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The effects of sampling frequency on the first- and second-moment statistics of selected European 
Centre for Medium-Range Weather Forecasts (ECMWF) model variables are investigated in a 
simulation of "perpetual July" with a diurnal cycle included and with surface and atmospheric fields 
saved at hourly intervals. The shortest characteristic time scales (as determined by the e-folding time 
of lagged autocorrelation functions) are those of ground heat fluxes and temperatures, precipitation 
and runoff, convective processes, cloud properties, and atmospheric vertical motion, while the longest 
time scales are exhibited by soil temperature and moisture, surface pressure, and atmospheric specific 
humidity, temperature, and wind. The time scales of surface heat and momentum fluxes and of 
convective processes are substantially shorter over land than over oceans. An appropriate sampling 
frequency for each model variable is obtained by comparing the estimates of first- and second-moment 
statistics determined at intervals ranging from 2 to 24 hours with the "best" estimates obtained from 
hourly sampling. Relatively accurate estimation of first- and second-moment climate statistics (10% 
errors in means, 20% errors in variances) can be achieved by sampling a model variable at intervals 
that usually are longer than the bandwidth of its time series but that often are shorter than its 
characteristic time scale. For the surface variables, sampling at intervals that are nonintegral divisors 
of a 24-hour day yields relatively more accurate time-mean statistics because of a reduction in errors 
associated with aliasing of the diurnal cycle and higher-frequency harmonics. The superior estimates 
of first-moment statistics are accompanied by inferior estimates of the variance of the daily means due 
to the presence of systematic biases, but these probably can be avoided by defining a different measure 
of low-frequency variability. Estimates of the intradiurnal variance of accumulated precipitation and 
surface runoff also are strongly impacted by the length of the storage interval. In light of these results, 
several alternative strategies for storage of the EMWF model variables are recommended. 

1. INTRODUCTION 

While studies of the effects of spatial resolution on climate 
model simulations span the last two decades [e.g., Manabe 
et al., 1970; Wellck et al., 1971; Boer and Lazare, 1988; 
Boville, 1991; Kiehl and Williamson, 1991], the impact of 
temporal resolution has only recently received much atten- 
tion [e.g., Phillips, 1987; Kidson and Trenberth, 1988; 
Thuburn, 1991]. Sampling frequency is an important consid- 
eration for climate studies, since geophysical variables fluc- 
tuate over a wide range of time scales. The sampling problem 
is made more difficult by the typical computer storage 
procedure for general circulation models (GCMs): while 
many variables are updated at every time step, the simula- 
tion history usually is saved at much coarser intervals. In 
effect, "snapshots" of the instantaneous climate state are 
obtained only a few times and at the same times each day. 
Such a procedure may be an unavoidable consequence of 
storage constraints, but its impact on model climate statistics 
needs to be better understood. Moreover, sampling fre- 
quency is an especially important issue for the majority of 
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present-day general circulation models that simulate the 
diurnal cycle [e.g., Hansen et al., 1983; Boer et al., 1984; 
Tokioka et al., 1984; Slingo, 1985] since the climate statistics 
may be impacted by errors associated with the aliasing of the 
diurnal cycle and higher harmonics [Thuburn, 1991; Tren- 
berth, 1991]. 

We investigate this sampling problem by analyzing se- 
lected variables from a numerical experiment with the Eu- 
ropean Centre for Medium-Range Weather Forecasts (EC- 
MWF) atmospheric model. The model and the experimental 
design are described in more detail in section 2. 

Three interrelated questions are considered. 
1. What are minimum acceptable sampling frequencies 

for accurate estimation of the climate statistics of different 

model variables? 

2. What are the relationships between these sampling 
frequencies and the characteristic time scales and structures 
of variability of the model climate? 

3. How are the climate statistics of the model variables 

impacted by sampling at the same times versus different 
times each day? 

We address the first two questions by comparing climate 
statistics derived from hourly sampling with those obtained 
from sampling at coarser intervals and by computing other 
statistical measures of time scale and variability. We inves- 
tigate the third question by comparing the climate statistics 
determined from sampling at intervals that divide evenly into 
a 24-hour day versus those intervals that do not. We describe 
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Fig. l. Map of e-folding time r (rounded to nearest hour) of the lagged autocorrelation function of surface latent 
heat flux in a perpetual July integration of the ECMWF atmospheric general circulation model. Values less than 6 hours 
are unshaded, values between 6 and 20 hours are lightly shaded, and values greater than 20 hours are darkly shaded. 

our methodology and results in section 3 and state our 
conclusions in section 4. 

2. MODEL DESCRIPTION AND EXPERIMENTAL DESIGN 

In this study we used cycle 33 of the ECMWF GCM, with 
19 vertical levels and spectral T42 horizontal resolution. The 
model's global primitive equation dynamics [ECMWF Re- 
search Department, 1988a] are complemented by extensive 
parameterizations of atmospheric and surface physics. Cycle 
33 differs from its model predecessor [ECMWF Research 
Department, 1988b] in the parameterizations of radiation 
[Morcrette, 1989], convection [Tiedtke, 1989], and gravity 
wave drag [Miller et al., 1989]. 

We integrated the model for a total of 60 days with the 
solar declination fixed in perpetual July mode but with a 
diurnal cycle included. July climatological sea surface tem- 
peratures and sea ice limits were prescribed [Alexander and 
Mobley, 1976], but soil temperature, moisture, and runoff 
were allowed to vary in "surface" and "deep" layers at 
approximately 0.1- and 0.4-m depths, respectively (cf. EC- 
MWF Research Department [1988b] for parameterization 
details). The model atmosphere was initialized from an 
operational ECMWF data set for June 1, 1986. Model 
spin-up, as determined from the equilibration of global- 
integral energetics, was achieved within the first 10 days of 
the simulation. We analyzed the remaining 50 days of the 
integration. 

The simulation of July climate was motivated by a desire 
to investigate variables related to convection and to land 
surface processes that are especially vigorous in northern 
summer. The perpetual mode, while less realistic than a 
seasonal cycle integration, produced a quasi-stationary time 
series which rendered statistical analysis of the experiment 
more straightforward. In a departure from the standard 
procedure for the model, at every hour of the integration, 
radiative fluxes were calculated and accumulations of pre- 
cipitation and surface runoff were reset to zero. Hourly 

snapshots of more than two dozen selected variables (cf. 
Table 1) were saved. 

3. METHODOLOGY AND RESULTS 

3.1. Characteristic Time Scales of Model Variables 

Information on the characteristic time scale of a model 

variable V is provided by its lagged autocorrelation function 
A, calculated at each Gaussian grid point (i, j) from 

A(i, j, k) = • [V(i, j, t) - la(i, /)] 
t 

ß [V(i, j, t + k)- la(i, j)]/(Nrr 2) 

where t is the time history and k is the lag in 1-hour 
increments, N is the number of hourly time samples, tx is the 
time mean of variable V, and rr 2 is its time variance. 

For increasing lag k > 0, A(i, j, k) decreases below its 
zero-lag value of unity. Often, this decrease is monotonic, 
but relative increases also can occur at lags related to 
dominant frequencies in the time series of the variable. The 
field of e-folding time r(i, j), defined as the minimum lag k 
such that 

A(i, j, k) -< e-1 • 0.368 

is a measure of characteristic time scale. 

The geographical distribution r(i, j) was computed for 
each variable. An example is shown for the surface latent 
heat flux in Figure 1. The details of this field are complex, 
but a clear geographical contrast is apparent' except for 
Antarctica where there is only a weak diurnal cycle, the 
e-folding times over the continents are substantially shorter 
than over most of the ocean and sea ice regions. Because the 
values of a number of other model variables showed a 

sensitivity to surface type, we calculated an area-weighted 
land average rr in addition to the area-weighted global 
average re, which is strongly influenced by the e-folding 
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PHILLIPS ET AL.: ECMWF GCM SAMPLING EFFECTS 20,429 

TABLE 1. Area-Weighted Land/Global (L/G) Averages, Rounded to the Nearest Hour, of 
Sampling Statistics of Selected Model Variables 

Variable 

rœ/rG Sœ/SG S95L/S95G S99L/S99G Pœ/PG 

Surface dn SW flux* 4/4 3/3 6/6 3/3 5/5 
Surface up SW flux* 4/4 3/3 6/6 3/3 5/5 
Convective mass flux* 4/9 3/5 2/2 1/1 23/40 
Convective precipitation? 5/10 3/5 2/3 1/1 37/41 
Surface sensible heat flux* 5/18 3/6 4/9 2/4 13/55 
Surface latent heat flux* 5/21 2/4 3/7 2/2 16/58 
Convective cloud covers 6/12 3/5 2/2 1/1 34/45 
Surface soil runoff? 7/'" 3/'" 2/'" 1/"' 45/'" 
Convective cloud tops 7/10 8/11 2/2 1/1 32/35 
Convective cloud bases 8/11 8/12 2/2 1/1 33/38 
MT vertical velocityS 8/9 8/9 5/5 4/4 41/45 
Surface soil temperature* 9/"' 5/'" 9/"' 5/"' 26/'" 
Surface up LW flux* 9/19 5/8 9/11 5/7 26/56 
Total cloud covers 11/13 8/9 4/5 2/2 49/54 
Cloud liquid waters 12/17 8/10 4/6 2/2 50/59 
Vegetation canopy moisture* 13/'" 6/'" 7/"' 3/3 62/'" 
Outgoing LW fiuxS 13/16 10/11 5/5 2/2 52/58 
Surface v stress* 18/23 11/12 9/12 4/6 62/72 
Surface u stress* 19/27 11/12 9/12 4/6 60/74 
MT v winds 27/24 12/12 14/14 8/8 78/77 
MT specific humidityS 27/27 24/24 15/17 8/9 77/78 
Surface pressure* 36/36 10/10 17/19 9/9 77/80 
MT u winds 46/46 24/24 17/18 8/9 87/87 
MT temperatures 47/42 24/24 17/17 8/8 85/85 
Deep soil temperature* 49/'" 12/'" 21/'" 11/'" 81/'" 
Surface soil moisture* 59/'" 12/'" 27/"' 9/'" 95/'" 
Deep soil moisture* 91/'" 24/'" 48/'" 14/"' 99/'" 

Statistics include area-averaged values of e-folding time r of the lagged autocorrelation function, 
maximum acceptable sampling interval S (cf. section 3.8), bandwidth intervals s 95 and s 99 (cf. section 
3.9), and the percentage p of the total variance that is explained by the variance of the daily means. 
"Midtropospheric" (MT) level is approximately 500 hPa for a surface pressure of 1000 hPa; "surface 
soil" and "deep soil" denote layers at depths of about 0.1 and 0.4 m, respectively. SW, shortwave; 
LW, longwave; dn, downward; up, upward. 

*Denotes a (category 2) variable whose first-moment statistics are closer to the best estimate at 
sampling intervals that are nonintegral divisors (NID) of a 24-hour day than are those of neighboring 
sampling intervals. 

?Indicates that the variable is accumulated over time. 
$Denotes a (category 1) variable whose first-moment statistics grow steadily farther from the best 

estimate (obtained by hourly sampling) with increasing sampling interval. 

times over the more extensive ocean and sea ice surfaces. 

The area average e-folding times of the selected climate 
variables are listed in the order of the rL value in Table 1. 
The time scales of surface longwave, sensible, and latent 
heat fluxes and of convective mass flux, cloud cover, and 
precipitation are substantially shorter over land than over 
the oceans and sea ice, as evidenced by the sizeable differ- 
ences in rL and r G. A similar pattern is displayed by the 
surface wind stresses, a result of the larger surface rough- 
ness of the continents. 

From Table 1 the shortest time scales (r• = 4-12 hours) 
are associated with surface heat fluxes, soil temperature and 
runoff, convective processes, cloud amount and liquid water 
content, and atmospheric vertical motion. The longest time 
scales (r•) 24 hours) are exhibited by surface pressure, 
atmospheric specific humidity, temperature and wind, deep 
soil temperature, and surface and deep soil moisture. Vege- 
tation canopy moisture, outgoing longwave radiation, and 
surface wind stress have intermediate values of • in the 
range 13-24 hours. 

The characteristic time scales of zonal and meridional 
wind, vertical motion, specific humidity, and temperature 

are listed only at midtropospheric (MT) levels in Table 1. 
The vertical profiles of global average r values of these 
variables are shown in Figures 2a and 2b. The time scales of 
temperature and zonal wind (Figure 2a) are longer in the free 
atmosphere than in the boundary layer, while e-folding times 
for specific humidity and vertical motion are largest near the 
surface (Figure 2b). (The time scale of the meridional wind 
is relatively invariant with altitude.) The temperature field 
fluctuates less at higher levels because diurnal variations in 
heat fluxes are larger in the boundary layer, and the u wind 
is steadier at high altitudes where persistent jet streams 
dominate. In contrast, orography forces a strong steady 
component in the near-surface vertical motion field. Specific 
humidity may follow a pattern similar to that of vertical 
motion because moister air correlates with rising motion and 
drier air with sinking motion. 

3.2. First- and Second-Moment Climate Statistics 

For a system as complex as a GCM the v value can provide 
only a rough indication of an appropriate sampling interval 
for a model variable. It is therefore necessary to determine 
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Fig. 2a. Vertical profiles of global average e-folding times r 
(rounded to the nearest hour) of atmospheric temperature, u wind, 
and v wind. The profiles include data points at model vertical levels 
8, 11, 15, and 18 which, for a surface pressure of 1000 hPa, 
correspond approximately to 250, 500, 850, and 960 hPa pressure 
levels. 

more explicitly the impact of sampling frequency on the 
climate statistics of the model. The focus in this study was 
on first- and second-moment statistics of different types. 
That is, using all the hourly samples of the field V(i, j) of 
each variable we calculated the best estimate Ix(i, j, s), s = 
1 hour, of the time mean as well as the means Ix(i, j, s) 
corresponding to sampling intervals s = 2, 3, ß ß ß , 12, and 
24 hours (by taking every other sample to compute the time 
mean for interval s = 2, every third sample for interval s = 
3, etc.). 

We also calculated the daily mean of each day d as a 
function of interval s from 

Nd(s) 

tX el(i, j, S) = • V(i, j, ts)/Ncl(S) 
t 

where Nd(s) is the number of samples of V(i, j) available on 
day d for sampling interval s. Note that when s divides 
evenly into a 24-hour day, the variable is sampled at the 
same times each day and the number of daily samples N d is 
constant; however, when s is a nonintegral divisor (NID) of 
24 hours (i.e., s = 5, 7, 9, 10, or 11 hours), V is sampled at 
different times each day, and Na varies. For example, if s = 
5 hours, Na is usually 5, but every fifth day it is 4. Thus the 
daily means of fields exhibiting a strong diurnal cycle will 
show a spurious variation associated with this sampling bias. 

In addition, we computed two types of second-moment 
statistics for each field' the total variance rrr 2 that includes 
the intradiurnal fluctuations about the mean and the variance 

rr• 2 of the daily means about the 50-day mean that is defined 
by 

No 

o-•)(i, j, s)= • [IX•/(i, j, s)- IX(i, j, s)]2/(No- 1) 
d=l 

where No = 50 is the number of daily means in the record. 
The variance rr• 2 includes only the contributions from 

2 2 fluctuations of lower frequency than 1 day-•, and so rrb/rr r 
< 1, with the fractional value being a function of model 

variable and location. For many climate studies, however, 
rr• 2 is of greater interest than rrr 2. 

The best estimate (from hourly samples) of the area- 
weighted global percentage 

2 2 
PG = (O'D/O'T)G X 100 

and the land average value P L are listed for each model 
variable in Table 1. It can be seen that the model's deep soil 
temperature, soil and vegetation canopy moisture, surface 
pressure and wind stress, and atmospheric specific humidity, 
temperature, and wind mostly vary at lower frequencies, 
while there is large intradiurnal variability in the surface heat 
fluxes and soil temperature, convective processes, precipi- 
tation and runoff, and vertical motion. The variance of total 
cloud cover and liquid water content, and of outgoing 
longwave radiation is almost evenly divided between intra- 
diurnal and lower-frequency fluctuations. 

As expected, shorter e-folding times r in Table 1 are 
mostly associated with fields that exhibit large variability at 
intradiurnal frequencies (i.e., lower p values). Surface long- 
wave, sensible, and latent heat fluxes and atmospheric 
convective processes also show differences between land 
average variance percentages P L and global averages Pc 
that are similar to their rL-rc differences. 

3.3. Statistical Measures of Sampling Frequency Effects 

In determining the impact of sampling frequency on first- 
and second-moment climate statistics, we sought appropri- 
ate measures of the departures of IX(i, j, s), rrT2(i, j, s), and 
rr•2(i, j, s), s = 2, 3, '" , 12, and 24 hours, from the best 
estimates IX(i, j, 1), (rr2(i, j, 1), and (r•2(i, j, 1). While t and 
F statistics are commonly used for testing the significance of 
differences in means and variances [Fisher, 1925], the ele- 
ment of statistical independence necessary for applying 
these tests was absent in this study because the samples 
were drawn from the same population. Nevertheless, suit- 
ably modified t and F statistics defined by 

tT(i, j, s) = I•(i, J, s) - IX(i, j, 1)l/rrr(i, j, 1) 

tD(i , j, s) = I•(i, J, s) - IX(i, j, 1)11rrD(i, j, 1) 

8 ,. - 250 hPo 

:• 1 1 '•k•Specific Humidity :• - 500 hPo 

• rticol Motion *'•**** 
18 h I I I I I I I I • I I I I - 960 hPo 

e-Folding Time (hours) 

Fig. 2b. As in Figure 2a, except for atmospheric vertical motion 
and specific humidity. 
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Fig. 3a. Field of first-moment statistic t r of surface pressure for a sampling interval of 12 hours. Contours are at 0.2 
and 0.6, with values greater than 1.0 shaded. 

Fr(i, j, s) = •r •(i, j, s)/•r •(i, j, 1) 

FD(i, j, s) = •r•D(i, j, S)/•r•D(i, j, 1) 
served as useful measures of the errors in estimating the 
means and variances for sampling intervals s = 2, 3, ... , 
12, and 24 hours relative to the best estimates obtained from 
hourly sampling. These differed from "standard" t and F 
statistics in that there was no dependence on degrees of 
freedom and the divisors were not pooled combinations of 
or(i, j, 1) and or(i, j, s); rather, these measures were defined 
to allow the impact of sampling frequency on the climate 
statistics of different variables to be readily compared. 
Area-weighted global averages tr, to, Fr, and Fo were 
computed to assist such a comparison. 

We found that the t and F statistics for the model's surface 

variables show a qualitatively greater sensitivity to sampling 
frequency than do those of the atmospheric variables. For 
example, the errors in estimating the time mean of surface 
pressure for a sampling interval of 12 hours are indicated by 
the field of the t r statistic in Figure 3a. 

The largest errors occur in the tropics and are of the order 
of the standard deviation •rr (i.e., t r - 1). The pattern of the 
errors is that of the semidiurnal atmospheric tide, which is 
aliased into the time mean of the surface pressure field at a 
sampling interval of 12 hours [Thuburn, 1991; Trenberth, 
1991]. Large aliasing errors also are apparent in the esti- 
mates of the total variance •2 r of surface pressure at a 
12-hour sampling interval, as evidenced by the field of 
Fr (Figure 3b). In the tropics the variance is underesti- 
mated by more than 60% (Fr < 0.4), while in some 
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Fig. 3b. Field of second-moment statistic Fr of surface pressure for a sampling interval of 12 hours. Underesti- 
mation of variance by 20% (Fr = 0.8) is indicated by the dashed-line contour, with F r values less than 0.4 lightly 
shaded. Overestimation of variance by 20% (Fr = 1.2) is indicated by the solid contour, with Fr values greater than 
1.3 darkly shaded. 
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Fig. 4a. Average t T statistic as a function of sampling interval 
for an ensemble of 120 time series, each consisting of 50 constant 
amplitude sine waves with a 24-hour period but with phase differing 
by 3 ø increments. Note the logarithmic scale on the ordinate. Also 
note here and in following figures the break in the abscissa and the 
absence of data between s = 12 hours and s = 24 hours. 

mid-latitude regions it is overestimated by more than 30% 
(Fr > 1.3). 

On the other hand, the estimation errors in the climate 
statistics of most of the atmospheric variables do not become 
substantial until the sampling interval increases to 24 hours, 
when the diurnal cycle is aliased into the climate statistics. 
Even then, large errors are usually confined to small regions. 

3.4. Statistical Measures for an Idealized Case 

As a benchmark for the analysis that is to follow, it is 
instructive to consider a train of 50 constant amplitude sine 
waves, each with a 24-hour period (a highly idealized repre- 
sentation of the local diurnal cycle of a _model variable for the 
50-day integration). In this special case the variance cr• 2 is 
zero (because the daily means/x d are the same), and so the 
relevant statistics are tr(s) and Fr(s). Because their values 
also depend on the phase of the wave train, we calculated 
tr(s) and Fr(s) for 120 values of phase differing by 3 ø 
increments and then averaged over this ensemble. This 
procedure is equivalent to calculating tr(s) and Fr(s) for an 
idealized diurnal cycle on grid points spaced every 3 ø longi- 
tude (the approximate equivalent grid spacing of the spectral 
T42 model) and then averaging around the latitude circle. 

The ensemble average values t r and Fr are plotted as a 
function of sampling interval s in Figures 4a and 4b, 
respectively. The t r statistic grows fairly smoothly with 
sampling interval up to s = 12 hours, where the errors in 
estimating the time mean are still less than 1% of the 
standard deviation crr (Figure 4a). However, at s = 24 
hours, the estimation error sharply increases as a result of 
the aliasing of the diurnal cycle into the time mean when 
sampling occurs only once per day. From Figure 4b it is seen 
that at all sampling intervals 2 < s < 12 hours, the total 
variance is overestimated (Fr > 1) but by less than 1%. In 
this range the errors grow almost linearly with sampling 
interval. At s = 24 hours, however, the variance is grossly 
underestimated (F r = 0) (another consequence of the 
aliasing of a constant amplitude diurnal cycle). 

.OO8 

.004 

.o 

o 

2 3 4 5 6 7 8 9 1 11 1 

Sampling Interval (hours) 

Fig. 4b. As in Figure 4a, except for the F r statistic. The 
optimal value F r = 1.0 is shown by the dashed line. Note the 
different ordinate scale below and above 1.0. 

3.5. Sampling Frequency and First-Moment Climate 
Statistics 

We found that the relationship of both t T and to to 
sampling interval is qualitatively similar and falls into two 
categories for the ECMWF model variables (designated by 
the double dagger and asterisk in Table 1). The 11 category 
1 variables (Figure 5) are all atmospheric fields with area 
average t statistics that increase smoothly with sampling 
interval in a way similar to the idealized case of Figure 4a. 
By contrast, the 14 variables in the second category (Figure 
6) are mostly surface fields whose first-moment statistics are 
estimated more accurately by sampling at intervals that are 
NIDs of a 24-hour day (e.g., at s = 5, 7, 9, 10, or 11 hours) 
than at neighboring even-valued sampling intervals. How- 
ever, at a given sampling interval the t-statistics of the 
category 1 variables (Figure 5) are several times smaller than 

1.000 

0.100 

0.010 

0.001 [ i i i [ i i i I i 12%14 2 3 4 5 6 7 8 9 10 11 1 2 

Sampling Interval (hours) 

Fig. 5. Cross-variable average of area-weighted global t r statis- 
tic (solid curve) and average plus cross-variable standard deviation 
(dotted-dashed curve) as a function of sampling interval for the 
category 1 (atmospheric) variables of Table 1. The optimal value of 
t r is zero. Note the logarithmic scale on the ordinate. In this and in 
the following figures at s = 24 hours the cross-variable average is 
designated by a dash and the cross-variable scatter by a dash and 
dot. 
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those of the category 2 variables (Figure 6), implying that for 
the same sampling frequency the time means of the atmo- 
spheric fields can be estimated with considerably greater 
accuracy. 

The error in estimating the first-moment statistics due to 
aliasing of the diurnal cycle is apparent. Estimation error 
also increases noticeably at s = 12 hours as a result of the 
aliasing of the semidiurnal cycle. Hence if snapshots from a 
long simulation can only be saved twice per day, it is 
preferable to store the variables at l 1-hour rather than 
12-hour intervals. The increase in aliasing error at s = 12 
hours is much more abrupt for the surface variables (Figure 
6) because the semidiurnal harmonic is a greater part of the 
intradiurnal variability of these fields. it •%11ows that the 
larger errors in the time means of the surface variables at 
even-numbered sampling intervals relative to neighboring 
NID intervals result from the aliasing of still higher- 
frequency harmonics that contribute part of the intradiurnal 
variability of these fields. Another perspective is that the 
relative decrease in estimation error at the NID intervals is a 

result of more comprehensive sampling of the surface fields, 
since at these frequencies, sampling is done at different times 
each day. 

3.6. Sampling Frequency and Second-Moment Climate 
Statistics 

The aggregated F r statistic for the atmospheric fields (not 
shown) remains between values of 1.0 and 1.01, indicating 
that total variance 0-r 2 is only slightly overestimated at all 
sampling frequencies. Estimation of the total variance of the 
surface fields (not shown) is accurate to within 3% at 
sampling intervals up to 12 hours, but at s -- 24 hours, the 
variance is underestimated by about 20% on average. 

The different impact of sampling frequency on the second- 
moment statistics of the atmospheric variables versus those 
for the surface variables is more dramatically revealed in the 
global average F D statistics. The error in estimating the 
variance rr} of the daily means of the atmospheric variables 
about their 50-day means (Figure 7) increases linearly with 
sampling interval up to s = 12 hours, but due to aliasing of 
the diurnal cycle the average error in estimating 0-} is more 
than 60% (F•9 > 1.6) at s = 24 hours. The variance 0-} of 
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Fig. 6. As in Figure 5, except for the category 2 (mostly surface) 
variables of Table 1. 
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Fig. 7. Cross-variable average of area-weighted global F D sta- 
tistic (solid curve) and average cross-variable standard deviation 
(dotted-dashed curve) as a function of sampling interval for the 
category 1 (atmospheric) variables of Table 1. The optimal value 
FD = 1.00 is also shown for comparison (dashed line). 

daily means of the surface fields shows a qualitatively 
different dependence on sampling frequency, with large 
estimation errors evident at the NID intervals (Figure 8a). 
These errors are due to systematic biases in estimating the 
daily means/•d brought about because sampling at the NID 
intervals is done at different times each day and the number 
of daily samples varies. Biases therefore also result in the 
variance 0-} of the daily means/•d which increase with NID 
sampling interval as the number of daily samples decreases. 
The largest errors are associated with the surface shortwave 
fluxes because they are especially sensitive to the time of 
day when sampling takes place, but sizeable errors remain at 
NID sampling intervals s = 9, 10, and 11 hours for the 
surface heat fluxes, convective mass flux, shallow soil tem- 
perature, and surface pressure (Figure 8b). 

These sampling biases probably could be greatly reduced 
by estimating low-frequency variance from means obtained 
over periods containing a fixed number of samples, e.g., by 
calculating 5-day means for a sampling interval s = 5 hours, 
etc. Because most of the atmospheric fields do not exhibit as 
much intradiurnal variability as the surface fields (cf. Table 
1), 0-02 can be estimated with acceptable accuracy at the NID 
sampling frequencies (Figure 7). 

3.7. Sampling Frequency and Accumulated Quantities 

Instead of saving snapshots of model variables, their 
values can be accumulated at each time step and stored at 
intervals s'. In principle, this procedure allows first-moment 
statistics to be determined "exactly" (to within numerical 
roundoff); similarly, accumulating squared values permits 
exact determination of second-moment statistics. In prac- 
tice, however, storing accumulations instead of snapshots 
precludes the possibility of accurately determining the sta- 
tistics of additional derived quantities. For example, the time 
series of quadratic quantities such as momentum and heat 
fluxes are systematically underestimated when derived a 
posteriori from accumulations of the state variables 
[Thuburn, 1991]. Thus unless all the quantities of interest can 
be identified a priori and computed efficiently at each time 
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Fig. 8a. As in Figure 7, except for the category 2 (mostly su•ace) 
variables of Table 1. 

step, a strategy of saving accumulations instead of snapshots 
is problematical. 

For the ECMWF model, however, it is common practice 
to selectively store accumulations of rapidly fluctuating 
variables such as precipitation and runoff, usually at 24-hour 
intervals. In this case the first-moment statistics as well as 

the variance of the daily means are known exactly, but the 
part of the total variance •r• that is due to intradiurnal 
fluctuations is indeterminate. In the present study, however, 
accumulations of precipitation and runoff were stored at 
hourly intervals, making it possible to estimate the total 
variance •r•(i, j, s') for different storage intervals s' -> 1. 
Analogous to the treatment of the other model fields, the 
sensitivity of the variance of the accumulated variables to 
storage interval s' was measured by the statistic 

FT(i, j, s') = •r•(i, j, s')/•r•(i, j, 1) 
Global averages F r(s') are shown for accumulated con- 

vective precipitation and surface soil runoff in Figure 9. At 
all storage intervals the variance •r•(s') of both variables is 
underestimated (Fr < 1) relative to •r•(1) and estimates of 
second-moment statistics degrade rapidly with increasing s'. 

[ i i i i i i i i i i i 

2 3 4 5 6 7 8 9 1 11 1 2 

Somplincj Intervol (hours) 

Fig. 8b. As in Figure 8a, but excluding the F D statistics for 
surface upward and downward shortwave radiative fluxes. 
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Fig. 9. Area-weighted global F T statistic for accumulations of 
convective precipitation and surface soil runoff as a function of 
accumulation storage interval s'. Dashed-dotted curve indicates 
optimal value. 

Since a large part of the variance of accumulated precipita- 
tion and runoff is at intradiurnal frequencies (Table 1), such 
inaccurate estimation of •r• may be of concern for some 
climate applications. 

3.8. Maximum Acceptable Sampling Intervals 

The substantial cross-variable scatter in the t and F 

statistics of Figures 5-8 is an indication of the wide range of 
sensitivity to sampling frequency displayed by different 
model variables. From knowledge of these sampling effects, 
a maximum acceptable sampling interval S can be deter- 
mined as 

S = max s such that to(S ) --< b and B -• -< FD(S ) --< B 

where b and B are specified error bounds. Here t D and F D 
are used as measures of estimation errors since they are 
usually the more relevant statistics for climate studies. 
Because only the intradiurnal variance of accumulated quan- 
tities is impacted by the storage interval s', a maximum 
acceptable accumulation interval S' is specified as 

S ' = max s ' such that C - • -< F r( s ' ) -< C 
Prescribing b = 0.1, B = 1.2, and C = 1.5 as tolerable 

error bounds, the corresponding area-weighted sampling (or 
accumulation storage) intervals are listed in Table 1. As is to 
be expected, the shortest values of S are usually associated 
with relatively large values of intradiurnal variability. For 
many model variables the value of area averaged e-folding 
time • also is longer than S, implying that • is generally not 
a sufficiently stringent estimate of the sampling interval 
required for accurate statistics. 

3.9. Bandwidths of Model Variables 

The final statistic considered is the bandwidth, a funda- 
mental measure of the sampling frequency necessary for 
capturing essentially all the information in a time series. If at 
each grid point (i, j) the time series of hourly samples of a 
variable V is decomposed into Fourier harmonics 
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V(i, j, t) = Z Af(i, j) cos • +Bf(i,j) sin • 
f 

of different frequency f, then the power accumulated up to 
frequency a is 

ø'a(i, J) = Z {Af(i, j)2 + Bf(i, j)2} 
f 

and the bandwidth fi is that frequency such that a large 
fraction y of the total power is captured: 

tr•(i, j) -> ytr}(i, j) 
The corresponding bandwidth sampling interval is 

s = 

Land and global averages of s• for y - 0.95 and y = 0.99 
are listed in Table 1. It can be seen that the maximum 

acceptable sampling interval S is always greater than or 
equal to s99. This indicates that a certain amount of infor- 
mation, which is unnecessary for accurate estimation of the 
mean or variance of a model variable, is discarded. The 
discarded information may be relevant for the estimation of 
other statistical quantities, however. 

4. SUMMARY AND CONCLUSIONS 

The ECMWF model variables display a wide range of 
sensitivity to sampling frequency, as evidenced by several 
different statistics. There is general qualitative agreement 
among these measures: relatively short e-folding times r 
tend to be associated with short acceptable sampling inter- 
vals S and bandwidth intervals $95 or $99 and with low p 
values (high intradiurnal variability). However, there may be 
substantial quantitative differences among these measures. 
For example, the sampling interval S necessary to yield 
reasonably accurate climate statistics is sometimes in closer 
agreement with the e-folding time r than with the more 
fundamental measures s95/s99 of an appropriate sampling 
interval. It therefore does not seem feasible to prescribe 
general guidelines for determining acceptable sampling in- 
tervals for accurate estimation of first- and second-moment 

statistics from criteria based on bandwidth intervals. How- 

ever, storing snapshots of variables at bandwidth intervals 
$99 insures that essentially all the information present in the 
original time series is retained. 

With the exception of convective processes, cloud prop- 
erties, and the vertical motion field, sampling frequency is 
not of much concern for the ECMWF atmospheric variables 
because their intradiurnal variability is modest. For exam- 
ple, once-per-day sampling is sufficient to obtain reasonably 
accurate statistics of atmospheric specific humidity, temper- 
ature, and wind (although 18-hour rather than 24-hour sam- 
pling intervals are recommended to avoid aliasing of the 
diurnal cycle [cf. Thuburn, 1991]). Infrequent sampling is 
even more appropriate for subsurface soil temperature and 
moisture. Sampling is more problematical, however, for 
many of the surface fields because of their shorter time 
scales and larger intradiurnal variability. For these fields 
aliasing of the semidiurnal cycle and higher-frequency har- 
monics must be taken into account, and thus the ability to 

obtain more accurate statistics by sampling at the NID 
frequencies is an attractive, albeit logistically less conve- 
nient, contingency. 

The wide range of sensitivity of the ECMWF model 
variables to sampling frequency makes it impractical to 
recommend an all-purpose storage strategy. First, for exam- 
ple, a choice must be made between storing variables as 
accumulations or as snapshots. Although accumulation al- 
lows exact calculation of model statistics, this is only prac- 
tical if all quantities of interest can be identified a priori and 
computed efficiently during the simulation. On the other 
hand, retaining snapshots of model fields permits a posteriori 
calculation of the time series of additional derived variables. 

Thus saving snapshots of key model fields along with accu- 
mulations of selected variables is likely to be the preferred 
storage strategy for many climate applications. 

If snapshots are stored at 6-hour intervals, the climate 
statistics of the majority of ECMWF model variables can be 
estimated with reasonable accuracy and the semidiurnal 
cycle also can be resolved. (Moreover, observational data 
for model validation usually are not available at more 
frequent intervals.) Nevertheless, a 6-hour storage interval 
does not permit accurate estimation of the first- and second- 
moment statistics of surface heat fluxes and atmospheric 
convective processes, nor does it adequately capture the 
high-frequency variability of accumulated precipitation and 
runoff. 

Alternative strategies to 6 hourly storage therefore are 
worth considering. Ideally, it would be desirable to save 
snapshots (and accumulations of variables such as precipi- 
tation and runoff) at 3-hour intervals since this would allow 
sufficient sampling of the most rapidly fluctuating model 
variables and consistent calculation of derived quantities 
such as fluxes of momentum, moisture, and heat. If such a 
storage scheme is impractical, a reasonable compromise 
would be to save snapshots of only the most rapidly varying 
fields at 3-hour intervals or to save their accumulations every 
6 hours. Where accurate estimation of the first-moment 

statistics of the surface variables is important for particular 
applications, storage at NID intervals may be recommended, 
but such a scheme should be adopted only after insuring the 
absence of systematic biases in the second-moment statis- 
tics. Finally, if storage constraints are so severe that a long 
model history can be saved only twice a day, it is better to 
store variables at l 1-hour rather than 12-hour intervals in 

order to avoid errors associated with the aliasing of the 
semidiurnal cycle. 

We caution that some results of this study may be model- 
specific, in that the characteristic time scales of simulated 
climate processes probably are influenced by the particular 
choices of physical/dynamical parameterizations. These re- 
sults may also depend on horizontal and vertical resolution, 
the frequency of model physics calculations, and the perpet- 
ual July simulation. Our analysis therefore should be viewed 
as provisional information on the sampling problem, and we 
encourage similar investigations of other general circulation 
models. 
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an earlier version of this paper. This work was performed under the 
auspices of the U.S. Department of Energy, Environmental Sci- 
ences Division, by the Lawrence Livermore National Laboratory 
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