility profile

of O unchanged.

The A- and O-hinges on the walk alternate and their numbers are either the same, if i and j have

different types, or there is an extra A-hinge if i and j are both O-endpoints. Each A-hinge releases 2s
light goods and each O-hinge requires 2s light goods.

If j is an O-endpoint, we use the 2s light goods provided by the extra A-hinge as follows: If j ∈O0,

we give ⌈s⌉ light goods to j and ⌊s⌋ light goods to i, moving j to O1/2 and i to O0 and if j ∈ O1, we

give ⌊s⌋ light goods to j and ⌈s⌉ light goods to i, moving j to O1/2 and i to O1.

If j is an A-endpoint, it gains a heavy good. By Lemma 10, j owns ⌊s⌋ light goods if j ∈ O0 and

owns ⌈s⌉ light goods if j ∈ O1. We move these goods to i. In either case, j moves to O1/2 and i moves

to O0 ∪O1.

In all cases, the utility profile of O does not change and O moves closer to A, a contradiction to

our choice of O. So this case cannot arise.

12



3.3.4 i ∈ (A0 ∪A1)∩O1/2 and i is A-heavy

The value of Oi is x+ 1/2, the value of Ai is x or x+ 1, and Ai contains at least one more heavy good

than Oi. We observe first that Oi contains at least ⌈s⌉ light goods. If i ∈ A0, the heavy value of Oi

is at most x− s and hence Oi contains at least ⌈s⌉ light goods. If the value of Ai is x+ 1, Ai cannot

be heavy-only since then Oi would also have value x+1 according to Lemma 6 and hence the heavy

value of Oi is at most x+ 1− 1− s. So Oi must contain at least ⌈s⌉ light goods. Let W be an A-O-

walk starting in i and let j be the other endpoint of the walk. The types of the hinges along the walk

alternate, O-hinges hold 2s light goods in A, and O-hinges hold 2s light goods in O. If the types of i
and j differ, there is an equal number of hinges of both types, if i and j are A-endpoints, there is an

extra O-hinge on the walk.

Similar to Section 3.3.3, we distinguish three cases: j ∈ A0 ∪A1 and i 6= j, j ∈ A0 ∪A1 and i = j,
and j ∈ (O0 ∪O1)∩A1/2. In the first case, we show how to improve A and in the other two cases we

will derive a contradiction to the assumption that O is closest to A. The arguments are similar to the

ones in Section 3.3.3 and hence moved to the Appendix F.

We have now established the existence of improving walks.

Theorem 2 If A is sub-optimal, an improving A-O-walk exists.

4 The Algorithm

Let A be reduced. Let x be the minimum value of any bundle and let k0 be minimal such that k0s >
x+ 1. Theorem 1 tells us that an optimal allocation consists of all bundles of value at least k0s in A
plus an optimal allocation of Alow = A0 ∪A1/2 ∪A1. An optimal allocation of Alow can be obtained by

repeated augmention of improving walks. The optimal allocation for Alow uses only bundles of value

x, x+ 1/2 and x+1.

4.1 Bundles of Value ks with k ≥ k0

Lemma 15 Let ks be the maximum value of any bundle in A and assume k ≥ k0. Let Tk be all bundles
of value ks and all bundles that can be reached from such a bundle with an A-Ā-alternating path. All
bundles in Tk own either k or k−1 heavy goods and all heavy goods owned by the agents in Tk must be
owned by them. Let nk be the number of heavy goods owned by the agents in Tk. Then nk − (k−1)|Tk|
of the agents in Tk own k heavy goods.

Proof: If a bundle containing k− 2 or less heavy goods can be reached from a bundle containing k
heavy goods, the allocation is not optimal (Lemma 1). So all agents in Tk own either k or k−1 heavy

goods.

Consider any agent h liking a heavy good g owned by an agent j ∈ Tk. There is an A-Ā-alternating

path from an agent i of value ks to j. We can extend this path by j A
— g Ā

— h. Thus h ∈ Tk and hence

any heavy good owned by an agent in Tk must be owned by an agent in Tk.

Let a be the number of agents in Tk that own k heavy goods. Then nk = ak+(|Tk| − a)(k− 1).
Thus a = nk −|Tk|(k−1).

We apply this argument repeatedly, i.e., we first identify Tk where ks is the maximum value of any

bundle. We remove Tk from the instance and then construct Tk−1, and so on. The last step, k = k0,

requires more care. The bundles in Tk0
containing k0 heavy goods also contain k0 heavy goods in an
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optimal allocation closest to A. We can thus safely remove these bundles. Altogether, we remove

all bundles that contain k0 or more heavy goods as they are guaranteed to also exist in some optimal

allocation and are left with bundles of values x, x+ 1/2 and x+ 1. We deal with them in the next

section.

4.2 Values x, x+ 1/2, x+1

We obtain an optimal allocation of Alow by repeated augmentation of improving walks. We identify

improving walks by exploiting a connection to matchings with parity constraints.

4.2.1 Matchings with Parity Constraints

Consider a generalized bipartite matching problem, where for each node v we have a constraint

concerning the degree of v in the matching M. We are interested in parity constraints of the form

degM(v) ∈ { pv, pv + 2, pv + 4, . . . , pv + 2rv }, where pv and rv are non-negative integers. Matchings

with parity constraints can be reduced to standard matching [Tut52, Tut54, L7́0, Cor88, Seb93]. For

completeness, we review the construction given in [Cor88].

Consider any node v and let t be the degree of v. We replace v by the following gadget. We have t
vertices v1 to vt . We refer to them as v-vertices. We also create t − pv vertices z1 to zt−pv and connect

each vi with each z j. Finally, we create the edges (z1,z2), . . . , (z2rv−1,z2rv). This ends the description

of the gadget for v. For every edge (v,w) of the original graph, we have the complete bipartite graph

between the vertices vi and w j of the auxiliary graph.

Lemma 16 ([Cor88]) The auxiliary graph has a perfect matching if and only if the orignal graph has
a matching satisfying the parity constraints.

The number of vertices of the auxiliary graph is O(m) and the number of edges of the auxilary

graph is O(∑v deg2
v +∑(v,w)∈E degv degw) = O(mn). Note that the number of edges is maximal if the

graph has about m/n vertices of degree n and n−m/n nodes of degree one.

4.2.2 The Reduction to Parity Matching

Let g be the maximum number of heavy goods that a bundle of value x+ 1/2 may contain. Then g is

the maximum integer such that x+ 1/2−gs is non-negative and integral. The following Lemma gives

the maximum number of heavy goods in bundles of value x and x+1.

Lemma 17 Let g be the maximum number of heavy goods that a bundle of value x+ 1/2 may contain.
The following table shows the maximum number of heavy goods in bundles of value x and x+ 1. We
use sN to denote {st; t ∈N}.

x x+ 1/2 x+1 Condition
g−1 g g+1 x+1 ∈ sN
g+1 g g+1 x+1 6∈ sN and x+1 > (g+1)s
g−1 g g−1 x+1 6∈ sN and x+1 < (g+1)s

Clearly, x+1 6∈ sN implies x+1 6= (g+1)s.
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Proof: For t ∈ {0, 1/2,1}, let mt be the maximum number of heavy goods in a bundle of value x+ t.
Then m0 ≤ m1 ≤ m0 + 2. The first inequality is obvious (add a light to the lighter bundle) and the

second inequality follows because we may remove two heavy goods from the heavy bundle and add

2s− 1 light goods. Also m0 and m1 have the same parity. Finally m1/2 − m0 = ±1 since the two

numbers have different parity and we can switch between the two values by exchanging a heavy good

by either ⌊s⌋ or ⌈s⌉ light goods.

Let x+ 1/2 = gs+ y with y ∈ N0. Then x+ 1 = gs+ y+ 1/2. If y+ 1/2 = s, m1 = g+ 1 and

m0 = g− 1. If y+ 1/2 > s then y− 1/2 ≥ s and hence m1 = m0 = g+ 1. If y+ 1/2 < s, then x+ 1 =
(g−1)s+(s+ y+ 1/2) and x−1 = (g−1)s+(s+ y− 1/2) and hence m1 = m0 = g−1.

We use N0, N1/2, and N1 to denote the allowed number of heavy goods in bundles of value A0, A1/2

and A1 respectively.

Lemma 18 Let A be an allocation with all values in {x,x+ 1/2,x+ 1}. A is sub-optimal if there is
an allocation BH of the heavy goods in A and a pair of agents i and j in A0 ∪A1 such that all agents
in A1/2 ∪{ i, j} own a number of heavy goods in N1/2 and for each of the agents in A0 ∪A1 \ { i, j},
the number of owned heavy goods is in the same N-set as in A. In addition, if i and j own bundles of
value x in A, there must be a bundle of value x+1 in A containing a light good.

Proof: If A is sub-optimal there is an improving walk W . Let i and j be the endpoints of the walk.

Augmenting the walk and moving the light goods around as described in Section 3.3.2

• adds i and j to A1/2,

• reduces the weight of a bundle of value x+1 containing a light good to x if Ai and A j have value

x and increases the weight of a bundle of value x to x+1 if Ai and A j have value x+1, and

• leaves the value of all other bundles unchanged.

Thus in the new allocation the number of heavy goods owned by i and j lies in N1/2. For all other

agents the number of owned heavy goods stays in the same N-set. This proves the only-if direction.

We turn to the if-direction. Assume that there is an allocation BH of the heavy goods in which for

two additional agents i and j the number of owned heavy goods lies in N1/2 and for all other agents

the number of owned heavy goods stays in the same N-set. In addition if i and j own bundles of value

x+ 1 in A, there is an agent k owning a bundle of value x+ 1 containing a light good. The goal is

to allocate the light goods such that BH becomes an allocation B, in which all bundles have value in

{x,x+ 1/2,x+1} and B1/2 = A1/2 ∪{ i, j}. Then the NSW of B is higher than the one of A.

We next define the values of the bundles in B. For i and j, we define vB
i = vB

j = x+ 1/2. If Ai and

A j have both value x, let k be an agent owning a bundle of value x+ 1 containing a light good and

define vB
k = x. If Ai and A j have both value x+ 1, let k be an agent owning a bundle of value x and

define vB
j = x+1. Then vA

i + vA
j + vA

k = vB
i + vB

j + vB
k in both cases. If one of Ai and A j has value x and

the other one has value x+1, leave k undefined. Then vA
i + vA

j = vB
i + vB

j . For all ℓ different from i, j,

and k, let vA
ℓ = vB

ℓ . Then the total value of the bundles in A and B is the same.

For an agent ℓ let hℓ and h′ℓ be the number of heavy goods allocated to ℓ in A and BH , respectively.

Then ∑ℓ hℓ = ∑ℓ h′ℓ. Moreover, hℓ ∈ N1/2 iff ℓ ∈ A1/2 and h′ℓ ∈ N1/2 iff ℓ ∈ A1/2 ∪{ i, j}. For all ℓ ∈
A0∪{k}\{ i, j}, h′ℓ ∈ N0 and for all ℓ ∈ A1 \{ i, j,k}, h′ℓ ∈ N1. Then vB

ℓ −h′ℓs is a non-negative integer

for all ℓ and

∑
ℓ

(vB
ℓ −h′ℓs) = ∑

ℓ

vB
ℓ +∑

ℓ

h′ℓs = ∑
ℓ

vA
ℓ +∑

ℓ

hℓ = ∑
ℓ

(vA
ℓ −hℓs).

15



We conclude that the allocation B exists.

Example 7 Let s = 3/2 and assume we have two agents owning bundles of value 3 and 4 respectively.
We have either zero or two or four heavy goods and accordingly seven, four or one light good. Both
agents like all heavy goods. If there are two heavy goods the optimal allocation has two bundles of
value 7/2. If we have zero or four heavy goods, the optimal allocation has bundles of value 3 and 4. We
have N1/2 = {1} and there is no way to assign exactly one heavy good to each agent, if the number
of heavy goods is zero or four. In the case of four heavy goods, 1 and 3 is possible. Both numbers are
odd, but 3 is too large.

Example 8 Let s = 3/2 and assume we have two agents owning bundles of value 2 and 3 respectively.
The bundle of value 3 consists of two heavy goods and both agents like all heavy goods. We have
N1/2 = 1. Since the two agents have values x and x+1, there is no need for an agent k. In the optimal
allocation both bundles contain a heavy and a light good.

In order to check for the existence of the allocation BH , we set up the following parity matching

problem for every pair i and j of agents.

• For goods the degree in the matching must be equal to 1.

• For all agents in A1/2 ∪{ i, j}, the degree must be in N1/2.

• If Ai and A j have value x, let Ak be any bundle of value x+1 containing a heavy good. If Ai and

A j have value x+1, let Ak be a bundle of value x. The degree of k must be in N0.

• For an a ∈ A0 \{ i, j,k}, the degree must be in N0, and for an a ∈ A1 \{ i, j,k}, the degree must

be in N1.

If BH exists for some pair i and j, we improve the allocation. If BH does not not exist for all pairs i
and j, A is optimal.

Each improvement increases the size of A1/2 by two and hence there can be at most n/2 improve-

ments. In order to check for an improvement, we need to solve n2 perfect matching problems in an

auxiliary graph with m vertices and mn edges. Hence the running time is polynomial.

5 The General Case: Heavy Goods can be Allocated as Light

We follow the approach taken in the integral case [ACH+22]. We determine allocations Ak for k =
0,1,2, . . .; Ak is a best (= largest NSW) allocation among all allocations for instances obtained by

turning k heavy goods into light goods. We determined A0 in the previous section.

Let again x be the smallest value of any bundle. If all bundles have value at most x + 1, no

further improvement is possible by conversions of heavy goods to light goods. We will show this in

Section G.2 in the appendix. As long as there is a bundle of value more than x+ 1, we take a heavy

good from a heaviest bundle (the choice of heaviest bundle is arbitrary), convert it to a light good, add

it to a bundle of value x (again the choice is arbitrary) and reoptimize. In this way, we will find an

optimal allocation. The details are given in Appendix G.
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A Math Preliminaries

The following Lemma is useful for showing that certain reallocations increase the NSW.

Lemma 19 a) Let a, b, and d be non-negative reals with a ≥ b, and d ∈ [0,a− b]. Then ab ≤ (a− d)(b+ d)
with equality only if d = 0 or d = a− b.

b) Let a, b, c, d1, and d2 be non-negative reals with a ≥ b ≥ c, b ≥ c+ d2, and a ≥ c+ d1 + d2. Then abc ≤
(a− d1)(b− d2)(c+ d1 + d2) with equality only if d2 ∈ {0,b− c} and d1 ∈ {0,a− c− d2}.

Proof:

a) We have

(a− d)(b+ d)− ab= (a− b− d)d ≥ 0

with equality only if d = 0 or d = a− b.

b) We apply part a) twice and obtain

abc ≤ a(b− d2)(c+ d2) with equality only if d2 = 0 or d2 = (c− b).

≤ (a− d1)(b− d2)(c+ d1 + d2) with equality only if d1 = 0 or d1 = a− c− d2.

B Proof of Lemma 1

Lemma 1 Let A be any allocation and let x be the minimum value of any bundle in A. Let i be any agent. For
parts b) to g), let j be any other agent, and let p be an A-Ā-alternating path from i to j.

a) If wi > x+ 1 and Ai contains a light good, moving the light good to a bundle of value x improves the NSW
of A.

b) If wi ≥ w j + ⌈s⌉, augmenting p to A improves the NSW of A.

c) If wi ≥ w j + 1 and A j contains more than s − (wi − w j) light goods, augmenting p to A and moving
max(0,

⌈

s− (wi −w j)+ 1/2

⌉

) light goods from j to i improves the NSW of A.

d) If wi ∈ {x+1,x+ 3/2}, w j = x+1, and A j contains ⌈s⌉ light goods, augmenting p to A and moving ⌊s⌋ light
goods from A j to Ai and another light good from A j to any bundle of value x improves the NSW of A.

e) If j owns two heavy goods less than i and wi ≥ x+ 3/2, one of the cases b), c), or d) applies and A can be
improved.

f) If wi = x, w j = x+ 1, and A j contains ⌈s⌉ light goods, augmenting p to A and moving ⌈s⌉ light goods from
A j to Ai improves the NSW of A.

g) If wi = x+1, w j = x+ 1/2, Ai is heavy-only, and A j contains at least ⌈s⌉ light goods, augmenting p to A and
moving ⌊s⌋ light goods from A j to Ai leaves the NSW of A unchanged and increases the number of bundles
of value x+ 1 containing a light good.

Proof:

a) The sum of the values of the two bundles does not change and the new values lie strictly inside the interval

defined by the old values. The claim follows from Lemma 19a).

b) The sum of the values of the two bundles does not change and the new values lie strictly in the interval

defined by the old values. The claim follows from Lemma 19a).

c) If wi ≥ w j +⌈s⌉, the claim follows from part b). So assume wi ≤ w j + s. By assumption, A j contains at least

r =
⌈

s− (wi −w j)+ 1/2

⌉

light goods. After the augmentation and moving the light goods, the weight of Ai

is wi − s+ r > wi − s+(s− (wi −w j)) = w j and similarly the weight of A j is less than wi. Thus the NSW

increases.
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d) Before the augmentation, we have bundles of value x+ 1+ d with d ∈ {0, 1/2}, x+ 1 and x. After the

augmentation, we have bundles of value x+1+d− s+ ⌊s⌋= x+ 1/2+d, x+1+ s−⌈s⌉= x+ 1/2 and x+1.

Thus the NSW improves by Lemma 19b).

e) The heavy weight of j is at most wi − 2s. If j is heavy-only, augmenting p improves A according to part b).

If j owns a light good, w j ≤ x+ 1 < wi and j owns at least w j − (wi − 2s) = 2s− (wi −w j) light goods. If

wi ≥ w j + 1, A can be improved according to part c). Otherwise, we must have wi = x+ 3/2 and w j = x+ 1,

and A can be improved according to part d).

f) Before the augmentation, we have bundles of value x and x+ 1, after augmentation we have two bundles of

value x+ 1/2. The NSW improves by Lemma 19a).

g) Before the augmentation we have bundles of value x+ 1 and x+ 1/2 and after the augmentation we have

bundles of value x+1− s+ ⌊s⌋= x+ 1/2, x+ 1/2+ s−⌊s⌋= x+1. Thus NSW does not change. The bundle

of value x+ 1 now contains at least one light good.

C Proofs of Claims 1 to 7 in Lemma 2

Claim 1 In A, the bundles in R′
k \Rk contain exactly k− 1 heavy goods.

Proof: By definition, bundles in [n]\ Sk+1 contain at most k heavy goods in A. Bundles that contain exactly k
heavy goods belong to Rk and hence the bundles in R′

k \Rk contain at most k−1 heavy goods. Each j ∈ R′
k \Rk

is reachable by an A-O-alternating path from an i ∈ Rk and wi = ks > x+1 and hence j must contain k−1 heavy

goods since otherwise Lemma 1e) would be applicable and A would not be reduced.

Claim 2 In O, each bundle in [n]\ Sk+1 contains at most k heavy goods.

Proof: Assume that there is an agent i in [n] \ Sk+1 that owns k+ 1 or more heavy goods in O. Then wO
i ≥

y+ s ≥≥ x+ 3/2 ≥ x+3. There is an O-A-alternating path from i to an agent j containing fewer heavy goods in

O than in A. Since we know already that A and O agree on Sk+1, j contains at most k− 1 heavy goods in O, a

contradiction to the optimality of O (Lemma 1e).

Claim 3 All heavy goods assigned to agents in R′
k by A are also assigned to them in O.

Proof: Let g be any good that A assigns to an agent in R′
k, say j, and let h be the owner of g in O. We need to

show h ∈ R′
k. Since A and O agree on Sk+1, h 6∈ Sk+1. Let p be an A-O-alternating path from i ∈ Rk to j; i = j is

possible. We extend p by j A
— g O

— h and hence h can be reached by an alternating path starting with an A-edge

from i ∈ Rk. Thus h ∈ R′
k.

Claim 4 O assigns k heavy goods to at least |Rk| agents in R′
k.

Proof: In A, the agents in Rk own k heavy goods (by definition) and the agents in R′
k \Rk own k− 1 heavy

goods (Claim 1). So the number of heavy goods allocated by A to the agents in R′
k is mA

k :=(k− 1)|R′
k|+ |Rk|.

All heavy goods assigned to agents in R′
k by A are also assigned to them by O (Claim 3) and no agent in R′

k is

assigned more than k heavy goods in O (Claim 2). Let z be the number of agents in R′
k to which O assigns k

heavy goods. Then zk+(|R′
k|− z)(k− 1)≥ mA

k and hence z+ |R′
k|(k− 1)≥ (k− 1)|R′

k|+ |Rk|. Thus z ≥ |Rk|.

Claim 5 xO + 1 ≤ ks.
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Proof: Recall that y is a shorthand for ks. Let L be the agents that own bundles of value less than y in A. Then

L = [n]\Sk and A assigns all light goods to the agents in L. In A, there is at least one bundle of value x in L. So

the average value of a bundle in L is less than y− 1/2 in A.

We know already that O and A agree on Sk+1, and that O assigns at least k heavy goods to at least |Rk|
many heavy agents in R′

k. Choose any |Rk| of them, and let L′ be the remaining agents. Then |L′|= |L| and the

total value of the O-bundles of the agents in L′ is at most the value of the A-bundles of the agents in L since the

number of heavy goods assigned to them cannot be larger and all light goods are assigned to agents in L by A.

Thus their average value is less than y− 1/2 and hence xO < y− 1/2.

Claim 6 Agents in Rk own k heavy goods in O.

Proof: Let i be an agent in Rk. Then hdegO
i ≤ k = hdegA

i ; the equality holds by the definition of Rk and

the inequality holds by Claim 2. Assume for the sake of a contradiction, that there is an agent i ∈ Rk with

k = hdegA
i > hdegO

i . Consider an A-O-alternating path (in the alternating path decomposition) starting in i. Let

j be the other end of the path. Then, hdegO
j > hdegA

j . Also, j ∈ R′
k and hence hdegA

j ≥ k− 1 (Claim 1). Since

hdegO
j ≤ k (Claim 2), we must have hdegO

j = k and hdegA
j = k− 1. Therefore, the value of j in O is at least y

and j ∈ R′
k \Rk.

If hdegO
i = k−1, we augment p to O and also exchange the light goods (if any); the utility profile of O does

not change and O moves closer to A, a contradiction to the choice of O.

If hdegO
i ≤ k−2, then the heavy value of i in O is at most y−2s and hence i owns at least wO

i − (y−2s) =
2s− (wO

j −wO
i ) > s− (wO

j −wO
i ) light goods. If the value of i is no larger than y− 1, O can be improved

(Lemma 1c)).

So wO
i ≥ y− 1/2 and hence i contains at least 2s light goods in O. Thus wO

i ≤ xO + 1 and hence xO ≥
y− 1/2− 1 = y− 3/2. The heavy degree of i in A is at least two more than the heavy degree of i in O. Therefore

there must be a second A-O-alternating path starting in i, say q. It ends in a node h. As above for j, we conclude

hdegO
h = k and hdegA

h = k− 1. Then, j 6= h as only one alternating path each can end in j as well as in h. It is

however possible, that j lies on the path from i to h or that h lies on the path from i to j.
We have wO

j ≥ ks = y and wO
h ≥ ks = y. We augment p and q to O and use the 2s light goods on i as follows:

We give ⌊s⌋ each to j and h, and one to a bundle of value xO. The value of i does not change, the values of j
and h go down by 1/2 each and the value of an xO bundle goes up by one. We may assume wO

j ≥ wO
h . We apply

Lemma 19, part b) with d1 := 1/2 and d2 := 1/2 and conclude that the augmentation improves the NSW of O, a

contradiction. Note that wO
j ≥ ks ≥ xO + 1 and wO

h ≥ ks ≥ xO + 1 by Claim 5.

Claim 7 O agrees with A on Rk, i.e., Oi = Ai for all i ∈ Rk. Bundles owned by agents in [n]\Sk do not contain
k heavy goods in either A or O.

Proof: By the preceding claims, agents in Rk own k heavy goods in A as well as in O. Consider the path

decomposition of AH ⊕OH . If O does not agree with A on Rk, there is an A-O-alternating path passing through

an agent i ∈ Rk. Let j and h be the endpoints of the path. Say j is incident to an O-edge and h is incident to an

A-edge. Thus j ∈ R′
k. Since hdegO

j > hdegA
j ≥ k− 1, we must have hdegA

j = k− 1 and hdegO
j = k and wO

j ≥ y.

Since h is incident to an A-edge, hdegO
h < hdegA

h and hence hdegA
h ≤ k− 1. Recall that hdegA

h = k implies

hdegO
h = k by the preceding claim. Thus hdegO

h ≤ k− 2 and the heavy value of h is at most y− 2s. If the value

of h is no larger than y− 1, we augment p to O and possibly move light goods from h to j; note that h contains

wO
h − (y− 2s) light goods. This improves O, a contradiction.

So wO
h ≥ y− 1/2 and hence h contains at least 2s light goods in O. Thus wO

h ≤ xO + 1 and hence xO ≥
y− 1/2− 1 = y− 3/2. If wO

h = y− 1/2 we augment the path to O and move ⌊s⌋ light from h to j. This does not

change the utility profile of O and moves O closer to A.

We cannot have wO
h > y as this would imply xO + 1 > y, a contradiction to Claim 5.

This leaves the case wO
h = y, y = xO + 1 (since wO

h ≤ xO + 1 by the above and y ≥ xO + 1 by Claim 5) and

xO = x+ 1/2 (since y > x+ 1 and xO ≤ x+ 1/2 (Claim 5)). Also h owns 2s light goods. We augment the path

to O and move ⌈s⌉ light goods from h, ⌊s⌋ of them to j and one of them to a bundle of value xO. Before the
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augmentation we have two bundles of value y and one bundle of value xO, after the change, we have two bundles

of value y− 1/2 and one bundle of value xO + 1. Since y = xO + 1, the NSW improves, a contradiction.

We have now established OH
i = AH

i for all i ∈ Rk; Ai does not contain any light good. Oi does neither since

it would have value at least k0s+ 1 ≥ y+ 1 > xO + 1 otherwise. Thus Oi = Ai for all i ∈ Rk.

Assume next that there is a bundle O j with j 6∈ Sk containing k heavy goods. Since j 6∈ Sk, Ak contains

fewer than k heavy goods. So there is an O-A-alternating path starting in j. Let h be the other endpoint. The

path ends with an A-edge incident to h and hence there are more A-edges than O-edges incident to h. We cannot

have h∈ Sk because this would imply hdegO
h = hdegA

h . Thus hdegA
h ≤ k−1 and hdegO

h ≤ k−2. We now continue

as above and derive a contradiction.

D Missing Proofs of Section 3.3.1

Lemma 3 Let A be reduced and shrunken. If there is an optimal allocation having at least as many bundles of
value x+ 1 as A does, A is optimal. In particular, if A has no bundles of value x+ 1, A is optimal.

Proof: Assume that there are n0 bundles of value x and n1/2 bundles of value x+ 1/2 and n1 := n− n0 − n1/2

bundles of x+1. The total value is xn+n1/2/2+n1. Split all goods into portions of 1/2 (i.e. a light good becomes

two portions, a heavy good becomes 2s portions) and allow them to be allocated freely subject to the constraint

that there are at least n1 bundles of value x+ 1.

Consider an optimal allocation O under this constraint. Assume we have bundles of value y and y′ with

y′ ≥ y+1. We can replace them by bundles of value y+1/2 and y′−1/2 and improve NSW except if x+1∈{y,y′ }
and there are exactly n1 bundles of value x+ 1. In O, we have n′1 ≥ n1 bundles of value x+ 1 and at least one

bundle of value less than x+1 as the average value of a bundle in A is less than x+1. Thus, if n′1 > n1, all bundles

have value x+ 1/2 and x+1, and if n′1 = n1, all bundles have value z, z+ 1/2 and x+1 for some z ≤ x. The former

case is impossible since n′1(x+ 1)+ (n− n′1)(x+ 1/2)− (nx+ n1/2/2+ n1) = n′1 +(n− n′1)/2− n1/2/2− n1 =
(n′1 −n1+n−n1−n1/2)/2 > 0. In the latter case, we must have z = x, and the number of bundles of value x and

x+ 1/2 must be n0 and n1/2, respectively. Thus A is optimal.

Lemma 4 Let A be reduced and shrunken and let O be an optimal allocation closest to A. Then xO ≥ x− 1/2.

Proof: Assume otherwise, i.e., xO ≤ x− 1. In O, all light goods are contained in bundles of value at most x,

and bundles of value larger than x are heavy-only. Any bundle contains at most (k0−1) heavy goods (Lemma 2)

and hence has heavy value at most (k0 − 1)s. Since k0 is minimal with k0s > x+ 1, we have (k0 − 1)s ≤ x+ 1.

If (k0 − 1)s ≤ x, the average value of a bundle in O is strictly less than x (there is a bundle of value xO and

all bundles have value at most x), but the average value of a bundle in A is at least x, a contradiction.

Let y = (k0 − 1)s and assume y ∈ {x+ 1/2,x+ 1}. In O, bundles of value y are heavy-only. Let S be the

owners of the bundles of value y in O. If their bundles in A have value y or more, the average value of a bundle

in A is larger than the average value in O, a contradiction. So there must be an agent i ∈ S whose bundle in A
has value less than y. Then hdegA

i ≤ (k0 − 2)< hdegO
i . Consider an O-A-alternating path starting in i. It ends

in a node j with hdegO
j < hdegA

j . Then hdegO
j ≤ k0 − 2 and hence the value of O j is at most x. We augment the

path to O and move wO
j − (k0 − 1)s light goods from j to i. This does not change the utility profile of O and

moves O closer to A, a contradiction.

Lemma 5 Let A be reduced and shrunken and let O be an optimal allocation closest to A. There is no bundle
of value more than x+ 1 in O.

Proof: Assume, there is a bundle of value x+ 3/2 or more. The bundle contains at most k0 − 1 heavy goods

and hence its heavy value is at most x+ 1. So it contains at least one light good and hence xO = x+ 1/2 and

the bundle under consideration has value x+ 3/2. The bundles in O have values in {x+ 1/2,x+ 1,x+ 3/2}. Any
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bundle of value x+ 1/2 can be turned into a bundle of value x+ 3/2 by moving a light good to it from a bundle of

value x+ 3/2.

We use Od to denote the set of agents owning bundles of value x+ d in O. Assume first O1/2 ∪O3/2 ⊆
A0∪A1/2. Then A1 ⊆ O1. Since there is at least one bundle of value x in A and at least one bundle of value x+ 3/2

in O, the average value of a bundle in O must be higher than the average value in A, a contradiction. So there

must be an i in (O1/2 ∪O3/2)∩A1. Then the parities of hdegA
i and hdegO

i differ. By the first paragraph, we may

assume i ∈ O3/2.

Assume first that hdegO
i > hdegA

i . Then there exists an O-A-alternating path starting in i. The path ends in

j with hdegO
j < hdegA

j ≤ k0 − 1. The heavy value of O j is at most (k0 − 2)s which is at most x+ 1− s. Since

the value of O j is at least xO, O j contains at least xO − (x+ 1− s) = s− 1/2 = ⌊s⌋ light goods. If wO
j = x+ 1/2,

we augment, move ⌊s⌋ light goods from j to i and improve O. If wO
j = x+ 1, we augment and move ⌊s⌋ light

goods from j to i. This does not change the utility profile of O and moves O closer to A, a contradiction. If

wO
j = x+ 3/2, j contains at least ⌈s⌉ light goods. We augment the path, move ⌊s⌋ light goods from j to i and one

light good from j to a bundle of value xO. This improves O, a contradiction.

Assume next that hdegO
i < hdegA

i ≤ k0 −1. Then there exists an A-O-alternating path starting in i. The path

ends in j with hdegA
j < hdegO

j ≤ k0 −1. Since Oi has value x+ 3/2 and hdegO
i ≤ k0 −2, Oi must contain at least

x+ 3/2− (x+ 1− s) = ⌈s⌉ light goods. We augment the path to O and remove ⌈s⌉ light goods from Oi. So the

value of Oi becomes x+1. If O j has value x+ 3/2, we put ⌊s⌋ light goods on j and one light on a bundle of value

xO. If O j has value x+ 1 or x+ 1/2, we put ⌈s⌉ light goods on i. This either improves O or does not change the

utility profile of O and moves O closer to A, a contradiction.

In the technical introduction (Section 2) we pointed to the importance of bundles of value x+ 1 containing

a light good. The following Lemma formalizes this observation.

Lemma 6 Let A be reduced and shrunken and assume further that Lemma 1g) is not applicable. Let O be an
optimal allocation closest to A, and consider an agent i ∈ A1. If Ai is heavy-only, Oi is heavy-only and has value
x+ 1. If all bundles in A1 are heavy-only, A is optimal.

Proof: Consider a heavy-only bundle Ai of value x+1. Then hdegA
i = k0−1 and x+1= (k0−1)s. Assume for

the sake of a contradiction that Oi has either value less than x+ 1 or is not heavy-only. In either case, hdegA
i >

hdegO
i and hence Oi contains at most k0 − 2 heavy goods and thus at least wO

i − (x+ 1− s) = wO
i − x− 1+ s

light goods. If i ∈ O0 ∪O1, Oi contains at most k0 − 3 heavy goods as the parity of the number of heavy goods

must be the same as for Ai. This holds since the value of Ai and Oi differ by an integer, namely either zero or

one.

Consider an A-O-alternating path starting in i and let j be the other end of the path. Then hdegA
j < hdegO

j
and hence A j contains at most k0 −2 heavy goods; its heavy value is therefore at most x+1− s. Since the value

of A j is at least x, A j must contain at least ⌊s⌋ light goods.

If the value of A j is x, Lemma 1c) applies to A (we augment the path to A and move a light good from j to

i), a contradiction. If the value of A j is x+1, A j must contain ⌈s⌉ light goods, and hence Lemma 1d) applies to

A. We augment the path to A, move ⌊s⌋ light goods from j to i and one light good from j to a bundle of value

x. This improves the NSW of A, a contradiction.

If the value of A j is x+ 1/2 and A j contains at most k0 − 3 heavy goods, A j must contain at least ⌈s⌉ light

goods, and hence Lemma 1g) applies. We augment the path to A and move ⌊s⌋ light goods from j to i. This

does not change the utility profile of A, but increases the number of bundles of value x+ 1 containing a light

good, a contradiction.

So we are left with the case that A j has value x+ 1/2 and contains k0 − 2 heavy goods. Then O j contains

k0 − 1 heavy goods and hence is a heavy-only bundle of value x+ 1. If the value of Oi is x− 1/2, Oi contains

at least s− 3/2 light goods. We augment the path to O and move s− 3/2 light goods from i to j. This does not

change the utility profile of O and moves O closer to A, a contradiction. If the value of Oi is either x or x+ 1/2,

Oi contains at least ⌊s⌋ light goods . We augment the path to O and move ⌊s⌋ light goods from i to j. This

improves the NSW of O if the value of Oi is x and does not change the utility profile of O and moves O closer

to A, otherwise. If the value of Oi is x+1, Oi contains at least ⌈s⌉ light goods. We augment the path to O, move
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⌊s⌋ light goods from i to j and one light good from i to a bundle of value x. This improves O. In either case, we

have obtained a contradiction.

If all bundles in A1 are heavy-only, A1 ⊆ O1 and hence A is optimal by Lemma 3.

E Missing Proofs of Section 3.3.2

Lemma 7 1. The parity of the number of heavy goods is the same in bundles of value x and x+ 1 and in
bundles of value x− 1/2 and x+ 1/2 and the former parity is different from the latter.

2. The parity of the number of bundles of value x or x+1 is the same in A and O and equally for the number
of bundles of value x− 1/2 or x+ 1/2. More precisely, for d ∈ {−1/2,0, 1/2,1} let ad and od be the number
of bundles of value x+ d in A and O respectively, and let a1 = o1 + z. Then (the first equation is trivial;
it is there for completeness)

a−1/2 = 0 = o−1/2 − o−1/2

a0 = o0 + 2o−1/2 + z

a1/2 = o1/2 − 2z− o−1/2

a0 + a1 = o0 + o1 + 2(o−1/2 + z)

3. Let A be a suboptimal allocation and let O be an optimal allocation. Then z > o−1/2 ≥ 0, (A0 ∪A1)∩O1/2

is non-empty. In particular, O contains a bundle of value x+ 1/2.

Proof: If the values of two bundles differ by an integral amount, the number of heavy goods in both bundles

has the same parity. If the values differ by a multiple of 1/2 which is not an integer, the number of heavy goods

has a different parity. This proves the first claim.

For the second claim, observe that ∑d ad = ∑d od , and ∑d add = ∑d odd. The expressions given for a−1/2 to

a1 satisfy these equations and the equations are independent. Further the expressions are the unique solutions

and

a0 + a1 = o0 + 2o−1/2 + z+ o1+ z = o0 + o1 + 2(o−1/2 + z).

So a0 + a1 and o0 + o1 have the same parity. This proves the second claim.

We come to the third claim. We have

1 <
NSW(O)

NSW(A)
=

(x− 1/2)o−1/2(x+ 1/2)2z(x+ 1/2)o−1/2

x2o−1/2 xz(x+ 1)z
=

(

x2 − 1/4

x2

)o−1/2

·

(

x2 + x+ 1/4

x2 + x

)z

,

and hence z > o−1/2 since (x2 − 1/4)(x2 + x+ 1/4)/(x2(x2 + x))< 1. Thus

a0 + a1 = o0 + o1 + 2(o−1/2 + z)> o0 + o1 + o−1/2

and hence (A0 ∪A1)∩O1/2 6= /0 and o1/2 = a1/2 + 2z+ o−1/2 > 0.

Lemma 8 Let v be unbalanced and let Av and Ov have the same heavy parity.

• If v is A-heavy, Ov contains at least 2s light goods (except if v ∈ O0 ∩A1 or v ∈ A1/2 ∩O−1/2, then 2s− 1

light goods).

• If v is O-heavy, Av contains at least 2s light goods (2s− 1 if v ∈ O1 ∩A0).

Proof: Av and Ov have the same heavy parity. If v is A-heavy, |AH
v | ≥ |OH

v |+ 2. Hence the number of light

goods in Ov is at least 2s minus the value difference of Av and Ov. This value difference is non-positive except

if v ∈ A1∩O0 or v ∈ O−1/2 ∩A1/2. In these cases, the value difference is 1. If v is O-heavy, a symmetric argument

applies.
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Lemma 9 Let v ∈ A0 ∪A1 be unbalanced.

• If v is A-heavy, Ov contains at least ⌊s⌋ light goods if v∈O1/2 and at least 2s−1 light goods if v∈O0∪O1.
If v ∈ O−1/2, Ov contains at least ⌊s⌋− 1 light goods.

• If v is O-heavy, Av contains at least ⌊s⌋ light goods. If v ∈ O±1/2, v contains at least ⌊s⌋ light goods if
v ∈ A0 and at least ⌈s⌉ light goods if v ∈ A1.

Proof: If v is A-heavy, |OH
v | < |AH

v |. If v ∈ O0 ∪O1, |AH
v | and |OH

v | have the same parity and hence |AH
v | ≥

|OH
v |+ 2. Since the value of Ov is at most one less than the value of Av, Ov must contain at least 2s− 1 light

goods. If v ∈ O1/2, |A
H
v | ≥ |OH

v |+ 1 and since the value of Ov is at most 1⁄2 less than the value of Av, Ov must

contain at least ⌊s⌋ light goods. If v ∈ O−1/2, |A
H
v | ≥ |OH

v |+ 1 and since the value of Ov is at most 3⁄2 less than

the value of Av, Ov must contain at least ⌊s⌋− 1 light goods.

If v is O-heavy, |AH
v |< |OH

v |. If v∈ O0∪O1, |AH
v | and |OH

v | have the same parity and hence |AH
v | ≤ |OH

v |−2.

Since the value of Av is at most one less than the value of Ov, Av must contain at least 2s− 1 light goods. If

v ∈ O±1/2, |A
H
v | ≤ |OH

v |−1, Av must contain at least ⌊s⌋ light goods if v ∈ A0 and must contain at least ⌈s⌉ light

goods if v ∈ A1.

Lemma 10 Let v ∈ (O0 ∪O1)∩A1/2 be unbalanced.

• If v is A-heavy, Ov contains at least ⌊s⌋ light goods if v ∈ O0 and at least ⌈s⌉ light goods if v ∈ O1.

• If v is O-heavy, Av contains at least ⌊s⌋ light goods. If v ∈ O0, Av contains at least ⌈s⌉ light goods.

Proof: If v is A-heavy, |AH
v | ≥ |OH

v |+1. If v ∈ O0, Ov must contain at least ⌊s⌋ light goods, if v ∈ O1, Ov must

contain at least ⌈s⌉ light goods.

If v is O-unbalanced, |AH
v | ≤ |OH

v |− 1. If v ∈ O1, Av must contain at least ⌊s⌋ light goods, if v ∈ O0, Av

must contain at least ⌈s⌉ light goods.

Lemma 11 Let W be an A-O-walk. Then |W ∩A|= |W ∩O|.

Proof: The types of the hinges alternate. Moreover, if an endpoint has type T , the type of the first adjacent

hinge is T̄ . Thus if the types of the endpoints differ, the number of hinges of both types are the same, and if

the types of the endpoints agree and is equal to T , there is one more T̄ -hinge. We conclude that the number of

A-edges on the walk is the same as the number of O-edges.

Lemma 13 If there is an A-O-walk, there is a semi-simple walk with the same endpoints.

Proof: Consider the walk and assume that an agent v is entered twice on an edge of the same type, say once

from g and once from g′; the second occurence of v could be the last vertex of the walk.

. . . — g T
— v T ′

— . . . — g′ T
— v T ′′

— . . .

If the second occurence of v is the last vertex of the walk, we end the walk at the preceding occurence of v.

Otherwise, the edge of type T ′′ exists. Either occurrence of v could be a hinge. We cut out the subpath starting

with the first occurrence of v and ending with the edge entering the second occurrence of v and obtain

. . . — g T
— v T ′′

— . . .

If T ′′ 6= T , we still have a walk. If T ′′ = T , the second occurrence of v is a hinge and hence v ∈ A1/2 ∩O±1/2.

After the removal of the subpath, it is still a hinge.
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F The Arguments for Section 3.3.4

Case j ∈ A0∪A1, and i 6= j: We augment the walk to A. The heavy parity of i and j changes and the heavy

parity of all intermediate nodes does not change.

If i and j are A-endpoints, both lose a heavy edge and there is an extra O-hinge releasing 2s light goods.

We give ⌊s⌋ light goods to any endpoint in A1 and ⌈s⌉ light goods to any endpoint in A0. So we need between

2s− 1 and 2s+ 1 light goods. If we need only 2s− 1, we put the extra light good onto any bundle in A0, if we

need 2s+ 1, we take one light good from any bundle in A1 with a light good.

If j is an O-endpoint, j gains a heavy good. By Lemma 9, A j contains ⌊s⌋ light goods if j ∈ A0 and contains

⌈s⌉ light goods if j ∈ A1. We give ⌊s⌋ light goods to i if i ∈ A1 and ⌈s⌉ light goods if i ∈ A0. If an extra light is

needed, we take it from a bundle in A1, if we have one light too many, we put it on a bundle in A0.

In either case, we increased the number of agents in A1/2 by two and hence improved A.

Case j ∈ A0 ∪A1, and i = j: We augment the walk to O. The heavy parity of the intermediate nodes does

not change and the heavy parity of i changes neither. It either gains and loses a heavy good and then the number

of hinges is even or it gains two heavy goods and then the number of hinges is odd and there is an extra O-hinge.

We show that there are sufficiently many light goods to keep the values of all bundles in O unchanged.

This is obvious, if i loses and gains a heavy. Then there are an equal number of hinges of both types and

we simply move the light goods between them.

If i gains two heavy goods, the first and the last edge of the walk are A-edges. Hence |AH
i | ≥ |OH

i |+ 2

(Lemma 12). Since i ∈ O1/2, the parity of the number of heavy goods in Ai and Oi is different. Thus, |AH
i | ≥

|OH
i |+ 3. Since the value of Oi is by at most 1/2 lower than the value of Ai, Oi contains at least 2s light goods.

We give 2s light goods to the extra O-hinge. Note that i gains two heavy goods and hence the value of Oi does

not change.

We have now moved O closer to A, a contradiction to our choice of O. Thus this case cannot arise.

Case j ∈ (O0 ∪O1)∩A1/2: We augment the walk to O. For the intermediate nodes, the heavy parity does

not change. For i and j the heavy parity changes; i gains a heavy good and j either loses a heavy good and then

the number of hinges is even or gains a heavy good and then the number of hinges is odd and there is an extra

O-hinge. There are sufficiently many light goods to keep the values of all bundles, except for the bundles of i
and j, in O unchanged; i and j change values. Recall that Oi contains at least ⌈s⌉ light goods.

If j is A-heavy, i and j gain a heavy good and there is an extra O-hinge. Since j is A-heavy, the heavy

value of j in O is at most x+1− s. Thus j owns at least ⌈s⌉ light goods if j ∈ O1 and at least ⌊s⌋ light goods if

j ∈ O0. If j ∈ O1, we move ⌊s⌋ light good from i and ⌈s⌉ light goods from j to the extra O-hinge. If j ∈ O0, we

move ⌈s⌉ light goods from i and ⌊s⌋ light goods from j to the extra O-hinge. In either case, the values of i and

j interchange. Thus the utility profile of O does not change and O moves closer to A, a contradiction.

If j is O-heavy, j loses a heavy good and the number of hinges is even. If j ∈ O1, we move ⌊s⌋ light goods

from i to j, if j ∈ O0, we move ⌈s⌉ light goods from i to j. In either case i and j swap values. Thus the utility

profile of O does not change and O moves closer to A, a contradiction.

G The General Case: Heavy Goods can be Allocated as Light

G.1 A Bundle of Value Larger than x+1 Exists

A facilitator is a bundle of value x+ 1 containing a light good.

Lemma 14 Let A be an optimal allocation in which all bundles have value x, x + 1/2 and x + 1 and let B
be obtained from A by adding a light good to a bundle of value x. If there is an improving walk in B, both
endpoints of the walk have value x in A, all bundles of value x+ 1 in A are heavy-only, and after augmentation
of the improving walk, there is no further improving walk. Whether there is an improving walk in B does not
depend on the choice of bundle of value x to which we allocate the light good. The maximum gain in NSW after
adding a light good is (x+ 1/2)2/x2.
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Proof: Let i be the agent to which we give the light good. i has value x in A and value x+ 1 in B. Let W be

an improving walk in B, and assume, for the sake of a contradiction, that there is a bundle A f of value x+ 1

containing a light good in A, i.e., f is a facilitator. Then i 6= f .

Assume first that i is not an endpoint of W . If i plays the role of a facilitator for the augmentation of W to

B, then both endpoints of W have weight x in B and hence in A and thus are different from f . Thus f could have

been the facilitator for the augmentation of W to A, a contradiction to the optimality of A. If i does not play the

role of a facilitator, the augmentation was possible in A, a contradiction.

So assume that i is an endpoint of W . It is either an A- or an Ā-endpoint of W . Let j be the other endpoint

of the walk. If i is an A-endpoint in B, it gives up a heavy good in return for ⌊s⌋ light goods. In A, it needs to

receive ⌈s⌉ light goods. If j has weight x+ 1, no facilitator is needed. If j has weight x, j is different from f
and a light good can come from f . In either case the walk can be augmented to A. If i is an Ā-endpoint of value

x+1 of W , then i owns at least ⌈s⌉ light goods in B and hence at least ⌊s⌋ light goods in A. So i can serve as an

Ā-endpoint of value x in A. Let j be the other endpoint of W . If j has value x+ 1 ( j = f is possible), the walk

does not need a facilitator when applied to A and hence is applicable to A. If j has value x, j and f are different

and hence f can act as a facilitator for the walk in A. In either case, one can augment the walk to A.

We may alternatively phrase the two preceding paragraphs as follows: If at least one endpoint of the walk

has weight x+ 1 in A, the walk can also be augmented to A. If both endpoints have weight x in A, then either

i is one of the endpoints of the walk or i acts a facilitator for the augmentation. Since the walk could not be

augmented to A, there is no facilitator in A.

We next prove that the existence of a walk is independent of the choice of i. So let i and i′ be two distinct

bundles of value x and assume that an improving walk exists in B when we allocate the light good to i. Let W
with endpoints a and b be an improving walk in B after the allocation of a light good to i. We need to show that

we can augment W also when we put the light good on i′.
Assume first that i 6∈ {a,b}. If i plays the role of a facilitator and i′ 6∈ {a,b}, i′ can play this role as well.

If i′ ∈ {a,b}, W has an endpoint of weight x+ 1 in B and does not need a facilitator. So in either case there is

an improving walk when the light good is allocated to i′.
Assume next that i ∈ {a,b}. If i′ 6∈ {a,b}, i′ can play the role of a facilitator. If i′ ∈ {a,b}, { i, i′ }= {a,b}

and hence W always has an endpoint of weight x+ 1, no matter where the light good is allocated. So in either

case there is an improving walk when the light good is allocated to i′.
Assume now that there is an improving walk in B and let C be obtained from B by augmenting the improving

walk. Then all bundles of value x+ 1 in A are heavy-only and hence all bundles of value x+ 1 in C are heavy

only. Note that the improving walk uses up the newly allocated light good as either i is an endpoint of the walk

or acts as a facilitator. If i acts a facilitator, we may equally well put the light item on an endpoint of the walk.

So let i and j be the endpoints of the walk. Then C1/2 = A1/2 ∪{ i, j}, C0 = A0 \ { i, j}, and C1 = A1. Assume

that there is an augmenting walk W ′ with respect to C. We will derive a contradiction to the optimality of A. If

W ′ does not pass through either i or j, it is also an augmenting walk with respect to A. Otherwise, let W ′′ be a

part of W ′ which starts at an endpoint of weight x+1 and ends at either i or j. Since i and j have weight x in A,

W ′′ is an augmenting walk with respect to A.

We next explain how to determine Ak+1 from Ak. We take a heavy good from any bundle of largest value,

turn it into a light good and put it on any bundle of smallest value; as a result x might increase by 1/2 or 1. Call

the resulting allocation Bk+1. In [ACH+22] it was shown that in the case of integral s, Bk+1 can be taken as

Ak+1. This is no longer true.

However, something weaker is true. Recall that our algorithm consists of two phases: range reduction and

optimizing small bundles. Recall that range reduction is the application of the reduction rules, i.e., of rules a)

to d) in Lemma 1 with the weight of i greater than x+1. The emphasized suffix played no role in Section 3, but

will play a role in this section. Range reduction has no effect on Bk+1.

Let y be the smallest value of any bundle in Bk+1. Then y ∈ {x,x+ 1/2,x+ 1}. Let Ck+1 be the allocation

obtained by running the algorithm of Section 3 with starting allocation Bk+1 (and of course, the moved good

treated as light).

Lemma 15 Let the weight of the heaviest bundle in Ak be larger than x+ 1. Range reduction applied to Bk+1

has no effect. Ck+1 is optimal among all allocations where exactly k + 1 heavy goods are turned into light
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goods.

Proof: Let x be the minimum value of a bundle in Ak. Then the value of any bundle in Bk+1 is in {x,x+ 1/2,x+
1,k0s,(k0 + 1)s,(k0 + 2)s, . . .}, where k0s is the smallest multiple of s larger than x+ 1. Let y be the minimum

value of a bundle in Bk+1. Then y ∈ {x,x+ 1/2,x+ 1}.

Assume we took the heavy good from the bundle of agent a and put it on the bundle of agent b. We use wℓ

for the value of ℓ’s bundle in Bk+1 and wA
ℓ for its value in Ak. Then wa = wA

a − s, wA
a is the maximum value of

any bundle in A, wA
a > x+ 1, wb = wA

b + 1 = x+ 1, and wℓ = wA
ℓ for ℓ 6∈ {a,b}. For the first part, we need to

show that none of the reduction rules of Lemma 1 is applicable to Bk+1. Recall that the reduction rules are rules

a) to d) of Lemma 1 when applied to an agent i with wi ≥ y+ 3/2.

Since b is the only bundle that contains an additional light good and wb ≤ x+ 1 ≤ y+ 1, rule a) is not

applicable to Bk+1.

We turn to rules b) to d). Consider any alternating path from an agent i with wi ≥ x+3/2 to an agent j starting

with an A-edge incident to i with respect to Bk+1. This path also exists with respect to Ak and none of the rules

is applicable with respect to Ak since Ak is optimal. Since wi > x+ 1, we have i 6= b and wA
i ≥ wi ≥ x+ 3/2.

Assume first that b) is applicable to Bk+1, i.e., wi ≥w j+⌈s⌉. Since b) is not applicable to Ak, wA
i <wA

j +⌈s⌉.

Since a is the only agent that loses value, we must have j = a. But in Bk+1 no bundle has value more than wa+s
since a owned a heaviest bundle in Ak and hence wi ≥wa+⌈s⌉ is impossible with respect to Bk+1. For the further

discussion, we may assume wi ≤ w j + s.

Assume next that c) is applicable with respect to Bk+1, i.e., w j ≤ wi − 1, wi ≥ y+ 3/2 ≥ x+ 3/2 and j owns

more than s−(wi−w j) light goods in Bk+1. Note than s−(wi−w j)≥ 0 and hence j owns at least one light good

in Bk+1. If j owns a light good in Ak, wA
j ≤ x+1 and hence j 6= a and wA

j ≤w j. Thus wA
j ≤w j ≤wi−1≤wA

i −1.

The number of light goods available to j in Ak is more than s−wi +w j − u jb, where u jb is one if j equals b
and is zero otherwise. Since wA

i ≥ wi and wA
j = w j − u jb, j owns more than s−wA

i +wA
j light goods in Ak

and hence c) is applicable. If j does not own a light good in Ak, j = b, j owns one light good in Bk+1, and

w j = x+ 1 = wA
j + 1. Thus wA

j = w j − 1 ≤ wi − 2 ≤ wA
i − 2. Since c) is applicable to Bk+1 and j owns exactly

one light good in Bk+1, s−wi +w j < 1. Thus wi > s+w j −1 = s+ x and hence wA
i ≥ wi ≥ x+ ⌈s⌉= wA

j + ⌈s⌉

and hence b) is applicable to Ak. 1

Assume finally, that d) is applicable to Bk+1, i.e., wi = y+ 3/2, w j = y+ 1, and j owns ⌈s⌉ light goods in

Bk+1 and hence at least ⌊s⌋ light goods in Ak. Thus wA
j ≤ x+ 1 and hence j 6= a and therefore wA

j ≤ w j. If

wA
j ≤ wA

i −1, either b) or c) is applicable to Ak. So wA
i ≤ wA

j +
1/2 and wi = w j + 1/2. Since wA

i ≥ wi, this is only

possible if wi = wA
i and w j = wA

j and hence { i, j}∩{a,b}= /0. Thus j owns ⌈s⌉ light goods already in Ak and

d) is applicable provided that x = y. But y > x would imply that we have bundles of value y+ 1 and y+ 1/2 in

Ak for some y > x. However, such bundles must be heavy-only, a contradiction.2

We have now shown that range reduction does not change Bk+1. Let Ck+1 be the allocation obtained by

optimizing the bundles of weight y, y+ 1/2 and y+ 1. We have shown in Lemma 14 that the optimization of

the small valued bundles does not depend on the choice of b, the bundle of value x to which the light good is

added. So the change of NSW is the product of two effects: the decrease due to the effect of removing a heavy

good from a and the increase due to reoptimizing the small valued bundles after the addition of a light good.

The decrease is smallest if a is a bundle of maximum value and the increase is independent of the choice of b.

This concludes the proof.

Let z be the value of the heaviest bundle in Ak. Removal of a heavy good from a bundle of value z multiplies

the NSW by a factor z− s/z. We add a light good to a bundle of value x and reoptimize. This might multiply the

NSW by a factor (x+ 1/2)2/x2. So the combined effect is

z− s

z

(

x+ 1/2

x

)2

1It is important here that we require wi ≥ y+ 3/2 in the reduction rules. Otherwise, we might have y = x, i = b and j an

agent with value x+1 in Ak.
2It is important that we exclude wi = y+1. Otherwise y = x, i = b, and j any agent owning ⌈s⌉ light goods and reachable

from b by an alternating path starting with an A-edge would be possible.
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This is larger than one if (z− s)(x+ 1/2)2 > zx2 or z(x+ 1/4)> s(x2 + x+ 1/4) or

z > s
x2 + x+ 1/4

x+ 1/4
> sx.

Lemma 16 Conversion of a heavy good in a bundle of value z > x+ 1 to a light good can improve NSW only
if z > sx.

Polynomial Time: We construct iteratively allocations A1, A2, . . . . Each time we convert a heavy good to

a light good and reoptimize. There are at most m conversions and each reoptimization takes polynomial time.

Thus the overall time is polynomial.

G.2 All Bundles Have Value at most x+1

The values of all bundles lie between x and x+1. We want to show that conversion of a heavy into a light good

followed by reoptimization cannot improve the NSW of the allocation.

For the sake of a contradiction, assume otherwise. We consider all g for which conversion of g and reop-

timization results in an allocation with larger NSW than A. Consider any such g and let g ∈ Ai. Converting g
into a light good results in an allocation C(g); CH

i (g) = AH
i \ g, Ci(g) contains one more light good than Ai(g),

C j(g) = A j for j 6= i. We then reoptimize. Let B(g) be an optimal allocation closest to C(g), i.e., with minimal

|CH(g)⊕BH(g)|. We choose g such that

• NSW(B(g)) is maximum and

• among the g that maximize NSW(B(g)), |CH(g)⊕BH(g)|) is smallest.

For simplicity, let us write B and C instead of B(g) and C(g) for this choice of g.

Lemma 17 BH
i = AH

i \ g and Bi contains no light good.

Proof: If Bi contains a light good, we convert this light good back to g and obtain an allocation for the original

instance whose NSW is better than the NSW of B. Thus the NSW of B cannot be larger than the NWS of A.

Assume next that BH
i \CH

i is non-empty. Then there is an B-C-alternating path P starting in i and ending

in an agent j with an edge (g′, j) ∈ CH \BH . We augment P to B, re-allocate g to i, convert g′ to a light, and

allocate the light goods in the same way as in B. Note augmentation of P reduces the number of heavy goods

allocated to i by one which we compensate by the re-allocation of g, and increases the number of heavy goods

allocated to j by one which we compensate by converting g′ to a light good. In this way, we obtain an allocation

D with the same NSW as B which is a candidate for B(g′). Also |DH ⊕CH(g′)|< |BH ⊕CH |, a contradiction to

the choice of g.

Assume finally that BH
i is a proper subset of AH

i \ g. Then vi(Bi) ≤ vi(Ai)− 2s ≤ x+ 1− 2s ≤ x− 2. We

can obtain B from A as follows. We convert g into a light and allocate the light good to an agent different from

i, we move all goods in (AH
i \ g)\BH

i to their owners in B, and then apply the optimization rules to the bundles

different than i. None of the optimization rules decreases the value of the minimum bundle. Thus all bundles in

B except for Bi have value at least x and one of them contains a light good. Thus B is not optimum as Lemma 1a)

allows to improve it.

We can now estimate the NSW of B. BH
i = AH

i \ g and Bi does not contain a light good. Thus vi(Bi) ≤
vi(Ai)− s. The conversion of the heavy good into a light good can also be viewed as the deletion of the heavy

good followed by an addition of a light good to an agent different from i. The maximum increase in NSW

obtainable after addition of the light is (x+ 1/2)2/x2 according to Lemma 14. Thus

NSW(B)

NSW(A)
≤

vi(Bi)

vi(Ai)
·
(x+ 1/2)2

x2
≤

x− 1/2

x+ 1
·
(x+ 1/2)2

x2
≤

x2 − 1/4

x2
·

x+ 1/2

x+ 1
< 1,

where the second inequality follows from vi(Ai)≤ x+ 1 and s ≥ 3
2
.
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H Certificates of Optimality

Our algorithm for finding an optimal allocation consists of two parts: range reduction and optimization of Alow.

The optimization of Alow exploits a connection to parity matchings. It would be nice to have a compact and

easy-to-check certificate for the optimality of the output of the algorithm. Such certificates are available for

(generalized) matching problems and we conjecture that related certificates are also available for our problem.

The book by Akiyama and Kano [AK11] on Factors and Factorizations of Graphs contains a wealth of relevant

results.

The basis is Tutte’s characterization of the existe nce of a perfect matching [Tut52].

Theorem 3 (Tutte) An undirected graph G has a perfect matching if for every subset U of vertices

odd(G−U)≤ |U |,

where odd(G−U) is the number of components of G−U of odd cardinality. The minimum number of unmatched
vertices is maxU⊆V odd(G−U)−|U |.

There are implementations of matching algorithms [MN99, MMNS11] that either return a perfect matching

or a certificate that none exists, i.e., a set U with odd(G−U)> |U |.
More general theorems deal with factors in graphs with prescribed degrees. Let f : V → N0 be an integer-

valued function defined on the vertices of a graph G. An f -factor of G is a subgraph F with degF(v) = f (v) for

all v. Tutte [Tut54] generalized the theorem above to f -factors. For disjoint subsets S and T of V , eG(S,T ) is

the number of edges of G having one endpoint each in S and T .

Theorem 4 (Tutte) G has an f -factor if and only if for all disjoint subsets S and T of V

δ (S,T ) = ∑
v∈S

f (v)+ ∑
v∈T

(degG(v)− f (v))− eG(S,T )− q(S,T)≥ 0,

where q(S,T) denotes the number of components C of G− (S∪T) such that

∑
v∈V (C)

f (v)+ eG(C,T ) = 1 mod 2.

Lovász [L7́0] generalized the condition further to take parity constraints into account. Let G be a graph and

let g, f : V (G)→N0 be functions such that

g(v)≤ f (v) and f (v) = g(v) mod 2

for all v ∈V . A spanning subgraph F of G is a parity (g, f )-factor if

g(v)≤ degF(v)≤ f (v) and degF(v) = f (v) mod 2

for all v ∈V .

Theorem 5 (Lovász) G has a parity (g, f )-factor if and only if for all disjoint subsets S and T of G,

η(S,T ) = ∑
v∈S

f (v)+ ∑
v∈T

(degG(v)− g(v))− eG(S,T )− q(S,T)≥ 0,

where q(S,T) is the number of components C of G− (S∪T) such that

∑
v∈C

f (x)+ eG(C,T ) = 1 mod 2.

Components for which the latter condition holds are called odd components.

The proof is a reduction to the f -factor theorem. One adds ( f (v)− g(v))/2 self-loops to v and then looks

for an f -factor.

In our reduction to parity matching, we use f (v) = g(v) = 1 for goods. For the agents g(v) = f (v) mod 2

and f (v) depends on N-set to which v belongs. There are only three possible values for f (v). Are there simple

characterizations for S and T ?
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