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We build an effective-one-body (EOB) Hamiltonian at third post-Newtonian (3PN) order in scalar-tensor
(ST) and Einstein-scalar-Gauss-Bonnet (ESGB) theories of gravity. The latter is an extension of general
relativity that predicts scalar hair for black holes. We start from the known two-body Lagrangian at 3PN
order, and use order-reduction methods to construct its ordinary Hamiltonian counterpart. We then reduce
the conservative two-body dynamics to the (nongeodesic) motion of a test particle in an effective metric by
means of canonical transformations. The resulting EOB Hamiltonian is a modification of the general
relativistic Hamiltonian, and already at 3PN order, it must account for nonlocal-in-time tail contributions.
We include the latter beyond circular orbits and up to sixth order in the binary’s orbital eccentricity. We
finally calculate the orbital frequency at the innermost stable circular orbit of binary black holes in the shift-
symmetric ESGB model. Our work extends the work of Julié and Deruelle [Phys. Rev. D 95, 124054
(2017)], and it is an essential step toward the accurate modeling of gravitational waveforms beyond general

relativity.
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I. INTRODUCTION

The observations of gravitational waves (GWs) from
coalescing binary systems composed of black holes (BHs)
and neutron stars (NSs) [1-5] with the LIGO and Virgo
detectors [6,7] offer the unique opportunity to unveil the
nature of these compact objects and to test Einstein’s theory
of general relativity (GR) in the highly dynamical strong-
field regime [8—12]. The GW signals are at first “chirps”
produced during the long inspiral phase, where the two
bodies steadily and adiabatically come closer to each other,
losing energy because of GW emission. The inspiral is
followed by a short plunge and merger stage, where
nonlinearities prevail, and then by the so-called “ringdown”
phase for binary BHs [13,14], or by more complex pre- and
postmerger signals (depending on the equation of state of
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the NS and on the properties of the BH) for binaries
comprising at least one NS [15,16].

Tests of GR for the different stages of the binary coa-
lescence have been developed within theory-independent
and theory-specific frameworks. In theory-independent tests,
the underlying GW signal is assumed to be well-described by
GR, and beyond-GR parameters are included in the waveform
models to describe small deviations from GR (a nonexhaus-
tive list includes Refs. [17-30]). By contrast, studies that
analyze directly the data with waveform models constructed
in beyond-GR theories of gravity are part of the theory-
specific framework (see, e.g., Refs. [31-33]).

So far, the majority of the tests of GR with GW signals
has been carried out following the theory-independent
approach. However, in this framework the parametrizations
are nonunique, the beyond-GR degrees of freedom can be
degenerate with each other, and they are not necessarily
guaranteed to represent the (infinite) landscape of beyond-
GR theories. Thus, it is relevant to develop, both analyti-
cally (see, e.g., Refs. [34-51]) and numerically (see, e.g.,
Refs. [52-69]), waveform models in specific beyond-GR
theories of gravity. Eventually, as already done for GR
waveforms [70-72], the combination of analytical and
numerical-relativity (NR) results will produce accurate
beyond-GR inspiral-merger-ringdown (IMR) waveform

Published by the American Physical Society
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models, which will be used to probe gravity with the
LIGO-Virgo-KAGRA interferometers, and with future
detectors on the ground (Einstein Telescope and Cosmic
Explorer) [73,74] and in space (LISA) [75]. Importantly,
next-decade facilities promise signal-to-noise ratios 1 or 2
orders of magnitude higher than what is achievable with
current and near-future observations on the ground, thus
allowing for exquisite tests of GR [76].

Among the simplest modifications of GR, scalar-tensor
(ST) theories add one massless scalar degree of freedom,
which couples universally to matter. They were introduced
by Jordan, Fierz, Thiry, Brans, and Dicke [77] and put in a
modern perspective in Refs. [35,78,79]. The corresponding
two-body dynamics has been computed within the post-
Newtonian (PN) formalism [35,38-42,80]. Interestingly,
compact objects in ST theories can undergo a phase
transition associated with the spontaneous symmetry break-
ing of the scalar field near the compact object in the presence
of large curvature or relativistic matter [36]. For NSs, this
phase transition leads to a rapid growth of the scalar charge
(“spontaneous scalarization”). An analogous nonperturba-
tive phenomenon (“dynamical scalarization”) was found in
binary NS and NS-BH simulations in NR [53,55,81].
Various methods to describe these nonperturbative effects
in waveform models have been proposed [25,82,83].

However, in ST theories, vacuum BH solutions are the
same as in GR. By contrast, Einstein-scalar-Gauss-Bonnet
(ESGB) theories have attracted particular attention because
they have the interesting property that (i) for certain
functional forms of the coupling constant, BH solutions
in ESGB gravity are different from the solutions of GR, but
admit the ordinary Kerr solutions as a special limit;
and (ii) there is the possibility of “spontaneous scalariza-
tion” [84-86] (i.e., BHs can “grow hair”). These observa-
tions opened up a much richer phenomenology for binary
BHs [87]. Recent progress in gravitational waveform
modeling within ESGB gravity includes the calculation
of inspiral waveforms using PN theory [48,50,51] and the
first calculation of quasinormal mode frequencies of
rotating ESGB BHs at quadratic order in a small-spin
expansion [88-90]. The numerical calculation of merger-
ringdown waveforms in ESGB gravity has also made
remarkable progress, at first using a small-coupling
approximation to numerically solve the field equations in
an “effective field theory” approach [57,60-62,68], and
then by showing that numerical evolutions are possible in
the full theory, although hyperbolicity can break down in
some regions of the parameter space [59,63,64,66,69].

An important step to build semianalytic IMR waveforms
is to construct an accurate analytic description of the two-
body conservative inspiral dynamics. We achieve this here
within the effective-one-body (EOB) formalism [91-93].
The EOB approach builds IMR waveforms by combining
analytical predictions for the inspiral, notably PN results,
with perturbative calculations for the ringdown, and

physically motivated ansatzes for the plunge-merger stage.
The EOB waveforms are then informed and made highly
accurate by calibration to NR simulations (see, e.g.,
Refs. [70,72]). One key ingredient of the EOB formalism
is the conservative EOB Hamiltonian. The latter, for
nonspinning compact objects and in GR, is built by
mapping the two-body dynamics into that of an effective
body moving in a deformed Schwarzschild spacetime,
whose deformation parameter is the symmetric mass ratio
v=pu/M, where y = mymg/M? is the binary’s reduced
mass, m, and mp are the component masses, and M is the
total mass [91,92]. Previous work extended the EOB
Hamiltonian to ST and Einstein-Maxwell-scalar theories
at 2PN and 1PN, respectively [34,44,45,47,49]. In this
paper we build upon Ref. [34], and take advantage of recent
progress in PN calculations in ST and ESGB theories
[41,48], to construct an EOB Hamiltonian at 3PN order for
NSs and BHs in ST and ESGB theories.

This paper is organized as follows. In Sec. II, starting
from the two-body 3PN Lagrangian in ST and ESGB
theories, we derive, using order-reduction methods,
the two-body Hamiltonian at 3PN order in the Einstein
frame. In Sec. III, we construct a canonical transformation
that maps the two-body Hamiltonian into the EOB
Hamiltonian, including nonlocal-in-time terms due to tail
effects, which are already present at 3PN order in ST and
ESGB theories. More specifically, we compute such tails
for generic orbits in an expansion in the orbital eccentricity
parameter. In Sec. IV we specify our EOB Hamiltonian to
BH binaries in the shift-symmetric ESGB model, and we
calculate the orbital frequency at the innermost stable
circular orbit (ISCO). In Sec. V we summarize our main
conclusions and future research directions. Various tech-
nical details are relegated to the appendixes. In Appendix A
we develop a dictionary to relate quantities in the Einstein
and Jordan frames. In Appendix B we list the expression of
the 3PN Lagrangian. In Appendix C we discuss contact
transformations of the two-body Lagrangian. In
Appendix D we give the two-body Hamiltonian. Finally,
in Appendix E we list the coefficients of the canonical
transformations. Throughout this paper we use geometrical
units (G =c =1).

II. THE TWO-BODY HAMILTONIAN

A. ST and ESGB gravity

We consider the theory described by the Einstein-frame
action [35,48]

1
=16s | 4*VTIR=29"0,90,0 + £2f (9))

+ 1Y, A% ()9 ],

1
(2.1)

where R is the Ricci scalar, g =detg,, is the metric

determinant, and G = R*’°R,,,, —4R"R,, + R? is the
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Gauss-Bonnet scalar, with R*,,; and R, the Riemann and
Ricci tensors, respectively. The integral of the Gauss-
Bonnet scalar over a four-dimensional spacetime
J d4x\/—_gg is a boundary term [94]. Matter fields V¥ are
minimally coupled to the Jordan metric g, = A*(¢)g,,-
The dimensionless functions A and f and the constant
quantity £ (with dimensions of length) specify the theory.
We recover ST theories when either £ =0 or f is a
constant, and GR when moreover A (and ¢) are constant.

When dealing with compact bodies, we adopt the
phenomenological treatment initiated in Refs. [35,95] in
ST theories and describe them as point particles:

I = B (g L1 = =3 / map)dss,  (2.2)

where ds, = \/—g,,dxdx} and x;[s,] is the worldline of

particle A. The constant GR mass is replaced by a function
m4 () that depends on the internal structure of body A and
on the value of the scalar field at x% (s,). For an explicit
calculation of the mass my(¢) of an ESGB BH, see
Refs. [48,51]; see also Refs. [35,36,96] for NSs in ST
theories.

From now on, we will refer to the theory with action
(2.1) as “ESGB gravity,” but we note that the action
includes ST gravity as a special case.

B. The two-body Lagrangian at 3PN

In this paper, we focus on the conservative dynamics of
compact binaries on bound orbits. When the relative orbital
velocity is small and the gravitational field is weak, the
motion can be studied in the PN framework.' To do so, the
field equations of the theory (2.1) and (2.2) are solved
iteratively around a flat metric g,, =7, + g, and a
constant scalar background ¢ = ¢, + ép, where ¢, is
imposed by the binary’s cosmological environment. In
particular, the functions my(¢) and mg(gp), describing
bodies A and B, can be expanded at 3PN by introducing

o = (g0) 2:3)
§ =2 ). (2.3b)
4= 00 (23¢)
%=L o) (2.30)

'We denote by nPN the relative O(v**) ~ O(M/r)" correc-
tions to Newtonian gravity, with v the system’s relative orbital
velocity, r the orbital separation, and M the total mass.

and their counterparts for body B, where from now on the
superscript 0 denotes a quantity evaluated at ¢ = ¢,.

The ST two-body Lagrangian was derived at 1PN by

Damour and Esposito-Farese [35], at 2PN by Mirshekari
and Will [38], and at 3PN by Bernard [41,42]. It was
then generalized by Julié and Berti, who derived its
ESGB corrections in Ref. [48]. However, the results in
Refs. [38,41,42] are presented using a different, “Jordan-
frame” formulation of ST theories based on a set of Brans-
Dicke-inspired parameters. To recover the conventions of
the present paper, we must proceed as follows:

(1) Translate the parameters in Refs. [38,41,42] in terms
of the quantities (2.3). The conversion is detailed in
Appendix A.

(2) Observe that Refs. [38,41,42] use a coordinate
system {¥} such that the Jordan metric §,, =
A?(¢)g,, is Minkowski at infinity, §,, — 7,,. By
contrast, we use here coordinates {x*} such that
9uw = M- This means that

= Agxt (2.4)
with Ay = A(g,), so that the orbital radius 7 and
body accelerations a, entering Refs. [38,41,42]
translate as 7 = Ayr and a4, = a, /A, in our con-
ventions.

(3) Since also 7 = Ayt, the two-body Lagrangians L
given in Refs. [38,41,42] must be rescaled as
L - A()Z

We denote by x, the spatial position of body A, and

introduce the notations r = |[x, — Xp|, n = (x4 — Xp)/r,
v, = X4 = dx,/dt, and a, = v,. The ESGB two-body
Lagrangian is then, in harmonic coordinates such that

d/t(\/:ggﬂy) =0,

L =—-mY —m$ + Lopx + Lipn + Lopy

+ Lapx + O(017), (25)
where the contributions up to 2PN were presented in
Refs. [34,44] and are recalled in Appendix B. We decom-
pose the new 3PN contribution as

4
Lipn = Z LgllzN + Lgal;II\I + ALI;SSB’ (2-6)

i=0

where the lengthy expressions of the terms ngN are also
given in Appendix B. They depend on the logarithms
In(r/r,) and In(r/rp), where r, and rp are regularization
lengths that we shall eliminate later.

However, one of us noticed, while performing the
conversion from the Jordan to the Einstein frame, that
some terms in L g’IZN, originated from the results of Ref. [42],
must be revised. The Einstein-frame two-body dynamics is
indeed described by the action (2.1) with matter explicitly
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accounted for by Eq. (2.2). The associated PN Lagrangian
should thus not depend on A and its derivatives at infinity.
Yet, the prefactors of the first lines in Eqs. (B2d) and (B2e)
are inversely proportional to @ = (1 +a%a%)/(1 + a3),

where ay = (dIn.A/dg), (cf. Appendix A). This issue
will be addressed in an upcoming publication [97]. For
now, we note that adjusting @ will not affect the structure of
our results.

The ESGB correction beyond ST reads [48]

ALESGB _ £2f'(¢0) <%>2 mymi

3PN oz 2

x [mi (o +205) + m(aj + 2a3)].  (2.7)

with f'(¢o) = (df /dy),, and M = m} 4+ m}. It is numeri-
cally of the same order of magnitude as a 3PN term
whenever 2 f'(p,) < M>. It turns out that this condition is
satisfied by the nonperturbative ESGB BH solutions
studied in Ref. [51].

Finally, L;py depends on a nonlocal-in-time “tail”
contribution which we converted from the Jordan-frame
expression of Ref. [42],

By the same arguments we made earlier, the tail
term should be independent of Ay = A(¢y). This issue
will also be addressed in Ref. [97], and for now, we note
that replacing A(g,) by a different constant will not
change the structure of our final results. Here, “PF”
denotes the Hadamard partie finie, and we follow the
conventions of Refs. [41,42,98]: given a regular function
f(¢) vanishing sufficiently fast at infinity and a constant s,
we have

I;E/R%f(t—i-f):A+d1 ln(%)(f(t—r)—f(t—i—‘r)).

(2.9)

The two-body Lagrangian (2.5) depends on the theory-
dependent combination £2 f'(¢,) entering Eq. (2.7) and on
ten body-dependent parameters: the masses of each
body and their logarithmic derivatives (2.3) at infinity.
It is also useful to introduce the following quantities,
ordered by the PN level at which they appear, from 0PN
to 3PN:

GAB =1 —+ aga%, (2103)
L 2MAZ ... o d
L = A0 i) <PF / pi(e +r)> (2.8) oo o o
3 2r(1) 7| . 2ay0p o 1 Palay) 2 10b
YAB = 0 ’ ﬂA - 0.0\2° ( . )
L . . . 1 + ayap 2(1 4+ ayap)
which is driven by the acceleration of the scalar dipole
D' = m%aix, + mYafxi;,. This tail term is absent in GR.
|
012 10 ( 03
_ (ay) . €4 = ﬁA("(‘)B)O - Cap = ﬂAﬂBaAaB3 ’ (2.10¢)
(1 +ajay) (1 + aydg) (1 + agap)
ICAT AL, G CARTTYS! T
A — ’ Ka = 0..0\4° éA* ’ WA= 0 -0\3° (Od)
(1+agag)! 8(1 + ayap) (1+agag)t (1 + dyap)

and their (A <> B) counterparts. The quantities (2.10d) are
new to this paper, and we named the first three of them
according to their (field theory) diagrammatic interpreta-
tion, as was initiated at 2PN by Damour and Esposito-
Farése in Ref. [99]. We recover the ST Lagrangian in the
limit #2f"(¢y) = 0, such that (2.7) vanishes. We recover
GR when moreover m 4 (¢) and mg(¢) are constants: then,
Egs. (2.3) and their B counterparts are zero, so that G, =
1 and (2.10b)—(2.10d) all vanish.

C. The order-reduced Lagrangian

The Lagrangian (2.5) is written in harmonic coordinates,
and it depends on the accelerations a, and a of the bodies,
both linearly via L,py, Lgi,)N, and L%)N (cf. Appendix B),
and quadratically via the tail contribution L&L. To deal

|
with an ordinary Lagrangian depending on positions and
velocities only, we can replace the accelerations by their
on-shell 1PN expressions, as we now prove.

Consider a degree of freedom ¢(7) described by the
action I = ['dtL|q, q. §], where

=Lo(q.9) +€L(q.4) +€*[L2(q.4) +¢2(q.9)d]
) o dr

+é La(q,q)+f3(q,q)q+qPF/q(t+f)]
2q R|T|

+0(e"),

Llq.q.4]

(2.11)

with € < 1 an expansion parameter. The Lagrangian (2.11)
depends on ¢ linearly at O(¢*) and O(e?), and also
quadratically via a nonlocal-in-time contribution at
O(e?). The Euler-Lagrange variation of
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F(q,9) = Lo(q.q) +€Li(q,9) (2.12)
reads
oF oF d aF
5q ()q dt
_OF 0 ()F *F
aq 0q aq aq

where the second equality follows from the chain rule. Now
introduce the notations

PF
e

1 [oF F
F_ 49 (EN (2.14p)
Hpog  "og \og

where Hp(q, ¢) is the Hessian of F(g, ¢). Then Eq. (2.13)
can be rewritten as the identity

Hp(q.4) = (2.14a)

Gr(q.q) =

=gr——— 2.15
I=dr =g 5. (2.15)
which reduces to § = §p(q.,§) + O(e*) when the Euler-
Lagrange equations of F(q,§) are satisfied, 5F/5g = 0
We can then insert (2.15) into (2.11) to find

L= Lred
1 6F | , dr
- |€e°? 3 A3 +2PF [ —§
H, 34 {e e ( 3+ qu|T|QFt+‘r>:|
5 1 oF dr 1 6F
+e—— —_——
Hp6q 24 Jr |T|HF 0q |14+
+ (9(64), (2.16)
where
Lialq.4) = Llq. 4. 4r(q, q)] (2.17)

is an ordinary Lagrangian depending only on ¢ and g,
obtained by replacing the acceleration ¢ in L[q q, | by its
on-shell expression deduced from F(q, q)

2Using Eq. (2.9) we have that

ZI;F/la;‘ B(t+7) = PF/|dTl (t+r)+2ln(qzt)>B(t),

from which we deduce an identity that is useful to prove
Eq. (2.16):

/thtPF/ r+7) /dtBtPF/ At + 7).
|7| 2(1) Jr |7]

The third line of Eq. (2.16) is doubly zero: its O(e?)
contributions to the equations of motion are at least linear in
6F /8q, which vanishes on shell. Thus it can be discarded.
As for the second line of Eq. (2.16), it can also be
eliminated via a variable change ¢ — ¢ + 6¢[q, g] with
5q = O(€?). Indeed, the Lagrangian then transforms, by
definition, as

SF
L—>L+5—5q+(9(€4), (2.18)
q

modulo an irrelevant total time derivative, and we can
choose

1 dr
2 2 3 dr
5qlq. ] ~H, [6 r+e (fs +21;§A |T|qF|I+T>:|'
(2.19)

This variable change belongs to the class of contact
transformations introduced by Schifer and Damour in
Refs. [100,101], which we generalized to include non-
local-in-time terms for our purpose.

Now return to the two-body Lagrangian (2.5). We can
replace the accelerations by their on-shell expressions
deduced from F = Lypy + Lipn:

Lua = Lld, = (ap)y.aly = (ap)f] + O('0),  (2.20)
where (ar)’ is a function of the positions and velocities
given in Appendix C. Note that it is sufficient to replace the
accelerations entering the Lagrangian at 3PN level by their
OPN expressions. This procedure amounts to making an
implicit 4D coordinate change via a contact transformation
X, — X4 + 0x, resembling (2.19),

)
l. OLopy (LS + L2N)
ox = S (Y [aj ¢ fe L
B B
AMAZ o ox= 0 o dr,
A PF [ = (ap)il,l.
T3 mBaBZC:mCacerh' (@r)clise
(2.21a)
PF
(He)g =~y - (2.21b)
A

which we also give explicitly in Appendix C. We verified
that applying the contact transformation (C4) to the two-
body Lagrangian (2.5) yields a result that matches, modulo
total time derivatives and doubly zero terms, the order-
reduced Lagrangian (2.20).

From now on we work with the order-reduced
Lagrangian L4, and thus, in a coordinate system other
than harmonic.
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D. The two-body Hamiltonian at 3PN

From the order-reduced Lagrangian (2.20), we can infer
an ordinary Hamiltonian via the Legendre transformation:

H=p4s Vys+PpVp— Ly (2.22)
with
aLred aLred
= —, =—. 2.23
Pa v, Ps Vg ( )

A technically useful remark is that, when deriving a
Hamiltonian from a nPN Lagrangian, it is sufficient to
calculate (2.23) at (n — 1)PN order, since after inversion,
the nPN corrections to v, (p4, pg) and vg(p4, pp) cancel
out in Eq. (2.22). We thus need the momenta at 2PN

order only.
In the center-of-mass frame such that p, + pg = 0, the
conjugate variables are r = X, — Xz and p = p4 = —Pp-

The motion being planar, we use polar coordinates (7, ¢)
with conjugate momenta p, =n-p and p, = r(n x p)..
We introduce the reduced mass and mass ratios

L S R el B
M M M

together with the following dimensionless quantities:

N r ~ t R T
F=— I=—, T=—,
M M M
a2
A _& N _p(/) A2 A2 ﬂ 225
br=" bo=anp P prt— (2.25)

We denote by a subscript + (respectively, —) the (anti)
symmetrization of the quantities (2.10), as in, e.g., B, =
fa + By and p_ = f, — By (note the factor of 2 compared
to Refs. [40-42]). The two-body Hamiltonian is then
. H M . N A N .
H = u + Hopx + Hipx + Hopy + Hapn + O(p'0),

(2.26)

where the contributions up to 2PN were first derived in
Refs. [34,44] and are recalled in Appendix D. The new 3PN
contributions read

4
Hapn = ZHgllgN + HiiN + AR,
i=0

(2.27)

where the lengthy expressions of IAngN are also given in
Appendix D. They depend on In. = In(7,) £ In(#3),
where 74 = ry/M and 75 = rp/M are the dimensionless

regularization lengths mentioned below Eq. (2.6).

For the reason given above, the tail and ESGB contri-
butions are equal and opposite to their Lagrangian counter-
parts:

ﬁtail _Gj‘;Bktai] PF/d% cos A¢ (228)
2

3PN — $2 R‘ﬂ ?2(;_’_%)’
where the cosine of A = ¢(7 + %) — ¢(7) follows from the
order-reduced, center-of-mass frame acceleration D' =

—G (0 — a%)n'/7? taken at 7 and 7 + %, and

248 (o — o)

kil = L Fo_. 2.29
tail 3 (1 _'_aga%)g ( )
The ESGB correction beyond ST reads
N G* pkgsg
ARG = =S4, (2.30)
with
keson = — 22f (o) 3(a) + af) + m_(a} — af) (231)

202 (1 + alal)?

Finally, to prepare for the calculations of Sec. III below
when the eccentricity is nonzero, and thus 7 is not constant,
we use the first identity in footnote 2 to get

di cosA¢p  21In(?/3)
2(1+ %) #

’

L 1
A = G4 kyy X |=PF | —
3PN AB™ta ?2 2% R |T| ?

(2.32)

where § = s/M is an arbitrary constant (which will not
appear in our final EOB Hamiltonian). Following what was
done in GR at 4PN order in Ref. [98], we then decompose
the two-body Hamiltonian (2.26) into local-in-time and
nonlocal-in-time parts,

H=H+H"+0(p"), (2.33)
with
M R .
H = ;‘*‘HOPN + Hipx + Hopn
“ In(7/3) "
Z - ZGiB taill = ~a r + AHEPNB, (234&)
it = ity [ St (2.34)

2% Jolf PG +1)
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III. THE EOB MAPPING

A. The EOB Hamiltonian at 3PN order

In Sec. II, we derived a two-body Hamiltonian at 3PN
order and in the center-of-mass frame. We shall now use
canonical transformations (r, ¢, p,. p;) = (R, @, Pg, Py)
to identify it with an EOB Hamiltonian [91,102,103]

N H M .
HEOB = I;OB = ; 1 + 2U(Heff — 1), (31)

where H. is an effective Hamiltonian to be constructed. In
this paper, we write the effective Hamiltonian in the same
gauge as that used in GR at 2PN, 3PN, and 4PN orders
[91,93,102], that is,

o He s Pj
Heff:f: A(1+ADP§+R—§>+Q, (3.2)

which depends on three potentials. Through 3PN order they
can be expanded as

as ay + ag InR

A:1+%+%+? S (3.3a)
D:1+%+%+d3+‘;§;“mR, (3.3b)
0= (1 + Clll,ér;lnk)i)?e " (g2 + 612,121 lnIAQ)f’?g’ (3.3¢)
where
R=2 ﬁRz’;’f, 13@:;";. (3.4)

When restricted to 2PN order, the EOB Hamiltonian
above depends on five coefficients (a;, a,, a3) and (d,, d,),
which were derived in Ref. [34] in ST theories. We will
recall their expressions in Sec. III D for completeness. In
this paper, we introduce the remaining eight coefficients to
include 3PN contributions in ST-ESGB gravity.

The effective Hamiltonian (3.2) describes the motion of a
test particle with mass u in an effective static, spherically
symmetric metric (in Schwarzschild-Droste coordinates
with 0 = 7/2)

ds’, = —Adf> + dr® + R2d®? (3.5)
eff AD ’ .
but it is now deformed by a nongeodesic 3PN potential O
which vanishes for circular orbits such that P = 0. The

reason is twofold:
(1) At 3PN order and already in GR, the two-body
dynamics cannot be reduced to geodesic motion [93].

Following Damour, Jaranowski, and Schifer, we thus
include a postgeodesic correction controlled by the
coefficient ¢,.

(2) In GR, the two-body Hamiltonian depends at 4PN
order on a quadrupole-driven tail [98,104], which
can yet be accounted for in a local-in-time EOB
Hamiltonian by extending Q to an infinite post-
geodesic series [102]

Q=Y 0uRPY, (3.6)
n=2

together with In f?—dependent EOB potentials. Our
ansatz (3.3) adapts this strategy to include the
dipole-driven tail entering already at 3PN order.
Note that in practice, one must truncate Q. We choose to do so
at O(P%), as otherwise it would diverge at infinity [cf. the
R-dependence in Eq. (3.3¢)]. This will amount to including
beyond-GR tails up to sixth order in the binary’s orbital
eccentricity in Sec. III C. For circular orbits such that P = 0,
we have Q = 0; in this simpler subcase than what is done here,
H ofr depends only on A, and the tails affect a, and a4, only.
Finally, following Ref. [102], we find it useful to split the
potentials as

A=A+ Al (3.7a)
D = D'+ D", (3.7b)
0=0"+0" (3.7¢)
where
1 1 >
a a a a; +ay, InR
A=+l + 242422 (3.8a)
R R* R R
d, d di+d., InR
Dl=14-l4 242 2 (3.8b)
R R R
. (@ +dmR)Py (gh+gb,, InR)PS, i,
Q - Rz + R 5 ( . C)
and
11 11 >
ag +ay, InR
Al == (3.9a)
di 4+ dY, InR
DU :T'“, (3.9b)
11 11 n\ D4 11 11 5\ D6
+ InR)P + InR)P
QH — (ql ql,ln ) R + (('I2 QZ.ln ) R‘ (39C)

R? R

The EOB Hamiltonian can then be decomposed in a similar
fashion as its two-body counterpart,
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Hyop = Hop + Al og + O(P'0), (3.10a)

where HLyp is obtained by formally setting A, D", and Q"
to zero in Eq. (3.1) while, at first order,

A 1 .
Hiop = 5 (A" + D'PR + Q). (3.11)

B. Local-in-time contributions

Let us first focus on the local-in-time part A" of the two-
body Hamiltonian [cf. Eq. (2.34a)]. We perform a canonical
transformation such that H' is a scalar and its action only
changes by a boundary term:

/ (PdR + Pod® + dF) — / (prdr + pydd).  (3.12)

and thus

dF = p,dr + pyd¢ — (PrdR + Pod®).  (3.13)

For practical reasons, we will rather use G(r, ¢, Pg, Py) =
F+ (PRR+PQ)¢) - (PRr+P¢¢) SuCh that

dG = dr(p, — Pg) +d(py — Po)

+ dPgr(R—r) + dPg(® — ¢), (3.14)
which generates a canonical transformation introduced in
Refs. [34,44],

. . oG
R, Pp, Py) = 7 + —
(7.¢. Pg. Po) ob,

(3.15a)

dy = 4G gkyi In 8 + 2G ghpsap +

Gipt7ap(11(7ap +2)* =25, —25_m_)

PO G
D7, p, Pr. Po) = p +——. (3.15b)
0Py
P . 0G
ﬁr(?’(ﬁ?PRan)):PR +g, (315(:)
P . G
Py(7. ¢, Pg, Po) = Po +30 (3.15d)
We choose the ansatz
A G . | . pzipij
G:M_y: rPR;(Vijk+7i2klnr) oK (3.16)
with
., P2
P =P +3 (3.17)

which yields coordinate changes between 1PN and 3PN
levels when the positive integers i, j, and k satisfy
1 <i+ j+ k <3. Our ansatz does not depend on ¢ to
preserve isotropy, and thus p, = Pg. Moreover, for cir-
cular orbits such that p, = P = 0, we have ® = ¢.

From Egs. (3.15) we can express both A' and HLqp in
the same mixed coordinate system (r, ¢, Pg, Pg). We then
solve, order-by-order, the equation

FII(?’¢’PR’PQ)):H}EOB(?’(b’PR’P(D) (318)

to fix the coefficients of the potentials (3.8) and of the
generating function (3.16). The solution is unique, and the
new 3PN coefficients are

4
GAB

4a(7ap +2)

T [85+J7AB —6¢., 7 — 60735 — 7875

— 24745 — B (47735 + 287 a5 + 26, +26_m_ +28) + m_p_(—477% 5 + 28745 — 36, + 25, +28)

+85_m_74p+6m_e_yup+ 1862 +5_(6m> —4)B_ +3(5m> + 1)B> + 45, + 4k, +45_m_ — 4K'_m_}

4
GipV

+ 1152

[—192,B+(273x3 + 92745 +40, +5) +1267°5, 74p + 10565, 7ap — 6912 ap7ap + 1152, 745 +637°7 25

— 43273 5 — 1807°%4 5 + 1529673 5 — 1350227 45 + 371847 45 + 96B_(m_ (4735 + 64745 — 36, + 85, + 19) + 165_)
+2885_m_y 45+ 2880p% + 288(m2 —3)% + 3456 45 + 252775, — 58885, — 1152k, + 1926_m_ + 384x_m_

+576m_¢E_+576m_w_ +768m_y_ —576m_e_ + 576, + 576w, — 1536y, + 576¢, — 14762 + 36096} ,

(3.19a)
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3

G 2 as _ _ _ _ o _
dh = ZA8 12, (3745 + 8) + 26, (37as +8) — 9hp — 52735 — 647a5 + 36m_B_7an + 65 m Ty

12
3

_ G2 .U _
£ 96m_p_ + 165_m_ — 8m_e_ + 864 s [12ﬁ+(5}7AB —9) + 88, (3745 +7) — 3673 — 30872,

— 692745 — 12m_P_7a5 — 99m_f_ — 108 45 + 126_m_ + 6m_e_ + 10e.. — 624}

+Gpr? [‘7%3 — 10745 + 9B + 6L 4p =26, —€; — 6} ; (3.19b)
1 GipV [ en - . 2 2 2| _as y: e
¢t =24 [15yAB 52745+ 2B, —2m B — 28, —25_m_+ 48} + G2 [—4yAB B —m B — 6}, (3.19¢)
g5 =0, (3.19d)
|
with logarithmic counterparts H = Hy(q,p)+eAH(q,q.G,...;p, p, P»...) + O(e*),
(3.22)
ay, = —4Gjghui. (3.20a)
where ¢ < 1, and where AH depends on arbitrarily high-
d13.ln =0, (3.20b) order time derivatives of g and p. The Euler-Lagrange
' variations of
1 =0, 3.20c .
i (3.20¢) Ly = pg - Hy(q. p) (3.23)
¢5, = 0. (3.20d)  with respect to p and g yield, respectively,
The cqefficients Qf the canonical transformation (3.16) are g=dqo+ % ’ (3.24a)
given in Appendix E for completeness. . op
We explicitly checked that in the GR limit, A" can also
be identified to the 3PN Arnowitt-Deser-Misner (ADM) b= po— oLy (3.24b)
Hamiltonian of Ref. [98] via a canonical transformation 0 5q '
whose coefficients are given in Appendix E.
where we have introduced the notation
C. Nonlocal-in-time contributions
‘ _ 9, 3.25
Let us now turn to the nonlocal-in-time 3PN Hamiltonian q0(q.p) = E ’ (3.25a)
A", which (we recall) reads
) 0H,
,p)=——2. 3.25b
i _ Ghakan . [ d cosAg Pola-r) = =75, (3230)

I I S 3.21
2% r |t P2 +1) (3.21)

with A¢ = (7 + %) — ¢(7). We wish to identify it, modulo
canonical transformations, to a local-in-time, ordinary EOB
counterpart ﬁgOB depending on positions and momenta
only. To do so, we can Taylor expand 7(7 + %) and ¢(7 + %)
around 7 = 0, and treat A" as a local-in-time function of
#(7) and ¢(7), and their arbitrarily high-order time deriv-
atives. The Newtonian equations of motion can then be used
to order reduce these derivatives, as we now prove.

Consider a pair of phase-space variables ¢(¢) and p(r)
described by the action I = [ dt(pg — H) with

As usual, the system (3.24) reduces to the Hamilton equa-
tions ¢ = go(q.p) +O(e*) and p = po(q.p) + O(€’)
when 6Ly/ép = 6Ly/6q = 0.

We can then insert (3.24) into (3.22) and expand at first
order only in 6L,/8p and 6L,/8q (and their time deriv-
atives), since higher-order contributions are doubly zero.
We then find, modulo total time derivatives

H =H,+ e*AH(q, G, (o). -3 . Po- (Do) ---)
8Ly SAH 8Ly SAH
63—0—,—63—0—, (9(64),
op 6q oq 6p
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where we have defined the Euler-Lagrange variations of
AH with respect to g and p:

SAH 0AH [dAHY

— = — |+, (3.27a)
oq 9q g
SAH O0AH [0AH\

— == — |+ (3.27b)
op op op

Now we denote the order-reduced (over)accelerations,
obtained recursively from the Hamilton equations of

Hy(q.p), by

.. 0q g
go(q.p) = a—q()(]o + a—popo,
oq 0§
Go(q.p) = a—qo%‘f’a—popo»
(n) (n)
4" g, p) = %% +%Po, (3.28)
with n > 1 and, similarly,
(n) (n)
n opy . , 9py’ .
py a.p) = 52 go + a; po- (3.29)
We then have, using Eqs. (3.24) again,
(G0)™ = a5 (q. p)
n—1 (n—i) (i)
6q0 5L0 aqo oL
— 3.30
+Z( dq op dp  4q (3.30a)
(p0)™ = py"™(q. p)
L fopy oLy opy " sLo\ Y
— 3.30b
+Z< dg op  dp 561) ( )

i=0

which we can plug into the second term in the right-hand
side of Eq. (3.26). Expanding the result at first order in
6Ly/6p and 6L,/8q (and their time derivatives) and
integrating by parts finally yields

H= Hred

3Ly (5AH i SAH oqy"
op \ 6q — 8¢ aq

(3.31)

modulo doubly zero terms and total time derivatives. The
subscript “red” indicates an order-reduced quantity, as in

= Hy(q.p) + € AH(q.40(q. P). Go(q. p). -
P Po(q. P), Po(q. p). --.). (3.32)

Hred(CIv P)

It is now elementary to eliminate the second to fifth
lines of Eq. (3.31): under a phase-space contact trans-
formation (¢, p) — (¢ + 8q, p + 6p) with 5¢ = O(e?) and
5p = O(€*), the Hamiltonian transforms as

SL SL
(H = pg) ——=26p ——25q + O(e°),

g
(H-pg) - op 54

(3.33)

modulo an irrelevant total time derivative, and we can choose
to identify 6p (g, p) and 6¢(q, p) with the long coefficients of
6Ly/6p and 6Ly/6q in Eq. (3.31), respectively. This toy
model is an adaptation of Refs. [100,101,105], which we have
extended to Hamiltonians depending on arbitrarily high-order
time derivatives of ¢ and p for our purpose.

Indeed, return now to the nonlocal-in-time 3PN
Hamiltonian A". We shall see that there exists a set of
phase-space variables other than polar in which the steps
above are elegantly carried out. This is the route of
Refs. [102,106], which we adapt here to the ST-ESGB case.

In polar coordinates (7, ¢, p,, p,), the Keplerian trajec-
tory can be parametrized by the semimajor axis @ = a/M
and the eccentricity e as [107]

F=a(l —ecosn), (3.34a)

(3.34b)

We set 7 = 0 at the periastron without loss of generality and
define the eccentric anomaly # as

Q7 =y —esiny, (3.35)
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where

GAB
&3

Qa) = MQ = (3.36)
is the mean orbital frequency.

Now, we observe that a and e can be treated as functions
of the Delaunay action angles (£, G, I, g).3 Indeed, it is a
textbook exercise to show that, on Keplerian orbits [108],

L= GAB&, (3373.)
G=1/Gypa(l — ez), (3.37b)
which can be inverted as
£2
a(L) = —, 3.38a
(£) =5~ (3:38)
gz
e(L,G)=14/1 o (3.38b)

while the conjugate angles are the mean anomaly and
argument of the periastron, respectively:

1=Q1, (3.39a)

(3.39b)

g=w.

In these canonical variables, the OPN equations of motion
are particularly simple: H|, is the Delaunay Hamiltonian,

N Gp
H =22 A
(L) = ~42. (3.40)
and thus
dl 0H, .

*For completeness, the Delaunay action variables are defined
as [108]

[— % (?{ PA(E,J, 7)dF + 7{ ia,/,(l)dcb)

1
0=, § Pul)de,

which are calculated on an orbital cycle with constant p, = J and
Hy = E < 0. The conjugate angles are then defined as

a8 a8

l:i» QZE,

with §= / P, (L.GF)di+ py(G)d.

dg oH,

== =0, 41
dt  0G 0 (3.410)
dc 0H,

—=-""=0, 41
di a0 (3:41c)
dGg  oH,

=0 41d

We can thus consider A", recalled in Eq. (3.21),
as a nonlocal-in-time function AY[L,G,1] of the
Delaunay variables, and use the relations above to turn it
into a local-in-time, ordinary Hamiltonian as follows:
when e <« 1, invert Eq. (3.35) iteratively as (recall that

1=Q1)
. L, . L, :
n:l+esml+§e s1n2l+§e (3sin3/ —sinl)
1
+ 864(2 sin4/ — sin 21)

1
+=——¢(2sinl — 81sin3[ + 125sin5l)

384
1
+ mef’(S sin2/ — 64 sin4l + 81 sin61) + O(e’),
(3.42)

and insert it into Eqgs. (3.34) to deduce #(a(L).e(L,G),1),
and ¢(e(L,G), 1), which enter . To evaluate them at
1+ 7, Taylor expand £, G, and [ around 7, and order reduce
their arbitrarily high-order time derivatives at time 7 using
the OPN equations of motion (3.41). We recall that this step
is equivalent to an implicit phase-space contact trans-
formation, as clarified by our toy model above. The result
is very simple (more so than in polar coordinates) since
only the first time derivative of /, dI/di = Q(L), is nonzero
on shell:

1 +7%) = 1(7) + QL)1 (3.43)

while £ and G are constants.
The order-reduced Hamiltonian then has the structure

4
agll GAB ktﬂil

il .S ; 7
Hred_WIZEAEGOSQT—I—;e(Lg) Ii> +0(e’),
(3.44)

where

I;= Z(aim,, cos(ml) cos(nQ#) + by, sin(ml) sin(nQ7)).

m,n

(3.45)
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Here m and n are non-negative integers, and the constants
a;y and b, are rational numbers. The Hadamard partie
finie can be computed via [102]

dz A R
PF ﬁcos(ng 2) = —2[yg + In(2nQ3)],  (3.46a)
S JR|T
dt ., A,
PF [ —sin(nQ%) =0, (3.46D)
2% Jgr |7]

where y is Euler’s constant. Equation (3.46b) follows from
the symmetry of the integrand, and it implies that the
second line of /; can be discarded. The result is a local-in-
time, ordinary Hamiltonian:

7 2G; kail A A
Hiea(£.G.1) = —ﬁ [re +1n(2Q(£)3)]

6
+ D) e(L.G) Apu(L) cos(ml). (3.47)
=1 m,n

i=
where

4
26 gkin@imn

Aimn(ﬁ) = &([:)4

ye +1In(2nQ(L)3)].  (3.48)

Another purpose of the Delaunay action angles is that
HY, is a perturbation of the OPN Hamiltonian (3.40),
which depends only on £ in these variables. That way,
the  dependence in Hp = Hy(L) + A%, (£, G, 1) can be

red
eliminated through a canonical transformation resembling
Eq. (3.15),

I(l,g.L.G)=1+ %, (3.49a)
G
d(l,g,L.G) = 9+ 55 (3.49b)
L(lg.L.G)=L + aa_(z}’ (3.49¢)
oG
G(l,g.L,G) =G + YR (3.494)
Indeed, the ansatz (for m # 0)
6 .
G = _Z e(ﬁ’,g/)"A,»mn(L’) sin(ml) (3.50)

i=1 mn mﬁ([’/)
yields a 3PN coordinate change, such that [only (3.49c)
matters|

H'D(‘C7 g7 l) = I:IO(‘C/) + I:Igd(ﬁl’ g” l)

0H,0G
+ -

~10
oz o T OoPT).

(3.51)

Since 0H,/dL = Q, the second line eliminates all m # 0
terms in AL (L', G, 1) [cf. Eq. (3.47)]. We thus discard
them in practice, and only keep the part m = 0. The final
canonically transformed Hamiltonian reads (dropping the
primes for simplicity)

. G* ke
Aty = ZABal (3ln&—lnGAB —2(yg +1n(25)) — e*(=9Ina +3In Gy + 6y +6In3 + 141n2)
a

3 1
~ 37 ¢"(=180102 + 6010 Gyp + 12075 + 120108 = 251102 + 2431n6) — (=420 102 + 1401n Grp + 2807

+2801n§ +29291n2 — 7291n6) + O(eS)),

(3.52)

where we recall that a and e are the functions (3.38) of £ and G.

The same steps can be applied to Ao of Eq. (3.11). It is already local-in-time and ordinary, but we rewrite it in terms of
a and e using Eq. (3.34a) with # — R, and Px = dR/ di.* We then use Eq. (3.42) and invoke canonical transformations to
discard /-dependent terms with the same form as in Eq. (3.47). We find

*At leading order in the eccentricity, Pr = O(¢). This means that ALz, which we truncated at O(P%) [cf. below Eq. (3.6)], can be
identified to the two-body Hamiltonian modulo canonical transformations up to O(e®).
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N 1 /1 1
H}EIOB = &— (E (azll,ln Ina + Cl}‘l) + §62(2 ln&(dglnGAB + 6“?,111) + ngIGAB + 1205I — 7“?@)
1 N
+ ae4(4 In a(3qlll,1nG%B + 10dY,,Gap + 45“2,1;1) + 12¢1G% 5 + (40dY — 184y, )G ap + 1804l — 1714},))

1 .
+ 384 e®(60 lna(qIZI,InG%B +3411,Gip + 7dg,lnGAB + 286’}11,111) +60g3 G + (180g] — 664,)Gip

1(420dY — 319d%, )G 45 + 16804l — 20464, ) + O(e?) ). 3.53
3 3,In 4 4.In

[
Now assume that & and e in Eqgs. (3.52) and (3.53) are  and III C, respectively. We recall that P = Pg/u, and we

functions of the same action variables (£, G). The identi-  introduce the notation
fication A, = A 5 term-by-term then yields the unique G sM
solution: u= . (3.56)

R
1 . .
all = 4G4 gk (75 + Eln Guap + ln(2§)>, (3.54a) Adding the results yields

Au) = 1=2u +2({f) — ¥a5)u* + (2v + da3)u’

d¥ = G3 k(21 —321n2), 3.54b
3 = Gaghui( ) ( ) + [1(94/3 — 41722 /32) + 8ay + Gy, In ulu,
G2 sk
qr = %‘m‘ (93 4+ 17531In2 = 7291n6), (3.54c) (3.57a)
3Gk D(u) =1=2745u+ (6v+8d,)u® + (52v — 61> + 6d3)u?,
gh = =AU (37— 57071n2 4+ 2187In6).  (3.54d) (3.57b)
with logarithmic counterparts O(u, Pg) = (8v — 612 + 63, ) Pyu? + q,P%u, (3.57¢)
a!ﬁln = 6Gﬁ3ktailv (3553) with
no_ 1 _
B = 0. (3:55b) baz = 12 V(=245 = 36p, + 4735 + 40745 + 85, +4e)
i =0, (3.55¢) —24(B)(1 = 27ap) — 3573 — 207 a5 +4(8) — 4{e)],
g, = 0. (3.55d) (3.582)
- 1 _ _ - _ -
6dy = a [=3735 — 12745 +4(8) — 24(B) + 8v(27a5 — (B))],

D. Complete EOB potentials at 3PN order (3.58b)

In Egs. (3.7) and below, we split the EOB potentials into
their parts I and II, which we determined in Secs. III B and, at 3PN order,

V7ap(11(7ap +2)* — 4(6)) i 1 [
4a(7ap +2) 12

— 60735 — 78755 — 24745 + (8) (16745 + 8) = 12(€)7ap — 46_P_ — 46, P, + 3P% =367 + 8(8)p, + 60(B)* + 8(x)]

+ ﬁ (288, (40745 — 3) + 192(B) (—4735 — 64745 + 305, — 85, — 19)

+ 6, (1262745 + 7687 45 + 252> — 6080) — 6912 457 a5 + 1152¢_ 745 + 63773 5 — 43273 5 — 1807773 5

+ 1529672 5 — 13507°7 45 + 37184745 + 192(8) (3745 + 2) + 15365_p_ — 8643> — 288% + 3456 45

+ 1152(B)? + 1152(e) — 768k, — 768(x) — 1536(y) + 1152(w) — 768y, + 1152(¢)], (3.59a)

8y = 2kgsop — 4k (YE +1n2) + 2(B) (47735 — 287 ap + 6B, + 456, — 12(5) — 28)
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- 1 -
Oy = kil (21 = 321n2) + 5 [4((8) = 6(5)) (3745 + 8) = O = 527ip — 6474 + 16(e)]

S [4(=8, (6745 + 11) + 9735 + 775 + 173745+ 27Ca5 = 6(5) +3(e) — 4e. )

+ 30 (4745 + 69) — 18(B) (87ap + 11)] 4+ 1?[=735 — 10745 + 9B + 6 — 26, — €],

5q, = ékmﬂ(% + 1753102 - 7291n6) + g [7ap(157a5 + 52) +4((B) — (6))] + 202[(B) — 2745).

10

with the logarithmic counterpart

Ay = =2k (3.5%)
The coefficients depend on the mean values

() = M (3.60a)

(6) = M (3.60b)

(e) = % (3.60c)

(w) = W (3.60d)

(k) = w (3.60¢)

(&) = M (3.60f)

() =" (3.60¢)

M s

where Eqgs. (3.60a)—(3.60c) were already introduced in
Ref. [34], while the remaining quantities are new to this
paper. The results above are available online [109].

A few comments are in order. The potentials (3.57) are a
beyond-GR extension of the 3PN results of Damour,
Jaranowski, and Schifer [93], which we recover in the
GR limit detailed below Egs. (2.10). Indeed, in that limit
(B), 745 and the coefficients (3.58) and (3.59) all vanish.
We observe that Newton’s constant is now substituted by
the effective gravitational coupling G,p entering u at all
orders. Thus this effect can be absorbed in a redefinition of
the total mass M. When truncated to 2PN order, our
potentials depend on five coefficients and reproduce those
of Ref. [34] in ST theories. This can be checked using

Egs. (3.58) and B = (AD)~!.

G = k(37 = 570712 + 2187 6),

(3.59b)

(3.59¢)

(3.59d)

The 3PN coefficients (3.59) are the central new results
of this paper. They show that among the eight coefficients
in our ansatz at 3PN level [cf. Eq. (3.3)], only five are
nonzero. The contribution from the nonlocal-in-time tail is
driven by the constant k,;;, which enters all coefficients in
Eqgs. (3.59). This is necessary to include the non-GR tail
beyond circular orbits, and at sixth order in the orbital
eccentricity. Note that the tail is fully responsible for
the unique logarithmic correction g, and the post-post-
geodesic coefficient g,. As for the ESGB corrections
beyond ST, they are driven by kgggp, and their inclusion
is particularly simple: they only enter in day.

Contrary to the two-body Hamiltonian H, the coeffi-
cients (3.59) do not depend on In, = In(74) & In(73),
where 7, and 7 are the regularization lengths mentioned
in Sec. II D. As expected, they have been reabsorbed in a
canonical transformation at 3PN level (see Appendix E).

Finally, at the end of Sec. IID we split the two-body
Hamiltonian into its local-in-time and nonlocal-in-time
parts A' and A" by introducing an arbitrary constant §
which propagated in both A! and A [cf. Egs. (3.19a) and
(3.54a)]. As expected, § cancels out from our final EOB
potentials.

IV. THE EXAMPLE OF SHIFT-SYMMETRIC
ESGB GRAVITY

A. Hairy BH binaries

The coefficients of the potentials (3.57), we recall, are
built out of the theory-dependent product £%f'(¢,) and of
ten body-dependent parameters: the values of the masses
my (@) and mp(g) and their logarithmic derivatives (2.3)
evaluated at infinity (i.e., at ¢ = ¢y).

Now, these quantities can be calculated once the
theory and the bodies are specified. In ST theories, they
were derived numerically for NSs and their scalarized
counterparts (e.g., see Refs. [36,110] and references
therein). They were also calculated for BHs in ESGB
models, both analytically in the small-Z limit, and numeri-
cally for nonperturbative solutions such as scalarized BHs
(cf. Refs. [48,51]).

Let us complete this paper with an explicit illustration.
Consider a BH in the shift-symmetric theory f(¢) = 2¢
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and A(¢p) = 1. For simplicity, here we consider only terms
at leading order in Z, such that [48]

& = —(¢/m) + O /md), (4.1)
while 9, g9, and " are at least of order O(¢/m$)* and
can thus be neglected in what follows. The BH is fully
described by the values of # and m{. In the GR limit
£/mY = 0, the quantities above all vanish, because then the
BH reduces to Schwarzschild and its mass my, (@) is a

constant (cf. Ref. [48]). We find it useful to introduce the
dimensionless ratio

(4.2)

where p is the binary’s reduced mass defined in Eq. (2.24).
Then, for a binary BH system described by Eq. (4.1) and its
B-counterpart, the coefficients of the effective potentials

(3.57) boil down to simple functions of Z and v only:

Tag = —20% + O(%), (4.3a)
(p) = 0(2°), (4.3b)
and
bay = %%(3 —v—1612) + O(£%),  (4.4a)
6dy = 2*'u(1 + 30— 82) + O(£°),  (4.4b)

while at 3PN,

1
1y = 5o v [(1 — 40) (7685 + 768102 + 6372 — 1976)

+ 648 4+ 12(8017% — 26240)} L0, (4.53)

_ 1A
6ds =57 [—2(1 —4)(21 —321n2)

_ 34400 — 32607 + 48y3] L O, (4.5b)

1,
61 = 57'v|(1 - 4)(~93 ~ 17531n2 +-7291n6)

—6u(1+230 - 122)| + O(Z), (4.5¢)

1, X
g = —gf“y(l —4v)(37-57071n2 +21871n6) + O(7°),
(4.5d)

with the logarithmic counterpart

4 . A
= 3 Zu(1 —4v) + O(2°). (4.6)

At this order in 7, only the terms proportional to 74z, 345,
ki, and kgsgp contribute to the beyond-GR coefficients
above, which vanish in the GR limit 7 =0.

Let us note two more useful limits.

First, when v = 1/4, the first lines of Egs. (4.5a)—(4.5¢),
and also g, and ag,, are zero, because the tail corrections
[driven by kyy = —(2/3)7*v(1 — 4v) + O(#°)] vanish for
symmetric binaries with constant scalar dipoles.

Second, in the extreme mass-ratio limit v = 0, the
effective potentials simplify to A =1-2u, D =1, and
Q = 0. Since, moreover, Hpop = Hey in this limit, the
two-body dynamics reduces to geodesics of the
Schwarzschild metric, even when 7 # 0. The reason is
simple: take, say, m$ > mY%. Since #/mY is kept fixed to
small values in our approximation scheme (4.1), £/m$ =
O(v) vanishes, and 7 = #/m% + O(v). This means that
body A reduces to a Schwarzschild spacetime with constant
scalar field [cf. Eq. (4.1) and below]. We recover the

conservative sector of the extreme mass-ratio analysis of
Ref. [111].

B. Orbital frequency at the ISCO

We can now evaluate the beyond-GR modifications to
the dynamics, focusing on circular orbits for simplicity.
Consider the motion described by the effective Hamiltonian

H. given in Eq. (3.2). It does not depend on 7 nor on @,
and thus

He = E, (4.7a)

Po=1J (4.7b)

are constants of motion. When P = 0, we have from the
system above that

E>=W(R) with W(R) = A(l +1{e_22>’ (4.8)

while the circularity of the orbit also requires dPg/di = 0,
that is,

oH. 1 oW(R)
oR  2H. OR

=0. (4.9)

The ISCO is characterized by a third (inflection point)
condition,
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PHy 1 PW(R)
oR>  2H. oR?

=0. (4.10)

Hence E and j = J/G,p relate to u [cf. Eq. (3.560)] as
) Al 1/2
N

where the primes denote derivatives with respect to u, while
Uisco 1s the outermost root of

(4.11a)

(4.11b)

A//
A

(AMZ)//

= aw) (4.12)

Let us turn to the EOB Hamiltonian Hgop given in
Eq. (3.1). The associated Hamilton equations define a
resummed two-body dynamics. In this paper, we focus on
the dimensionless orbital frequency Q=MQ= dd/di,
which reads

oH EOB of, eff J u?A

0H . 0Py B GapgE\/1 +2u(E - 1)’

where E(u) and j(u) are given by Egs. (4.11) on circular
orbits. The orbital frequency, which we shall evaluate at the
ISCO, is thus fully fixed by the effective potential A
[91,112]. We follow Refs. [93,113] and resum our 3PN
result (3.57a) by means of the (1, 3)-Padé approximant

Q=

(4.13)

(4.14)

This ensures that Ap(u) has a simple zero (by construction)
and the presence of an ISCO, by continuity with the
Schwarzschild metric recovered in the GR, test-mass limit.
The Padé resummation was adopted in several studies that
calibrated GR-EOB waveforms to NR [113,114]. For
further discussions on the effects of the Padé resummation
in the ST case at 2PN, see Ref. [34].

Figure 1 shows the ISCO location u;5co and dimension-
less frequency G4 BQ of a binary BH system in the shift-
symmetric ESGB model discussed in Sec. IVA. The
beyond-GR coefficients of the potential A are thus the
functions of v and # = ¢ /u given in Egs. (4.3)—(4.6), which
we truncated at the leading order in Z given there. We
recover GR when # = 0, and we consider four symmetric
mass ratio values, v = {0,0.1,0.2,1/4}.

When v =0, we find that ugco = 1/6 and G,zQ =
673/ teduce to their Schwarzschild values for all Z,
consistently with the extreme mass-ratio limit described
at the end of Sec. IVA. However, when v # 0, both ugco
and GABQ increase with Z. In particular, the slope (or
“sensitivity”’) of the ISCO frequency is maximal when
v=1/4:

d(GABQ)ISCO

=i =114 x 1072,
d(Z”)

=0
v=1/4

(4.15)

For such equal-mass binaries (with 4 = M /4), the relative
modification to the GR ISCO frequency, (G45Q)isco/
(GapQ)%d — 1, then reaches the percent level when
£/M = 0.132. For comparison, Ref. [115] obtained
one of the most stringent constraints to this day in shift-
symmetric ESGB gravity, /M < 0.344, from the BH-NS

usco

0.19

0.18 -

017

GaBMQisco

0.100 |- ‘
0.095
0.090 |-
0.085 |

0.080 |-

0.075}«

0.070 |

FIG. 1. Location u and dimensionless orbital frequency G,zQ = G,z MQ at the ISCO of a BH binary in the shift-symmetric ESGB
model f(¢) = 2¢ and A = 1. Here, v = {0,0.1,0.2, 1/4} is the symmetric mass ratio and # = £/ is the dimensionless Gauss-Bonnet
coupling, with y the reduced mass. GR is recovered when 2 = 0. When v = 0, the ISCO location and orbital frequency reduce to the
Schwarzschild values, while they increase the most with Z in the equal-mass case v = 1/4. The relative modification to the GR ISCO
frequency then reaches the percent level when # = 0.528, that is, £/M = 0.132.
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system GW200115 with total mass M = 7.1Mg,,. (Note
that we translate between our conventions and those of
Ref. [115] by setting ¢ = V4z¢ and 2 = 2v/4nagg.)

The ISCO analysis above motivates the obtention of
full EOB waveforms, including the dissipative sector
[35,39,50,80], to be confronted to GW signals. This issue
will be addressed in future work.

V. CONCLUSIONS

In this paper we have extended the work of Refs. [34,44]
and built an EOB Hamiltonian in ST and ESGB gravity at
3PN order. Our main new results are the following:

(1) An ordinary two-body Hamiltonian [Eq. (2.26)] at

3PN and in ST-ESGB gravity;

(2) The associated EOB Hamiltonian [Eq. (3.1)] and its
3PN coefficients [Eq. (3.59)], which account for the
beyond-GR tail at sixth order in the eccentricity;

(3) The application to hairy BH binaries in shift-
symmetric ESGB gravity [Egs. (4.3)-(4.6)], and
the first estimate of their ISCO frequency (Fig. 1).

It is important that the EOB framework can be extended
beyond GR. Here, we have reduced the 3PN dynamics to
the (nongeodesic) motion in a modification of the GR EOB
metric, and accounted for the beyond-GR tail effects by
adapting the 4PN methods of Ref. [102].

The EOB framework is also suitable to include other
modified theories of gravity, such as Einstein-Maxwell-
scalar models at 1PN [45,47,49]. Our work can thus be
regarded as another step toward the development of a
parametrized EOB framework, by providing a “dictionary”
between modified gravity theories and the values of the
coefficients of the effective potentials (3.57). In the future,
the tools and methods we developed in this paper could be
applied to other models, such as disformal ST, massive
gravity, or Horndeski theories (which also predict hairy
BHs [116]).

We have focused here on the conservative part of the
dynamics. The corresponding EOB radiation-reaction
force, to be inferred from already available energy fluxes
[35,39,50,80], and gravitational waveforms, will be the
topic of future work. Since NSs and BHs are, in general,
spinning, it will also be important to extend the present
work to include spin effects. For the PN analysis of spin-
orbit effects in ST gravity some work has been done in
Ref. [117]. As a first step, the beyond-GR EOB
Hamiltonian derived here could be included in the state-
of-the-art spinning EOB Hamiltonians in GR (see, e.g.,
Refs. [114,118] and references therein), and then used to
generate beyond-GR inspiral waveforms.

The EOB approach uses a resummation of the two-body
dynamics that can be extended through the plunge of
the two BHs, after which the waveform is matched to the
merger-ringdown signal. The latter should make use of the
quasinormal mode spectrum of ESGB BHs, which has
been computed up to second order in a slow-rotation

expansion [89,90]. The Padé-resummed spectrum of
Kerr BHs computed at the same order in the slow-rotation
approximation is typically accurate at the percent level
when evaluated at the dimensionless spins ~0.7 of interest
for LIGO-Virgo-KAGRA observations [90]. Therefore it is
reasonable to assume that deviations induced by beyond-
GR terms could be testable at the same (percent) level of
accuracy. The quasinormal mode spectrum could be
included in the EOB model using the parametrized spin
expansion coefficient (PARSPEC) framework [26], which
has been used to perform theory-specific tests of GR with
ringdown signals using the PYRING code in Ref. [119], and
with EOB waveforms in Refs. [120].

For the case of binary BHs, once the EOB waveforms are
completed with physically motivated ansatzes for the
merger-ringdown in ESGB gravity, they could be compared
with and informed by NR simulations (see, e.g., Ref. [66]).
Developing precise and complete EOB-NR waveform
models is crucial to obtain new experimental bounds on
ESGB models, and more generally, on wider classes of
modified gravity theories in the future.
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Note added.—While this project was nearing completion,
we became aware of an independent effort that recently
appeared on the arXiv [121]. Their work focuses on the
computation of the 3PN EOB Hamiltonian in ST theories
and restricts the inclusion of tail effects to circular orbits.
This limit amounts to setting formally kgsgg =0 and
ki = 0 in Eqgs. (3.59b)—(3.59d).
After both works appeared on the arXiv, we compared
the results in the limit given above. We found the
followingsz
(1) Equation (5.16) of Ref. [121] still differs from
Eq. (3.59¢) by an overall minus sign.

(2) The term proportional to (8)/a,p in Eq. (5.14) of
Ref. [121] differs from that of Eq. (3.59a) by a factor
7ap- Note that a4z = @ in our conventions.

>The cross-check of our results against Ref. [121] used
[arXiv:2211.15580v2].
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TABLE 1.

Translation of the parameters from Refs. [38,41,42]. Their « is renamed here as @ to avoid confusion with ours.

References [38,41,42]

References [35,48,99] and this paper

Theory dependent

G Az(l + ag)
¢ 1+[z)xg
A 2(1[:—,(10)
/12 W ( /}O(ZO 2/30(1(2) + 4/}%)
78] 8<1+az>z (6B — 248302 + 8Byag — 13B)Bocg + 2453 + B0ad)
Body dependent
my m%/Ao
SA %(1 - aA/a())
Sy 4L (ﬁA/ao - aAﬁO/ao)
SX ( aoﬁo - 3aAﬂo ﬁ//o;a% + a?xﬂf)ao)
sty % L (158%a0f3 — 156583 — 588 Boad + 1005 By oy — B a3y — 485038, + B ap — oS 87%a3)
OPN
G& A2(1+GAGB) A()GAB
IPN
v —2a%a?
4 Huéaﬁ =7aB
_} /}l) ((10)2
Pa m =P
2PN
S (a%)? .
! Wl = %4
— — /07,03
A 4(]ﬁf(:(?:0))x = _SA/4
n D - _}0 } 0
Pabsl7 W = —Cap/8
3PN
- a() 4 o110
KA 8((1 J}:()zoﬂ;() 7 = Ka
- S _ IZO(IU
Badaly m =-ya/4
Baisl7 %‘;ﬁfﬂfﬂ’ﬂ = £,/16
Pa(Bu)/7? CATIAIR, — wa/32

We explicitly checked that reexpanding our Hggp at 3PN
order yields Egs. (5.4) and (5.5) of Ref. [42] on circular
orbits. By contrast, we find that it does not if we replace
Eq. (3.59a) by Eq. (5.14) of Ref. [121].

After our work appeared on the arXiv, Ref. [121] was
extended in Ref. [122] to include the tail effects up to
O(e*). This limit amounts to setting formally kgsgg = 0
and k; = 0 in Eq. (3.59d), since we recall that our work
includes the tail effects up to O(e®). The tail contributions
(4.12)—(4.17) in Ref. [122] all differ from ours by an overall
factor Aé The latter indeed enters Eq. (2.29), and it
originates from the translation of the Jordan-frame
Lagrangian (A3) of Ref. [42] (see Sec. II B)°.

®The cross-check of our results against Ref. [122] used
[arXiv:2301.01070v1].

APPENDIX A: EINSTEIN AND JORDAN
FRAMES

In Refs. [38,41,42], the ST two-body Lagrangian was
computed up to 3PN order by adopting the Jordan-frame
formulation of the theory (we use tildes for clarity):

tor = [ S (=0 ap2) 1.3 (A1)

where (d¢)* = 70,40,¢, and where w(¢) is a function
defining the theory. As for compact bodies, they were
described by performing the substitution

Iy = I8 ==Y / g () ds,,
A

(A2)
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with d5, = /=G, dxydxy. In the present paper, we fo = da (¢0), (A6b)
describe ST theories by the Einstein-frame action, which dp
(setting to zero the GB coupling) reads dp
Bo=——(9) (Abce)
d*x./=g do
tsr= [ L (R=20007) + 1Y ). (A3
/! dﬂ/
where (dg)> = ¢*“0,¢0,p, and where we account for P :%((ﬂo)’ (A6d)

compact bodies by the substitution

where the subscript 0 denotes a quantity evaluated at

Iy = In = —Z / ma(@)dsa, (Ad) infinity, ¢(¢9) = @o. The quantities above can be obtained

A by inserting Eq. (A5c) into Egs. (2.3) and taking the limit

) ] ima(¢) = const. In this limit, body A is said to have

with dsy = 4, —gudx)ydxy. The actions (A1) and (A2) as negligible self-gravity, and its motion reduces to geodesics
well as (A3) and (A4) are identical, modulo boundary of g,, [cf. Eq. (A2)].

terms, via the redefinitions By using Eqgs. (A5) and below, we can translate the
parameters of Refs. [38,41,42] into our conventions. The
T = A9, (AS5a)  results are gathered in Table 1.
dln A\ 2
3+ 20(¢) = ( do ) : (ASD) APPENDIX B: TWO-BODY LAGRANGIAN

AT 3PN ORDER

my(@) = Al@)ma(e), (ASc) The contributions to the two-body, harmonic Lagrangian

2.5 , up to 2PN,
where ¢(¢) is obtained by inverting A(¢p) = 1/+/¢. Let us (2.5) are, up to

also introduce the notation:

1 1 G opm9mY
JInA Lopn = Emg"fx + Em%‘% + %’ (Bla)
= , A6
ay do (®0) (Aba)
|
1 1 GapmOm$ [3 7 1 _
Lipny = gmgvi +§m(z);V§3 +AEATE [5 (Vi +vp)— 3 (Va-vg)— ) (m-vy) (- vg) 4+ 7ap(va — vg)?
G2 .mOmY - -
== I (14 2By) + mip(1 4 28,)], (BIb)

GpmOm% 1 _ B 1
—AB_ATE [— (74 4745) (V4 — Va(0 - V5)?) = (2 + 7ap)Vi(Va - VB) + 3 (V4 - vp)?

LQPN :im0V6 +
16 44 8

1 i 3 1 i
+ E(U + 8748)VaV + 16 (n-vs)*(n-vp)* + 1(3 +274p)Va - vp(n - vy)(n - VB):|
G%Bm%(mg)z - =2 e 2 - -2 2 2
e [(2 12745 + TP + 8B — 46,)V2 + (14 + 20745 + 7725 + 4B — 45,)V3

—2(7 + 16745 + T73p + 4B5 — 464)Va - Vg = 2(14 + 12745 + Va5 — 8Pp + 464)(n - v4) (n - v)

+

+ (28 + 20745 + 755 — 8B +464) (0 - v4)? + (4 + 47ap + 7 +464)(n - VB)Z}

G5 5(mY)>m) 2_ 1_ -2 1
AB 2’2 B 1+§}’AB+EJ/1243+2'BB+§5A +§€B +

Gip(my)* (m

2
+ ) 9 48745+ 8034+ Bs) + 4]

- %GAB’"%’”% [2(7 +4745) (Vg - a4) (- vg) + (n-a,)(n-vg)? = (7 +47,5)(n - 3A)V%] + (A < B). (Blc)

104044-19



JULIE, BAIBHAV, BERTI, and BUONANNO PHYS. REV. D 107, 104044 (2023)

)

The contributions Lypy at 3PN level (2.6) are, respectively, proportional to G/, and read

(0)
3PN —

1
LgP)N =

2)
L'SPN

5
o8 miv + 3 mvs, (B2a)

GABmgm%
32r
+Vava(n-vy) (- vg) (14075 +283) — 156v3 (- v4) (0 - V)  (7ap +2) + 144vi(n - v4)* (0 - V)* (745 +2)

—6vi(n-vy) (0 -vp) (274 +5) = 16V (0 - v4) (0 - Vp)Va - V(18745 4 35) +8(n - V) Vs - V(3745 +5)

—2vi(0-v4)2Vy - V(26745 +45) +4vi (0 V)2V, - V(65745 + 128) +4vp(n-va)* (13745 +27)
—10(n - v, )* (0 - vp)? (8745 + 15) = 12(0 - v4)* (V4 - V)2 (87ap + 15) + 5(n - v4)* (n - v5)3 (16745 +29)
+16(n-vy ) (n-vg)vy - V(17745 +32) +2(n-v,)(n-vg) (V4 - V)2 (1087 45 + 197)
—3(m-vy)?(n-vg)?vy, - Vp(108745 + 199) + 12V8 745 + 120ViVE74p — 4VAV4 - VBiag

[—4Vf;(n'VB)2(1277AB+23)+Vi(“‘VA)(n'VB)(2OJ7AB+42) 8vavg(n - v,)* (19745 + 39)

— 192VAVEV,4 - VgFag + 96VA (VA - V) Fap — 32(Va - VB ) Fap + 22V +240v4vE — 10V4v, - v
—387vivav, - Vg + 188VA (v - V)2 — 54(vy 'VB)3}

1 97 _ _
+—= 13 G ypmymy [48",4"3 (n-ay) <37AB + 16) —42vi(m-a,)(n-vg)?(7ap +2) + 120v3vg - a,(n - vg) (Fap +2)

B 15 _ _
483 (n-ay)vs - vy (yAB +—) 62 (0 8) (0 va) (0 V5) (2Fap 4+ 5) — 1292vs - g (- V) (6745 + 1)

8
2 - 2 - 97 2 2125
+6vivg-as(n-v,y) (8745 +15) +48vpv,-as(m-vy) | 6745 +§ —6vz(n-a,)(n-vy) (13745 +27)

~84v,-as(n-va) (0 Vp)* (Fap +2) +240v, - as(n - V)V Vp(7ap +2) +12(0 - a4)(Va - V5)* (4745 +7)
—12(m-a4)(n - v4)*Va - V5(37ap +5) —4Vg - as(n-v4)  (37ap +5) + 6V4 - ag(n-v,) (- vp) (2745 +5)
+24vg-as(n-va) Vs Vp(474p +7) +9(n-a,)(m-vy)? (- V) (8745 + 15) — 6v4(n - ap) (6745 + 1)
—12(n-a,)(n-vy)(n-Vg)Vy - V(22745 +41) —6Vg - as(n-v,)*(n- V) (22745 +41)
+6vi(n-ag)(n-vy)? (2745 +5) + 12v4va - ag(n-v,) (8745 + 15) = 72vi(n - ag)(n - vs) (n - vp) (7ap +2)
+144v3v, - ag(n-vp) (Fap +2) + 144vi(n - ag)v, - vp(Pap +2) + 12v4vp - ag(n - v4) (207, + 41)
—8va-ag(n-v,) (3745 +5) +12(n-ag)(n-v,)’(n-vp)(47ap +7) — 8vp-ap(m-v,)* (5745 +11)
—24v,-ag(n-vy)*(n-vg) (6745 + 11) = 24(n-ag)(n-v,)>v, - V(6745 + 11) =3(n-ag)(n-v,)*

+12v4 - ag(n-va)vy - V(8745 + 13) +12v4 - as(n - vy ) vy - V(8745 + 15)| + (A < B), (B2b)

0

m m
Af44;‘ B (393 (n - v4)2 (3 (14673 + 564745 — 48By + 864 +490) = 3m((7ap +2)° + 435))

+6vi(n - vy) (- vg)(2mS (<7373 5 — 246745 + 24P — 46, — 179) + 3mY((7ap + 2)* + 45p))

+6V2 (0 - V)2 (9872 5 + 312745 + 864 + 235) + 4(n - v )*mO (572 5 — 24745 + 3685 + 208, — 26)
+3vi(n - vy )2m (37755 + 967 — 24P — 445, + 14) + 12(n - v4)2(n - v)?>mS (573 5 + 24745 + 48P

+ 2084 +70) = 8(n - v4)*(n - vg)mG (10735 + 24745 + 72Bp + 405, + 83) +24(n - v4)(n - v)v, - vem$ (97
42672, + 111745 — 248 + 86,) + 6(1 - v4)2V, - vyml (— 14972, — 600745 + 728 — 206, — 529)
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—3VA(3mY (2B, + 15735 + 52745 — 405 +45) +mS (12273 5 +4327 45 + 85,4 +373))
+3VAVBmA( 1677/AB—564}/AB+45A 463)+6(VA VB) mA( 125yAB 4927AB+24,BB—205A—463)
+6VAVAVB(mA(223}/AB+816yAB_24ﬂB+285A+719)+3mB(23yAB+847AB_453+76))]

0

G2 ym! _
_% [3v2 (n-a) (4m% (654 +257% 5 + 877 a5 + 465 +80) -+ mO (9872 5 + 3127 45 + 85, +235))

—9"%(“ . aA)mg(SZ}_/iB + 196]_/AB + 165A + 185) + 18(“ 'aA)VA VBmg(SZ}_/%B + 1967AB + 165A + 185)
—6VA . aB(n VA)(mg(—56)7iB —240}_//_\3 +24)BB _326/4 —235) —I—m%(98}733 +312]7AB +8(SB +235))

+6<n-a3)(n-vA>2(m2(7iB+67AB+24BB+46A+29>—2m%<27i3+217AB+853+34)>] +(A<B), (B2c)
3 0.,,0
3) — GABmAmB { 032 —3(n - . 3(n - 2 _ 2 . 11% - 2 2_45 b 10 :|
3PN 24&,,3(7AB+—2) (mg)*(=3(m-vy)(m-vg) +3(n-vy)* =i+ Vs Vg)(11745(7ap +2) 4(7a +10))
_ Gagminy [—576(m°)2v2 In(r/ry) (46, —11(7ap +2)?) + 1728(m)*(n - v4)? In(r/ry ) (484 — 11 (745 +2)%)
230473 A) VA A A YAB A A A A YAB

—1728(m3)*(n - va) (0 - vg) In(r/ra) (484 = 11(7ap +2)%) +576(m3) >V - Vg In(r/ra) (464 — 11(745 +2)°)
— VZ‘ (32(m2)2(69772‘3 + 558]73‘3 + 1472y 45 — 18ep + 54BB(47AB +5) = 126, (5745 +2) + 1232)

+ mOm (637273 + 230473 5 + 1807272 5 + 313673 5 + 1350027 45 — 1267°6,7 a5 — 126728 57 a5 — 66567 45
147672 — 252726, + 87045, — 25278 + 384065 — 2304C 5 + 23044 + 2304y 5 + 460885 (745 + 1)

+576B4 (16745 +21) —9760) + 192(m%)? (673 5 + 2573 5 + 34745 — €4 — 405 (2745 + 3) + 664 (2745 +3) + 15))
+V, Vg (32(m2)2(105;72,3 + 711745 + 1688745 — 185 — 126, (9745 + 7) + 18B5(167 45 +23) + 1340)

+ mSm%(=637273 5 + 230475 5 + 180773 5 + 313673 5 + 1350727 45 — 55047 45 + 14767% — 1728¢ 4 5 + 4608y 4
17288, (8745 + 11) = 2864 (972 (745 + 2) — 448) — 7024))

—3(n-v,)(n-vg) (32(m9,)2(21713 + 40575 5 + 14007 45 — 185 — 6084 (745 + 1) + 18f5(8745 +7) + 1316)

+ mQm% (=637°73 5 + 76873 5 + 180772 5 — 300872 5 + 13507°7 45 — 152967 4 + 147672 — 1344 5 + 4608y
1928, (56745 +75) — 286, (972 (745 + 2) — 448) — 14224))

+3(n-vy)? (32(mA) (27735 + 44173 5 + 1472745 — 125 — 1264 (3745 + 1) + 18B5(8745 +9) + 1370)

+ mAmB( 6371' yf\B + 768}_’;43 + 1807f }_/AB - 30087/2_\3 + 13507T2}_’AB - 126”25A}_/AB - 126”253}_/AB - 145287143
147672 — 252725, + 87045, — 2527255 + 384085 — T68C 45 -+ 2304y + 2304y 5 + 15368 5(2745 +3)

+ 1928, (4075 + 63) = 12256) = 96(m$)* (2745 + 3) (Fan + 2 +435) )| + (A <> B), (B2d)
b Gl ] Gt ()
LgP)N = _W (11745 (7ap +2)* =484 (Fap — 5)] — % [36’"% In(r/ry) (484 — 11(7a5 +2)?)

+ 6mS (4B (Vg + 47ap + 404 +7) + 2745 + 87ap + 12B% + 85, + 8k + deg +9)
+ m$% (2484 (Fig + 47ap + 12B5 + 454 + 16) + 36B5(32745 + 79) + 128,745 — 3375 + 62472 5 + 3340745
+ 2885% + 288¢ 45 + 1365, + T2&4 + 720, + 96y, + 20065 + T2ep + 4008)] + (A < B). (B2e)
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APPENDIX C: CONTACT TRANSFORMATIONS

The order-reduced two-body Lagrangian (2.20) is obtained by replacing the accelerations by their on-shell expressions
at 1PN:

GABm% 3

0
(ar)y = 2 [0 (=1 + (5 + 255 + 27as) +3 (n-vp)?

— (1 +7ap)V4 = (2 +748) (V5 = 24 - ¥p)) + (Vi = V5) (4 4 2745) (0 - v4) = (3 +2745)(n - vg))],  (CI)

0
Gypmy

+ (4425 + 27ap)

and (A < B).
The six-by-six Hessian matrix associated with F = Lgpy + L py defined in Eq. (2.21b) is

. 1 _  Gag(M —m .
(Hr)pj = mgdep [51']'(1 + §V2c + (3 +274) AB(rC)> + Ulcvjc}
1 G 4zmOm", - _
- EM (8acOpp + Opcdap)(n'n! + (7 + 4745)0;;), (C2)
with inverse
1 1 _ Gg(M — mY
(HFI)%{ =—0cr |:5kl (1 - —V% — (3+274p) M) + Ul&”f@]
mg 2 r
LG (5 50r + 6555 knl 4+ (7 + 47,455 C3
+§T(AEBF+ pEdar) (050" + (T4 4745)01). (C3)

The contact transformation defined by Eqs. (2.21) then reads 5x, = x5~ + 6x3PY, with

1 _ _
5X124PN = —gGABm%(2(7 =+ 4]/AB)(H . VB)VB + (n . VB)zn — (7 + 47AB)V%H)’ (C4a)
3PN _ Gapmy v 200 (P48 12 - 9,092 -
6XA _748]" 21](]'1 VB) (mB(24ﬂA+]/AB+ 12]/AB+453+38) 2mA(2)/AB+21yAB+85A+34))

—2vp(n - vy) (Y (248, — 104725 — 3967 45 — 3265 — 361) + mO (9872 5 + 312745 + 854 + 235))

+6n(n-vy)2mQ (674 + 11) + 6Va(n-vy)mS (4745 + 7)* + 3nvimS (36735 + 136745 + 165, + 129)

+nvim$%(507% 5 + 1567 45 + 855 + 109) + 4nvazm$ (2573 5 + 87745 + 65 + 45,4 + 80)

—6n(vy - vy)mO (52725 + 1967 45 + 165, + 185)}

Gamiy
48

—3nv;(n - vg)* (14745 +27) +720v5(n - V4 ) (0 - V) (745 +2) +6nvi (0 - v4) (0 - V5) (2745 +5)

—12n(n-vy) (- Vg)Va - Vp(22745 +41) — 120(0 - V4)*Vy - V(3745 +5) — 6nv(n - v,)* (137,45 +27)

—6nvy(n - vp)* (2745 +5) = 6va(n - Va) (0 - Vp)> (14745 + 27) + 288V, (N - V) V4  Vg7ap

+6V4(n vy )2 (- vg) (274 +5) — 12V3va(n - V) (6745 + 11) + 12v4(n - V1)V, - V(8745 + 15)

+ 12v, V(- v4) (2274 +45) +24v(0 - v4) (- V) (6745 + 11) = 96VE(N - V5)Va - V57ap

—6vp(n - vy)2(n-vp) (22745 +41) + 6V2vg(n - vp) (24745 +47) — 144vEvp(n - v,4) (Fap +2)

+24vp(n - vy )V - V(4745 +7) = 4vp(n - vy’ (3745 +5) +6Vive(n - v4) (8745 + 15)

+ [—12n(n Vo) (0 - vE) (4745 +7) +24n(n - v5)?v, - V(6745 + 11) +9n(n - v,)2(n - v5)? (8745 + 15)
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+8vA(n-vg)3 (5745 + 11) =240V, vE (0 V)74 +8V5(n- V)3 (3745 +5) —96vave(n-v5)7ap
—144nv3v, Vg (7ap+2) +120(V4 -vE)? (4745 +7) +60V4V 4 - V5 (8745 + 15) +6nV3 V5 (22745 +45)
+6n(vp)* (6745 +11)+3n(n-vg)*+564v,(n-vg)v, vy —156v(n-vg)vy - vy —492v,v4(n-vg)

AMA? d
—180vvs(n-v5) |~ (G, o a — e [25(R)] (Cav)
3 2r R |T| r2 t+1
and (A < B).
APPENDIX D: TWO-BODY HAMILTONIAN AT 3PN ORDER
The contributions to the center-of-mass frame, two-body Hamiltonian (2.26) are, up to 2PN,
A2
7 P~ Gap
Hopn = = — D1
0PN = P (Dla)
A 1 wa Gag _ > Gig v >
Hipy = —g(l = 3v)p* — 2% [wpr + (342745 +v) 7] + 252 1+, —m_p_], (D1b)
. 1 G
Hopy = (1= 50+ 517)p0 + =22 [(5 — 220 — 32 + 47,5 (1 — )Pt + 2(1 — L)upPpR — 3u2pﬂ
G> - -
+ 8;‘5 [(22 + 28, + 28745 + 9735 + 580 + 367451 — 26, (1 +v) + 2m_(B_ +6_ — p_v)) p?
— (26, + g + 47an(1 +60) +4(1 + 8v = 3F.0) + 2m_(5_ +2B_v)) pﬂ
G _
-4 [6 Fey +A7ap + g + 450 — 26,0+ 167450 — 27250 + 6B (1 +20) + 6, (2 — 4v) + 128 40
—m_(65_ —26_ + e_)] . (DIc)
The contributions ﬁlglgN at 3PN level (2.27) are, respectively, proportional to G, and read
A0 = 2 (<1 £ 70— 142 + ) (D2a)
3PN 128 P,

. G
A = lg‘f [—(2)7AB(931/2 — 230+ 3) 4 503 + 33102 — 64u + 7) O + (=27 + 47,5(89v — 4) — 312 + 6760)up* p?
- r

— (=5 4+ 302 + 468 + 6745430 — 1)) vp?pt + 5(15 + 8745 — v)1? ,39} , (D2b)
50 _ G ;
Hipy = 48/*?32 [(—3ﬂ+(u2 + 3v — 3) = 3087% 30 + 19975 5v — 51735 — 34874517 + 4027 451 — 132745

— 26, (200 = Tv +3) + 3950 + 164v — 87 — m_(5_(6 — 34v) + p_ (9> — 39v + 9))) pt
+ ((5961/2 + 1370 + 3)7i5 + 6(5041% + T1v + 2)45 — 360°B,. — T20h + 26, (200 = Tv + 3)

+ 355602 + 211y + 12 = 2m_(6v(v + 2)B_ + 5_(17v — 3)))13213%

1 _
+ <§1/(801/37iB — 5041745 + 2073 5 4 228745 + 72(5v 4 1)B,. + 405, (4v + 1) — 581 + 454)

- gvm_(9(1/ -1)p_+ 55_)> ]5‘,‘} . (D2c)
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O, = G_%B [( U745 (Fap +2)° = 20 (Fap +10) _ 6_vm_(7ap + 10)
r 24a (745 +2) 126(745 + 2)
+ 1778” 6 V¥ap — E5+U7AB - §5+77AB + 12—31/2)73;3 + 5381/ Vap + 226”2’/7’343 ;éll Vg — 654 ik,
97223 Vg — 17258 TV ap — 142;% ~ Vi~ % - 47% - Zuln( 7)(28, — 11(7ap +2)%)
18] In, 1735 — ]2] In; vyap = Iﬂ% + vap + 6,07 + 674 25 v — 143(?” -0, + 3—15+1n+y _ Hinyp

- % (—95_ (281/}_’AB — 4}7AB =+ 37 — 6) — 65_1/}_’AB =+ 485—7143 —+ 99111_1/7%3 + 396111_1/}_’AB =+ 145_1/

+726_ 4 366_vIn(#) — 186, In_v + 396In_v — 186_In, v + 3ve_ + 36‘_)) p?

26, (¥ap +10) = 11745(Fap +2)*  S_vm_(745 + 10 - 27
+ <1/ + (748 ) Ya(7as +2) vm_(7as )+5yﬂ+}7AB+_”27/243+53V27AB

8a(¥ap +2) 4a(7ap +2) 2
1 23 15 779 25 . 11037y B, 1172, 57ap
—ﬁ21ﬂ2l/}/33+§1/73‘3 647r21/}/AB 54 1/}/%34—@7121/“3 +T+%+ 8AB+T

1 1
350+ ((96 = 2127)u 4 64)745 = 7576, (14410, + 6377 — 1904)0

128
47’/,B+ 30 4p
8 2

3
+3vIn(P) (26, = 11(7a5 +2)%) +

3B, 19722
2 4

3 3 -
+35,07 + 15+ + §In+y7i3 + 71n+l/77AB - 36, + —vlup +
1237%v 309y 1v%e, 3ve, 3 3
- 2 25w 4+ = (<3uB_ (407 4 + 47
o ta T gty g0y o (B (407 1 47)

+9u(In_(11(Fap +2)2 = 26,) + €_) —26_(3(v = 2)Fuap + 9In v + 350 — 9) + 365_u1n(%))> fa%] :

+3vy, +

g9 Gig 120 17ap(7ap +2)* =26, (7ap —5) 246_vm_(7ap —5)
e 144A4 a(7ap +2) a(7ap +2)

1-
- §ﬁ+(201/7AB - 477AB + 41/2 + 17v — 6)

—240P. 73 +480UB 7 ap + 128, Tag

(D2d)

+ 48ﬁ+7AB + 65+U7AB — 331/}_/33 + 5881/]71243 + 31961/}’AB + 12YAB + 487AB ‘I— 361/1[1( )(25 — II(YAB + 2) )
+ 198In, 1735 + 792l 17 4 + 245_(4v — 1)f_ — 485, vf, + 245, + (18 = 54v)B% + 90up% + 1362up.,
+ 1862 + 84p, + 288045 + 965, v+ 245, — T2k, v + 24k, — 365, In, v+ 792In v + 360, + 48uy | + 3846v

+36uw, +12e, +54 -3656_In_v+2m_ (35_1/77AB +99In_v72 5 + 396In_vy 45 — 3/3_(—41/}73\3 + 80u745 + 2735

+ 8745 + 18UB, + 6B, — 85, v+45, + 191y + 14) + 125_p, —285_v + 126_ + 365_vIn(#) + 12x_v — 12x_

— 186, In_v +396In_v — 186_In, v + 18vé_ + 24uy_ + 18uw_ — 12ve_ — 66_)] .

APPENDIX E: GENERATING FUNCTIONS

(D2e)

In the GR limit described below Eqs. (2.10), the part A' of the two-body Hamiltonian is equal to the 3PN (ADM)
Hamiltonian of Ref. [98] modulo the canonical transformation built in Sec. III B. Its nonzero coefficients yield a coordinate

change at 2PN and 3PN, and they read, respectively,
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}/201 = Z (—5 + 681/), (E2a)
= (5-1396v) (E2b)
Vi1 = 48 s
15027
-2 E2
Y021 16 (E2c)
Vion = = (92 + 491), (E2d)
24
12
Yo12 = m(91 + 124v), (E2e)
Yoos = 312 3(156 + 72%) + 176(In, +m_In_)],  (E2f)
roos = —11v, (E2g)

where y{i, allows us to eliminate the In 7-dependent terms.

In ST-ESGB gravity, the Hamiltonian can be identified
to its EOB counterpart AL,z modulo a coordinate change
at 1PN, 2PN, and 3PN. The nonzero coefficients of the
canonical transformation are now, respectively,

12

100 = T 5> (E3a)
_ Gyp 2427
Yoor = T( + 2745 + 1), (E3b)
v
Y200 = 3 (1-v), (Eda)
2
v
020 = 5 (E4b)
Gapl _
Y101 = %B (12 + 8745 — 1), (Edc)

Gip [960((26, +26_m_)(Yap + 10) — 11745(Fap + 2)*)

o GABZ/Z
Yoir = g

(E4d)

G2 _ _ _ -
Y002 = % (=24v74p + 3735 + 474 +4(v + 1)B,

—4dm_p_ —25, + 2% —25_m_ —38v), (Ede)
v 2
7300:—3(1—31/"'” )s (ESa)
2
=—(3-4 E5b
7210 24( v), ( )
2
o = 25 (70 -6) (B50)
203
Y030 = 3 (E5d)
GABU _ >
Y201 =~ (=2(TTv=9)7 45 +v*=292v+29),  (ESe)
GABU _ >
Y1 = —4—8(2(97y—3)yAB +4v* +360v —5), (ES5f)
GABV2 _
Yo =g (—24745 + 5v —33), (Esg)

G?.u ~ _ _ _
Yiop = 25 (3080735 + 10441745 + 11755 + 60745

- 12(v— 1), = 30m_pB_+ 5, (400 —2)

—226_m_ + 850v + 55), (E5h)
GfxBV - - > _
Yoi2 = Ty (100745 + 1500745 + 16745 + 18745
+ 428, —24m_p_ + 46, (5v +2) + 32
—285_m_ +266v + 17), (E5i)

+ 2886 (4(Tv + 175 — TV? + 190 + 4)

7003 = 5304 &(7ap +2)

+ 1920273 5 + 192002745 — 637%073 5 + 1056073 5 + 1807°07% 5 + 5872075 5 + 13507%07 45 + 2067207 45

+ 28873 3 + 672735 + 384745 + 3168In_m_v7? 5 + 12672In_m_vjyp + 3168In 1755 + 126720, 17 4

— 26, (21(37% = 32)17 45 + 96745 + 20(144In_m_ + 144In, + 637> — 2264) — 19202 + 96) — 6912m_vf_7 45
—1152m_p_7ap — 1926_m_viap — 1926_m_7ap + 288m_v*f_ — 8640m_vf_ — 1152m_p_ — 115207 45

— 34560845 — 5765_In_v + 12672In_m_v — 5765_In, m_v + 12672In, v + 288v° — 9925_m_v — 1925_m_

+ 86417 + 2304vy . + 288m_ve_ + 192m_e_ + 14767%v + 18816 + 1921%¢ . + 96ve, — 192¢ |,

G3
Yoo = ZBU (=173 — 44745 + 26, +25_m_ —44).
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