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Abstract: Model-order reduction techniques allow the construction of low-dimensional
surrogate models that can accelerate engineering design processes. Often, these techniques
are intrusive, meaning that they require direct access to underlying high-fidelity models.
Accessing these models is laborious or may not even be possible in some cases. Therefore,
there is an interest in developing non-intrusive model reduction techniques to construct low-
dimensional models directly from simulated or experimental data. In this work, we focus
on a recent data-driven methodology, namely operator inference, that aims at inferring the
reduced operators using only trajectories of high-fidelity models. We present an extension
of operator inference for mechanical systems, preserving the second-order structure. We
also study a particular case in which complete information about the external forces is
available. In this formulation, the reduced operators having certain properties inspired
by the original system matrices are enforced by adding constraints to the optimization
problem. We illustrate the presented methodology using three numerical examples.

Keywords: Non-intrusive modeling, model-order reduction, operator inference, mechani-
cal systems, structure preservation

Novelty statement: In this work, we extend the operator inference methodology to
the second-order system structure, considering two cases. In the first case, we obtain
the system operators from the input, state, and derivative information and prove their
asymptotic closeness to the intrusive reduced operators. In the second case, we assume
the external force information to be available and obtain the system operators, preserving
their symmetric positive definite properties.

1 Introduction

Mathematical models of mechanical systems describe their dynamic behaviors and robustness, allowing
to anticipate the state of the system under the influence of certain external factors. Mechanical models
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can be designed in various ways, depending on the goals pursued and the system type. Dynamic behav-
ior of interconnected rigid or flexible bodies can be analyzed using multibody system formalism [22]. It
is widely used in robotics, vehicle dynamics, and for different types of mechanisms to characterize the
motion, e.g., to obtain trajectories, critical speeds, etc. The modeling is based on representing a given
system as a number of solid bodies which are connected with joints or force elements. The governing
system of ordinary differential (-algebraic) equations is derived using Lagrange’s equation followed via
the D’Alembert principle.
On the other hand, if the dynamic behavior of a continuous object is of interest, methods from solid

mechanics can be utilized. They allow one to identify the displacements, inner stresses, and strains of
the structure [1]. Considering the general physical principles common to all media, such as the balance
of energy, the conservation of mass and momentum, etc., the governing equations are often derived
either in integral or differential form. The latter form is essential for most structural analysis problems.
It comes as a partial differential balance equation, which is assumed to be satisfied at every point of
the field of interest. The central part of continuum mechanics consists of the additional constitutive
equations, which define the material law. Together with the local balance equation, they allow to
completely describe the inner stress-strain state of an object [36]. In practice, numerical solutions of
the governing partial differential equations (PDEs) are arguably most often computed by the finite
element method (FEM) [61], which provides a spatial discretization of the solution field and leads to
a system of second-order ODEs with specific mechanical properties.
All these are accompanied by the development of new dynamic and material models, solution meth-

ods, simulation software, and at the same time—model-order reduction (MOR) methods. Increasing
simulation costs while carrying out engineering design gives rise to the necessity of having surrogate
models with lower complexity yet acceptable accuracy. The construction of the lower dimensional mod-
els is typically done by projection-based MOR methods. The main idea is to find a low-dimensional
subspace of solution-trajectories and project the system operators onto these subspaces; see, e.g.,
[11, 30, 34] for the details.
There exist many well-known reduction methods that can be efficiently applied for mechanical

systems, such as modal truncation [20], moment matching [5, 9, 24], and balanced truncation [16, 41].
These methods rely on constructing projection matrices with a particular focus. For instance, balanced
truncation aims at determining the projection matrices containing the subspaces that are easy to reach
as well as easy to observe. In [50], an overview and a comparison of many such methods for linear
mechanical systems are provided with applications to a high-dimensional robotic fishtail model. It is
worthwhile highlighting a snapshot-based approach, namely Proper Orthogonal Decomposition (POD),
where a projection matrix or reduced basis is constructed from the state snapshots of the full model.
This method utilizes an orthogonal basis for representing the given data in the least squares optimal
sense [12, 34, 35, 39].
In the engineering literature, common reduction methods are based on dividing the generalized

system coordinates into master and slave coordinates. This interpretation reflects the intuitive back-
ground of all reduction methods — that is, some parts of the system of equations may be unimportant
for the system dynamics and thus can be omitted. Historically, Guyan reduction [29] was the first
important technique in this category. This method is also known as static condensation because it
does not take into account dynamical effects and provides exact results for static simulations. For
dynamical simulation, meaningful results are possible only for the loading frequency range close to
the lowest eigenfrequencies of the system; otherwise, the results are too stiff [23]. Guyan reduction
forms the basis for other more advanced methods, such as Craig-Bampton reduction [19], Improved
Reduction System (IRS) [26], and System Equivalent Reduction Expansion Process (SEREP) [51].
These methods have improved accuracy due to the consideration of the eigenmodes of the omitted
system as in Craig-Bampton reduction, or due to the approximation of the inertia forces as in IRS and
SEREP.
All these mentioned methods require access to the system operators. Thus, these methods are

referred to as intrusive ones. However, in many scenarios, obtaining a full-order model in an explicit
form can be very laborious or may not even be possible in many scenarios. Experimental measurements
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can also characterize a mechanical system, where the actual model behind the experiment may be
unknown. Not only these, but very often, simulations of structural, dynamical processes are done
via commercial software, and the governing equations are impossible to extract. Therefore, there is
considerable interest in constructing potentially low-dimensional models in a non-intrusive way using
only data that are either obtained using simulations or experiments. In this process, we explicitly
eliminate the need for the full-order model but leverage the model hypothesis, which can either be
known empirically or given by experts.
In recent times, many non-intrusive reduced-order methodologies have been developed. Often, linear

dynamical models can be learned using data either obtained in the time domain or frequency domain.
The construction of reduced-order models using frequency domain data has been originally developed
for first-order and extended to second-order systems (that often arise in mechanical systems): the
Loewner framework [10, 40], the vector-fitting [28, 59], and the AAA algorithm [27, 43] are instances
of frequency-domain reduced-order modeling approaches. There exist several methodologies to learn
models from time-domain data. A widely used method for learning discrete-time systems is Dynamic
Mode Decomposition (DMD) [17,53,57], which is an attractive reduction technique related to Koopman
operator approximation. The basis of this method is collecting data from a dynamical system and
solving a minimization problem to find the linear system operator.
Another method introduced for first-order parametric systems in [48] is operator inference which

uses hypotheses based on the structure of the PDE level. The essence of the method is learning the
unknown operators using the data compressed to a low-dimensional subspace, followed by solving a
least-squares problem. Several extensions of operator inference to parametric and nonlinear systems
can be found in [8,49,60]. Although the operator inference approach was developed for continuous-time
systems, it shares an analogy to the DMD approaches.
Most operator inference methods focus on learning first-order ODE systems with a prior hypothesis

on the form of the model. However, mechanical systems are distinguished by the second-order specific
ODE structure, where system matrices also have a physical meaning. Although second-order ODE
systems can be transformed into their first-order companion form, it, first of all, leads to the system
being twice as large as the original one; secondly, a subsequent naive reduction of these systems not
only violates its original structure but also can lead to non-physical behavior. Therefore, we focus on
preserving second-order structures in the learning process to obtain better interpretability. We mention
the recent attempt in the direction in [54], where the operator inference methodology is described for
Lagrangian mechanical models. Therein, the Lagrangian approach to derive the governing equations is
presented, together with the formulation of operator inference that preserves the second-order structure
and symmetric positive definite (s.p.d.) properties of operators. The methodology in [54] is presented
for the particular case, when the reduced system mass matrix is equal to the identity. In this paper, we
present the work in a similar direction. The operator inference procedure is tailored to the mechanical
system structure, focusing on the data obtained from the FEM simulations. Firstly, we propose
an extension of the operator inference approach to obtain second-order dynamics. We discuss the
connection between the inferred operators and the matrices obtained via intrusive POD reduction.
Then we tailor the learning process for the case when the external loads are completely known and
develop the operator inference approach with additional constraints in order to enforce the reduced
operators to be symmetric positive definite 1.
The remainder of the paper is organized as follows. Section 2 briefly presents an overview of con-

tinuum mechanics and the derivation of FEM governing equations. Section 3 gives the information
about the available data and the time-integration algorithm. Section 4 briefly explain the intrusive
data-driven POD method. Section 5 represents the operator inference for mechanical systems in the
simplest form and its constrained version. Finally, numerical results are presented in Section 6 to
illustrate the proposed methodologies. We provide our outlook in Section 7.

1We note that the work presented in [54] paralleled our research, of which a first idea was contained in [6]. This
development happened independently without both groups knowing of the work of the other.
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2 Continuum mechanics and finite element formulation

In this section, we shall briefly review the equation of motion from the continuum solid mechanics
viewpoint. The primary interest of solid mechanics is the response of an object to the forces that
are acting on it, namely, the identification of the displacement field and stress-strain state. All the
characteristic quantities are connected through the kinematic and constitutive relations, and can be
found in the solution of local impulse balance PDEs. These concepts are explained in the continuum
mechanics literature [1, 13, 36].
Next, we present the spatial discretization of the solution domain using the finite element method

(FEM). It is a widely used approach for solving structural mechanics problems and is implemented
in many powerful simulation packages, which are predominantly used in engineering practice. More
detailed description of the FEM can be found, e.g., in [21,37,61]. In this paper, we focus on the small
deformation theory and linear elastic material law, which cover a wide range of structural mechanics
problems.
Consider an object that is exposed to external forces. The various displacements of the body are

described at each point by values in the corresponding coordinate directions x1, x2, and x3 gathered
in the displacement vector

x⊤ = [x1, x2, x3] .

If the body is not rigid, displacements appear together with the changes in size and shape of an object,
called deformations or strains. We assume that deformations are sufficiently small (less than 5%) and
connected with displacements via kinematic relations, forming a symmetric Cauchy-strain tensor ε as
follows:

ε =
1

2

(
∇x+ (∇x)

⊤
)
. (1)

For more significant deformations, the symmetry of the strain tensor cannot be assured because of the
different formulations in the Lagrangian and Eulerian coordinate systems [1]. Thus, in these scenarios,
it is essential to use the finite strain theory, which is the out of the scope of this paper. Finally,
an important part of structural analysis is the identification of stresses as a reaction to external and
internal loads. A stress vector t is defined as an inner force f acting in an imaginary cut of a body on
an arbitrary small area ∆S:

t = lim
∆S→0

∆f

∆S
=

df

dS
.

By choosing the vectorial basis for each plane such that the first axis coincides with the normal vector
n to the plane, and the second and third axes are two mutually orthogonal vectors, the stress vector
can be presented with three corresponding components. As a result, it forms a second-order Cauchy
stress tensor σ, which describes a three-dimensional stress state in a point of the solid. In fact, there
are only six independent stress components due to the symmetry of the stress tensor following the
balance of the rotational momentum.
To find the unknown quantities, we consider the balance of momentum of a body B with boundary

∂B in its current configuration and denote g as gravity acceleration and ρ as mass density. The balance
of the momentum postulates that the overall impulse by the deformation of a body is equal to the sum
of all surface and volume forces acting on it, i.e.,

∫

∂B

n · σ dx+

∫

B

ρg dx =

∫

B

ρẍdx. (2)

Note that the stress vector is substituted by its relation to the stress tensor t = n · σ. Applying the
divergence theorem and using the fundamental assumption that the identity (2) must hold for each
subpart of the body, we get the local impulse balance equation as follows:

∇⊤ · σ + ρg = ρẍ. (3)
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To solve (3), appropriate numerical methods are needed. Arguably, the most popular approach for
this is FEM, in which the main idea is to discretize the spatial domain into a finite number of simpler
and smaller parts, namely finite elements, transforming the infinite-dimensional problem into a finite-
dimensional one. The bridge to the finite elements is the weak formulation of (3). It requires the
multiplication of the governing equation (3) with the virtual displacement δx and integration over
the domain B. Applying the divergence theorem once more, we get the weak form of the equation of
motion in the current configuration:

∫

B

(
ρ (δx)⊤ẍ+ (∇ · δx)⊤σ

)
dx =

∫

B

ρ (δx)⊤g dx+

∫

∂B

x⊤t dx. (4)

The domain B is discretized in space in ne elements

B −→

ne⋃

i=1

Bi. (5)

Now, the continuous displacement field can be approximated element-wise as

x ≈

n∑

k=1

φk(ξ, η, ζ)xk = Hxe, (6)

where

H =



φ1 0 0 · · · φn 0 0
0 φ1 0 · · · 0 φn 0
0 0 φ1 · · · 0 0 φn


 . (7)

Here, φk are shape functions of an element with n nodes, which depend on the so-called isoparameter
local coordinates within an element (ξ, η, ζ). The element displacement vector is assembled from the
displacement vectors at each node:

xe =




x1

x2

...
xn


 .

The global displacement vector x is related to the element displacement vector by the location matrix
Ze, where the topology of the discretization is stored, i.e.,

xe = Zex. (8)

To replace the action of the ∇· operation, the additional auxiliary matrix L of size 6× 3 is defined

L⊤ =




∂

∂x1
0 0

∂

∂x2
0

∂

∂x3

0
∂

∂x2
0

∂

∂x1

∂

∂x3
0

0 0
∂

∂x3
0

∂

∂x2

∂

∂x1



. (9)

We denote the element domain Be with the boundary ∂Be for each of the ne elements. With (6) and
(8), the weak form of the balance of momentum (4) can be reformulated as

ne∑

e=1

∫

Be

ρ(HZeδx)⊤HZeẍdxe +

ne∑

e=1

∫

Be

(LHZeδx)⊤σ dxe

=

ne∑

e=1

∫

Be

ρ(HZeδx)⊤g dxe +

ne∑

e=1

∫

∂Be

(HZeδx)⊤tdxe.

(10)
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The equation (10) must hold for any virtual displacement, leading to the following ODE system:

M ẍ+ fint = fext, (11)

where

M =
ne∑

e=1

(Ze)⊤
(∫

Be

ρ(H⊤H dxe

)
Ze, fint =

ne∑

e=1

(Ze)⊤
∫

Be

(LH)⊤σ dxe, and (12)

fext =

ne∑

e=1

(Ze)
⊤

∫

Be

ρH⊤g dxe +

ne∑

e=1

(Ze)
⊤

∫

∂Be

H⊤t dxe

are the consistent mass matrix, the vector of internal forces, and the vector of external forces, re-
spectively. Since the material model has not yet been defined, the equation (3) is valid for linear
and nonlinear material behavior and arbitrarily large displacement gradients. To complete the field
equations, we add the so-called constitutive equations. In many scenarios, the stress tensor can be
written as a linear function of the displacements. For example, in the case of the classical Hooke’s law

σ = Delε, (13)

where Del is a fourth-order elastic stiffness tensor. Using the Voigt notation,

Del =




λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



, (14)

where λ and µ are the Lamé constants. In its turn, the deformation field is approximated using (9),
(6), and (1) as follows:

ε ≈ LHx = Qx. (15)

Thus, the internal force vector can be written as

fint =

ne∑

e=1

(Ze)
⊤

∫

Be

Q⊤DelQxdBe. (16)

The equation (11) takes the form
M ẍ(t) +Kx(t) = fext(t), (17)

where the stiffness matrix is

K =

ne∑

e=1

(Ze)
⊤

∫

Be

Q⊤DelQdBe. (18)

The computation of the system matrices requires numerical integration over the element domain using
an appropriate method (e.g., Gauss integration). Of course, the dissipation forces also play an impor-
tant role and is hence important to be taken into account in the internal force vector. It is described
with a damping matrix E analogously to the elastic forces and stiffness matrix. Very common in
engineering practice is the Rayleigh damping model, which allows representing the damping matrix as
a linear combination of mass and stiffness matrix, where the factors αR and βR damp the lower and
higher frequencies, respectively:

E = αRM + βRK. (19)
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However, there are other damping models that can be preferably for different cases; in this work we are
not limited to any particular model. Thus, in a general case, we have the following system of ODEs:

M ẍ(t) + Eẋ(t) +Kx(t) = f(t), (20)

where x(t) are the fundamental unknowns — nodal displacements; M,K,E ∈ R
n×n are the system

mass, stiffness, and damping matrices, respectively. The external force vector f(t) can be formulated
for some applications in terms of a certain control operator B ∈ R

n×m and input vector u(t) ∈ R
m,

consisting of m input signals u(t)
f(t) = Bu(t). (21)

It is worth mentioning that M and K are typically symmetric positive definite, and E is symmetric
positive semidefinite. We will denote this conditions as M ≻ 0,K ≻ 0, E � 0. Moreover, if those
conditions hold, it is well known that the mechanical system is stable, see [42, 52, 55].
Equations (20) describe the dynamics of a system and are often inaccessible from the FEM software.

The system dimension is usually very high, which is natural, considering the high number of elements
and nodes needed to maintain structure geometry precisely. Each system matrix depends on the
material parameters, element type, and other specific FEM settings. Our primary goal in this work
is to identify smaller dimension surrogate models having the mechanical structure as in (20) using
simulated data information, which is described in the next section.

Remark. In the presence of geometric nonlinearities, the deformation gradient tensor, which describes
the rotation and deformation of the body, is no longer equal to the identity tensor due to the loss of
equivalence between the deformed and undeformed configuration. Therefore, other appropriate stress
and strain measures should be used to describe the motion of the system. In particular, it is natural for
solid mechanics to use the original reference configuration, namely the Green-Lagrange strain tensor
and the Second Piola-Kirchhoff stress tensor. As a consequence, the governing equation becomes non-
linear. Another source of nonlinearity can be material behavior, introducing a nonlinear relationship
between stress and strain tensor. For these cases, the solution of the governing system of equations
has to be computed in an iterative manner. Given that, the reduction method has to be performed in a
more involved way, which will be considered in our future work.

3 Data setup

In this section, we explore the available data, including a time-integration solver description. We
assume that the model of a mechanical system (20) is given as a gray-box, i.e., the underlying abstract
model structure is known by utilizing the physical knowledge laid out in the previous section, but the
system operators are unavailable. Instead, we have access to the simulation input and output data,
which consist of the excitation signals u(t) and the nodal displacements in the state vector x(t). The
simulation is performed with the following time discretization 0 = t0 < t1 < · · · < tN = T of the
time domain [0, T ]. Further, we assemble the snapshot matrix X and the input signal matrix U by
collecting the inputs and the snapshots of the state at pre-defined time-steps:

U =




| . . . |
u(t1) . . . u(tN )
| . . . |


 ∈ R

m×N , X =




| . . . |
x(t1) . . . x(tN )
| . . . |


 ∈ R

n×N . (22)

The time-integration in FE-packages is usually performed by second-order integration methods, such as
Newmark-β [44], Hilber-Hughes-Taylor (HHT) method [32], and Generalized-αmethod [18]. The latter
two methods are the generalizations of the Newmark method with controllable numerical damping,
which is particularly important for the automatic time stepping scheme to reduce the effect of the
high-frequency noise resulting from too large step size or a poor spatial discretization. Using the HHT
method, the equilibrium (20) is replaced by the following discretized expression:
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M ẍk+1 + E((1 + α)ẋk+1 − αẋk) +K((1 + α)xk+1 − αxk) = fk+1, (23a)

xk+1 = xk +∆tẋk + (∆t)2
[(

1

2
− β

)
ẍk + βẍk+1

]
, (23b)

ẋk+1 = ẋk +∆t [(1 − γ)ẍk + γẍk+1] . (23c)

Numerical damping is controlled by the parameter α ∈
[
− 1

3 , 0
]
(negative α-dissipation). The parame-

ters γ and β govern the stability of the algorithm and are often chosen as γ = 1−2α
2 , β = (1−α)2

4 [25].
Setting α = 0 makes (23) equivalent to the Newmark-β family of algorithms, which we use in our
numerical simulations. Hence, the derivative data needed for the system identification can also be
extracted from the integrator, which is assembled as follows:

Ẋ =




| . . . |
ẋ(t1) . . . ẋ(tN )
| . . . |


 ∈ R

n×N , Ẍ =




| . . . |
ẍ(t1) . . . ẍ(tN )
| . . . |


 ∈ R

n×N , (24)

where Ẋ and Ẍ contain velocities and accelerations information. Since solvers can often provide the
velocity and acceleration data, we will use these data in our work.
With this, we aim to develop a data-driven framework to learn second-order dynamical systems to

capture the dynamics present in the data. Particularly, our focus lies in constructing low-dimensional
dynamical models to achieve our goal.

4 Intrusive POD reduction

Before proceeding to the description of a non-intrusive operator inference approach, we briefly recapit-
ulate the intrusive snapshot-based POD method that forms the basis for identifying low-dimensional
subspaces for data or the compression step for the operator inference method. The main feature of
the POD method is to identify orthogonal modes that optimally capture the energy present in the
snapshot matrix. These modes also capture most of the dynamics in the data. This can be achieved
by employing the singular value decomposition (SVD) of the snapshot matrix X (22):

X = V ΣW⊤. (25)

Recall that according to the Eckart-Schmidt-Young-Mirsky theorem, the truncated SVD provides the
best rank-r approximation of a given matrix in the Frobenius norm [58]. In order to get the low-
dimensional representation of the system dynamics, we approximate (25) by truncating the small
singular values. Hence, we construct the subspace basis Vr by choosing the first r dominant left
singular vectors. The system operators in (20) can be projected onto the subspace Vr, yielding the
following reduced POD system:

M̃ ¨̃x(t) + Ẽ ˙̃x(t) + K̃x̃(t) = B̃u(t), (26)

with the reduced system operators being defined as

M̃ = V ⊤
r MVr, Ẽ = V ⊤

r EVr, K̃ = V ⊤
r KVr, B̃ = V ⊤

r B. (27)

Notice that if the original matrices M,E, and, K are symmetric positive (semi)definite, then so are

the reduced matrices M̃ , Ẽ and K̃. As a consequence, the intrusive POD model preserves the stability
of the original one, as mentioned in [52] in the context of moment matching. Except for the basis
construction from snapshots, the reduction is performed intrusively, i.e., it requires the original matrices
M , E, K, and B, which describe the dynamics of the original mechanical systems.
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5 Operator inference for mechanical systems

Instead of projecting the known system operators, our goal is to infer the reduced operators using the
data available in Section 3. Towards learning low-dimensional systems from given high-dimensional
data, we first need to prepare an appropriate low-dimensional data representation. To that end, we aim
at finding a low-dimensional approximation of the snapshot matrix (22), which is done as described in
Section 4 by applying SVD and choosing the r most dominant singular vectors as a projection basis.
Using the obtained dominant subspace, we prepare the compressed low-dimensional data as follows:

X̂ = V ⊤
r X,

˙̂
X = V ⊤

r Ẋ,
¨̂
X = V ⊤

r Ẍ, (28)

assuming we have access to the velocity and acceleration vectors as well. Next, we present an
optimization-based formulation to infer reduced-order operators directly using the data (28).

5.1 Second-order formulation

First, we recall that the intrusive POD model (26) is represented by the matrices M̃ , Ẽ, K̃, and B̃.
These reduced matrices satisfy the following equation:

M̃
¨̃
X + Ẽ

˙̃
X + K̃X̃ = B̃U, (29)

where X̃,
˙̃
X and

¨̃
X, respectively, are the snapshot matrix assembling N snapshots of the reduced POD

model (26), its corresponding derivative, and second-order derivative matrices, i.e.,

X̃ =




| |
x̃(t1) . . . x̃(tN )
| |


 ,

˙̃
X =




| |
˙̃x(t1) . . . ˙̃x(tN )
| |


 ,

¨̃
X =




| |
¨̃x(t1) . . . ¨̃x(tN )
| |


 . (30)

Assuming the reduced mass matrix M̃ is invertible, we multiply (29) by M̃−1 from the left, yielding
the following differential system of equations

¨̃
X = −M̃−1Ẽ

˙̃
X − M̃−1K̃X̃ + M̃−1B̃U. (31)

Hence, the dynamics of the POD intrusive model is fully described by the matrices M̃−1Ẽ, M̃−1K̃ and
M̃−1B̃. It is important to notice that M̃−1Ẽ and M̃−1K̃ may not be symmetric positive (semi)definite,

even if M̃ , Ẽ, K̃ are. The structure (31) is used as a foundation to formulate a least-squares problem
using the projected data (28). Inspired by the structure (31), our next goal is to identify a second-order
reduced model of the form as follows:

¨̂x(t) + ÊM
˙̂x(t) + K̂Mx̂(t) = B̂Mu(t), (32)

using the projected data X̂ ,
˙̂
X and

¨̂
X in (28) and the input data U . In particular, we seek to determine

the matrices or operators ÊM, K̂M, and B̂M. Hence, we propose the following second-order inference
problem:

minimize
ÊM,K̂M,B̂M

∥∥∥ ¨̂X + ÊM
˙̂
X + K̂MX̂ − B̂MU

∥∥∥
2

F
, (33)

where the matrices ÊM, K̂M ∈ R
r×r, and B̂M ∈ R

r×m are the unknown operators. Since the intrusive
matrices in (31) M̃−1Ẽ and M̃−1K̃ may not be symmetric positive definite, we expect the same for

the inferred matrices ÊM and K̂M. In order to reformulate the optimization problem (33) in a more
compact way, we assemble the global data matrix:

D̂ =
[
˙̂
X ⊤, X̂⊤, U⊤

]⊤
(34)
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using the available project snapshot matrices, except for the second-order derivative matrix
¨̂
X, which

plays the role of the right-hand side for the regression problem. Finally, we state the optimization
problem as follows:

minimize
P̂∈Rr×(2r+m)

∥∥∥P̂ D̂ −
¨̂
X
∥∥∥
2

F
, (35)

where the variable parameter matrix consists of all the unknown operators

P̂ =
[
−ÊM , −K̂M , B̂M

]
. (36)

It is worth mentioning that the inferred model is obtained non-intuitively, i.e., the construction of the
matrices ÊM, K̂M and B̂M is based only on the provided data. Also, in this setup, the mass matrix of
the inferred model (32) is assumed to be the identity by construction.

Remark. One may argue that the mass matrix can also be identified using this approach. To this aim,
one needs to include the mass matrix in the unknown operators

P̂mod =
[
−M̂ −Ê −K̂ B̂

]
,

and add the projected second derivative to the data matrix as follows

D̂mod =
[
¨̂
X ⊤ ˙̂

X ⊤ X̂⊤ U⊤

]⊤
.

Hence, to infer the reduced operators, one would have to solve the following least square problem

minimize
P̂mod∈Rr×(2r+m)

∥∥∥P̂modD̂mod

∥∥∥
2

F
,

It consists of a least-squares problem without a right-hand side, for which zero is a trivial solution.
Problems of this type are usually solved by constraining the size of the solution norm, which is not
suitable for our case. In Section 5.2, we will propose an approach enabling us to also infer the mass
matrix, provided that some additional data is available.

5.1.1 Theoretical closeness of the intrusive and non-intrusive ROMs

Although the inferred and intrusive reduced operators are obtained with different procedures, we can
show an asymptotic closeness of these two models. The original paper on operator inference [48] and
some other articles, such as [7], provide theoretical results for the first order reduced systems. They
show, under certain assumptions, that the inferred matrices are an approximation of the intrusive
reduced matrices in the Frobenius norm. When such a result holds, the inferred system can inherit
several useful properties of POD models, such as stability and error analysis.
Let the parametric matrix P̂ be the solution of the optimization problem (33) with the corresponding

matrix D̂, constructed from the available data. We denote x(ti) as the continuous displacement at the
time ti, and xi as the discretized displacement snapshot-vector. Further, we consider the following
assumptions.

Assumption 1. Time-stepping scheme is convergent, i.e., ‖xi − x(ti)‖ → 0 as ∆t → 0.

Assumption 2. The discretized reduced derivative data converges to the continuous derivative data,

i.e., ‖ ˙̂xi −
d

dt
x̂(ti)‖ → 0 and ‖¨̂xi −

d2

dt2
x̂(ti)‖ → 0 as ∆t → 0.

Assumption 3. The matrix D̂ ∈ R
N×(2r+m) has full rank, assuming that the dimension r is much

smaller than the number of time steps N .
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Using the above assumptions, we formulate the following theorem:

Theorem 1. Let Assumptions 1,2,3 hold and M̃, Ẽ, K̃, and B̃ be the reduced-order operators obtained
intrusively as in (27) using the POD basis Vr. Then, for every ε > 0 there exist a reduced order r < n

and a step size ∆t > 0 such that

‖M̃−1Ẽ − ÊM‖F < ε, ‖M̃−1K̃ − K̂M‖F < ε, and ‖M̃−1B̃ − B̂M‖F < ε,

where ÊM , K̂M and B̂M are the inferred operators via the optimization problem (33).

Proof. Recall that the intrusive POD reduced model has the form (31). Let D̃ =
[
˙̃
X ⊤ X̃⊤ U⊤

]⊤

denote the corresponding data matrix for the system in (31) with the POD snapshot matrices, defined

in (30). Hence, the concatenated intrusive reduced operators P̃ =
[
−M̃−1Ẽ −M̃−1K̃ M̃−1B̃

]

represent one solution of the least-squares problem

P̃ = argmin
P

∥∥∥P D̃ −
¨̃
X
∥∥∥
2

F
. (37)

Moreover, it represents the unique solution if the matrix D̃ has full rank. Next, the projected matrix

D̂ (34) and the projected second order derivative
¨̂
X can be interpreted, respectively, as a disturbed

POD data matrix D̃ and disturbed second order POD derivative
¨̃
X, i.e.,

D̂ = D̃ + δD̃ and
¨̂
X =

¨̃
X + δ

¨̃
X. (38)

Indeed, the disturbing term δD̃ comes from the time-sampling error of the solution data and from the
approximation error considering X ≈ VrX̃ and X ≈ VrX̂, which also holds for the first and second

order derivative data. Hence, δD̃ → 0 and δ
¨̃
X → 0 as r → n and ∆t → 0. Therefore, this leads to the

following asymptotic result for the least-squares problem

min
P̂

(
lim

∆t→0
r→n

∥∥∥ P̂ · D̂ −
¨̂
X
∥∥∥
2

F

)
= min

P̃

(
lim

∆t→0
r→n

∥∥∥ P̃ ·
(
D̃ + δD̃

)
−
(
¨̃
X + δ

¨̃
X
) ∥∥∥

2

F

)

In other words, the operator inference problem in (35) can be seen as a perturbed version of the

minimization problem in (37). The pre-asymptotic case combined with the assumption that D̂ has full
rank leads to the proof of the theorem.

The above theorem states that if the least-squares problem is well-conditioned, then in the asymptotic
case, when the time step converges to zero, and the reduced order converges to the full dimension,
the operators obtained by POD are close to the inferred operators. This result is important because,
for the broad class of mechanical systems, the POD method preserves stability by keeping symmetric
positive definiteness of the system matrices due to one-sided projection. Therefore, the inferred model
will also be stable in case it is close enough to the POD one. However, the relevant properties can be
inherited only for the asymptotic case. Moreover, in [47], for discrete-time linear first-order systems,
it has been shown that it is possible to exactly recover the intrusive operators for any order using a
re-projection scheme.
In many applications, the data matrix is numerically rank deficient and the corresponding least-

squares problem becomes ill-conditioned. Therefore, it is necessary to use appropriate regularization
techniques. Among different methods (such as truncated SVD or truncated QR) [60], the Tikhonov
regularization [56] is one of the widely used techniques. The optimization problem (33) is replaced by
the following regularized problem:

P̂ = argmin
P

(
‖P · D̂ −

¨̂
X‖2F+λ‖P‖2F

)
, (39)
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where λ is a penalty parameter. The choice of λ plays an important role in obtaining a good solution.

One of the criteria is to ensure a minimal residual ‖P̂ · D̂ −
¨̂
X‖F for the smallest operator norm

‖P̂‖F . In this work, we use the Tikhonov regularization by penalizing all the operators with the same
regularization parameter.

5.1.2 Separating the operators

From the above theorem, we conclude that the inferred operators are close to the POD matrices in
(31), assuming that the matrix M̃ is ”absorbed” in other operators. Further, we assume that the
inferred operators can be decomposed as follows:

ÊM = M̂−1Ê, K̂M = M̂−1K̂, B̂M = M̂−1B̂. (40)

In order to obtain a ROM with second-order structure as in (20), we may think about some post-
processing method to separate the inferred operators. The suggested procedure below uses the transfor-
mation of the operator inference model to the modal coordinates. The generalized eigenvalue problem
can be written as

K̂MΦ = ΦΩ2, (41)

where Ω is a diagonal matrix with the natural eigenfrequencies on the diagonal and Φ are the eigen-
modes of the operator inference system. The reduced stiffness matrix in modal realization is equal to
Ω2, while the reduced modal mass matrix is identity. Using the fact that the modal stiffness is defined
as

Ω2 = Φ⊤K̂Φ, (42)

we can extract the reduced stiffness matrix from (42), using the eigenfrequencies and eigenmodes

K̂ = Φ−⊤Ω2Φ−1. (43)

Then, we can separate the reduced mass matrix, and the damping matrix from (40) as

M̂ = K̂K̂−1
M , Ê = M̂ÊM . (44)

We would like to stress that there are no guarantees that the separated operators will satisfy stability
properties. A possible remedy to ensure the stability of the learned model is by performing post-
processing by finding the nearest symmetric positive definite matrix as in [31]. This can be done for
mass, stiffness, and damping matrices if needed, but it would be at the expense of losing the accuracy
of the learned models.

5.2 Force-informed operator inference

In the previous subsections, we have defined the second-order operator inference method for learning
the reduced mechanical models of structure (31), using the state and derivative data, as explained in
Section 3. As discussed previously, we were not able to impose the symmetric positive definiteness of
the inferred operators in this formulation, even if the intrusive reduced model possesses this structure.
In this section, we present a alternative operator inference methodology, enabling us to enforce the

system’s matrices to be symmetric positive definite. To this aim, we will use additional information
from the full-order model. Hence, in this section, we will assume we have access to all the external
forces and their positions, meaning the vector f(t) in (20) is given.
In many engineering applications, an analysis of a system response under a certain load is required.

In these scenarios, the forces acting on the system are known and can be extracted from the simulation
software (for example, using the input-file defining the simulation setup). Moreover, for some simula-
tions, the load data may come from experimental measurements of real working conditions, given as
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force values at certain time-space points. The force matrix can be constructed from the force snapshots
at the pre-defined time steps:

F =




| |
f(t1) . . . f(tN )
| |


 . (45)

As a consequence, the POD reduced model satisfies the following equation:

M̃
¨̃
X + Ẽ

˙̃
X + K̃X̃ = V ⊤F, (46)

where, once again, X̃ ,
˙̃
X and

¨̃
X are, respectively, the snapshot matrix assembling N snapshots of

the projected reduced POD model in (26), its corresponding derivative and second-order derivative

matrices as in (30). We also recall that the intrusive reduced operators M̃ , Ẽ and K̃ are typically
symmetric positive (semi)definite, implying that the intrusive model is stable. Hence, our goal in this

section is to infer the second-order operators M̂ , Ê and K̂ of a reduced model of the form

M̂ ¨̂x(t) + Ê ˙̂x(t) + K̂x̂(t) = V ⊤f(t), (47)

such that
M̂ ≻ 0, K̂ ≻ 0, Ê � 0. (48)

For this, similar to the projected trajectory data in (28), the force data can be projected onto the

dominant POD subspace F̂ = V ⊤F . Moreover, let the new data matrix include the state and derivative
data as follows:

D̂ =
[
¨̂
X ⊤ ˙̂

X ⊤ X̂⊤

]⊤
. (49)

The operator inference optimization problem with constraints (48) using the external force data (45)
is formulated as follows:

minimize
M̂≻0 Ê�0 K̂≻0

∥∥∥
[
M̂ Ê K̂

]
D̂ − F̂

∥∥∥
2

F
. (50)

In practice, it is not possible to add rigid constraints to the optimization problem, therefore the
reformulation M̂ −ωI � 0 and K̂−ωI � 0 with a small positive threshold ω > 0 can be used to ensure
the strict positive definiteness. The operator inference formulation (50) is a convex optimization
problem, which can be solved using semidefinite programming algorithms, e.g., [15]. In contrast
to the optimization problem (35), which has an analytical solution via Moore-Penrose inverse, the
problem (50) requires linear matrix inequality solvers, which are computationally more expensive.
However, since the computations are done in the POD-reduced dimension, they can still be performed
in moderate time. Moreover, this methodology has the advantage of preserving the symmetric positive
definite structure of the inferred system’s operators, which implies that the inferred model is also
stable.

6 Numerical results

In this section, we study the performance of the proposed operator inference methodologies for me-
chanical systems to learn reduced-order models directly from data and present a comparison with the
intrusive POD approach. For this purpose, numerical experiments are performed, namely for inter-
national space station [45], butterfly gyroscope [46] benchmarks, and vibrating plate model [3]. The
first model is used for the analysis of vibrations caused by the docking of an incoming spaceship. The
model is given in a first-order state-space realization, which originates from the second-order form,
and can thus be transformed back to the second-order form. The second benchmark is a finite element
structural model of a vibrating micro-mechanical gyroscope for inertial navigation applications. For a
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more detailed description of the model, we refer to [33]. The latter example is a finite-element model
for analysis of a vibration response of the aluminium plate exited by a point load.
The time integrator for the simulations of the full-order model and reduced-order models is described

in Section 3. The Newmark parameters in (23) are chosen as γ = 1
2 and β = 1

4 , which are based on the
average constant acceleration assumption ensuring the unconditional stability of the method. For the
implementation of the optimization with linear matrix inequality constraints, the YALMIP Toolbox
[38] is used together with the SeDuMi solver2.
The quality analysis of the ROMs is done by comparing the state trajectories and inspecting the

relative state error, which is given by the relation to the maximum norm of the state vector, max‖x(t)‖2.
This is,

ǫerr(ti) =
‖x(ti)− x̂(ti)‖2

maxt∈[t1, tN ] ‖x(t)‖2
. (51)

A comparison is performed for the original full-order model (FOM), the POD-reduced model (POD), the
operator inference model in the second-order formulation (OpInf), and the force-informed operator in-
ference model with constraints (cOpInf). All experiments were performed using MATLAB® (2021a)
running on an HP Probook 430 G3, 2.30 GHz Intel® Core™i3-6100U CPU, 8GB of RAM.

Code availability

The source code of the implementations and the raw data are available at
https://gitlab.mpi-magdeburg.mpg.de/filanova/mechopinf.

6.1 International space station

The structural model of the international space station [2] is a second-order system used for vibration
analysis with the state dimension n = 135. The benchmark data are available in [45]. As a first step
towards learning intrusive POD and operator inference reduced models, we collect the training data
in the time-interval [0, 7s] with the time step ∆t = 0.01s and input signal u(t) = sin(t). In Figure 1,
the normalized singular value decay is depicted for the collected snapshot matrix X , defined in (22).
The black dot denotes the singular value, corresponding to the order r = 4, at which the truncation
is done. The reduced order is selected so that the approximation error is at least below the threshold
10−2.

0 20 40 60 80 100
10−20

10−14

10−8

10−2

Figure 1: Singular value decay for ISS model with the excitation signal u(t) = sin(t). The black dot
denotes the singular value for the truncation order r = 4.

The testing is performed on a time-interval [0, 21s] with the same time step and input as for the
training phase. In Figure 2a, the trajectory for the second component of the displacement vector x(t)
is shown. The curves show a good capture of the dynamics in the training phase and in the testing

2https://sedumi.ie.lehigh.edu/
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phase. Figure 2b shows it more clearly in the comparison of the relative error of the state trajectories.
The operator inference reduction without constraints shows slightly better accuracy in the training
phase, but in the testing phase, all these methods yield similar errors.

0 2 4 6 8 10 12 14 16 18 20 22 24
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0
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t

x
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u
t
(t
) FOM

POD

cOpInf

OpInf

(a) Displacement trajectory xout(t)

0 2 4 6 8 10 12 14 16 18 20 22 24
10−4

10−3

10−2

t

ǫ e
r
r
(t
)

POD

cOpInf

OpInf

(b) Relative error for the displacement trajectory vector

Figure 2: ISS benchmark: a comparison of FOM and ROMs of order r = 4. Black vertical line denotes
the training period, used for constructing POD, cOpInf, and OpInf models.

In general, both formulations of the operator inference methodology show good results for this
example.

6.2 Butterfly Gyroscope

Our next example is the butterfly gyroscope [14] which is a linear second-order model with the state
dimension n = 17132. The benchmark data are available in [46]. The model contains s.p.d. mass and
stiffness matrices, the damping is modeled using the Rayleigh assumption – a model with pure stiffness
damping, where the coefficients are αR = 0 and βR = 10−6, see the equation (19). The training data
is obtained by the simulation of the system on t = [0, 10−3]s with the time step ∆t = 10−6s and
input signal u(t) = sin(2πft) with f = 1 kHz. In Figure 3, we depict the singular value decay of the
collected snapshot matrix X , defined in (22). The reduced order is selected as r = 6.
The testing is performed for the same time-step and input load over a longer time interval t =

[0, 3 · 10−3]s. The qualitative comparison of the trajectories for ROMs of reduced order r = 6 is
presented in Figure 4a for the displacement component xout = x3143, which corresponds to one of the
degrees of freedom, where the external force is applied. Over the whole simulation time, the ROMs
are able to capture oscillations of the original system. To analyze the performance of the ROMs for
the displacement field, we demonstrate the relative error for the state trajectories in Figure 4b. As for
the previous benchmark, the error does not exceed 1%; therefore, we can ensure a good match of the
state trajectories. For the whole simulation time, the force-informed formulation has slightly better
accuracy than the operator inference formulation without constraints. However, the POD model shows
a better performance than all non-intrusive ROMs.
The deterioration in the accuracy of the operator inference model compared to the previous bench-

mark may be explained by a more ill-conditioned least-squares problem resulting from high-frequency
loading and higher state dimension.
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Figure 3: Singular value decay for butterfly gyroscope model with the excitation signal u(t) =
sin(2πft). The black dot denotes the singular value for the truncation order r = 6.
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(b) Relative error in displacement vector

Figure 4: Butterfly gyroscope benchmark: a comparison of FOM and ROMs of order r = 6. Black
vertical line denotes the training period, used for constructing POD, cOpInf, and OpInf

models.

6.3 Vibrating plate

Finally, we present the results for a model of a simply supported strutted plate excited by a point
load [4]. The model data is available from [3]. This is a linear second-order model of state dimension
n = 201900. The damping is modeled using the Rayleigh assumption, where the coefficients are
αR = 0.01 and βR = 10−4, see the equation (19). The training data is obtained by the simulation
of the system on t = [0, 0.5]s with the time step ∆t = 10−3s and input signal u(t) = sin(2πft) with
f = 10 Hz. In Figure 5, we depict the singular value decay of the collected snapshot matrix X , defined
in (22). To ensure the desired accuracy the reduced order is selected as r = 110.
The testing is performed for the same time-step and input load over a longer time interval t = [0, 1]s.

The qualitative comparison of the trajectories for ROMs of reduced order r = 110 is presented in
Figure 6a for the displacement component xout = x176544; the relative error for the state trajectories
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Figure 5: Singular value decay for the vibrating plate model with the excitation signal u(t) = sin(2πft).
The black dot denotes the singular value for the truncation order r = 110.

is demonstrated in Figure 6b. We can observe that the second-order operator inference formulation
without constraints does not provide meaningful results for this example: the relative error blows up
already during the training phase. In contrast, the force-informed operator inference model leads to a
stable model with relative error below 1%. Although the POD model performs an order of magnitude
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(a) Displacement trajectory xout(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−6

10−4

10−2

100

t

ǫ e
r
r
(t
)

POD

cOpInf

OpInf

(b) Relative error in displacement vector

Figure 6: Vibrating plate model: a comparison of FOM and ROMs of order r = 110. Black vertical
line denotes the training period, used for constructing POD, cOpInf, and OpInf models.

better than the operator inference model, the accuracy of the POD model changes intermittently in
the testing phase and reaches the force-informed operator inference level. This confirms the need to
preserve the specific mathematical properties of the original system operators. Moreover, in the force-
informed formulation, the stability of the model is guaranteed by the imposed constraints, which is
not the case for the unconstrained version.
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7 Conclusions

In this paper, we have discussed extensions of the operator inference method incorporating the mechan-
ical system structure of the governing equations. We presented a second-order formulation of operator
inference, where the unknown operators can be identified using data. The asymptotic closeness of the
inferred model to the corresponding intrusive POD model is also shown. An alternative formulation,
as an optimization problem with positive semidefinite constraints for system operators, is proposed
for the special case when the external force-data is available. The latter formulation allows ensuring
stability of the inferred model. Both versions of operator inference provide reduced-order models that
capture system dynamics very well.
In this work, we provide the results only for the displacement field. However, the identification of

stress-strain state might also be of interest. For this task, the access to the corresponding deformation
data is necessary. Using the empirical knowledge about the strain-displacement relationship, it can
be learned from the given deformation snapshots. Moreover, so far we assumed to have derivative
data (e.g., velocity and acceleration) which may not be accessible. Therefore, in our future work, we
explore approaches to use numerical approximation tools to approximate these quantities and analyze
the effect of these on learning the operators.
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