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Fig. 1. TheQuadStream architecture enables a server to rasterize and stream a scene to a thin client; the client can then rasterize the scene from a novel,
unknown viewpoint. Unlike previous methods, our approach robustly handles disocclusions, view-dependent lighting, and transparent surfaces. From left to
right: we decompose a rendered G-Buffer into quad proxies, consisting of a proxy plane and a series of projected quad surface elements (surfels); however,
these may not provide enough information for the client to render the scene in the presence of disocclusions at novel views, causing visual artifacts (see the
missing area behind the robot arm in white). We therefore augment theQuadStream with quad proxies selectively added from other views within the same
view cell, allowing the client to fully reconstruct the scene under motion (additional quad proxies shown in blue).

Streaming rendered 3D content over a network to a thin client device, such
as a phone or a VR/AR headset, brings high-fidelity graphics to platforms
where it would not normally possible due to thermal, power, or cost con-
straints. Streamed 3D content must be transmitted with a representation that
is both robust to latency and potential network dropouts. Transmitting a
video stream and reprojecting to correct for changing viewpoints fails in the
presence of disocclusion events; streaming scene geometry and performing
high-quality rendering on the client is not possible on limited-power mobile
GPUs. To balance the competing goals of disocclusion robustness and mini-
mal client workload, we introduce QuadStream, a new streaming content
representation that reduces motion-to-photon latency by allowing clients to
efficiently render novel viewswithout artifacts caused by disocclusion events.
Motivated by traditional macroblock approaches to video codec design, we
decompose the scene seen from positions in a view cell into a series of quad
proxies, or view-aligned quads from multiple views. By operating on a raster-
ized G-Buffer, our approach is independent of the representation used for the
scene itself; the resulting QuadStream is an approximate geometric represen-
tation of the scene that can be reconstructed by a thin client to render both
the current view and nearby adjacent views. Our technical contributions
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are an efficient parallel quad generation, merging, and packing strategy for
proxy views covering potential client movement in a scene; a packing and
encoding strategy that allows masked quads with depth information to be
transmitted as a frame-coherent stream; and an efficient rendering approach
for rendering our QuadStream representation into entirely novel views on
thin clients. We show that our approach achieves superior quality compared
both to video data streaming methods, and to geometry-based streaming.

CCS Concepts: • Computing methodologies→ Rendering; Texturing;
Virtual reality; Image-based rendering.

Additional Key Words and Phrases: texture-space shading, object space
shading, shading atlas, streaming, temporal coherence, virtual reality
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1 INTRODUCTION
Streaming rendering has been used to offer 3D graphics on mobile
phones or other devices with limited GPU capability; to stream
graphics to VR/AR head-mounted devices where a high-end GPU
is not available due to thermal and power constraints; and to offer
cloud gaming services such as NVIDIA’s GeForce Now [NVIDIA
2021] or Google’s Stadia [Google 2019] that target users without
high-end hardware. At the same time, streaming rendering intro-
duces new challenges. First, 3D content must be transmitted over
a network, and hence must account for transmission latency and
jitter, as well as potential connection dropouts. Second, the ren-
dering workload must be separated between two or more disjoint
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physical locations; while servers in a streaming rendering environ-
ment are often very powerful, thin clients are commonly limited
to simple processing to reduce battery consumption and thermal
emission. Nonetheless, mobile devices now support a rich feature
set for real-time rendering, making arbitrary splits in the rendering
pipeline between a server and a client possible. We introduce Quad-
Stream, a novel geometry and shading streaming technique which
allows a mobile thin client to reconstruct novel viewpoints on the
fly, including disocclusions (Fig. 1), and which provides high-fidelity
streaming rendering while reducing the perceived latency.

The naive approach to streaming rendering is to run a traditional
application instance in the cloud or on a server; the application
instance receives input from the client, renders the next frame, en-
codes it using a hardware encoder [Ranganathan et al. 2021], and
delivers the output as a video stream to the client. While this ap-
proach requires only a video decoder on the client, it implies a stable
connection and introduces high motion-to-photon latency, defined
as the time between the user sending an input and the updated
image ultimately being displayed on the client screen. When the
user receives updated renderings from the server, it is often already
out-of-date, since the user has generated new input and moved the
viewpoint in the meantime. A key disadvantage of video streaming
is that it fails in the presence of disocclusion events—when previously
occluded pieces of geometry become visible due to a change in view.
While warping techniques [OculusVR 2018] can correct for rota-
tional offsets, they cannot recover from disocclusion events as the
occluded geometry is not present in the previous view. Attempts to
inpaint missing data increase computation costs and often generate
visible artifacts. On the other extreme, servers may only provide
scene information, with all rendering tasks being performed on
the client. While this approach is resilient to connection outages
and can lead to low perceived latency, it limits visual quality to the
capabilities of the client, voiding the benefits of cloud rendering.
Our QuadStream technique allows thin clients to reconstruct

novel viewpoints on the fly, including viewpoints with disocclu-
sions and dynamic geometry, and reduces motion-to-photon latency
while providing high-fidelity rendering. We achieve this by trans-
mitting an approximate geometric scene representation to the client
that is much simpler than the full scene geometry, yet captures
enough geometric fidelity and shading information to allow a thin
client to reconstruct nearby novel viewpoints ad hoc. Classical work
on geometry simplification [Garland and Heckbert 1997; Hoppe
1996; Sander et al. 2001] has focused on the problem of offline ge-
ometry simplification; however, these methods are too slow for
real-time and too inflexible for dynamic scene geometry. We there-
fore take inspiration from traditional macroblock approaches to
video codec design, and decompose a scene as seen from a view
cell into a selection of fitted quads, or quad proxies, constructed on
the fly from a G-Buffer. While we assume the scene is rendered
from a given viewpoint, we augment the collection of quad prox-
ies with additional quad proxies taken from other locations in the
view cell—the space of plausible locations around the viewpoint
where the client view may ultimately be. We then hierarchically
merge quad proxies for efficient packing and streaming using a
series of compute shaders, resulting in a flat buffer of proxy geo-
metric data and a packed texture atlas of shading information that

can be compressed with off-the-shelf video compression techniques.
The resulting QuadStream, once received by the thin client, can
be decompressed and rendered from a novel viewpoint within the
same view cell via simple rasterization.

Our approach is independent of the geometric representation used
for rendering on the server, unlike previous PVS-based approaches;
this enables streaming applications regardless of geometric scene
complexity. Our main performance factor is the resolution of the
G-Buffer. QuadProxies can be efficiently streamed as a video stream
enhanced with depth information, require little additional shading
data, and are efficient to render on thin clients. For simple scenes,
we compete with prior work in terms of achieved standard industry
metrics (DSSIM [Wang and Li 2010], and FLIP [Andersson et al.
2020]), outperforming them when taking into account the number
of samples that must be computed and streamed in each approach.
For complex scenes, we significantly outperform prior work, as our
approach is mostly independent of the scene complexity.

2 RELATED WORK
A recent overview of methods for splitting rendering between a
server and a client is provided by Stengel et al. [2021]. We focus on
approaches that have been applied to different streaming scenarios,
organized in order of increasing client workload.

Image-Based Streaming. Current cloud-gaming services [Google
2019; NVIDIA 2021] rely on a simple video stream from the cloud
to the client. Image-based rendering approaches can be used to
adjust the video stream before display on the client to adjust for the
most recent camera/head movement. When no depth information is
available, homography can be used to warp the entire video stream
on a plane [OculusVR 2018] which requires the server to render
with increased field-of-view to avoid out-of-view artifacts. Adding
a depth buffer to the stream increases possibilities: pixels can be
individually warped [Chen and Williams 1993], a simple geometric
proxy can be created [Mark et al. 1997], a grid can be used for
warping [Didyk et al. 2010a,b], and a search in the received frame can
be employed to increase quality [Bowles et al. 2012; Yang et al. 2011].
These approaches fail to handle disocclusions which are not covered
by a single video stream; while multiple depth-augmented streams
can be delivered to the client [Shi et al. 2012], this significantly
increases bandwidth due to duplicated content being streamed.

Static Proxies. Many previous works have simplified the problem
by restricting streaming to static geometry, then run extensive pre-
processing to generate suitable image-based proxies: this includes
view-dependent texture maps [Cohen-Or et al. 1999], imposters
[Boos et al. 2016; Teler and Lischinski 2001], simplied geometric
proxies[Reinert et al. 2016], surfel representations [Mann and Cohen-
Or 1997; Pfister et al. 2000], and billboard clouds [Décoret et al. 2003;
Lall et al. 2018]. Our approach is similar to the technique proposed
by Lall et al. [2018], which computes a novel scene representation
consisting of shaded quads that pack nicely into a video stream;
however, our approach generates a quad-based representation in
real-time for dynamically changing geometry and shading.

Geometry-Based Streaming. Recent approaches stream scene ge-
ometry alongside dynamically baked lighting to thin clients [Hladky
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et al. 2019b, 2021; Mueller et al. 2018], moving more work to the
client. This added information allows the client to render geomet-
rically correct novel views; to keep the shading workload on the
server, the shading is baked into textures and streamed in a video
stream to the client. As long as shading is computed and transmit-
ted for disoccluded regions, correct novel views can be generated.
The key problem with these approaches is that they are inherently
dependent upon the scene geometry; these approaches only stream
geometry and shading for a potentially visible set (PVS) of geometry,
which is difficult to compute analytically [Hladky et al. 2019a]. As
the industry trends towards smaller geometry [Epic Games 2020],
packing shaded triangles also becomes more difficult [Hladky et al.
2021; Mueller et al. 2018]. Our approach remedies these issues by
dynamically constructing a simplified representation of the scene
that is independent of the scene geometry. This leads to predictable,
easy-to-reconstruct geometry and our quad-based approach can
efficiently be packed into a video stream.

Advanced Streaming Techniques. Finally, with even more client
compute power, more complex streaming rendering approaches can
be built. Surveys over the last two decades clearly show that sending
more abstract data to clients allows for more involved splits in the
rendering architecture [Chang and Ger 2002; Noimark and Cohen-
Or 2003; Shi and Hsu 2015]; for example, spatiotemporal upsampling
is possible given multiple frames with depth information [Pajak et al.
2011]. Complete frames can be rendered speculatively [Lee et al.
2015] and potentially augmented with residual images [Bao and
Gourlay 2004; Yoon and Neumann 2000]. Compute-intensive render-
ing tasks such as global illumination can be streamed [Majercik et al.
2019] to improve client shading. Finally, and somewhat extremely,
the client can be equipped with complete scene rendering capabili-
ties to render any parts that are missing from the server’s prediction
[Cuervo et al. 2015]. Our focus is not on the thick client devices
[Stengel et al. 2021] that these systems target, but on light-weight
devices where we aim to reduce rendering costs on the client. We
additionally note that non-intrusive approaches like ours are easier
to adopt in practice, as they require minimal changes to existing
streaming-based rendering applications.

2.1 Alternative Representations
Layered representations. In a layered representation [Shade et al.

1998], each pixel captures multiple opaque surfaces; this allows for
warping and handling of disocclusion events. Such layered repre-
sentations can be used to create immersive videos supporting free
head rotation and within bounds head translation [Buehler et al.
2001; Collet et al. 2015; Dou et al. 2016; Pozo et al. 2019; Zitnick et al.
2004]. Taking these approaches further actually leads to dense 4D
lightfields [Gortler et al. 1996; Levoy and Hanrahan 1996]. Recent
approaches focused on using layered representations to describe
lightfields include Soft3D [Penner and Zhang 2017] and multi-plane
images [Flynn et al. 2019; Zhou et al. 2018]. While these approaches
were not designed for streaming, recently Broxton et al. [2020] has
shown that a spherical layered representation can be sparsified and
packed into a video stream atlas to support streaming rendering
of free viewpoint videos. While their approach requires significant
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Fig. 2. QuadStream server pipeline: We iterate over a set of sampled views
within a view cell; for each view, we render a G-Buffer, construct quad proxies
following the rectangular grid of the view projection plane, merge suitable
neighboring quad proxies, and potentially flatten them. After obtaining
a set of quad proxies for all views in the view cell, we construct an atlas
containing both the geometry and shading data, and stream it to the client
device. The client uses this package to render novel views and can thus
perform frame rate upsampling locally.

bandwidth and more than a day to preprocess a single frame, it
shows the potential of streaming alternative representations.

Neural Radiance Fields. The advances made for free-viewpoint
video ware largely supported by learning-based methods to gener-
ate the layers representation; however, it is also possible to directly
learn a representation for visual information in a scene [Sitzmann
et al. 2019; Thies et al. 2019; Wizadwongsa et al. 2021]. Recent work
on on Neural Radiance Fields (NeRFs) [Mildenhall et al. 2020] has
sparked increased researched into learned representations. NeRFs
can even be used to learn free-viewpoint video [Du et al. 2020; Li
et al. 2020; Park et al. 2020; Pumarola et al. 2020; Xian et al. 2020].
While their compactness renders NeRFs especially interesting for
streaming, training and inference times remain major hurdles for
their application for our use case. Image generation for a current
headset would require the device to offer 37 PetaFLOPS in compute
power [Neff et al. 2021]. While training time is only just being tack-
led [Müller et al. 2022; Sara Fridovich-Keil and Alex Yu et al. 2022],
there are approaches to reduce inference time, including learning
partial integrals along the ray [Lindell et al. 2020], sparsifying the
scene [Liu et al. 2020], or predicting scene ray intersections [Neff
et al. 2021]. Another avenue to increase rendering speed is baking
and caching various components of NeRFs [Garbin et al. 2021; Hed-
man et al. 2021; Reiser et al. 2021; Yu et al. 2021]. While those may
reach real-time performance, they sacrifice compactness increas-
ing memory requirements by 100x and more and thus trade one
challenge for another from the perspective of streaming.

3 ALGORITHM OVERVIEW
Our goal is for a QuadStream client with no a priori knowledge of
the scene to be able to fully reconstruct the scene appearance and
geometry from a novel, updated view (within reasonable limits).
The basic setup of our pipeline is outlined in Fig. 2. While the server
necessarily does not know what this view will be, we assume that
it can roughly predict the camera/head position by extrapolating
from previous input and the estimated round-trip latency. As this
estimate may not be accurate, the server must supply the client
with not only the information required to render the predicted
view, but information for rendering surrounding views, in particular
disocclusions. We therefore consider a cuboid view cell of potential
camera positions and rotations surrounding the predicted center
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(a) Original scene (b) Scene geometry (c) Low-res client view (d) Proxy planes, initial (e) Tessellated (f) Merged and flattened

Fig. 3. (a,b) Original scene appearance and geometry captured by ourQuadStream datastructure on the server for a client view (c) at low resolution (160 × 90)
for demonstration purposes. (d) Proxy planes capture the geometry very coarsely. (e) Tessellating the proxy planes at each surfel and applying vertex offsets
relative to the proxy planes enables us to reconstruct fine geometric details and close gaps. (f)We adaptively merge and flatten neighboring quads to avoid
unnecessarily dense tessellation for regions with simple geometry. Our proxy data structures project to axis-aligned quads in (c); note that the views shown in
(d,e,f) are off-center relative to (c) for demonstration purposes only.

view. Our goal is for the client to be able to render the scene from
any position and rotation within this view cell.
One of the main goals of QuadStream is to support easy inte-

gration into existing rendering systems. To this end, we operate
on G-Buffers/visibility buffers that are typical for deferred shading
approaches. To capture the content visible from within the view cell,
we render multiple views from within the view cell when building
the QuadStream—each view adding previously uncaptured data.
We start by rasterizing the center view into a G-Buffer and de-

compose it into a series of quadrilateral proxies, or quad proxies.
Each quad proxy consists of two elements: a proxy plane, and a set
of associated quad surfels (cf. Pfister et al. [2000]). The proxy plane
roughly captures the geometry, while the quad surfels capture final
shading, fine geometric details, and transparency when projected
onto the proxy plane (Fig. 3). We construct quad proxies for a single
view using a bottom-up approach: we start with small quads cov-
ering the G-Buffer that can be efficiently optimized locally, before
repeatedly merging them to construct larger geometric elements
and to facilitate data compression. After repeated merging, we have
decoupled the rough geometric structure of the scene from fine
surface variations, both in shading and local displacements.

Relying on a single view/G-Buffer will ultimately result in disoc-
clusion artifacts if the scene is reconstructed for any other camera
location, as it captures the exact same content as a simple video
stream. Our key insight is that we can easily augment the set of quad
proxies by rendering new G-Buffers from additional viewpoints, i.e.,
by sampling the view cell. Naively rendering a new G-Buffer for
every additional view would duplicate data already captured in pre-
vious views and would be prohibitively expensive. Thus, we use the
already constructed quad proxies to fill the depth buffer for early and
efficient depth rejection prior to rasterization and shading, avoiding
quad proxy generation for previously seen content altogether.
We enable fast construction, streaming, and reconstruction of

quad proxies by combining two key ideas. First, we observe that
the supporting planes of quad proxies can be described implicitly
by their rendered view location and footprint in the G-Buffer. Addi-
tional information, such as quad rotation, can be heavily quantized;
fine-grained depth information can always be stored relative to
coarser proxy planes. This approach leads to an exceptionally com-
pact representation and allows for efficient encoding for streaming.
Second, we observe that for finer surface details (stored as surfels),
encoding them in the same domain in which they were sampled is
the most effective, as resampling can be avoided. To enable efficient

storage and reconstruction of this data, we need to be able to con-
struct proxy planes with their rotation from the view location, and
to ensure that surfels can be robustly projected onto them without
artifacts. To this end, we show how to construct the Quad Frustum
Space (QFS) for any rectangular region in a view. In this space, we
can ensure that the coarse proxy planes are oriented so that their
projection fully covers their assigned screen regions, and surfel pro-
jection (fine details) will not introduce major artifacts. This space
also enables efficient quad reconstruction on the client.
Quad surfels from the center view lend themselves to straight

forward packing in a video stream as they fully fill the image; how-
ever, quad proxies from additional views are typically sparse and
scattered in the view. However, due to their design, quad proxies
are easy to pack into a texture atlas: we limit their construction to
power-of-two footprints and thus can pack them into blocks that are
well-suited for standard video encoding. Once received, the client
can render the scene from a novel view by simply rendering all
streamed quad proxies from the novel view location. To reconstruct
the quad proxies in world space, we rely on the QFS in combination
with the inverse view projection matrix of the generating view, and
apply displacement mapping and alpha testing using the surfel data.

4 QUAD PROXY CONSTRUCTION
We process the scene G-Buffer to obtain a set of quad proxies which
capture the scene appearance and geometry and enable rendering of
novel viewpoints within a given view cell. Each quad proxy consists
of two constructs; a oriented 3D proxy planewhich coarsely approxi-
mates the underlying geometry of the scene, and a set of surfels that
capture the scene shading. These surfels optionally store a depth
offset relative to the proxy plane which allows for reconstruction
of fine geometric details. The proxy plane is oriented according
to the normal of the underlying surface it captures. Defining the
proxy plane in a skewed transformation of camera view space (Quad
Frustum Space; Sec. 4.1) enables us to identify an analytical range of
possible plane orientations and to avoid back-facing normals. Fur-
thermore, the orientation of the proxy plane needs to be corrected to
avoid penetration at near or far planes of the view frustum (Sec. 4.2).
The efficiency of our representation is improved by merging (and
by optionally flattening) similar neighboring quad proxies, while
quad proxies that capture large depth discontinuities (e.g. at object
silhouettes) are split (Sec. 4.3). While this approach correctly cap-
tures the scene appearance and geometry for the original G-Buffer
camera view, translating the camera reveals disocclusion artifacts.
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Fig. 4. Computations in view space may result in planes facing away from
the camera (b), especially near the edge of the view frustum. Computing
the quad plane in QFS space fixes this issue (c).

To capture disoccluded content, additional G-Buffers rendered from
proxy views are processed to augment the existing quad proxy set
(Sec. 4.4). The resulting QuadStream datastructure supports trans-
parent objects (Sec. 4.5), lends itself to memory efficient encoding
(Sec. 4.6) suitable for streaming and enables scene appearance and
geometry reconstruction from novel viewpoints (Sec. 4.7).

The most trivial quad proxy is constructed from a single G-Buffer
sample. Assume a G-Buffer is obtained by rendering the scene
with a projection matrix P and view matrix V. Using the depth
𝑑 of the G-Buffer location and the pixel coordinates, we use the
inverse of the projection matrix to recover the clip space coordinates
C =

[
𝑐𝑥 𝑐𝑦 𝑐𝑧 𝑐𝑤

]
of the surfel, which we un-project into

view space by S𝑣 = C × V−1. We therefore use the 3D point S𝑣 and
the G-Buffer normal o to construct the proxy plane in view space.

4.1 Quad Frustum Space
To bound the previously defined proxy plane to the pixel’s extents,
we define the quad frustum as follows. We first recall that under
perspective projection, the view frustum is defined as the pyramid
of planes passing through both the view origin and the near and
far clip planes. For a given pixel in the G-Buffer, we can extend this
construction to speak about the view frustum of a single pixel—the
frustum generated for a small, off-center projection (Fig. 4(a)). Under
projection, the center point of the quad frustum projects exactly
to the center of the pixel, and the corner points project onto the
corners of the pixel. By analogy, we can extend this to larger quads
beyond individual pixels.
Due to perspective projection, the quad frustum in view space

becomes more skewed as it gets closer to the edge of the camera
view frustum (Fig. 4(b)). For any practical perspective parameters,
this may cause some of the surface normals to be back-facing in view
space (see the black surface and its corresponding normal). In order
to restrict the space of possible orientations to only front-facing
directions, as well as to analytically identify a range of possible
orientations, we invert the skew of the view space by operating in
Quad Frustum Space (QFS)—a transformation of the camera view
space which centers the quad frustum around the (0, 0,−1) axis.
The transformation matrix B from camera view space to QFS, as

rotation
correction

zfar

znear

(a) Required correction

α

β

A

B

(b) Rotation limits

γ

(c) Deciding depth 𝛾

Fig. 5. (a) Slanted planesmay penetrate near/far bounds. To identify rotation
limits at given points (b), we compute deciding depth 𝛾 (c).

illustrated in Fig. 4(c) is a shear matrix:

B =


1 0 0
0 1 0
𝑐𝑥
𝑛𝑧

𝑐𝑦
𝑛𝑧

1

 (1)

where 𝑛𝑧 is the near plane distance from the camera (as used when
computing the projection matrix P). For the final transformation
of a proxy plane from viewspace to QFS, we query the viewspace
plane to obtain three points on the plane 𝑝0, 𝑝1, 𝑝2 (one of which
can be 𝑆𝑣 ); transform each point to QFS by multiplying 𝑝′

𝑖
= B × 𝑝𝑖 ;

and finally construct the plane from these three points.

4.2 Orientation Correction
Using the surfel normal from the G-Buffer to orient proxy planes
may result in an extreme orientation, especially when the normal
vector is near-perpendicular to the camera forward vector. Such
slanted planes may penetrate the near and far projection planes
within QFS, and thus may fail to cover the whole projected area.
As we aim for a closed representation for reprojection, this is un-
desirable as it would generate holes during rasterization (Fig. 5(a)).
Furthermore, it would also complicate the process of merging quad
proxies and projecting surfels onto the proxy planes. The maximum
rotation ranges that are allowed for a proxy plane to result in a
fully visible projection depend on the position of the plane in QFS
(Fig. 5(b)). In the following, we describe how we obtain these ranges.

We start by intersecting a ray from the QFS origin in the direction
(0, 0,−1) with the proxy plane, and obtain a pointm that projects ex-
actly to the center of the quad in projection P. As shown in Fig. 5(b),
the rotation limits may be due to the near plane (m = B) or the far
plane (m = A) in QFS, depending on the depth of m. To distinguish
between cases, we can compute the deciding depth 𝛾 by intersecting
the diagonals (Fig. 5(c)). In each case, we can explicitly construct
the two planes in QFS from point m that limit the rotation. Since
the QFS is centered around (0, 0,−1), our rotation range can only
support front-facing orientations and can therefore be transformed
into a 2D \ − 𝜙 subspace of the spherical coordinate system. For
more details please refer to the supplemental material.

4.3 Quad Merging, Flattening & Splitting
Using a simple quadrilateral reconstruction for every texel will lead
to holes appearing between neighboring quads with the smallest
change of view. To close the connection between neighboring quads,
we split each quad into four and consider the depth of neighboring
samples. By linearly interpolating between the quad center sample
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Fig. 6. Proxy plane construction: a) Approximating a surface just from the
pixel; and (b) from multiple samples (surfels) and neighboring pixels. (c)
Example proxy plane constructed for the 7 surfels obtained bymultisampling
in (b). Their exact position is obtained by offsetting their projection by the
distances 𝑑1 – 𝑑7 towards the projection center.

and its neighbors, we adjust the quad corners so that both quad
proxies reach halfway towards the next, and completely close the
holes (see Fig. 6). Splitting a single quad (4 vertices) into four quads
(9 vertices) effectively samples the scene at twice the resolution of
the G-Buffer; by inspecting the neighboring pixels of one quad, we
can offset the corner vertices to close gaps with neighboring quads.
However, neighboring quads should not necessarily meet in all

locations. If a connected region of the G-Buffer depicts a closed
surface, we ideally want to reconstruct that surface with a sequence
of closed quads. If there is a depth discontinuity, we wish to cap-
ture the discontinuity and fill in the potential disocclusion from
other views. To describe where surfels should be joined, we define
a threshold depth offset, 𝛿max, measured in the standard inverse
depth space of the projection. Since we operate on a fixed threshold,
we may still create false positive and false negative seams. While
false positive seams will most often be filled by quad proxies from
additional views, false negative seams may lead to missed disoc-
clusions. We note that as we are operating in inverse depth space,
when distant disjointed neighboring surfaces are wrongly merged,
their parallax from the novel views is relatively small. We found in
our experiments that merging such surfaces into one surface due
to false negative seam detection hardly affects the reconstruction
quality, as we are constructing quad proxies at approximately dou-
ble the resolution of the G-Buffer. Storing and rendering a unique
quad proxy for every texel is infeasible. To improve performance
and reduce memory requirements, we traverse the quad proxies in
a bottom-up fashion in parallel with the goal of merging similar
neighbors, operating on groups of 4 neighboring quad proxies. We
first transform the proxy plane of each proxy from QFS back to view
space by inverting its transformation. If the four planes in view
space are similar, as measured by the difference between their plane
equations, we construct a new quad proxy spanning the joined re-
gion of the four planes. For the proxy plane of the new quad proxy,
we average the normals of the merged planes; we then transform it
by B𝑛𝑒𝑤 of the new larger quad proxy into QFS, and readjust the
depth offsets for each underlying surfel. Furthermore, if all depth
surfels are below a fixed threshold in view space (𝛿flatten), we mark
the quad proxy as flattened, discarding any depth offsets from all

B
        Added

proxies

B

DisocclusionsA                     
                   B

A

Fig. 7. Capturing three disjoint surfaces (yellow, blue, red) as seen from
view A by splitting the corresponding quad proxy into three proxy planes.
Note that their joined projection (left) covers the whole area of the proxy.
Moving from the initial view A to an offset camera position B, holes caused
by disocclusions appear. By rendering a G-Buffer with early rejection from
viewpoint B, we augment the set of quad proxies to cover the disocclusions.

surfels. Such quad proxy will be rendered as a flat quad. Note that
even a flattened quad proxy retains the original shading resolution.

Quad Splitting. During quad proxy construction, if we detect
that a quad proxy contains a seam due to a depth discontinuity,
the underlying surfaces must be described by more than a single
proxy plane, and the underlying surfels have to be assigned to the
corresponding best fitting plane. To this end, we construct a pool
of candidate proxy planes from the surfel pool of the quad proxy.
Each surfel then votes on each plane’s "fitness" to approximate it
by computing its projected distance to the quad plane using the
inverse depth 𝛿max − |𝑑 |. After each round of voting is complete, we
iteratively accept the planes with themost votes until all surfels have
been assigned to a proxy plane. We describe our implementation of
GPU quad construction and splitting in the supplemental material.
The joined projection of all accepted proxy planes fully fills the

projected area of the quad proxy that spawned them (Fig. 7). Surfels
of the proxy plane that do not contribute to the approximated surface
(gray in Fig. 7) aremasked out using a binary alphamask. This allows
us to capture arbitrary shapes with overlapping quad proxies, while
relying on the efficiency of working on quads only.

4.4 Additional Proxy Views
When generating novel views (not coinciding with the center view)
from our quad proxies, any two joined surfaces are geometrically
fully approximated. However, when one quad proxy is split into
multiple proxy planes, viewing them under an offset introduces
disocclusion artifacts due to the parallax effect. We address this by
sampling additional views from within the view cell, and augment
the already constructed quad proxies by constructing only the yet-
uncaptured geometry (disocclusions). To avoid capturing surfels
again, we rasterize the already obtained quad proxies for each proxy
view to pre-fill a depth mask which is then used for quad-based
occlusion culling via warping in the G-Buffer construction (Fig. 7).

Even for scenes with high disocclusion complexity (e.g. groups of
thin disjoint geometric structures), offsetting views within a view
cell produces sparsely occupied G-Buffers (Fig. 8.) Using previous
quad proxies as warped occluders for culling not only reduces the
number of generated quad proxies, but also reduces the additional
shading load on the server. To generate consistent shading, we shade
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(a) Center view

(b) Left-shifted proxy view (c) Right-shifted proxy view

Fig. 8. (a) The thin fence structures in the Viking Village scene lead to many
disocclusions. (b, c) The additional view samples from within the view cell
supply the disoccluded areas. Note that the added data is sparse, yet vital
to avoid disocclusion artifacts during novel view generation.

view-dependent effects exclusively from the center view. While
view-dependent shading (e.g., specular lighting) will be slightly off
for non-center view locations, it will be consistent among all quad
proxies. We note that the human visual system is not sensitive to
small mismatches in view-dependent shading [Mueller et al. 2021].

After constructing quad proxies for all proxy views within a view
cell, we optionally construct one more G-Buffer—a low-resolution
wide FOV projection of the whole view cell range, providing low
resolution information for large and unexpected camera rotations.

4.5 Transparency
While our previous description only focuses on opaque surfaces, our
approach extends to scenes with transparency provided that the G-
Buffer construction is deep and contains multiple texels per pixel. By
capturing a surfel’s alpha, semi-transparent surfels captured in each
texel in the G-Buffer can contribute to the quad proxy construction
in the same manner as full-opaque surfels do.

4.6 Storage and Encoding
Our data structures are designed with streaming in mind; our key
design criteria is that they must both have a low memory footprint
and allow for efficient encoding. The streamed data packet for a
frame consists of three main parts: a set of view descriptors to store
the matrices for each used view; the surfels; and the quad proxies.

We pack the surfel data in an atlas texture on the server, divided
into three data streams for color, depth, and alpha (if used). The color
is transmitted with an h.264 YUV420 encoding. The depth offset of
each surfel is stored relative to the proxy plane and thus compresses
well. For depth encoding, we use the technique of Koniaris et al.
[2018]; as they suggest working on differently sized quadratic blocks,
we can apply them directly to our quad proxies. In our experiments,
we either reached or surpassed their compression rate of 15×, which
is likely due to the fact that our quad proxies are designed to capture
parts of closed surfaces and are not limited to cells of a quad tree.

} } } }flat depth(32) ϕ (8) θ (8)

...
x, y(24) }size(5)}offset(24)

alpha

... ............

Fig. 9. Layout of packed quad proxy meta data (with bits per component).

The quad proxies constructed from opaque and alpha-clipped
materials have the alpha expressed as a 1-bit mask, stored using
run-length encoding and following a Hilbert curve in every quad.
Blend materials store a 8-bit alpha. To exploit temporal coherence
in the alpha stream, we compare direct run-length encoding to
delta-encoding (where 1 indicates a bit flip) of the corresponding
block in the previous frame; choosing the smaller of the two allows
us to raise compression ratios from 15× to about 25×. If there is
no matching previous frame block (i.e. because quad merging has
changed), we use the direct run-length encoded data.

We pack quad proxy metadata as follows. Since we perform hier-
archical merging, only a limited number of quad sizes are possible,
all of which are a power of 2 (up to 1024, or 5 bits). We pack the
spatial 2D coordinate of a quad proxy in the G-Buffer into 24 bits
(assuming a pixel space of 4096 × 4096, i.e. 2 × 12 bits per axis). The
surfel data requires offsets into the aforementioned data streams;
for each such stream, 24 bits are sufficient. Each proxy plane is
described by its orientation, which is stored as a spherical angle in
\, 𝜙 space; we quantize this using the diamond shape approximation
with 8-bit precision per axis. We store the proxy plane depth with
32 bit precision, as the plane depth offset is the most crucial part
for correct geometry reproduction. We reserve 1 bit for recognizing
flattened quads (without any geometry offset for any surfels), and 1
bit for knowing whether any of their surfels have alpha < 1 (Fig. 9).

4.7 View Reconstruction
To use the streamed data package on the client for novel view extrap-
olation, we render the received quad proxies as standard forward
rendered primitives. For each primitive we load the matrices describ-
ing the proxy view that spawned it, and reconstruct the quad planes
with per-surfel offsets unprojected in world space. The geometric
detail of non-flattened quads can be reconstructed using tessellation
or mesh shaders, where offsets for each vertex can be computed.
Alternatively, the proxy plane can be treated as planar billboard and
ray marching can be used to compute displacement mapping in a
fragment shader. The final shading color is then loaded from the
atlas via texture lookup. We discuss details of our reconstruction
including handling of transparency in the supplemental material.

5 EVALUATION
We evaluate QuadStream via a thorough comparison against prior
art on consumer-grade PC hardware, and further assess its perfor-
mance on a mobile thin client device (an Oculus Quest 2 with Snap-
Dragon XR chip). We compare our QuadStream approach against
two recent methods for streaming rendering: Shading Atlas Stream-
ing (SAS) [Mueller et al. 2018] and SnakeBinning (SB) [Hladky et al.
2021]; we also compare against MeshWarping (MW) [Mark et al.
1997], since this approach also approximates the geometry and ap-
pearance from a G-Buffer, is easily adapted for streaming rendering
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(a) Robot Lab, 472kΔ (b) Viking Village, 4.6MΔ (c) San Miguel, 9.96MΔ

Fig. 10. Still frames and triangle count (Δ) for the tested scenes, which we
render with deferred shading, cascaded PCF shadow maps, environment-
map lighting and tone mapping.

and can be tuned for the highest quality rendering by using a very
fine mesh. For comparison purposes, we use the same scenes as
SAS and SnakeBinning: Robot Lab (Fig. 10a) and Viking Village
(Fig. 10b) and extend this set of scenes with the more challenging
San Miguel atrium (Fig. 10c). Robot Lab is a small indoor scene with
relatively coarse geometric structures, simple geometry, and view-
independent shading. Challenging areas include thin structures,
such as the railing and stairs. Viking Village is a larger outdoor
scene with simple shading, but frequent disocclusions and varying
geometric detail: the fences and pole structures are thin and lead
to multiple visibility layers, the roofs consist of many slanted tri-
angles, and skulls are modeled with an excessive amount of detail.
San Miguel is a large and complex model of a courtyard with semi-
transparent glassware, thin structures and ample vegetation, where
each leaf is individually modeled. The water, glass, and metal parts
include heavily view-dependent shading.

The streaming rendering pipeline was emulated on a device with a
Intel Xeon-E5 2643CPU with 32 GB RAM and an NVIDIA RTX 3090;
methods were evaluated on a pre-recorded camera path. To simulate
real use cases, the client framerate is decoupled from the server
framerate in all our measurements. In the walkthroughs, all methods
render frames using the last received server data. Server prediction
uses the camera’s linear and angular velocity and acceleration; the
client receives the server data structures at a delay, due both to the
variousmethods’ computation time + a simulated network latency of
10.00ms ± 4.00ms. This forces the client to always perform a "novel
view extrapolation" from the server data structure, as the client
viewpoint almost never coincides with the center of the server frame
(except when the movement prediction is very accurate, e.g. when
the client is still). We encode the shading atlas RGB channels using
a nvenc h.264 stream. To evaluate our complete system performance,
we gather 570 frames along a simulated camera path. We use three
different view cell sizes, with 30, 60, 90cm translation and a rotation
range of 100, 120 and 140◦. For our approach, we use the center view
on the camera path and one proxy view from each corner of the
view cell. To simulate non-ideal prediction, we randomly sample 25
views in the cell as client view and average resulting quality.

5.1 Algorithm Parameters and Setup
We use the following parameters for our approach. We set 𝛿max =

10−4 in inverse depth space; 10−2 as plane similarity threshold,
the early Z rejection offset to 10−4 and the flattening threshold
to 𝛿flatten = 10−1. All renderings are performed at 1920 × 1080
resolution. Our view sampling starts with the center view, followed
by the front views of the view cell in clockwise order, followed

by the back views, again in clockwise order. Finally, we gather an
additional proxy at the center view with increased field of view
(170◦), but at a lower resolution of 1280 × 720. While the final view
does not increase quality in our testing, as only views in the view
cell are sampled, we include it to capture real system load.

While our approach captures the data for disocclusions through
quad proxies from the proxy views, SAS and SB require an explicit
potentially visible set (PVS) computation, which provides a list of
scene triangles to be shaded and packed into their atlas streams. To
obtain the PVS for these methods, we rasterize the same views as
in our approach at 1920 × 1080, and store the triangle indices in the
frame buffer. We then run a gathering pass over the entire screen,
mark the triangles and compute their largest footprint among all
views to determine the target size in the atlas.

All methods operate on a 4096 × 4096 texture atlas. SAS is able to
dynamically adjust the shading rates to fit within these boundaries.
Their atlas texel occupancy threshold was set to 75%, as higher
values caused an atlas overflow on rapid view offsets. Atlas reset
occurred every 5 frames and the shading factor grow/shrink was set
to 110/90%, respectively. SB, which was originally evaluated with
8192 × 8192 atlas by the authors, needed parameter adjustments
to avoid overflow: 𝛼 was set to 15–90◦, 𝛽 5–60◦ and height 1–256,
using 10% extra allocation, while setting the height scaling factor to
0.55. MW captures the scene from a single 3840 × 2160 view at the
center of view cell, with FOV set to encompass supported camera
offset ranges. Thus, the center view stays true to client resolution.

5.2 Performance
Timing results are shown in Tab. 1. For QuadStream, time spent on
the server is approximately equally split between G-Buffer gathering
for the nine views, and overall construction time. On average, each
G-Buffer pass takes about 3-4 ms; the first pass is the most expensive
(about 10 ms in Robot Lab and Viking Village, about 35 ms in San
Miguel), as the majority of shading is evaluated from the center
view. Rendering the wide field-of-view proxy takes about half of the
first G-Buffer pass time. The remaining time is split evenly between
the corner views, which only add small disocclusions and thus are
more efficient to generate and shade. Quad proxy construction time
exhibits similar behaviour: the first view consumes the most time,
as it generates the majority of the quad proxies—roughly 10 ms; the
wide field of view requires about 5 ms; and every additional corner
view takes 1–2 ms. Merging and flattening of the quad proxies
(M & F) is very efficient, with little difference between run times
for Robot Lab and Viking Village. San Miguel exhibits longer G-
Buffer generation times due to the sheer amount of geometry, and
also requires more time for other stages due to large amounts of
disocclusion and masked rendering of the foliage. The increase in
samples is modest considering the complexity of the foliage and
added transparent objects.
The main factor impacting our speed is the resolution of the G-

Buffers. Our server achieves speeds of 70–90 ms per frame for the
simpler scenes, and approximately double the cost for San Miguel.
We gather approximately 340k quad proxies per view cell for Robot
Lab, 460k for the Viking Village and 770k for San Miguel, of which
typically 90–95% are flattened (i.e. no depthmap is actually necessary
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Table 1. The measurements of our method, averaged over 570 frames in a walkthrough. The main cost of our approach is G-Buffer generation and quad
proxy construction. Merging and Flattening (M & F) hardly contributes to the overall runtime. SB and SAS require similar runtimes when PVS generation is
considered. As our method performs displacement mapping on the client, it requires more client processing power. We note that our approach is independent
of the scene geometry and thus sample count hardly changes for RL and VV, even when the view cell count (VC1-3) is increased. SB and SAS need to capture
significantly more samples. For San Miguel (SM), both SAS and SnakeBinning failed to render the scene correctly due to its geometric complexity. We omit
comparison results as these methods fail to render large portions of the frame.

Scene & Our method Sampled SnakeBinning Shading Atlas Streaming Mesh Warping
Viewcell G-Buffers Construct M & F Samples Client PVS Gather Samples Client Gather Samples Client Gather Samples Client

RL-VC1 29.49 ms 34.98 ms 1.73 ms 6.60 M 0.73 ms 41.31 ms 29.70 ms 5.32 M 0.10 ms 46.82 ms 10.51 M 0.49 ms 15.97 ms 8.29 M 1.50 ms
RL-VC2 31.83 ms 35.10 ms 2.11 ms 7.43 M 0.80 ms 44.38 ms 37.38 ms 5.91 M 0.10 ms 49.65 ms 10.64 M 0.53 ms 15.34 ms 8.29 M 1.57 ms
RL-VC3 33.01 ms 35.80 ms 1.97 ms 8.87 M 0.87 ms 50.01 ms 41.11 ms 6.58 M 0.11 ms 52.21 ms 10.97 M 0.58 ms 15.06 ms 8.29 M 1.52 ms

VV-VC1 38.10 ms 39.58 ms 2.19 ms 6.15 M 0.80 ms 63.02 ms 17.83 ms 7.45 M 0.12 ms 35.01 ms 10.31 M 0.38 ms 10.00 ms 8.29 M 1.59 ms
VV-VC2 40.21 ms 41.79 ms 2.43 ms 6.80 M 0.84 ms 65.37 ms 20.05 ms 8.02 M 0.14 ms 38.73 ms 10.50 M 0.43 ms 11.12 ms 8.29 M 1.58 ms
VV-VC3 43.35 ms 45.00 ms 2.88 ms 7.55 M 0.94 ms 70.33 ms 24.71 ms 8.94 M 0.15 ms 43.27 ms 10.97 M 0.53 ms 11.14 ms 8.29 M 1.59 ms

SM-VC1 77.12 ms 88.03 ms 5.29 ms 9.34 M 1.11 ms 143.10 ms - - - - - - 51.10 ms 8.29 M 1.59 ms
SM-VC2 83.45 ms 93.73 ms 5.97 ms 11.94 M 1.54 ms 149.32 ms - - - - - - 51.92 ms 8.29 M 1.59 ms
SM-VC3 91.33 ms 95.41 ms 6.73 ms 14.29 M 1.75 ms 154.47 ms - - - - - - 50.91 ms 8.29 M 1.59 ms

for fine detail reconstruction). Interestingly, the ratio of flattened
proxies is about the same for all scenes; we note that in San Miguel
the quads tend to be smaller and we also more aggressively flatten
them to keep geometric complexity bounded.

Performance Comparison vs. Prior Art. Compared to SB and SAS,
server runtimes are roughly similar when the costs of sampling a
PVS are included. PVS sampling times are actually slightly higher
than our G-Buffer gathering times in the Robot Lab and Viking
Village, as they require a full screen harvesting pass and compaction
of the data for forwarding to the next stage. In San Miguel, the
difference is even bigger, as our GBuffer uses the quad proxies
for early-z masking, while sampled PVS requires full geometry
processing per each view. The gathering stages for SB and SAS
depend on the amount of geometry and clearly increase with view
cell size, showing their clear dependence on the geometric resolution
of the scene. The downside of geometry-based approaches such as
SB and SAS becomes clearly apparent for San Miguel: due to the
sheer amount of fine granular geometry and the large amount of
disocclusion events in the scene, both methods want to capture
more geometry than fits into the atlas. We were unable to tune SB
or SAS to shade an entire frame; the additional samples required
around individual triangles and borders led to out of memory errors,
rendering a comparison pointless as large portions of the frame are
not shaded. Our approach, on the other hand, is independent from
geometric resolution; our performance only depends on the size
and distribution of disocclusions. MW performance is stable, as it
simply renders a single RGBD map of the scene. On the client side,
MW performs a warp of the captured RGBD image at full resolution.
Spawning and warping 3840 × 2160 quads is a significantly higher
workload than other client stages, and requires the most client
runtime. We also experimented with reducing the MW vertex grid
from 3840 × 2160 down to 160 × 68 (i.e. 32 × 32 pixel quads). This
lowered the client times from 1.5 ms to 0.4 ms, but caused severe
visual artifacts (see supplemental video). Thus, we performed the
MWwalkthroughs with a 3840×2160 vertex grid for highest quality.

Sample Rates vs. Prior Art. The most important criterion for eval-
uation is the number of samples generated by all methods. Our
sample counts are mostly independent of view cell size and, espe-
cially for the Viking Village, are much smaller than both SB and
SAS. Even for San Miguel, our increase in samples stays within
reasonable bounds, although the the foliage results in a severely
high number of disocclusions. We also note that we add about 30%
of samples from our increased field of view proxy, which is not
part of the other method’s potentially visible set: when comparing
against SB and SAS, this fact underlines our efficient use of samples.
We attribute this fact to the shading cost of SB and SAS being based
on scene geometry; even if only small parts of a triangle become
visible, the entire triangle (SB) or entire patch of triangles (SAS)
must be packed into the atlas and shaded. Furthermore, the borders
of these primitives require additional treatment.
As we do not have a mobile implementation for the competing

methods, we also run the client implementation on our desktop
machine. Our client performance is slower than simple texture
mapping of large geometry, as performed by SB and SAS; this is
due to performing displacement mapping on a very fine geometric
level for non-flattened quad proxies, where we use mesh shaders to
generate two triangles per pixel and displace them geometrically.We
also run an order-independent transparency algorithm to smoothly
blend masked quad proxy surfels (see supplemental material for
details.) Nevertheless, we can render novel views at speeds of up
to 1000 fps; we note that this is a prototype and that a commercial
QuadStream implementation could likely be further optimized.

5.3 Thin Client Rendering
We implemented and recorded performance measurements of Quad-
Stream on a commercially available thin client, on the Oculus Quest
2 VR headset. The Quest 2 is capable of achieving its 72 FPS target
framerate at the suggested eye resolution (1440×1584) while ren-
dering as many as 700k–1M triangles each frame with our method.
Please refer to the supplemental material and video for details.
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Table 2. Image quality measurements for walkthroughs at 1920×1080 reso-
lution. For both DSSIM and FLIP lower is better. Please compare results with
Tab. 1: achieved quality in relation to needed samples favors our approach.

Scene DSSIM FLIP
and PVS Ours SB SAS MW Ours SB SAS MW

RL-VC1 0.01 0.04 0.03 0.04 0.024 0.067 0.049 0.052
RL-VC2 0.01 0.04 0.03 0.07 0.025 0.067 0.054 0.075
RL-VC3 0.01 0.04 0.04 0.09 0.027 0.067 0.063 0.103

VV-VC1 0.02 0.03 0.02 0.04 0.027 0.048 0.037 0.052
VV-VC2 0.02 0.03 0.02 0.07 0.029 0.048 0.041 0.079
VV-VC3 0.02 0.03 0.03 0.09 0.03 0.049 0.047 0.097

SM-VC1 0.06 - - 0.11 0.072 - - 0.098
SM-VC2 0.07 - - 0.14 0.078 - - 0.159
SM-VC3 0.08 - - 0.2 0.082 - - 0.231

Exploring the Robot Lab (about 360k quads) on the Quest 2 with
our approach, the framerate never dropped below 72 FPS. For views
completely filled by scene geometry, we achieved an average frame
rate of 78–80 FPS. The stream of San Miguel (680k quads) achieved
frame rates fluctuating between 42 and 51 FPS due to the high
geometric load. However, in this case the Quest 2 can still produce
seamless visuals by doubling the framebuffer update interval, i.e.,
using asynchronous timewarping for every second frame.

5.4 Quality
Novel view generation quality results are summarized in Tab. 2, and
an example view is shown in Fig. 11 and 12 . Please zoom in to the
figures to see details; additional high-resolution images are provided
in the supplemental material. As can be seen, our approach produces
the best quality for all scenes by a significant margin. Considering
the actual number of shading samples gathered and transmitted to
the client, the advantage of our method is further emphasized. While
ours uses less than 9 MPix in the Robot Lab and less than 8 MPix in
the Viking Village, SAS uses 10 MPix in both Robot Lab and Viking
Village. SAS adaptively adjusts its shading rate until it either hits the
atlas occupancy threshold or achieves full shading rate. For all view
cell sizes it reaches approximately the same atlas occupancy, hinting
that in order to achieve full shading rate a larger shading atlas would
be needed. As SAS operates on patches of up to three triangles,
it tends to spread its shading samples inefficiently, especially for
slanted geometric structures. Compared to our method, SB gathers
fewer samples in RobotLab and more samples in the Viking Village.
Tab. 2 shows that SB achieves marginally worse quality than SAS,
while gathering significantly fewer shading samples. We selected
the binning configuration that achieved the best shading quality
without atlas overflow; yet on average it uses only up to 60% of the
available atlas space. This is partly due to the fixed block layout
of the bin "snakes", and partly due lock-in of all parameters for
a single setup. Our results indicate that a more dynamic binning
approach could make SB more effective, however it is unclear how
this would interfere with its temporal coherence. For San Miguel,
QuadStream can still operate with a 16 MPix atlas, whereas both

(a) Novel view of San Miguel (b) Details ground truth | Ours | MW

(c) FLIP Ours (d) FLIP MeshWarping

Fig. 11. Example frames from San Miguel walkthrough. The MeshWarping
(MW) disocclusion artifacts are significant (e.g. on the doorway frame and
chair seats) despite running at full geometric resolution (3840 × 2160).

SB and SAS run out of space. While SAS tries to scale down all
patches, it still runs out of memory due to its minimum patch size.
SB does not have a mechanism to dynamically adjust its memory
requirements. Running QuadStream on San Miguel using the initial
quad construction parameters resulted in a very fine grid even for the
smallest viewcell (VC1), counting 1.3M quad proxies, 14 M shading
samples, with the client rendering at 2 ms and 0.06 DSSIM. After
tuning the parameters to encourage stronger flattening and merging
(increasing 𝛿flatten to 1 and plane similarity threshold to 10−1), we
achieved 770 k quad proxies with 9.34 M shading samples with
client rendering at 1.11ms and 0.07 DSSIM. MW does not handle
disocclusions in any form and therefore achieves the worst image
quality. Given the same shading atlas space, all compared methods
achieve worse quality than ours.

Fig. 12 highlights the visual quality of the respective approaches.
SAS distorts samples due to the way they map scene geometry
into rectangular blocks in their atlas. Slanted triangles, long thin
geometry, and even very large triangles (due to limitations in atlas
block size) lead to very different sample distributions in the atlas
than what is required during rendering; thus artifacts are distributed
over the entire view. SB follows the triangle size of the reference
view to capture shading; however, as triangles are binned, slanted
triangles (like on the railing) still lead to distortions. We further
note that borders are required around each individual triangle for
bilinear interpolation, leading to significant waste of samples for
scenes with high geometric complexity (like the Viking Village and
San Miguel). In contrast, our quad proxies are constructed from
the individual G-Buffers, and thus are completely independent of
the scene geometry. Nevertheless, novel views for thin geometric
features such as the railing and the wires in the RobotLab and the
chairs and tables of San Miguel also lead to small artifacts. This is
not surprising as we resample the scene from the G-Buffers; thus
our reconstruction is limited by the sampling frequency.
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Fig. 12. A comparison of the novel view renderings for all tested methods: QuadStreaming (ours), Snake Binning (SB), Shading Atals Streaming (SAS) and
MeshWarping (MW), with detail closeups. FLIP [Andersson et al. 2020] perceptual error was used, measured against ground truth for the novel view. Note
that we both require significantly fewer samples than previous methods, while also improving on FLIP error vs ground truth for these novel views.

Transparency. We note that, unlike prior methods, QuadStream
correctly handles the transparent glasses, the masked foliage, and
the transparent water surface in San Miguel. This is possible as
we support masked and transparent quad proxies by default. The
primary complication is that the server must generate a deep G-
Buffer in order to take the layers of transparent objects into account.
Our approach encounters the most issues when multiple thin trans-
parent layers coincide and wrap around, as with the transparent
glasses (Fig. 13); in this case, it is nontrivial to reconstruct closed
proxies that look correct under novel view points. Nevertheless,
we are the only approach that can stream transparent geometry
and handle alpha-masked foliage correctly. Our prototype imple-
mentation resolves the transparency in order-independent manner
and bakes the resulting transparent color on top of the frontmost
semi-transparent surface. Constructing the quad proxies through
fragment list traversal is an interesting alternative to the presented
construction based on G-Buffers, which we leave for future work.

5.5 Memory footprint & Integration
The PVS size for a viewcell mainly depends on the scene geomet-
ric complexity, while the QuadStream size mainly depends on the
resolution of the G-Buffers. As can be seen in Fig. 14, scenes that
contain only a few objects modeled with near pixel-sized geome-
try (e.g. Robot Lab and Viking Village) the Quadstream geometry
representation achieved higher memory footprint than the sampled
PVS. However, the dense concentrations of high geometric com-
plexity regions in San Miguel (foliage) capture a very high amount
of triangles in the sampled PVS. For such cases the QuadStream
representation achieves lower memory footprint compared to the
smapled PVS. The Quadstream method can be integrated with any
renderer that uses a visibility (or G-Buffer) pass and shades on top
of it. This fits e.g. Nanite-style [Karis et al. 2021] rendering, which
would hardly be possible with geometry-based approaches.
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(a) Transparent / Opaque G-Buffer (b) Client View (FLIP error inset)

Fig. 13. We process opaque and transparent geometry in separate GBuffers.
The resulting transparent color is mixed in an order-independent manner
and baked on top of the frontmost semi-transparent surface.

6 CONCLUSION
We present QuadStream, a novel method for streaming geometry
and shading information from a server to a thin client that allows for
rendering from novel viewpoints and is robust against disocclusions.
Our key idea is to decompose the scene into quad proxies, or view-
aligned quads sampled from multiple views. In our experiments,
QuadStream achieves superior quality compared both to streaming
methods that rely on video data, and to geometry-based streaming.

Limitations. QuadStream does not attempt to address lighting ef-
fects that are view dependent such as specular highlighting, where a
change to a novel view in the view cell may cause a change in high-
light position. In practice, we find that small discrepancies between
correct specular highlights from a novel view and our reconstruc-
tion under a novel view are not noticeable; however, this remains an
important area for future work in cloud rendering. While we could
show that QuadStream also supports transparency, large numbers
of transparent fragments can lead to arbitrary increases in the data
load. Especially, transparent particle systems may generate many
disconnected small fragments, which will result in disjoint small
quads. In theory we could merge particles into larger quad prox-
ies. However, this requires further research into adaptive merging
strategies which still result in acceptable novel view renderings
under camera offsets.

QuadStream introduces visual artifacts around object boundaries
and silhouettes with a similar appearance to aliasing. These artifacts
are a side effect of our quad splitting strategy (Fig. 7); splitting a
quad proxy introduces alpha-masked surfels at silhouettes even for
fully opaque surfaces, and when the projection of multiple split
quad proxies (constructed from multiple proxy views) coincides in
the client view, transparency mixing may result in incorrect visuals.
While these artifacts can be masked by temporal or morphological
anti-aliasing on the client, improving reconstruction at quad splits
remains an important area of future research.

Future Work. QuadStream opens up a number of areas for inter-
esting future work. An important first extension to our method is
the use of temporally stable atlases, in which we maintain running
updates to the view cell and only stream those portions of the atlas
that the server believes have been invalidated since the last client
update. It would also be interesting to combine our quad-based tech-
nique with other forms of approximate geometry representation,
such as imposters. Finally, while we are robust to disocclusions
due to our rendering of novel viewpoints, we do not guarantee
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Geometry representation: PVS Triangles vs. QuadStream

PVS triangle count Quadproxy count PVS data size Quadstream Data size

Fig. 14. Average PVS size, together with average quad proxy count for the
tested configurations. QuadStream offers memory savings over a triangular
PVS for viewcells containing more than 220K triangles. This fits the current
trend towards pixel-sized geometry (e.g Unreal Nanite [Karis et al. 2021]).

that every disocclusion possible is rendered with a fixed degree
of accuracy. In the future, we may seek to refine our sampling of
disocclusions, or to optionally reconstruct disocclusions on the thin
client with a combination of novel viewpoint quad proxies and a
machine learning-based infilling approach.
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