
ar
X

iv
:2

20
2.

13
67

6v
2

 [
cs

.G
T

]
 1

0
A

ug
 2

02
2

An EF2X Allocation Protocol for Restricted Additive Valuations

Hannaneh Akrami ∗ Rojin Rezvan † Masoud Seddighin ‡

August 11, 2022

Abstract

We study the problem of fairly allocating a set of m indivisible goods to a set of n agents.
Envy-freeness up to any good (EFX) criteria — which requires that no agent prefers the bundle
of another agent after removal of any single good — is known to be a remarkable analogous of
envy-freeness when the resource is a set of indivisible goods [21]. In this paper, we investigate
EFX notion for the restricted additive valuations, that is, every good has some non-negative
value, and every agent is interested in only some of the goods.

We introduce a natural relaxation of EFX called EFkX which requires that no agent envies
another agent after removal of any k goods. Our main contribution is an algorithm that finds
a complete (i.e., no good is discarded) EF2X allocation for the restricted additive valuations.
In our algorithm we devise new concepts, namely “configuration” and “envy-elimination” that
might be of independent interest.

We also use our new tools to find an EFX allocation for restricted additive valuations that
discards at most ⌊n/2⌋− 1 goods. This improves the currently best known result of Chaudhury
et al. [25] for the restricted additive valuations by a factor of 2.

1 Introduction

Fair allocation deals with the problem of allocating a resource to agents with diverse preferences.
Due to the wide range of applications, this problem has received attention in different fields such
as economics, mathematics, operations research, politics, and computer science [40, 44, 5, 31, 15,
32, 14, 13, 45].

In the early studies, the resource was assumed to be a single heterogeneous divisible cake.
This case has been mostly considered by mathematicians and economists under the title of “Cake
Cutting”. In contrast, recent studies often focus on more practical cases where the resource is less
divisible or indivisible. Such instances arise in many real-world scenarios, e.g., dividing the inherited
wealth among heirs, divorce settlements, border disputes, etc [18, 16, 29]. In the indivisible case,
the resource is a set M of m indivisible goods that must be divided among a set of n agents. Each
agent i has a valuation function vi : 2

M → R and the goal is to allocate the goods to the agents
while satisfying a certain fairness objective.

Envy-freeness is one of the most well-established fairness notions studied in the literature.
An allocation is envy-free if each agent prefers her share over other agents’ share. Formally, let
X = 〈X1,X2, . . . ,Xn〉 be an allocation that allocates bundle Xi to agent i. We say agent i envies
agent j, if vi(Xi) < vi(Xj). An allocation is envy-free, if no agent envies another agent.

∗MPII, SIC, Graduate School of Computer Science, Saarbrücken
†University of Texas at Austin
‡School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

1

http://arxiv.org/abs/2202.13676v2

Perhaps one of the reasons that envy-freeness is widely accepted among economists is that,
despite strict conditions, there are strong guarantees for this notion in the divisible setting. For
example, there always exists an envy-free allocation of the cake such that each agent receives a
connected piece [46]. However, beyond divisibility when dealing with a set of indivisible goods, this
notion is too strong to be satisfied. For example, consider an instance with two agents and one
good; the agent that receives no good envies the other agent. Such barriers have led to natural
relaxations of envy-freeness that are more suitable for the case of indivisible goods. Envy-freeness
up to one good (EF1) and envy-freeness up to any good (EFX) are among the most prominent
relaxations of envy-freeness for indivisible goods. The idea behind these two notions is to allow a
limited amount of envy among the agents. Formally, given allocation X = 〈X1,X2, . . . ,Xn〉 that
allocates set Xi of goods to agent i, we say X is

• EF1 (Budish [17]): if for every agent i and j, there exists a good g ∈ Xj such that vi(Xi) ≥
vi(Xj \ {g}).

• EFX (Caragiannis et al. [21]): if for every agent i and j, and every good g ∈ Xj we have
vi(Xi) ≥ vi(Xj \ {g}).1

By definition, every envy-free allocation is also EFX, and every EFX allocation is also EF1. So
far, we know that when the valuation functions are monotone, EF1 allocations always exist and can
be found in polynomial time [40]. In sharp contrast, it turns out that EFX notion is much more
challenging. For example, the only currently known positive result for EFX is that for 3 agents with
additive valuations an EFX allocation always exists [23]. For example, the only currently known
positive results on existence of EFX allocations are when the valuations are monotone and identical
[42], n = 2 [42], or n = 3 and agents have additive valuations [23].

Recent findings on EFX suggest that avoiding a subset of goods may result in strong EFX

guarantees. This subject (also known as EFX with charity) is pioneered by the work of Caragiannis
et al. [20] wherein the authors show that there exists a procedure that discards a subset of goods
and finds an EFX allocation for the rest of the goods such that the Nash welfare2 of the allocation
is at least half of the optimal Nash welfare. Several follow-up works have reduced the number and
the total value of the discarded goods [25, 12].

In this paper, we focus on the EFX notion and its relaxations (including EFX with charity) when
the valuation functions are restricted additive. Restricted additive setting is an important subclass
of additive valuations that has gained popularity in allocation problems during the past decade
[7, 31, 5, 27, 28, 38, 43, 4, 36, 26, 47]. In Section 1.1 we discuss the restricted additive valuations.
Also, we refer to Section 1.2 for the results and the techniques used in this paper.

1.1 Restricted Additive Valuations

In the restricted additive setting, the assumption is that the valuation functions are additive, and
furthermore, each good g has an inherent value v(g) so that for any agent i, we have vi(g)∈ {0, v(g)}.
On the practical side, this setting captures many real-life scenarios. For example, when distributing
food among people, the nutritious value received by each person only depends on the food. However,
due to allergies, ethics, etc. people might have different diets and do not eat certain food. Thus,
the nutritious value each person receives by each food g is 0 if the person refuses to eat it or is v(g)
which solely depends on the food.

1The original definition of EFX [21], assumes that the removed good g has an additional property that vi(Xj\{g}) <
vi(Xj). In Section 7, we denote this more restricted definition by EFX

+. However, our existential results in Sections
5 and 6 work for the more general case where vi(Xj \ {g}) ≤ vi(Xj).

2The Nash welfare of an allocation is the geometric mean of the values of agents.

2

On the theoretical side, the restricted additive class can be considered as a promising middle
ground between the identical setting (all the valuations are similar) and the additive setting. For
many allocation objectives, there is a considerable discrepancy between the results pertaining to
these two settings. For example:

1. Maximin-share fairness, or MMS, can be guaranteed for the case of identical valuations, while
it is proved that guaranteeing MMS for the additive setting is not always possible [39]. The
best known approximation guarantee for the additive case is 3/4 − ǫ [33].

2. Guaranteeing EFX for identical additive valuations is easy [42], while whether or not an
EFX allocation exists for the additive setting is unknown. The best known approximation
guarantee for EFX in the additive setting is 0.618 [3, 30].

3. The best polynomial time approximation guarantee for the Nash welfare objective with ad-
ditive valuations is 1.45 [9], while there is a greedy algorithm with a factor of 1.061 [10] and
a PTAS [41] for the identical additive setting.

4. The best polynomial time approximation guarantee for max-min fairnees in the additive
setting is O(nǫ) [22, 11], while there exists a PTAS for the case that the valuations are
identical and additive [48].

Considering this gap, it is expedient to study restricted sub-classes of additive valuations that
lie in between these two settings. What makes the restricted additive setting interesting is that
despite the simple and handy appearance, its structure is fundamentally different from the identical
setting. Indeed, it is believed that for some fairness objectives, the restricted additive setting is as
hard as the general additive case [38]. Except for max-min fairness which has a very interesting
and fruitful literature for the restricted additive setting (termed as the Santa Claus problem), very
few studies consider this type of valuations for other notions. For max-min fairness, the best known
approximation factor for the additive setting is improved in series of works to O(

√
n(log n)3)[5],

O(
√
n log n/ log log n) [44], and O(nǫ) [22, 11]. Extensive investigations on the restricted additive

valuations for max-min fairness has also resulted in constant factor approximation algorithms [4, 5,
28]. The first breakthrough for this setting is the work of Bansal and Sviridenko [7], who provide an
O(log log n/ log log log n)-approximation solution based on rounding a certain linear program called
configuration LP. Based on an impressive result of Haxel for hypergraph matchings [35], Asadpour
et al. [5] prove that the integrality gap of Configuration LP is within a factor 4 for the restricted
additive setting. This bound is slightly improved to 3.84 by Jansen and Rohwedder [37] and Cheng
and Mao [26]. Recently, Bamas et al. [6] introduced a submodular version of restricted valuations
for the Santa Claus problem.

To the best of our knowledge, no previous work considers restricted additive valuations for other
objectives such as maximin-share fairness, EFX, and Nash social welfare. Recently, another class
of valuations called bi-valued is studied for Nash welfare ‌in which the value of each good to each
agent is either p ∈ N or q ∈ N [1].

In this paper, we initiate the study of EFX notation, when the valuations are restricted additive.
We refer to Section 1.2 for the results and the techniques used in this paper.

1.2 Our Contribution

We start by introducing EFkX notion which is indeed a relaxation of EFX that allows an amount
of envy up to the value of k least valuable goods of a bundle. Our main result is Algorithm 2
that finds a complete EF2X allocation for restricted additive valuations. The algorithm consists of

3

3 updating rules plus an additional final step. As long as it is possible, we update the allocation
using one of the updating rules. When none of the rules is applicable, we perform the additional
step to obtain a complete allocation. The rules are based on new concepts, namely configuration
and envy-elimination which we describe in the following.

Configuration. One important point of departure of our method from the existing techniques
is that alongside updating the allocation, we maintain a partitioning of the agents into several
groups. This partitioning has the property that the value of the agents in the same group are close
to each other. We use the term configuration to refer to a pair of an allocation and a partition.
The updating process at each step takes a configuration as input and updates both the allocation
and the partition.

Well-established concepts such as champion and champion-graph are also revised in accordance
with the definition of configuration.

Envy-elimination. At the heart of our updating rules we exploit a process called envy-elimination.
Envy-elimination is designed to circumvent deadlocks. At several points during the algorithm we
might allocate a good to an agent that violates the EFX property. In such situations, we execute
the envy-elimination process. This process restores the EFX property by merely eliminating goods
from the bundles of agents. Therefore, at the end of this process, the value of each agent for her
bundle is at most as much as her value beforehand.

A new Potential Function. Note that the fact that the social welfare strictly decreases after
the envy-elimination process might question the termination of our algorithm. This brings us to
another challenge: we must show that the algorithm ends after a finite number of updates. To
prove the termination of the algorithm, we introduce a potential function Φ which maps a pair
σ = (X,R) of a partial allocation X and a partition R of agents to a vector Φ(σ) of rational
numbers and show that after each update, Φ(σ) increases lexicographically. This indicates that the
updating process terminates after a finite number of updates. Note that for a given configuration
σ = (X,R), function Φ(σ) relies on both X and R.

We later turn our attention beyond EF2X to see whether our new tools can be used to obtain
better guarantees for the EFX notion. Our second result is Algorithm 3 that finds a partial EFX
allocation which discards at most ⌊n/2⌋ − 1 number of goods. The currently best known result
in this direction is the work of Chaudhury et al. [25] which proves the existence of a partial EFX
allocation that discards at most n − 1 goods. In comparison to them, our algorithm reduces the
number of discarded goods for the restricted additive setting by a factor of 2.

Finally, in Section 7, we explore the possibility of achieving more efficient allocations satisfying
EFkX. We show that for any integer k and any constant c, there are instances for which guaranteeing
a c-approximation of EFkX and Pareto efficiency at the same time is not possible.

2 Related Work

Fair allocation of indivisible goods is a central problem in several disciplines including computer
science and economics [15], and envy-freeness is a classic fairness notion studied in this context. A
formal study of envy-freeness can be traced back to over 70 years ago [32, 45]. The notion we study
in this paper is EFX which is a relaxation of envy-freeness for the case that the resource is a set of
indivisible goods.

4

EFX is among the most studied fairness notions in recent years and “Arguably, the best fairness
analog of envy-freeness for indivisible items” [21]. This notion originates in the work of Caragiannis
et al. [21] wherein the authors provide some initial results on EFX and its relation to other notions.
However, despite extensive investigations, the existence of a complete EFX allocation is only proved
for very limited cases: when the number of agents is 2 or 3 [42, 23], and when the valuations are
either identical [42], binary [10], or bi-valued [2]. Given this impenetrability of EFX, a growing
strand of research started considering its relaxations. These relaxations can be classified into three
categories:

• Approximately EFX allocations: a natural approach is to find allocations that are approx-
imately EFX. The first result in this direction is a 1/2-EFX allocation proposed by Plaut and
Roughgarden [42]. The approximation is later improved to 0.618 by Amanitidis et al. [3].

• Weakening the fairness requirement: recall that in an EFX allocation, any possible envy
is removed by eliminating the least valuable good. Recently, Farhadi et al. [30] suggest a
relaxed version of EFX called EFR in which instead of eliminating the least valuable good to
evaluate fairness, eliminates a good uniformly at random. They also show that a 0.74-EFR
allocation always exists. Another example is envy-freeness up to one less preferred good (EFL)
introduced by Barman et al. [8] which limits the value of the eliminated good. The EFkX

notion we introduced in Section 1.2 also falls within this category.

• Discarding a subset of goods: another approach is to relax the assumption that the final
allocation must allocate all the goods. This line is initiated by the work of Caragiannis et
al. [20] wherein the authors prove the existence of a partial EFX allocation whose Nash welfare
is at least half of the optimal Nash welfare. Following this work, Chaudhury et al. [25] proved
the existence of a partial EFX allocation that leaves at most n− 1 goods unallocated. Berger
et al. [12] decreased the number of discarded goods to n− 2. Recently, Chaudhury et al. [24]
presented a framework to obtain a partial (1 − ǫ)-EFX allocation with sub-linear number of
unallocated goods for any ǫ ∈ (0, 12]. Our second result in Section 6 falls within this category.

Finally, we note that there are other fairness and efficiency criteria for the allocation of indivisi-
ble goods. The most prominent examples are maximin-share [5, 7, 11, 13, 22, 26, 27, 28, 31, 33, 34,
38, 39, 43] and its variants such as pairwise maximin-share [3] and group-wise maximin-share [3, 8],
envy-freeness up to one good [9, 40], Nash welfare [9, 21, 30, 1, 2, 10], and competitive equilibrium
from equal incomes [18]. We also refer the reader to [16, 15] for an overview on fair division, classic
fairness notions, and related results.

3 Preliminaries

We denote the set of agents by N = {1, 2, . . . , n} and the set of goods by M . Each agent i has a
valuation function vi : 2

M → R+ which represents the value of that agent for each subset of the
goods. An allocation is a specification of how goods in M are divided among the agents. We denote
an allocation by X = 〈X1,X2, . . . ,Xn〉, where Xi is the bundle allocated to agent i. Allocation X
is complete if

⋃
i Xi = M, and is partial otherwise. For a partial allocation X, we refer to the set

of goods that are not allocated to any agent as the pool of unallocated goods and denote it by PX .
When X is clear from the context, we simply use P instead of PX . We say a good g is wasted,
if it is allocated to an agent that has zero value for g. Typically, non-wasteful allocations refer to
allocations that admit no wasted good.

5

In this paper, we are interested in allocations that satisfy certain fairness properties. In Section
1, we defined the EFX notion. Here we define a more general form of EFX, namely, envy-freeness
up to any k goods or EFkX.

Definition 3.1. An allocation X = 〈X1, ...,Xn〉 is EFkX, if for all i 6= j and every collection of
ℓ = min(k, |Xj |) distinct goods g1, g2, . . . , gℓ ∈ Xj we have vi(Xi) ≥ vi(Xj \ {g1, g2, . . . , gℓ}).

Roughly speaking, an allocation is EFkX if for every agents i, j, agent i does not envy agent j
provided that k arbitrary goods are removed from the bundle of agent j. In particular, an EFX

allocation is EFkX with k = 1. Our main results are related to the cases where k = 1 and k = 2.

Restricted Additive Valuations. We consider a special case of valuation functions in which
each good g has an inherent value v(g) and the contribution of g to any set of goods for any agent
is either 0 or v(g). Under this restriction, when the valuations are also additive, we call them
restricted additive.

Definition 3.2. A set {v1, v2, . . . , vn} of valuation functions is restricted additive, if for every
1 ≤ i ≤ n, vi is additive, and furthermore, for every good g ∈M , we have vi(g)

3 ∈ {0, v(g)} where
v(g) > 0.

For brevity, for a set S of goods we define v(S) as
∑

g∈S v(g). One desirable property of
restricted additive valuations is stated in Observation 3.1.

Observation 3.1. Let X be a partial EFX allocation, let g be an unallocated good, and let i
and j be two different agents. If there exists two different goods g1, g2 ∈ Xj ∪ {g} such that
vi((Xj ∪ {g}) \ {g1, g2}) > vi(Xi), then vi(g) 6= 0.

Proof. Assume vi(g) = 0. Since g1 6= g2, we have g 6= g1 or g 6= g2. Without loss of generality,
assume g 6= g1. We have

vi((Xj ∪ {g}) \ {g1, g2}) = vi(Xj \ {g1, g2})
≤ vi(Xj \ {g1})
≤ vi(Xi), X is EFX

which is a contradiction. Therefore, vi(g) 6= 0. Since vi is restricted additive, we have vi(g) = v(g).

3.1 Configurations

In this work, we represent the status of our algorithm at each step via two ingredients: a partial
allocation X and a partition4 R of the agents. For a partition R, we denote the i’th group of R by
Ri. Also, we denote by |R| the number of groups in R.

For brevity, we use the term configuration to refer to a pair of an allocation and a partition.
Therefore, at each step during our algorithms we take a configuration (X,R) as input and return
another configuration (X ′, R′). Our algorithms are developed in such a way that the configurations
satisfy three structural properties. The first and the most important property is Property 1 which
requires that the allocation satisfies the EFX criteria.

3For ease of notation, we use vi(g) instead of vi({g}).
4A partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is

included in exactly one subset.

6

Property 1 (EFX). A configuration σ = (X,R) is EFX, if allocation X is EFX.

Note that Property 1 is independent of the partition. The second property we consider for
configurations is envy-compatibility which we bring in the following. This property incorporates
both the allocation and the configuration.

Property 2 (Envy-compatibility). A configuration (X,R) is envy-compatible, if for all 1 ≤ ℓ ≤ |R|
we have

∀i∈Rℓ,g∈Xi
vi(Xi \ {g}) ≤ vrℓ(Xrℓ),

where
rℓ = arg min

j∈Rℓ

vj(Xj). (1)

For an envy-compatible configuration (X,R), for every 1 ≤ ℓ ≤ |R| we define rℓ as in Equation
(1) and call rℓ the representative of group Rℓ. Furthermore, we suppose that the groups in R are
sorted according to the utility of their representatives, i.e.,

vr1(Xr1) ≤ vr2(Xr2) ≤ . . . ≤ vr|R|
(Xr|R|

).

Note that for an allocation X, there might be several different partitions R such that configuration
(X,R) is envy-compatible. For example, one trivial such partitions is to put each agent into a
separate group. However, our interest is in configurations that are more specific. In addition
to Properties 1 and 2 our desired configurations admit another important property. Before we
introduce this property, we must define champion and champion-graph. These two concepts were
first introduced by Chaudhury et al. [23]. In this paper, we revise their definition to incorporate
configurations.

Definition 3.3. Let (X,R) be a configuration satisfying Property 2 and let i ∈ Rℓ be an agent.
Then, for every subset S such that vi(S) > vrℓ(Xrℓ), we define [S | i] to be a subset of S with
minimum number of elements such that vi ([S | i]) > vrℓ(Xrℓ). In case of multiple options for
[S | i], we pick one arbitrarily.

Observation 3.2. Let (X,R) be a configuration satisfying Property 2, S be a subset of goods and
i ∈ Rℓ be an agent such that vi(S) > vrℓ(Xrℓ). Then, we have vi([S | i]) = v([S | i]).

Proof. By minimality of S, for any good g ∈ [S | i], we have vi([S | i] \ {g}) ≤ vrℓ(Xrℓ). Since by
definition, we have vi([S | i]) > vrℓ(Xrℓ), no good in [S | i] has value 0 to agent i.

We now define champion as following.

Definition 3.4 (Champion and champion-graph). Given a configuration σ = (X,R) satisfying
Property 2. We say i ∈ Rℓ is a champion of S if vi(S) > vrℓ(Xrℓ) and for every agent j 6= i with
j ∈ Rk and g ∈ [S | i] we have vrk(Xrk) ≥ vj([S | i]\{g}). We also define the champion-graph of σ,
denoted by Hσ as follows: for every agent i there is a vertex in Hσ. Edges of Hσ are of two types:

• Regular edges: for every pair of agent i, j with i ∈ Rℓ, there is an edge from i to j, if
vi(Xj) > vrℓ(Xrℓ).

• Champion edges: for every pair of agents i, j and every unallocated good g, there is a directed
edge from i to j with label g, if i is a champion of Xj ∪ {g}.

The last property we consider for configurations is based on the champion-graph. Note that
Property 3 is only defined on the configurations that are envy-compatible.

7

Property 3 (Admissibility). A configuration σ = (X,R) satisfying Property 2 is admissible, if the
following properties hold:

• For all 1 ≤ ℓ ≤ |R| and every i ∈ Rℓ, there is a path from rℓ to i in Hσ using only regular
edges.

• For every agents i ∈ Rℓ and j ∈ Rk such that ℓ < k, vrℓ(Xrℓ) ≥ vi(Xj). I.e., there is no
regular edge from Rℓ to Rk.

• For all i /∈ {r1, . . . , r|R|}, we have vi(Xi) = v(Xi).

We conclude this section by proving Lemma 3.5.

Lemma 3.5. Let X be a non-wasteful allocation, and let (X,R) be a configuration satisfying
Properties 2 and 3. Then, X is EFX.

Proof. Consider two agents i and j such that i ∈ Rℓ and j ∈ Rk for 1 ≤ ℓ ≤ k ≤ |R|. For all
g ∈ Xi we have,

vj(Xj) ≥ vrk(Xrk) j ∈ Rk

≥ vrℓ(Xrℓ) k ≥ ℓ

≥ vi(Xi \ {g}) i ∈ Rℓ

= v(Xi \ {g}) X is non-wasteful

≥ vj((Xi \ {g}).

Therefore, j does not strongly envy i. If ℓ = k, with a similar argument, i does not strongly envy
j either.

Now assume ℓ < k. We have

vi(Xi) ≥ vrℓ(Xrℓ) i ∈ Rℓ

≥ vi(Xj). (X,R) is admissible

Thus, i does not strongly envy j. Hence, X is EFX.

4 Envy-elimination

One important part of our algorithm is an auxiliary process which we call envy-elimination. This
process is designed to bypass possible deadlocks in the updating processes. This process takes an
allocation X as input and returns a configuration (X ′, R′) satisfying Properties 1, 2 and 3. To
do so, the process first makes the given allocation non-wasteful by simply retaking all the wasted
goods. Then, the process chooses an agent with the minimum valuation, i.e.,

argmin vi(Xi).

This agent is selected as the representative of set R1 (thus we call her r1). Next, as long as there
exists an agent j ∈ R1 and an agent i ∈ N \R1 such that vj(Xi) > vr1(Xr1), we modify the bundle
of agent i to [Xi | j] and add agent i to R1. Note that, the goods in Xi \ [Xi | j] are returned to
the pool. When no more agent could be added to R1, we repeat the same process on the agents in
N \R1 to construct R2, R3 and so on. Finally, when all the agents are added to some partition Ri

we terminate the process.

8

Algorithm 1 shows a pseudocode of the envy-elimination process. We denote the allocation
returned by this process by X ′ and denote the partition by R′ = 〈R1, R2, . . . , R|R′|〉. Note that, by
the way we construct X ′, after the process, the valuation of each agent for her bundle is at most
her valuation before the process. However, as we show in Lemma 4.1, the output of this process
(X ′, R′) satisfies Properties 1, 2 and 3.

Algorithm 1 Envy-elimination

Input : instance (N,M, (v1, . . . , vn)), allocation X
Output: configuration (X ′, R′)

1: while ∃i ∈ N, g ∈ Xi s.t. vi(g) = 0 do
2: Xi ← Xi \ {g}
3: ℓ← 1
4: while N 6= ∅ do
5: rℓ ← argmini∈N vi(Xi)
6: X ′

rℓ
← Xrℓ

7: Rℓ ← {rℓ}
8: N ← N \ {rℓ}
9: while ∃j ∈ Rℓ, i ∈ N s.t. vj(Xi) > vrℓ(Xrℓ) do

10: X ′
i ← [Xi | j]

11: Rℓ ← Rℓ ∪ {i}
12: N \ {i}
13: ℓ← ℓ+ 1

14: Return (X ′, 〈R1, R2, . . . , Rℓ−1〉)

Lemma 4.1. Let X be an allocation and let σ = (X ′, R′) be the result of running the envy-
elimination process on X. Then σ satisfies Properties 1, 2 and 3.

Proof. Let X̃ be the result of removing wasted goods from allocation X. Hence, X̃ is non-wasteful.
We prove each one of the properties separately.

Property 2 (Envy-compatibility). Note that when agent i is added to Rℓ, there exists an
agent j such that X ′

i = [X̃i | j]. By Definition 3.3,

vj(X
′
i) > vrℓ(X

′
rℓ
) ≥ vj(X

′
i \ {g}). (2)

Moreover,

vj(X
′
i) = v(X ′

i) Observation 3.2

= vi(X
′
i) X ′

i ⊆ X̃i and X̃ is non-wasteful.

Thus by Equation (2) we have vi(X
′
i) > vrℓ(X

′
rℓ
) ≥ vi(X

′
i\{g}). Since we have vr1(X ′

r1) ≤ vr2(X
′
r2) ≤

. . . ≤ vr|R′|
(X ′

r|R′|
), σ is envy-compatible.

Property 3 (Admissibility). First, we show that for all 1 ≤ ℓ ≤ |R′| and all i ∈ Rℓ, there is
a path from rℓ to i in Hσ using only regular edges. The proof is by induction on the order that

9

agents are added to Rℓ. For i = rℓ, the property holds trivially. Now assume the property holds
just before agent i is added to Rℓ meaning that there is a path from rℓ to j. We have

vj(X
′
i) = vj([X̃i | j]) X ′

i = [X̃i | j]
> vrℓ(X

′
rℓ
) Definition 3.3.

Therefore, the regular edge j → i exists in Hσ and there is a path from rℓ to i.
We must also show that for every agents i ∈ Rℓ and j ∈ Rk such that ℓ < k, vrℓ(X

′
rℓ
) ≥ vi(X

′
j).

Assume otherwise. Then there exist 1 ≤ ℓ < k ≤ |R′| and agents i ∈ Rℓ and j ∈ Rk, such that
vi(X

′
j) > vrℓ(X

′
rℓ
). Thus, before Rk is created, j must be added to Rℓ which is a contradiction.

Also, since X̃ is non-wasteful and for all agents i, X ′
i ⊆ X̃i, X

′ is also non-wasteful. In particular, for
all i /∈ {r′1, . . . r′|R′|}, vi(X ′

i) = v(X ′
i). Hence, all properties in Definition 3 hold and σ is admissible.

Property 1 (EFX): Currently, we know that after the envy-elimination process, the resulting
configuration (X ′, R′) satisfies Properties 2 and 3. Since X ′ is non-wasteful, by Lemma 3.5 we
conclude that X ′ is also EFX.

5 An EF2X Allocation Algorithm

In this section, we present our algorithm for finding a complete EF2X allocation. Our algorithm
consists of four updating rules U0, U1, U2, and U3. We start with configuration σ = (X,R), whereX
is an empty allocation and R = 〈{1}, {2}, . . . , {n}〉. At each step, we take the current configuration
σ = (X,R) as input and update it using one of these rules. These rules are designed in a way that
they always (lexicographically) increase the value of Φ(σ), where

Φ(σ) =

[
vr1(Xr1), vr2(Xr2), . . . , vr|R|

(Xr|R|
),+∞,

1∑
i/∈{r1,r2,...,r|R|}

|Xi|
,

∑

i∈{r1,r2,...,r|R|}

|Xi|
]
.5

Therefore, after a finite number of updates we obtain a configuration to which none of the
updating rules is applicable. Afterwards, we show that the remaining goods have a special property
that allows us to allocate them to the agents without violating the EF2X property. In other words,
if for an allocation X during the algorithm none of the rules is applicable and goods g1, . . . , g|P |

are not allocated, then we can find |P | different agents i1, i2, . . . , i|P | such that allocation X ′ with

X ′
iℓ
= Xiℓ ∪ {gℓ} for all 1 ≤ ℓ ≤ |P |

X ′
j = Xj for all j /∈ {i1, i2, . . . , i|P |}

is EF2X. Algorithm 2 shows a pseudocode of our algorithm. In the rest of this section, we first
describe the updating rules. For each rule, we prove that the resulting configuration satisfies
Properties 1, 2, and 3. Also, we prove that all the rules are Φ-improving. Finally, we describe how
we can allocate the remaining goods to maintain the EF2X property.

Throughout this section, we denote the configuration before and after each update respectively
by σ = (X,R) and σ′ = (X ′, R′). In what follows we describe the updating rules and their
properties.

5Note that, Since we guarantee that σ is envy-compatible, Φ(σ) is well-defined. Recall that r1, r2, . . . , r|R| are the
representative agents of partition R.

10

Algorithm 2 Complete EF2X allocation

Input : instance (N,M, (v1, . . . , vn))
Output: allocation X

1: X ← 〈∅, ∅, . . . , ∅〉
2: R← 〈{1}, {2}, . . . , {n}〉
3: while U0 or U1 or U2 or U3 is applicable do
4: Let i be the minimum index s.t. Ui is applicable
5: Update (X,R) via Rule Ui

6: for t← |R| to 1 do
7: while ∃i ∈ Rt ∩N s.t. vi(P) > 0 do
8: Choose such i with maximum distance from Rt

9: g ← argmaxh∈P vi(h)
10: Xi ← Xi ∪ {g}
11: N ← N \ {i}
12: Let PX = {g1, g2, . . . , g|PX |}
13: Let i1, i2, . . . , i|PX | be |PX | different agents in N
14: for ℓ← 1 to |PX | do
15: Xiℓ ← Xiℓ ∪ {gℓ}
16: Return X

Rule U0

We start with rule U0 which is our most basic rule. This rule allocates an unallocated good g to
a representative agent, such that the resulting configuration satisfies Properties 1, 2 and 3. In the
following, you can find a schematic view of Rule U0.

11

Rule U0

Preconditions:

• σ = (X,R) satisfies Properties 1, 2 and 3.

• There exists an unallocated good g ∈ P and an index ℓ such that vrℓ(g) = 0 and for
every 1 ≤ k ≤ |R|,

∀i∈Rk
vi(Xrℓ ∪ {g}) ≤ vrk(Xrk).

Process:

• Allocate g to rℓ.

• Set R′ = R.

Guarantees:

• σ′ = (X ′, R′) satisfies Properties 1, 2, and 3.

• Φ(σ′)≻
lex

Φ(σ).

Observation 5.1. Let σ′ = (X ′, R′) be the result of updating σ = (X,R) via Rule U0. Then for
every agent i we have vi(X

′
i) = vi(Xi).

Lemma 5.1. Let σ′ = (X ′, R′) be the result of updating σ = (X,R) via Rule U0. Then, σ′ satisfies
Properties 1, 2 and 3.

Proof. We prove each one of the properties separately.

Property 1 (EFX): In order to prove that X ′ is EFX, it suffices to prove that no agent strongly
envies X ′

rℓ
. For all 1 ≤ k ≤ |R| and i ∈ Rk,

vi(X
′
i) = vi(Xi) Observation 5.1

≥ vrk(Xrk) i ∈ Rk

≥ vi(Xrℓ ∪ {g}). Precondition of Rule U0

Thus, no agent envies rℓ.

Property 2 (Envy-compatibility): By Observation 5.1, for all 1 ≤ k ≤ |R|,

rk = arg min
j∈Rk

vj(X
′
j).

Also, for all 1 ≤ k ≤ |R|, i ∈ Rk, i 6= rℓ and g ∈ Xi we have

vi(X
′
i \ {g}) = vi(Xi \ {g}) X ′

i = Xi

≤ vrk(Xrk) σ is envy-compatible

= vrk(X
′
rk
) Observation 5.1.

12

Property 3 (Admissibility): Note that after the update, agent rℓ has received one additional
good and all other bundles are untouched. Since vrℓ(X

′
rℓ
) = vrℓ(Xrℓ), the only difference between

Hσ′ and Hσ is that rℓ might have additional incoming edges. Also, since σ is admissible, for all
1 ≤ ℓ ≤ |R| and all i ∈ Rℓ, there is a path from rℓ to i in Hσ using only regular edges. Hence, for
all 1 ≤ ℓ ≤ |R| and all i ∈ Rℓ, there is a path from rℓ to i in Hσ′ which uses only regular edges.

Now we prove that for every agents i ∈ Rk and j ∈ Rk′ such that k < k′, vrk(X
′
rk
) ≥ vi(X

′
j). If

j = rℓ, we have

vrk(X
′
rk
) = vrk(Xrk) Observation 5.1

≥ vi(Xrℓ ∪ {g}) Precondition of Rule U0

= vi(X
′
j). j = rℓ

Also, if j 6= rℓ, we have

vrk(X
′
rk
) = vrk(Xrk) Observation 5.1

≥ vi(Xj) σ is admissible

= vi(X
′
j). X ′

j = Xj

Therefore, for every agents i ∈ Rk and j ∈ Rk′ such that k < k′, vrk(X
′
rk
) ≥ vi(X

′
j). Also, for

all i /∈ {r1, . . . , r|R|}, X ′
i = Xi. By admissibility of X, vi(Xi) = v(Xi) and hence, vi(X

′
i) = v(X ′

i).
Thus, Property 3 holds.

Lemma 5.2. Rule U0 is Φ-improving.

Proof. Let {r1, r2, . . . , r|R|} be the set of representatives before the update. We have

Φ(σ′) =

[
vr1(X

′
r1), . . . , vr|R|

(X ′
r|R|

),+∞,
1∑

i/∈A |X ′
i|
,
∑

i∈A

|X ′
i|
]

=

[
vr1(Xr1), . . . , vr|R|

(Xr|R|
),+∞,

1∑
i/∈A |X ′

i|
,
∑

i∈A

|X ′
i|
]

Observation 5.1

Since for all i 6= rℓ we have X ′
i = Xi and X ′

rℓ
= Xrℓ ∪ {g}, we have

Φ(σ′) =

[
vr1(Xr1), . . . , vr|R|

(Xr|R|
),+∞,

1∑
i/∈A |Xi|

,
∑

i∈A

|Xi|+ 1

]

≻
lex

[
vr1(Xr1), . . . , vr|R|

(Xr|R|
),+∞,

1∑
i/∈A |Xi|

,
∑

i∈A

|Xi|
]

= Φ(σ).

Rule U1

Our second updating rule updates the configuration using a special type of cycle in the champion-
graph called champion cycle.

Definition 5.3. For a configuration σ = (X,R), we call a cycle C of Hσ a champion cycle, if for

every champion edge i
g−→ j in C, j ∈ {r1, r2, . . . , r|R|}. Additionally, for every two champion edges

of C with labels g and g′, we have that g 6= g′.

13

In this rule, we first find a champion cycle in Hσ and update the allocation through this cycle.
Next, we apply envy-elimination. In the following, you can find a schematic view of Rule U1.

Rule U1

Preconditions:

• σ = (X,R) satisfies Properties 1, 2 and 3.

• There exists a champion cycle C in Hσ.

Process:

• For every edge i→ j ∈ C, set X̃i = Xj .

• For every champion edge i
g−→ j ∈ C, set X̃i = [Xj ∪ {g} | i].

• For every agent j /∈ C, set X̃j = Xj .

• Apply envy-elimination on X̃.

Guarantees:

• σ′ = (X ′, R′) satisfies Properties 1, 2, and 3.

• Φ(σ′)≻
lex

Φ(σ).

Since we apply envy-elimination in the last step of Rule U1, Lemma 4.1 implies that the resulting
configuration satisfies Properties 1, 2, and 3.

Corollary 5.1 (of Lemma 4.1). Let σ′ = (X ′, R′) be the result of updating σ = (X,R) via Rule
U1. Then, σ′ = (X ′, R′) satisfies Properties 1, 2, and 3.

Lemma 5.4. Rule U1 is Φ-improving.

Proof. We prove that the conditions of Lemma A.3 hold. Let ℓ be the smallest index such that
rℓ ∈ C and X̃ be the allocation just before applying envy-elimination. Then we have,

∀i ∈ R1 ∪ . . . ∪Rℓ−1, X̃i = Xi.

Therefore, Condition 1 of Lemma A.3 holds.
Without loss of generality, we can assume for all k > ℓ such that rk /∈ C, vrk(Xrk) > vrℓ(Xrℓ).

6

Assume i ∈ Rk and k ≥ ℓ. If i /∈ C, we have

vi(X̃i) = vi(Xi) X̃i = Xi

≥ vrk(Xrk) i ∈ Rk

> vrℓ(Xrℓ).

6Otherwise, we can simply reorder the groups in R which their representative agents have value vrℓ(Xrℓ).

14

If i→ j ∈ C, we have

vi(X̃i) = vi(Xj) X̃i = Xj

> vrk(Xrk) Regular edge from i to j

> vrℓ(Xrℓ).

If i
g−→ j ∈ C, we have

vi(X̃i) = vi([Xj ∪ {g} | i]) X̃i = [Xj ∪ {g} | i]
> vrk(Xrk) Definition 3.3

> vrℓ(Xrℓ).

Therefore, we have

∀i ∈ Rℓ ∪ . . . ∪R|R|, vi(X̃i) > vrℓ(Xrℓ).

Thus, Condition 2 of Lemma A.3 holds too and therefore, Φ(σ′) ≻
lex

Φ(σ).

In Lemmas 5.5 and 5.6 we prove two properties of every admissible configuration σ on which
neither of the Rules U0 or U1 is applicable. We use these properties in Section 5.1 to obtain a
complete EF2X allocation.

Lemma 5.5. For an admissible configuration σ = (X,R), if neither of the Rules U0 and U1 is
applicable, then for every rℓ ∈ {r1, r2, . . . , r|R|} and every unallocated good g there exists an agent
j /∈ Rℓ such that j is a champion of Xrℓ ∪ {g}.

Proof. Assume otherwise. If vrℓ(g) = 0, then Rule U0 is applicable which is a contradiction.
Otherwise, vrℓ(g) = v(g) and vrℓ(Xrℓ ∪ {g}) > vrℓ(Xrℓ). If for an agent j ∈ Rℓ, j is a champion of
Xrℓ ∪ {g}, then Hσ has a champion cycle and Rule U1 is applicable. If for no other agent j 6= rℓ,
j is a champion of Xrℓ ∪ {g}, then rℓ is a champion of Xrℓ ∪ {g} and again Rule U1 is applicable.
Therefore, there always exists an agent j /∈ Rℓ such that the j is a champion of Xrℓ ∪ {g}.

Lemma 5.6. For an admissible configuration σ = (X,R), if neither of the Rules U0 and U1 is
applicable, then |PX | < |R|.

Proof. Let g1 be an arbitrary good in the pool and let j1 ∈ Rt1 be an arbitrary agent in

{r1, r2, . . . , r|R|}. By Lemma 5.5, there exists an agent j′1 ∈ Rt2 6= Rt1 such that the edge j′1
g−→ j1

exists in Hσ. Let j2 be the agent in Rt2 ∩ {r1, r2, . . . , r|R|}. Let g2 6= g1 be another good in the

pool and let j′2 ∈ Rt3 for t3 /∈ {t1, t2} be the agent such that the edge j′2
g2−→ j2 exists in Hσ. We

continue repeating this process to obtain the sequence j1, j2, . . . , j|P | such that for all 1 ≤ ℓ ≤ |P |,
j′ℓ ∈ Rtℓ+1

. Note that since Rule U1 is not applicable, there is no champion cycle in Hσ and hence
for ℓ 6= ℓ′, we have tℓ 6= tℓ′ . Therefore, R should partition agents into at least |P | + 1 different
non-empty parts. Hence, |P | < |R|.

Rule U2

In this updating rule, we check if there exists a representative agent such that her value for at least
one of the remaining goods is non-zero. If so, we simply allocate it to that representative agent
and apply envy-elimination. In the following, you can find a schematic view of Rule U2.

15

Rule U2

Preconditions:

• σ = (X,R) satisfies Properties 1, 2 and 3.

• There exists a representative agent rℓ and an unallocated good g such that vrℓ(g) =
v(g).

• Rules U0 and U1, are not applicable.

Process:

• Allocate g to rℓ.

• Apply envy-elimination.

Guarantees:

• σ′ = (X ′, R′) satisfies Properties 1, 2, and 3.

• Φ(σ′)≻
lex

Φ(σ).

Since we apply envy-elimination in the last step of Rule U2, Lemma 4.1 implies that the resulting
configuration satisfies Properties 1, 2, and 3.

Corollary 5.2 (of Lemma 4.1). Let σ′ = (X ′, R′) be the result of updating σ = (X,R) via Rule
U2. Then, σ′ = (X ′, R′) satisfies Properties 1, 2, and 3.

Lemma 5.7. Rule U2 is Φ-improving.

Proof. We prove that the conditions of Lemma A.3 hold. We have,

∀i ∈ R1 ∪ . . . ∪Rℓ−1, X̃i = Xi.

Therefore, Condition 1 of Lemma A.3 holds.
Without loss of generality, we can assume for all k > ℓ, vrk(Xrk) > vrℓ(Xrℓ).

7 For all k > ℓ and
i ∈ Rk, we have

vi(X̃i) = vi(Xi) X̃i = Xi

≥ vrk(Xrk) i ∈ Rk

> vrℓ(Xrℓ).

For all i ∈ Rℓ \ rℓ, we have

vi(X̃i) = vi(Xi) X̃i = Xi

> vrℓ(Xrℓ). i ∈ Rℓ \ {rℓ}
7Otherwise, we can simply reorder the groups in R which their representative agents have value vrℓ(Xrℓ).

16

Finally we have

vrℓ(X
′
rℓ
) = vrℓ(Xrℓ) + vrℓ(g) X ′

rℓ
= Xrℓ ∪ {g}

> vrℓ(Xrℓ). vrℓ(g) = v(g) > 0

Therefore,

∀i ∈ Rℓ ∪ . . . ∪R|R|, vi(X̃i) > vrℓ(Xrℓ).

Thus, Condition 2 of Lemma A.3 holds too and hence, Φ(σ′) ≻
lex

Φ(σ).

Rule U3

This updating rule is structurally different from Rules U0, U1, and U2. Unlike the previous rules,
in Rule U3 the agent to whom we allocate a good is not a representative in σ. Here we find an
unallocated good g and a non-representative agent i such that vi(g) = v(g) and allocating g to
agent i violates the EF2X property. Moreover, we require that if i ∈ Rℓ, some agent i′ ∈ Rℓ′ for
ℓ′ ≤ ℓ envies Xi ∪ {g} even after removal of two goods. Basically, i′ ∈ Rℓ′ for ℓ

′ ≤ ℓ is a reason for
the new allocation to not be EF2X. Then, we allocate g to i and perform envy-elimination on X.
In the following, you can find a schematic view of Rule U3.

Rule U3

Preconditions:

• σ = (X,R) satisfies Properties 1, 2 and 3.

• Rules U0, U1, and U2 are not applicable.

• There exists i ∈ Rℓ \ {rℓ} with distance d from rℓ in Hσ and another i′ ∈ Rℓ′ with
distance d′ from rℓ′ in Hσ such that (ℓ, d) �

lex

(ℓ′, d′) and there exists g ∈ P such that

vi(g) = v(g) and i′ envies Xi ∪ {g} even after removal of 2 goods.

Process:

• Allocate g to i.

• Apply envy-elimination on X.

Guarantees:

• σ′ = (X ′, R′) satisfies Properties 1, 2, and 3.

• Φ(σ′)≻
lex

Φ(σ).

For the rest of this section, assume (ℓ′, d′) is lexicographically smallest such that for some i′ ∈ Rℓ′

with distance d′ from rℓ′ , i
′ envies Xi ∪ {g} even after removal of 2 goods.

17

Since we apply envy-elimination in the last step of Rule U3, Lemma 4.1 implies that the resulting
configuration satisfies Properties 1, 2, and 3.

Corollary 5.3 (of Lemma 4.1). Let σ′ = (X ′, R′) be the result of updating σ = (X,R) via Rule
U3. Then, σ′ = (X ′, R′) satisfies Properties 1, 2, and 3.

In order to prove that Rule U3 is Φ-improving, first we prove Lemma 5.8.

Lemma 5.8. Let σ′ = (X ′, R′) be the result of updating σ = (X,R) via Rule U3. Then, for every
1 ≤ k ≤ |R| and every agent j ∈ Rk,

• if j ∈ R′
t, then vr′t(X

′
r′t
) ≤ vrk(Xrk), and

• if j /∈ {r1, r2, . . . , r|R|}, then j /∈ {r′1, r′2, . . . , r′|R′|}. In other words, {r′1, r′2, . . . , r′|R′|} ⊆
{r1, r2, . . . , r|R|}.

Proof. The proof is by induction on (k, d) where d is the distance of j from rk for j ∈ Rk. We
have (k1, d1) < (k2, d2) if either k1 < k2 or k1 = k2 and d1 < d2.

Case 1 j 6= i: If j = rk, then either j ∈ {r′1, . . . , r′|R′|} and vr′t(X
′
r′t
) = vrk(Xrk) or, vr′t(X

′
r′t
) <

vrk(X
′
rk
) ≤ vrk(Xrk).

Now assume j 6= rk, and j′ is the preceding node of j in a shortest path from rk to j in Hσ.
By induction assumption, j′ ∈ R′

t for vr′t(X
′
r′t
) ≤ vrk(Xrk). The bundle of j is not changed

before the envy-elimination. Also since X is admissible and j is not representative, Xj has no
wasted good. Therefore, the bundle of j is not changed even after the removal of wasted goods
in the envy-elimination process. We have vj(Xj) > vrk(Xrk) ≥ vr′t(X

′
r′t
) and vj′(Xj) = v(Xj).

Therefore, either j is already added to some R′
t′ for t

′ ≤ t or j gets added to R′
t.

Case 2 j = i: There is an agent in {R1 ∪ . . . ∪Rℓ} namely i′ ∈ R′
t′ such that

vi′(X
′
i) > vi′(Xi′) i′ strongly envies X ′

i

≥ vi′(X
′
i′) X ′

i′ ⊆ Xi′

≥ vr′
t′
(Xr′

t′
). i′ ∈ R′

t′

Now consider the moment i′ is added to R′
t′ . We know,

vi(Xi ∪ {g}) = v(Xi ∪ {g}) X is admissible and vi(g) = v(g)

≥ vi′(Xi ∪ {g}) vi′(g) > 0 by Lemma 3.1

> vi′(Xi′).

Therefore, i could not be considered for being a representative before i′ is added to R′
t′ . Thus,

either i is already added to some R′
t for t ≤ t′ or i gets added to R′

t′ and t = t′. Hence, we
have

vr′t(X
′
r′t
) ≤ vr′

t′
(X ′

r′
t′
) t ≤ t′

≤ vrℓ′ (Xrℓ′) Induction hypothesis

≤ vrℓ(Xrℓ). ℓ′ ≤ ℓ

18

Lemma 5.9. Rule U3 is Φ-improving.

Proof. Let A = {r1, r2, . . . , r|R|} and A′ = {r′1, r′2, . . . , r′|R′|}. By Lemma 5.8, A′ ⊆ A. Also note

that for all the representative agents r′k in σ′, X ′
r′
k
≥ Xr′

k
. If A′ (A, by Lemma A.1, Φ(σ′) ≻

lex

Φ(σ).

Otherwise, A′ = A. Note that

|Xi| > |Xi ∪ {g}| − 2 ≥ |X ′
i|,

and for all agents j 6= i,

|Xj | ≥ |X ′
j |.

Therefore,

∑

j /∈A

|Xj | >
∑

j /∈A′

|X ′
j |. (3)

Hence,

Φ(σ′) =

[
vr′

1
(X ′

r′
1
), vr′

2
(X ′

r′
2
), . . . , vr′

|R′|
(X ′

r′
|R′|

),+∞,
1∑

j /∈A′ |X ′
j |
,
∑

j∈A′

|X ′
j |
]

=

[
vr1(Xr1), vr2(Xr2), . . . , vr|R|

(Xr|R|
),+∞,

1∑
j /∈A′ |X ′

j |
,
∑

j∈A′

|X ′
j |
]

�
lex

[
vr1(Xr1), vr2(Xr2), . . . , vr|R|

(Xr|R|
),+∞,

1∑
j /∈A |Xj |

,
∑

j∈A

|Xj |
]

Inequality (3)

= Φ(σ).

5.1 Allocating the Remaining Goods

As we mentioned, our algorithm continues to update the allocation as long as one of the rules is
applicable. Note that, since there are finitely many possible allocations and the potential function
Φ increases after each update, we eventually end up with a configuration σ = (X,R) such that
none of the rules can be applied on σ. At that moment, if allocation X allocates all the goods, we
are done. Otherwise, there are some goods remaining in the pool. In this section, we consider the
latter case; we show how to allocate these goods so that the final allocation preserves the EF2X

property. We denote the configuration at this step by σ = (X,R) and the final complete allocation
by X ′.

Generally, our strategy is to find |P | different agents and allocate one good to each one of them.
Recall that by Lemma 5.6, we have |N | > |P | and therefore selecting |P | different agents from N
is possible. The process of allocating the remaining goods is illustrated in Algorithm 2. In this
algorithm, we start by ℓ = |R| and as long as there is an agent i ∈ Rℓ ∩ N such that vi(P) > 0,
we give i with maximum distance from rℓ her most desirable good from the pool8 and remove i
from N . Then, we decrease ℓ by one and repeat the same process. The process goes on until either
no good remains in the pool, or ℓ = 0. Let us call the set of agents that receive one good in this

8If there were multiple such goods, we select an arbitrary one

19

process by N1. Let us denote the set of unallocated goods at this stage by M2. In case that ℓ = 0
and the pool is still not empty (i.e., M2 6= ∅), we allocate each remaining good to an arbitrary
agent in N \N1 (one good to each agent). We denote the agents that receive some good in M2 by
N2.

Let X ′ be the allocation after this step. By definition, we know that X ′ is complete. In the rest
of this section, we prove Theorem 5.10 which shows that X ′ is also EF2X.

Theorem 5.10. Assuming that the valuation functions are restricted additive, Algorithm 2 returns
a complete EF2X allocation.

Note that by Observation 5.1 and Corollaries 5.1, 5.2, and 5.3, at the time when none of the
updating rules is applicable, X is EFX. Now we prove that after allocating the remaining goods by
Algorithm 2, the resulting allocation X ′ is EF2X.

We start by a simple observation.

Observation 5.2. For all i ∈ N \N1 and g ∈M2, we have vi(g) = 0.

Since the partial allocation before the last step was EFX, and no good is allocated to the agents
in N \ (N1∪N2) in the last step, to show that the final allocation is EF2X it is enough to prove that
no agent envies any agent j ∈ N1 ∪N2 after removal of any two goods from the bundle of agent j.

As a contradiction suppose that for an agent i and some agent j ∈ N1 ∪ N2, there exists two
goods g1, g2 ∈ X ′

j such that agent i envies the bundle of agent j after eliminating goods g1 and g2.
Let g be the last good which is allocated to agent j (via Algorithm 2). By Observation 3.1, we have
vi(g) = v(g). Let ℓ and ℓ′ be such that i ∈ Rℓ and j ∈ Rℓ′ . Let d be the distance of i from rℓ and
d′ be the distance of j from rℓ′ in Hσ. If j ∈ N1 and j is a representative, then the preconditions
of Rule U2 hold for σ. If j ∈ N1 and (ℓ′, d′) �

lex

(ℓ, d), then the preconditions of Rule U3 hold for σ.

Therefore in either of these cases, Rule U2 or Rule U3 is applicable on σ which is a contradiction.
Thus, we have (ℓ, d) ≻

lex

(ℓ′, d′) or j ∈ N2. This means that in the last stage of the algorithm, some

good g′ should be allocated to i before g is allocated to j with the property that

vi(g
′) ≥ vi(g). (4)

Without loss of generality, we can assume g 6= g1. Thus, we have,

vi(X
′
j \ {g1, g2}) = vi((Xj ∪ {g}) \ {g1, g2})

= vi(Xj \ {g1}) + vi(g)− vi(g2)

≤ vi(Xj \ {g1}) + vi(g
′)− vi(g2) Inequality (4)

≤ vi(Xi) + vi(g
′) X is EFX

= vi(X
′
i),

which contradicts our assumption that agent i envies X ′
j \ {g1, g2}. This completes the proof.

6 An EFX Allocation with at most ⌊n/2⌋ − 1 Discarded Goods

In this section we present an algorithm that leaves aside at most ⌊n/2⌋ − 1 many goods and finds
an EFX allocation for the rest of the goods. Algorithm 3 shows a pseudocode of our allocation
method. Similar to Algorithm 2, Algorithm 3 starts with the empty allocation X and partition
R = 〈{1}, {2}, . . . , {n}〉. Our algorithm consists of four updating rules U0, U1, U2 and U4. At each

20

step, we take the current configuration as input and update it using one of these updating rules.
Rule U0, U1, and U2 are already defined in Section 5. Similar to these rules, Rule U4 is designed
in a way that the value of Φ(σ) increases after each update. When none of the rules U0, U1, U2 or
U4 is applicable, the algorithm terminates.

Algorithm 3 EFX allocation with ≤ ⌊n/2⌋ − 1 discarded goods

Input : instance (N,M, (v1, . . . , vn))
Output: allocation X

1: X ← 〈∅, ∅, . . . , ∅〉
2: R← 〈{1}, {2}, . . . , {n}〉
3: while U0 or U1 or U2 or U4 is applicable do
4: Let i be the minimum index s.t. Ui is applicable
5: Update (X,R) via Rule Ui

6: Return X

In the rest of this section, we describe the new updating rule, namely U4 and its properties.
Next, based on the properties of these rules we prove Theorem 6.3 which states that the final
allocation is EFX and discards less than ⌊n/2⌋ goods.

Rule U4

In this rule, we consider the whole set of the goods in the pool to update the input σ = (X,R).
This rule states that if the set of the goods in the pool has a champion i ∈ Rℓ, we update the
allocation as follows: we find a path from rℓ to i and update the allocation through this path.
Next, we allocate a subset of the goods in the pool to i and return all the goods that belonged to
rℓ before the update to the pool. Then we apply envy-elimination to obtain σ′ = (X ′, R′). In the
following, you can find a schematic view of Rule U4.

21

Rule U4

Preconditions:

• σ = (X,R) satisfies Properties 1, 2 and 3.

• There exists an agent who envies PX .

Process: Let i ∈ Rℓ be a champion of P and let rℓ = j1 → j2 · · · → jp = i be a path in Hσ.

• For all 1 ≤ t ≤ p− 1, set X̃jt = Xjt+1
.

• Set X̃i = [P | i].

• For all k /∈ {j1, j2, . . . , jp}, set X̃k = Xk.

• Apply envy-elimination on X̃.

Guarantees:

• σ′ = (X ′, R′) satisfies Properties 1, 2, and 3.

• Φ(σ′)≻
lex

Φ(σ).

Since we apply envy-elimination in the last step of Rule U4, Lemma 4.1 implies that the resulting
configuration satisfies Properties 1, 2, and 3.

Corollary 6.1 (of Lemma 4.1). Let σ′ = (X ′, R′) be the result of updating σ = (X,R) via Rule
U4. Then, σ′ = (X ′, R′) satisfies Properties 1, 2, and 3.

Lemma 6.1. Rule U4 is Φ-improving.

Proof. We prove that the conditions of Lemma A.3 hold. We have

∀j ∈ R1 ∪ . . . ∪Rℓ−1, X̃j = Xj .

Therefore, Condition 1 of Lemma A.3 holds.
Without loss of generality, we can assume for all k > ℓ, vrk(Xrk) > vrℓ(Xrℓ).

9 For k > ℓ and
j ∈ Rk we have

vj(X̃j) = vj(Xj) X̃j = Xj

≥ vrk(Xrk) j ∈ Rk

> vrℓ(Xrℓ).

Also if j ∈ Rℓ \ {j1, j2, . . . , jt−1}, we have

vj(X̃j) = vj(Xj) X̃j = Xj

> vrℓ(Xrℓ). j ∈ Rℓ

9Otherwise, we can simply reorder the groups in R which their representative agents have value vrℓ(Xrℓ).

22

Now assume j = jt for some 1 ≤ t ≤ p− 1. We have

vjt(X̃jt) = vjt(Xjt+1
) X̃j = Xjt+1

> vrℓ(Xrℓ). Regular edge from jt to jt+1

Finally if j = i, we have

vi(X̃i) = vi([P | i]) X̃i = [P | i]
> vrℓ(Xrℓ). Definition 3.3

Therefore,

∀j ∈ Rℓ ∪ . . . ∪R|R|, vj(X̃j) > vrℓ(Xrℓ).

Thus, Condition 2 of Lemma A.3 holds too and hence, Φ(σ′) ≻
lex

Φ(σ).

6.1 Bounding the Number of Discarded Goods

As we mentioned, when none of the updating rules is applicable, we terminate the algorithm. As
we proved in Lemma 5.1 and Corollaries 5.1, 5.2, and 6.1, the allocation after each update is EFX.
Therefore, the final allocation preserves the EFX property as well. Also, since by Lemmas 5.2, 5.4,
5.7, and 6.1 the value of Φ(σ) increases after each update, Algorithm 3 terminates after a finite
number of updates. It remains to prove that the number of remaining goods in the pool is less
than ⌊n/2⌋ and no agent envies the pool. We prove this in Lemma 6.2.

Lemma 6.2. Let P be the pool of unallocated goods at the end of Algorithm 3. Then, we have
|P | < ⌊n/2⌋. Also, no agent envies P .

Proof. Since Rule U3 is not applicable, for every agent i ∈ Rℓ we have vi(Xi) ≥ vrℓ(Xrℓ) ≥ vi(P).
Now, we show that |P | < ⌊n/2⌋ also holds. Towards a contradiction, assume that |P | ≥ ⌊n/2⌋.
If |R| ≤ ⌊n/2⌋, by Lemma 5.6 at least one of Rules U0 or U1 is applicable which contradicts the
termination of the algorithm. Therefore, we have |R| > ⌊n/2⌋. Let S ⊆ {1, 2, . . . , |R|} be the set
with the following properties:

• for all agents i with vi(P) > 0, if i ∈ Rℓ then ℓ ∈ S, and

• |S| is minimum.

Note that Ri∩Rj = ∅ for all different i and j and ∪ℓ∈S|Rℓ| ≤ n. Hence, by the Pigeonhole principle,
if |R| > ⌊n/2⌋, there is an index i ∈ S such that |Ri| = 1, that is, Ri = {ri}. Since |S| is minimum,
we have vri(P) > 0; otherwise we could remove i from S which contradicts the minimality of S.
But this means that U4 is applicable, which contradicts the termination assumption.

Finally, Lemma 6.2 together with the fact that the final allocation is EFX yields Theorem 6.3.

Theorem 6.3. Assuming that the valuations are restricted additive, Algorithm 3 returns an allo-
cation X and a pool P of unallocated goods such that

• X is EFX, and

• vi(Xi) ≥ vi(P) for every agent i, and

• |P | < ⌊n/2⌋.

23

g g1 g2 . . . gk g′1 g′2 . . . g′k
v1 (1c + 1)k 1 1

c + 1 . . . (1c + 1)k−1 0 0 . . . 0
v2 (1c + 1)k 0 0 . . . 0 1 1

c + 1 . . . (1c + 1)k−1

Table 1: Counter example for c-EFkX and Pareto efficiency

7 Optimality of EFX Allocations

In Section 6, we presented an algorithm that finds a partial EFX allocation. When it comes to
efficiency, it is not difficult to see that at the end of this algorithm only representative agents can
own wasted goods and all other agents have no wasted good in their bundle. A natural question
that arises is whether there exists EFkX allocations that are more efficient. In this section, we
address this question: can we find an allocation that is Pareto efficient and satisfies EFkX?

Our answer to this question is negative. We show that for some instances guaranteeing both
Pareto efficiency and EFkX is not possible. Indeed, our result is stronger; we show that for any
constant c < 1 and any integer k, there are instances in which guaranteeing Pareto efficiency and
a c-approximation of EFkX is not possible. We start by defining c-EFkX allocations.

Definition 7.1. An allocation X = 〈X1, ...,Xn〉 is c-EFkX, if for all i 6= j and every collection of
ℓ = min(k, |Xj |) distinct goods g1, g2, . . . , gℓ ∈ Xj we have vi(Xi) ≥ cvi(Xj \ {g1, g2, . . . , gℓ}).

Roughgarden and Plaut [42] gave an example in which no EFX and Pareto efficient allocation
exists. We generalize this example and for any integer k and any constant c ≤ 1, we present an
instance which admits no c-EFkX and Pareto efficient allocation.

Example 1. Let N = {1, 2} and M = {g, g1, . . . , gk, g′1, . . . , g′k}. Also let v1(g) = v2(g) = (1c +1)k,
v1(gi) = v2(g

′
i) = (1c + 1)i−1 for all i ∈ [k] and v1(g

′
i) = v2(gi) = 0 (see Table 1). In any Pareto

efficient allocation, gi must be allocated to agent 1 and g′i must be allocated to agent 2 for all i ∈ [k].
Without loss of generality (by symmetry), assume agent 1 receives g. We have,

v2(X1) = v2(g)

= v2(X1\{g1, g2, . . . , gk}})

= (
1

c
+ 1)k.

Also,

v2(X2) = 1 + (
1

c
+ 1) + · · ·+ (

1

c
+ 1)k−1

= c((
1

c
+ 1)k − 1).

Therefore,

cv2(X1\{g1, g2, . . . , gk}) > v2(X2).

Thus, the allocation is not c-EFkX.

In the last part of this section, we define EFX+ (which is in fact the original definition of EFX
introduced by Caragiannis et al.[21]) which is a relaxation of EFX and present an algorithm that
guarantees EFX+ and Pareto efficiency at the same time when the valuations are restricted additive.

24

Definition 7.2. An allocation X = 〈X1, ...,Xn〉 is EFX+ if for all agents i and j and all goods
g ∈ Xj such that vi(Xj) > vi(Xj \ {g}), vi(Xi) ≥ vi(Xj \ {g}).

Algorithm 4 shows a pseudocode of our algorithm for finding an EFX+ and Pareto efficient
allocation. The algorithm is quite simple. We start with an empty allocation and allocate the
goods in non-increasing order of their values. For each good g, we allocate it to agent i such
that vi(Xi) is minimum and vi(g) = v(g). It is easy to see that the algorithm runs in polynomial
time. The sorting of m goods can be done in O(m logm) and then for each good g we need to
find argminj:vj(gℓ)=v(gℓ)

(vj(Xj)) which can be done in O(n). Thus in total the running time of
Algorithm 4 is O(m logm+mn).

In Definition 3.2, we have v(g) > 0 for all goods g. Note that if for a good g we have that
vi(g) = 0 for all agents i, we can assume any value for v(g) since it is irrelevant. In order to prevent
some unnecessary case distinctions, in this section we assume v(g) = 0 for all goods g such that for
all agents i, vi(g) = 0.

Algorithm 4 Complete EFX+ allocation

Input : instance (N,M, (v1, . . . , vn))
Output: allocation X = 〈X1, ...,Xn〉
1: Let X = 〈∅, ∅, ..., ∅〉
2: Let v(g1) ≥ v(g2) ≥ . . . ≥ v(gm)
3: for ℓ← 1 to m do
4: Let i = argminj:vj(gℓ)=v(gℓ)

(vj(Xj))
5: Xi ← Xi ∪ {gℓ}

Observation 7.1. Let X be the allocation returned by Algorithm 4. Then X is non-wasteful and
therefore, Pareto efficient.

Finally, we show that the allocation returned by Algorithm 4 is EFX+. The proof is by induction.
We start with the empty allocation which is EFX+. Let us assume allocation X is EFX+ before
allocating gℓ to agent i (induction hypothesis). It suffices to prove for all agents j and h ∈ Xi∪{gℓ}
such that vj(h) = v(h),

vj(Xj) ≥ vj((Xi ∪ {gℓ}) \ {h}).
If vj(gℓ) = 0, we have

vj(Xj) ≥ vj(Xi \ {h}) induction hypothesis

= vj(Xi ∪ {gℓ} \ {h}). vj(gℓ) = 0

Otherwise, we have

vj(Xj) ≥ vi(Xi) by the choice of i

= v(Xi) Observation 7.1

≥ v(Xi) + v(gℓ)− v(h) h = gℓ′ for ℓ
′ ≤ ℓ

= v((Xi ∪ {gℓ}) \ {h})
≥ vj((Xi ∪ {gℓ}) \ {h}).

This concludes that the output of Algorithm 7.1 is both EFX+ and Pareto efficient.10

Theorem 7.3. Assuming that the valuations are restricted additive, there exists a polynomial-time
algorithm that returns an EFX+ and Pareto efficient allocation.

10We have been notified (personal communication, July 2022) that the authors of [19] have this result in paralel.

25

References

[1] Hannaneh Akrami, Bhaskar Ray Chaudhury, Martin Hoefer, Kurt Mehlhorn, Marco Schmal-
hofer, Golnoosh Shahkarami, Giovanna Varricchio, Quentin Vermande, and Ernest van Wij-
land. Maximizing nash social welfare in 2-value instances. 2021.

[2] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros Hollender, and
Alexandros A Voudouris. Maximum nash welfare and other stories about EFX. TCS, 863:69–
85, 2021.

[3] Georgios Amanatidis, Evangelos Markakis, and Apostolos Ntokos. Multiple birds with one
stone: Beating 1/2 for EFX and GMMS via envy cycle elimination. TCS, 841:94–109, 2020.

[4] Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. Combinatorial algorithm for
restricted max-min fair allocation. TALG, 13(3), 2017.

[5] Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph matchings.
TALG, 8(3), 2012.

[6] Etienne Bamas, Paritosh Garg, and Lars Rohwedder. The submodular santa claus problem in
the restricted assignment case. arXiv preprint arXiv:2011.06939, 2020.

[7] Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In STOC, pages 31–40, 2006.

[8] Siddharth Barman, Arpita Biswas, Sanath Krishnamurthy, and Yadati Narahari. Groupwise
maximin fair allocation of indivisible goods. In AAAI, 2018.

[9] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In EC, pages 557—574, 2018.

[10] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Greedy algorithms for
maximizing nash social welfare. In AAMAS, pages 7–13, 2018.

[11] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami. Maxmin allocation
via degree lower-bounded arborescences. In STOC, pages 543–552, 2009.

[12] Ben Berger, Avi Cohen, Michal Feldman, and Amos Fiat. (almost full) efx exists for four
agents (and beyond). arXiv preprint arXiv:2102.10654, 2021.

[13] Ivona Bezáková and Varsha Dani. Allocating indivisible goods. ACM SIGecom, 5(3):11–18,
2005.

[14] Steven J Brams and Alan D Taylor. An envy-free cake division protocol. American Mathe-
matical Monthly, 102(1):9–18, 1995.

[15] Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press, 1996.

[16] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia. Handbook
of Computational Social Choice. Cambridge University Press, 2016.

[17] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium
from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

26

[18] Eric Budish, Gérard P. Cachon, Judd B. Kessler, and Abraham Othman. Course match:
A large-scale implementation of approximate competitive equilibrium from equal incomes for
combinatorial allocation. Operations Research, 65(2):314–336, 2017.

[19] Franklin Camacho, Rigoberto Fonseca-Delgado, Ramón Pino Pérez, and Guido Tapia. Beyond
identical utilities: buyer utility functions and fair allocations. CoRR, abs/2109.08461, 2021.

[20] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item with high
nash welfare: The virtue of donating items. In EC, pages 527–545, 2019.

[21] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum nash welfare. TEAC, 7(3):1–32, 2019.

[22] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to maxi-
mize fairness. In IEEE, pages 107–116, 2009.

[23] Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. Efx exists for three agents. In EC,
pages 1—19, 2020.

[24] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, and Pranabendu Misra.
Improving EFX guarantees through rainbow cycle number. In EC, pages 310—311, 2021.

[25] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A little
charity guarantees almost envy-freeness. In SODA, pages 2658–2672, 2020.

[26] Siu-Wing Cheng and Yuchen Mao. Integrality gap of the configuration lp for the restricted
max-min fair allocation. arXiv preprint arXiv:1807.04152, 2018.

[27] Siu-Wing Cheng and Yuchen Mao. Restricted max-min allocation: Approximation and inte-
grality gap. arXiv preprint arXiv:1905.06084, 2019.

[28] Sami Davies, Thomas Rothvoss, and Yihao Zhang. A tale of santa claus, hypergraphs and
matroids. In SODA, pages 2748–2757, 2020.

[29] Ulle Endriss. Trends in Computational Social Choice. Lulu.com, 2017.

[30] Alireza Farhadi, MohammadTaghi Hajiaghayi, Mohamad Latifian, Masoud Seddighin, and
Hadi Yami. Almost envy-freeness, envy-rank, and nash social welfare matchings. pages 5355–
5362, 2021.

[31] Uriel Feige. On allocations that maximize fairness. In SODA, pages 287—293, 2008.

[32] Duncan K Foley. Resource allocation and the public sector. YALE ECON ESSAYS, 7(1):45–98,
1967.

[33] Jugal Garg and Setareh Taki. An improved approximation algorithm for maximin shares. AIJ,
300:103547, 2021.

[34] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and
Hadi Yami. Fair allocation of indivisible goods: Improvements and generalizations. In EC,
pages 539–556, 2018.

[35] Penny E Haxell. A condition for matchability in hypergraphs. Graphs and Combinatorics,
11(3):245–248, 1995.

27

[36] Klaus Jansen and Lars Rohwedder. On the Configuration-LP of the Restricted Assignment
Problem, pages 2670–2678. 2017.

[37] Klaus Jansen and Lars Rohwedder. Compact LP relaxations for allocation problems. In SOSA,
pages 1–19, 2018.

[38] Subhash Khot and Ashok Kumar Ponnuswami. Approximation algorithms for the max-min
allocation problem. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, pages 204–217, 2007.

[39] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guaranteeing approx-
imate maximin shares. JACM, 65(2), 2018.

[40] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations of
indivisible goods. In EC, pages 125—131, 2004.

[41] Trung Thanh Nguyen and Jörg Rothe. Minimizing envy and maximizing average nash social
welfare in the allocation of indivisible goods. Discrete Applied Mathematics, 179:54–68, 2014.

[42] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. SIDMA,
34(2):1039–1068, 2020.

[43] Lukáš Poláček and Ola Svensson. Quasi-polynomial local search for restricted max-min fair
allocation. TALG, 12(2), 2015.

[44] Barna Saha and Aravind Srinivasan. A new approximation technique for resource-allocation
problems. Random Structures & Algorithms, 52(4):680–715, 2018.

[45] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1):101–104, 1948.

[46] Walter Stromquist. How to cut a cake fairly. The American Mathematical Monthly, 87(8):640–
644, 1980.

[47] Ola Svensson. Santa claus schedules jobs on unrelated machines. SICOMP, 41(5):1318–1341,
2012.

[48] Gerhard J Woeginger. A polynomial-time approximation scheme for maximizing the minimum
machine completion time. Operations Research Letters, 20(4):149–154, 1997.

28

A Useful Lemmas on Comparing Vectors Lexicographically

Lemma A.1. Let σ = (X,R) and σ′ = (X ′, R′) be two envy-compatible configurations and let
{r1, r2, . . . , r|R|} and {r′1, r′2, . . . , r′|R′|} be the sets of their representative agents respectively. If

{r′1, . . . , r′|R′|} ({r1, . . . , r|R|} and for all i ∈ {r′1, . . . , r′|R′|}, vi(X ′
i) ≥ vi(Xi), Φ(σ

′) ≻
lex

Φ(σ).

Proof. Note that |R| > |R′|. If vrℓ(Xrℓ) = vr′
ℓ
(X ′

r′
ℓ
) for all 1 ≤ ℓ ≤ |R′|, then since vr|R′|+1

(Xr|R′|+1
) <

+∞, we have Φ(σ′) ≻
lex

Φ(σ).

Otherwise, let ℓ be the smallest index such that

vrℓ(Xrℓ) 6= vr′
ℓ
(X ′

r′
ℓ
).

If vr′
ℓ
(X ′

r′
ℓ
) > vrℓ(Xrℓ), then Φ(σ′) ≻

lex

Φ(σ).

Now assume otherwise. We have

vrℓ(Xrℓ) > vr′
ℓ
(X ′

r′
ℓ
). (5)

For all 1 ≤ k ≤ ℓ, we have

vr′
k
(Xr′

k
) ≤ vr′

k
(X ′

r′
k
) Condition of Lemma A.1

≤ vr′
ℓ
(X ′

r′
ℓ
) k ≤ ℓ

< vrℓ(Xrℓ) Inequality (5).

Therefore, we have r′k ∈ {r1, . . . , rℓ−1} for all 1 ≤ k ≤ ℓ which is a contradiction since |{r1, . . . , rℓ−1}| =
ℓ− 1.

Lemma A.2. Let σ = (X,R) and σ′ = (X ′, R′) be two envy-compatible configurations and let
{r1, r2, . . . , r|R|} and {r′1, r′2, . . . , r′|R′|} be the sets of their representative agents respectively. Assume

there exists 1 ≤ ℓ ≤ |R| such that the following properties hold:

1. for all i ∈ R1 ∪ . . . ∪Rℓ−1, if i /∈ {r1, r2, . . . , r|R|} then i /∈ {r′1, r′2, . . . , r′|R′|}, and

2. for all i ∈ R1 ∪ . . . ∪Rℓ−1, if i ∈ {r′1, r′2, . . . , r′|R′|}, vi(X ′
i) = vi(Xi), and

3. for all i ∈ Rℓ ∪ . . . ∪Rk, if i ∈ {r′1, r′2, . . . , r′|R′|}, vi(X ′
i) > vrℓ(Xrℓ).

Then, Φ(σ′) ≻
lex

Φ(σ).

Proof. Let k be the largest index such that vr′
k
(X ′

r′
k
) ≤ vrℓ(Xrℓ). Property 3 implies that

{r′1, . . . , r′k} ⊆ R1 ∪ . . . ∪Rℓ−1 and Property 1 implies that {r′1, . . . , r′k} ⊆ {r1, . . . , rℓ−1}.

• Case 1: {r′1, . . . , r′k} ({r1, . . . , rℓ−1}
Note that ℓ− 1 > k. If vri(Xri) = vr′i(X

′
r′i
) for all 1 ≤ i ≤ k and |R′| > k, we have

vr′
k+1

(Xr′
k+1

) > vrℓ(Xrℓ) choice of k

≥ vrk+1
(Xrk+1

). ℓ > k + 1

Thus, Φ(σ′) ≻
lex

Φ(σ). Also if |R′| = k, since +∞ > vrk+1
(Xrk+1

), Φ(σ′) ≻
lex

Φ(σ).

29

Now let i ≤ k be the smallest index such that

vri(Xri) 6= vr′i(X
′
r′i
).

If vr′i(X
′
r′i
) > vri(Xri), then

(vr′
1
(X ′

r′
1
), . . . , vr′

k
(X ′

rk
)) ≻

lex

(vr1(Xr1), . . . , vrℓ−1
(Xrℓ−1

)),

and hence Φ(σ′) ≻
lex

Φ(σ).

So assume we have

vri(Xri) > vr′i(X
′
r′
i
). (6)

For all 1 ≤ j ≤ i, we have

vr′j(Xr′j
) = vr′j (X

′
r′j
) Condition of Lemma A.2

≤ vr′i(X
′
r′
i
) j ≤ i

< vri(Xri) Inequality (6).

Therefore, we have r′j ∈ {r1, . . . , ri−1} for all 1 ≤ j ≤ i which is a contradiction since
|{r1, . . . , ri−1}| = i− 1.

• Case 2: {r′1, . . . , r′k} = {r1, . . . , rℓ−1}
Note that by Property 2, for all i ∈ {r′1, . . . , r′k}, vi(X ′

i) = vi(Xi). If |R′| = k, since +∞ >
vrℓ(Xrℓ), Φ(σ

′) ≻
lex

Φ(σ). If |R′| > k, by the choice of k we have vr′
k+1

(X ′
r′
k+1

) > vrℓ(Xrℓ).

Thus, Φ(σ′) ≻
lex

Φ(σ).

Lemma A.3. Let σ = (X,R) be an admissible configuration. Assume we modify X to X̃ such that
there exists 1 ≤ ℓ ≤ |R| for which the following properties hold:

1. for all i ∈ R1 ∪ . . . ∪Rℓ−1, X̃i = Xi, and

2. for all i ∈ Rℓ ∪ . . . ∪R|R|, vi(X̃i) > vrℓ(Xrℓ).

Let σ′ = (X ′, R′) be the result of applying envy-elimination on X̃. Then Φ(σ′) ≻
lex

Φ(σ).

Proof. We prove that the properties of Lemma A.2 hold. First we prove that

for all i ∈ R1 ∪ . . . ∪Rℓ−1, if i /∈ {r1, r2, . . . , r|R|} then i /∈ {r′1, r′2, . . . , r′|R′|}.

We use the following claim.

Claim A.1. For every 1 ≤ k < ℓ and every agent i ∈ Rk,

• if i ∈ R′
t, then vr′t(X

′
r′t
) ≤ vrk(Xrk), and

• if i /∈ {r1, r2, . . . , r|R|}, then i /∈ {r′1, r′2, . . . , r′|R′|}.

30

The proof of the claim is by induction on the distance of i from rk. If i = rk, then either
i ∈ {r′1, . . . , r′|R′|} and vr′t(X

′
r′t
) = vrk(Xrk) or, vr′t(X

′
r′t
) < vrk(X

′
rk
) ≤ vrk(Xrk). Now assume i 6= rk,

and j is the preceding node of i in a shortest path from rk to i in Hσ. By induction assumption,
j ∈ R′

t for vr′t(X
′
r′t
) ≤ vrk(Xrk). The bundle of i is not changed before the envy-elimination. Also

since X is admissible and i is not a representative, Xi has no wasted good. Therefore, the bundle
of i is not changed even after the removal of wasted goods in the envy-elimination process. We
have vi(Xi) > vrk(Xrk) ≥ vr′t(X

′
r′t
). Therefore, either i is already added to some R′

t′ for t′ ≤ t or

we set X ′
i := [Xi | j] and i gets added to R′

t. Thus, the claim holds.
For the second property, note that when running envy-elimination, the bundles of the agents in

{r′1, r′2, . . . , r′|R′|} do not change except for the removal of wasted goods. Therefore,

for all i ∈ R1 ∪ . . . ∪Rℓ−1, if i ∈ {r′1, r′2, . . . , r′|R′|}, vi(X ′
i) = vi(X̃i) = vi(Xi).

We know that for all j ∈ {r′1, r′2, . . . , r′|R′|} ∩ (Rℓ ∪ . . . ∪Rk),

vj(X̃j) > vrℓ(Xrℓ). (7)

Hence, for all j ∈ {r′1, r′2, . . . , r′|R′|} ∩ (Rℓ ∪ . . . ∪Rk),

vj(X
′
j) = vj(X̃j)

> viℓ(Xiℓ). Inequality (7)

Therefore, by Lemma A.2, Φ(σ′) ≻
lex

Φ(σ).

31

	1 Introduction
	1.1 Restricted Additive Valuations
	1.2 Our Contribution

	2 Related Work
	3 Preliminaries
	3.1 Configurations

	4 Envy-elimination
	5 An EF2X Allocation Algorithm
	5.1 Allocating the Remaining Goods

	6 An EFX Allocation with at most n/2-1 Discarded Goods
	6.1 Bounding the Number of Discarded Goods

	7 Optimality of EFX Allocations
	A Useful Lemmas on Comparing Vectors Lexicographically

