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The mass and spin of black holes (BHs) in binary systems may change due to the infall of
gravitational-wave (GW) energy down the horizons. For spinning BHs, this effect enters at 2.5
post-Newtonian (PN) order relative to the leading-order energy flux at infinity. There is currently a
discrepancy in the literature in the expressions of these horizon fluxes in the test-body limit at 4PN
order (relative 1.5PN order). Here, we model the horizon absorption as tidal heating in an effective
worldline theory of a spinning particle equipped with tidally-induced quadrupole and octupole mo-
ments. We match the tidal response to analytic solutions of the Teukolsky equation in a scattering
scenario, and obtain general formulae for the evolution of mass and spin. We then specialize to the
case of aligned-spin–quasi-circular binaries, obtaining the corresponding contributions to the GW
phasing through 4PN order. Importantly, we find that the number of GW cycles due to horizon
fluxes with masses observed by LIGO-Virgo-KAGRA detectors is about 2-3 orders of magnitude
smaller than the other contributions to the phasing at the same PN order. Furthermore, in the
test-body limit, we find full agreement with results obtained earlier from BH perturbation theory,
with a small mass in an equatorial circular orbit treated as a source perturbing the Kerr metric.
Thus, we weigh in on one side of the previous discrepancy.

I. INTRODUCTION AND SUMMARY

With ninety gravitational-wave events [1] from
compact-binary coalescences observed by the LIGO-
Virgo detectors [2, 3], gravitational-wave astronomy
has become an important instrument to explore our
universe. While the worldwide network of detectors
has recently included the KAGRA detector [4], and
will continue to improve in sensitivity in the future [5–
9], the accuracy of waveform models needs to keep in
step with the increasing sensitivity in order to avoid
systematic errors in parameter estimation [10]. Pre-
dictions for gravitational waves from the late stage
of a binary inspiral and merger require full numeri-
cal solutions of the strong-field dynamics. Here we
focus instead on the early inspiral, applying the post-
Newtonian (PN, weak-field and slow motion) approx-
imation, and calculate horizon-absorption effects on
the gravitational-waveform phase from binary black
holes up to 4PN order.

The presence of the horizon leads to some inter-
esting effects in black hole binaries. In particular,
gravitational-wave energy can fall into (or out of, in
the case of superradiance) the horizon, leading to a
change in mass and magnitude of spin angular mo-
mentum1 of the black holes in a binary. The change
in these parameters is consistent with the second law
of black hole dynamics and always leads to an in-
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1 We will refer to the magnitude of spin angular momentum

simply as “spin” in the rest of this work.

crease (or no change) in the area of the horizon [11].
A change in mass and spin can also happen for other
compact bodies like neutron stars through tidal heat-
ing (see, e.g., Refs. [12, 13]). Future gravitational-
wave detectors may be sensitive to these dissipative
effects, which can then provide a probe for the nature
of black holes (e.g., the presence of a horizon) [14, 15].
Horizon-absorption effects have been included in some
effective-one-body (EOB) waveform models [16–18],
but not yet in the state-of-the-art models used for
LIGO-Virgo-KAGRA (LVK) data analysis.

For spinning black holes, the leading-order flux into
the horizon starts at 2.5PN with respect to the lead-
ing quadrupolar flux (of the binary) to infinity [19–
25]. Through the flux-phase relation, this means that
the gravitational-waveform phase is also affected at
2.5PN order (see, e.g., Ref. [26, 27]). For nonspinning
black holes, the same effect starts at 4PN [19, 22]. In
the test-body limit, when there is a tiny black hole or-
biting a much larger spinning black hole, one can solve
for the horizon energy flux of the large black hole via
black hole perturbation theory (BHPT), which con-
sists in this case of solving the Teukolsky equation
with incoming boundary conditions at the horizon,
and outgoing boundary conditions at infinity, as was
done, e.g., in Ref. [19]. However, it is nontrivial to
extend this calculation to generic mass ratios. This
was accomplished at leading 2.5PN order in Ref. [28],
for the case of aligned-spin circular orbits via argu-
ments relating the spin-aligned–quasi-circular inspi-
ral to the case when two spinning black holes are held
at rest with respect to each other. The result was
extended further to 1.5PN orders (to absolute 4PN
order) in Refs. [20, 29] where BHPT was used along
with a matching between the near zone and the orbital
zone for black holes in a binary to derive the energy
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and angular-momentum fluxes across their horizons
for generic mass ratios. However, for spinning black
holes, the result was inconsistent with that obtained
in the test-body limit in Ref. [19]. This discrepancy is
yet to be settled in the literature and thus the correct
expression for mass and angular-momentum evolution
for generic mass ratios at 4PN is yet to be clarified.
Settling this discrepancy is crucial to derive the cor-
rect horizon-flux contribution to the waveform phase
at 4PN order, and it is one of the goals of this paper.

The problem of computing the horizon fluxes for
spinning black holes was tackled recently in an effec-
tive field theory (EFT) framework in Ref. [21] (see
also, e.g., Refs. [30–35] for previous work in that di-
rection and Refs. [36–41] for the EFT formalism in-
cluding spin and tidal effects), where the black hole
was treated as a point particle with tidally induced
quadrupole moments. Then in an “in-in” formalism, a
parametrized expression for the absorption cross sec-
tion for a graviton being absorbed by the effective
particle was computed, whose parameters were fixed
by a matching calculation against the classical absorp-
tion cross section for gravitational plane waves by a
spinning black hole (from Ref. [42]). This in turn fixes
the correlation function for the quadrupole moment,
which was subsequently used to derive the dissipative
part of the Green’s function relating the tidal fields
to the quadrupole moments. Once the tidal response
was fixed in this way, the EFT was applied to com-
pute the evolution equation for mass and spin by suit-
ably defining them in the worldline theory from the
effective action. This calculation was carried out at
leading (2.5PN) order and the result was consistent
with earlier works in Refs. [22–25].

In this work, we similarly develop an effective
worldline framework to model the dissipative dynam-
ics of spinning black holes, but extend it by 1.5PN or-
ders. We follow Ref. [21] in treating the spinning black
hole as a point particle with tidally induced moments,
but work in a purely classical framework. We identify
and fix the dissipative part of the tidal response by
comparing results from the scattering of gravitational
waves off the particle/black hole between the effective
and real theories (see also, e.g., Refs. [43–46] for other
works involving comparison of such a scattering pro-
cess between real and effective theories). We then de-
rive expressions for the evolution of mass and spin up
to 1.5PN order (relative to the leading order). We find
that the resulting expressions are consistent with ear-
lier results obtained in the test-body limit in Ref. [19],
thus weighing in on one side of the discrepancy dis-
cussed above. We then derive the 4PN contribution
to the waveform phase due to the horizon fluxes, while
consistently including the effects due to the changing
parameters (mass and spin) of the members of the
binary (extending an earlier 3.5PN result [27]).

To accomplish this, we write down in Sec. II an ef-
fective worldline action for a spinning particle with

(gravito-electric and -magnetic) quadrupole and oc-
tupole moments, coupled accordingly to quadrupolar
and octupolar (gravito-electric and -magnetic) tidal
fields in the action. We then motivate ansätze relat-
ing the tidal fields linearly to the multipole moments.
In the absence of spin, spherical symmetry and par-
ity symmetry imply that a given tidal field only in-
duces the corresponding multipole moment (e.g., the
electric-type quadrupole QµνE is induced only by the
electric-type tidal field Eµν). However, in the pres-
ence of spin, it is possible for octupolar tidal fields to
induce quadrupolar tidal fields and vice-versa, while
still preserving parity. This is an important prop-
erty of the ansätze and turns out to be crucial for
correctly modelling the dissipative dynamics of spin-
ning black holes. In particular, the Teukolsky equa-
tion which governs the curvature perturbations in a
Kerr background is separable in spheroidal harmon-
ics with spin weight -2. This feature can be modelled
in the effective theory only by including the inter-
action between quadrupole (octupole) fields and oc-
tupole (quadrupole) moments.

Once we motivate general ansätze for the multipole
moments, we further specialize them by using the fact
that the response tensors (relating the tidal fields to
the multipole moments) can only have a nontrivial
tensor structure due to the spin of the particle, which
allows us to decompose them into a set of basis ten-
sors with undetermined coefficients to be fixed. For
this purpose, in Sec. III, we place the effective particle
at the origin and scatter gravitational waves off of it,
and then use the Einstein equation and the ansätze to
solve for the scattered wave and then subsequently to
compute the degree of absorption for the spheroidal
l = 2, 3 modes of the wave to O(ε7), where ε = GMω
with M being the black mass and ω the gravitational-
wave angular frequency. Comparing the degree of ab-
sorption obtained by solving the scattering problem
in the effective theory with that obtained by solving
the same problem in the actual setup of gravitational
waves scattering off a Kerr black hole, using BHPT
as governed by the Teukolsky equation [47], finally
fixes the response coefficients that contribute to dis-
sipation. The response coefficients are notably non-
polynomial in the black-hole spin.

Once the (dissipative part of the) tidal response
is fixed, we proceed to compute expressions for the
evolution of mass and spin in the effective theory in
Sec. IV. We first derive general evolution equations
for mass m, and spin J , in terms of the tidal fields
and multipole moments from the equations of motion
obtained from the action, and then derive the explicit
expressions for the special case parallel-spin–quasi-
circular2 binaries to relative 1.5PN order. We show
its consistency (or lack thereof) with earlier results

2 In this work, by parallel-spin–quasi-circular binaries, we al-
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and then proceed to compute the effect on the wave-
form phase up to 4PN with respect to the leading-
order quadrupolar flux of the system to infinity in
Sec. V. With that, we conclude our work in this pa-
per in Sec. VI.

We work with the (-,+,+,+) metric signature con-
vention. We use greek symbols µ, ν, ..., for space-
time indices ranging over {0, 1, 2, 3} with 0 being
used for the time-component, and latin symbols i,
j, ..., for spatial indices ranging over {1, 2, 3}. We
use ε0123 = ε123 = 1 as the convention for Levi-Civita
tensor(s). We also use the multi-index notation where
µL = µ1µ2 . . . µl for conveniently representing a string
of indices where useful and use the notation 〈µ1µ2...〉
to represent symmetrization and trace removal of a
tensor over the contained indices. We set the speed of
light c = 1 in the work. However, we keep the depen-
dence on the Newton constant G explicit for most of
the work, and mention explicitly when setting G = 1
as well to facilitate comparison with earlier works.

II. SETUP IN EFFECTIVE WORLDLINE
THEORY

In this section, we discuss the effective worldline
theory for the point particle used to model the spin-
ning compact object. We first briefly outline the par-
ticle’s multipole structure and how it can be used to
model absorption. We then proceed to set up an ef-
fective action for the particle including the multipole
moments, and then write down general ansätze with
undetermined coefficients for the multipole moments
as a linear function of the tidal fields consistent with
axisymmetry and parity symmetry.

We model the horizon flux of the spinning black
hole in effective worldline theory as tidal heating of
a composite paricle with several tidally induced mul-
tipole moments, whose degrees of freedom are con-
tained in symmetric trace-free (STF) tensors QµLE,n,

QµLB,n, l ≥ 2, n ≥ 0, satisfying QµLuµi = 0, 1 ≤ i ≤ l.
In the effective action, we choose the multipole mo-
ments to couple with the tidal fields

EµL = ∇〈µL−2
Rµl−1|α|µl〉βu

αuβ , (2.1)

BµL =
1

2
∇〈µL−2

ε|γ|µl−1

αβR|αβ|µl〉δu
γuδ, l ≥ 2,

where uµ is the four-velocity and we are using the
notation 〈µL〉 to denote symmetrization and trace-
removal. In the effective action, we choose the elec-
tric ‘E ’ (magnetic ‘B’) multipole moments to cou-
ple with electric (magnetic) tidal fields in accordance
with the number of indices and parity as Stidal =

ways mean black holes in a binary with their spin vectors
parallel to each other and to the orbital angular momentum.

(1/2)
∑∞
l=2

∑
n[QµLE,nEµL + (E ↔ B)]]. We will only

need to consider their coupling and induction by
quadrupolar (l = 2) and octupolar (l = 3) tidal fields
to the PN order relevant in this work. In addition,
the various multipole moments are dynamical and are
coupled to each other via an internal action Sint such
that the energy tidally pumped into these modes may
progressively escape into higher order/smaller length-
scale multipoles effectively leading to dissipation. If
there is a sufficiently large number of degrees of free-
dom, and if they are appropriately coupled, the recur-
rence time becomes essentially infinite and the system
becomes effectively irreversible. We will not however
explicitly model the process of dissipation and only
use that as a justification to write down ansätze for
the multipole moments in terms of the tidal fields that
allows for dissipation. Note that at the end of the day,
we only intend to mimic the black hole’s horizon ab-
sorption (as tidal heating) and acquire an effective
model that may be used to study the associated dy-
namics. Whether there is any physical relation to the
real microscopic degrees of freedom of a black hole
and this model is unknown and not directly relevant
to this work. Our approach of incorporating tidal
moments in the action is slightly different at a su-
perficial level from the prescription used in Ref. [21]
where instead a single quadrupole moment was used
but allowed to be a function of several unknown mi-
croscopic degrees of freedom denoted by X. Practi-
cally however, there is not much of a difference.

In the absence of spin, an unperturbed black hole
is spherically symmetric, and the linear tides can only
be induced by the fields to which they directly couple
to in the action, e.g., as3,

∞∑
n=0

QµLE,n = M

∞∑
m=0

λlE,m(GM)2+l+m Dm

Dτm
EµL ,

and similarly for (E ↔ B) (2.2)

where parity symmetry4 prevents the magnetic (elec-
tric) tidal field for the same l from inducing the elec-
tric (magnetic) multipole moment, and spherical sym-
metry means there is no special tensor with which
to contract the higher multipolar order tidal fields
(or multiply the lower multipolar order ones) to con-
tribute to the ansatz for

∑
nQ

µL
E(B),n. Spherical sym-

metry is also the reason there is no mixing of indices

3 We will only ever need an ansatz for the sum of all multipole
moments for a given l and parity (E/B) for computing the
evolution equations for physical quantities such as total spin
angular momentum or total linear momentum. We however
allow for the presence of multiple multipole moments with
the same l and parity labels E/B for generality.

4 In general, EµL (or BµL ) transforms under parity as (−1)l

or [(−1)(l+1)]. The multipole moments with which they ex-
plicitly couple in the action cannot be induced by tidal fields
with a different transformation under parity if the particle is
to be parity-preserving.
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in the response tensor. We can also identify from
Eq. (2.2) which response coefficients are conservative
and which are dissipative simply by looking at the
transformation under time-reversal. The coefficients
next to odd powers of time derivatives are dissipative
and the ones next to even powers are conservative.
This is less trivial for a spinning particle which allows
for mixing of multipolar orders with the help of the
spin tensor and Pauli-Lubanski spin vector.

However, a spinning black hole can have induction
between different multipolar orders (different l), since
the spin-tensor Sµν defined in Eq. (2.6), or Pauli-
Lubanski spin vector sµ = −[1/(2m)]εµνρσp

νSρσ, can
appear in above relations (2.2). We still need to keep
parity considerations in mind as spinning black holes
obey parity symmetry. Crucially, for our purposes, we
need to include the induction of octupole moments by
quadrupolar fields and vice-versa to capture the tidal
heating of the spinning black holes at relative 1.5PN
order. We will write down a general ansatz for mul-
tipole moments in the spinning case in Subsec. II B.
But first, we will write down in Subsec. II A an effec-
tive action for a particle with spin and aforementioned
multipole moments and derive the equations of mo-
tion for spin and four-momentum, and the effective
stress-energy tensor, following closely the prescription
in Ref. [48] but with suitable modifications to allow for
the presence of tidally induced moments. We will then
write down general parametrized ansätze for the mul-
tipole moments in terms of the tidal fields constrained
by the symmetries of the particle (axisymmetry and
parity invariance), which is somewhat similar to the
approach used in Ref. [21] to fix the form of the cor-
relation function of the quadrupole moments.

A. Action and equations of motion for
momentum and spin angular momentum

To get the equations of motion, we will follow
a direct extension of the simple procedure given in
Ref. [48] for deriving the equations of motion from an
implicit action, while including the aforementioned
tidal moments. We include the spinning degrees of

freedom by attaching to the particle a body-fixed
tetrad εA

µ satisfying orthonormality and complete-
ness. The angular velocity of the particle is then mea-

sured with the quantity Ωµν = εA
µDεAν

Dτ . It is suffi-
cient in this work just to include the spin at leading or-
der and ignore spin-induced multipole moments. The
worldline of the particle is denoted by zµ(τ), where
τ is the proper time. We can then write down the
action implicitly as

S =

∫
dτL(uµ,Ωµν , gµν , Q

µL
E,n, Q

µL
B,n, Q̇

µL
E,n, Q̇

µL
B,n,

Rµνρσ,∇λRµνρσ), (2.3)

where uµ = dzµ/dτ and we are using the notation
ȧ = Da/Dτ . Additionally, we have assumed that
only the first time derivative of each individual mul-
tipole moment needs to be included in the action.
We have also restricted ourselves to including just the
quadrupolar (l = 2) and octupolar (l = 3) tidal fields
in the action explicitly as mentioned before. The cou-
pling of tidal fields with higher order multipole mo-
ments is irrelevant to the PN order of interest in this
work as we will see later. We do however keep all the
higher multipolar order moments since tidal heating
requires the presence of several additional degrees of
freedom into which the system may pump energy. Ad-
ditionally, as mentioned before, we choose the multi-
pole moments to couple directly with the correspond-
ing tidal fields (in accordance with number of indices
and parity label) by imposing

∂L

∂EµL
=

1

2

∑
n

QµLE,n,
∂L

∂BµL
=

1

2

∑
n

QµLB,n, l = 2, 3

(2.4)

which is equivalent to having in the action
a linear combination of the form Stidal =∑3
l=2

∑
n

∫
dτ 1

2EµLQ
µL
E,n + (E ↔ B) in the total ac-

tion. We can derive the equations of motion for mo-
mentum and spin angular momentum directly from
this implicit action. First, we consider a general vari-
ation

δL =pµδu
µ +

1

2
Srot
µν δΩ

µν +
∂L

∂gµν
δgµν −

1

6
JµνρσδRµνρσ −

1

12
Jλµνρσδ∇λRµνρσ

+

∞∑
l=2

∞∑
n=0

(
∂L

∂QµLE,n
δQµLE,n +

∂L

∂Q̇µLE,n
δQ̇µLE,n +

∂L

∂QµLB,n
δQµLB,n +

∂L

∂Q̇µLB,n
δQ̇µLB,n

)
, (2.5)
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where we have defined

pµ = (∂L/∂uµ)|Ωµν , Srot
µν =

1

2
(∂L/∂Ωµν), (2.6)

Jµνρσ = −6
∂L

∂Rµνρσ
= −3

∞∑
n=0

u[µQ
ν][ρ
E,nu

σ] +
3

2

∞∑
n=0

Q
α〈ρ
B,nεβα

µνu|β|uσ〉R , (2.7)

Jλµνρσ = −12
∂L

∂∇λRµνρσ
= −6

∞∑
n=0

u〈µQνρλE,nu
σ〉∇R + 3

∞∑
n=0

Q
α〈ρλ
B,n εβα

µνu|β|uσ〉∇R , (2.8)

where the expressions for the J ’s follow trivially from
Eq. (2.4) and we are using 〈abcd〉R (〈abcd〉∇R) to rep-
resent the symmetrization of indices according to the
symmetries of the Riemann tensor (covariant deriva-

tive of the Riemann tensor) respectively. Now, if we
consider a variation of the form xµ → xµ + ξµ cor-
responding to an infinitesimal change of coordinates,
we obtain the constraint

2
∂L

∂gµν
= pµuν + SµρrotΩ

ν
ρ +

2

3
RµλρσJ

νλρσ +
1

3
Jλντρσ∇λRµτρσ +

1

12
Jνλτρσ∇µRλτρσ

+

∞∑
l=2

l + 1

2

∞∑
n=0

[Mµ µL−1

E,n QE,nµL−1

ν + P
µ µL−1

E,n Q̇E,nµL−1

ν + (E ↔ B)], (2.9)

where we have defined MµL
E(B),n = (∂L/∂Q̇

E(B),n
µL ),

and PµLE(B),n = (∂L/∂Q
E(B),n
µL ). Note that the equa-

tions of motion for the multipole moments obtained
upon variation of the action with respect to them
(∂L/∂QµLE(B),n) − (D/Dτ)(∂L/∂Q̇µLE(B),n) = 0, imply

that MµL
E(B),n = ṖµLE(B),n on the actual worldline.

Eq. (2.9) is a useful identity to eliminate the par-
tial derivative with respect to the metric later in the
equations of motion for momentum and spin angular

momentum. First, we obtain the equation for spin
angular momentum easily by variation of the action
with respect to the tetrad variables εA

µ. We get the
simple equation

δS =

∫
dτ

∂L

∂Ωµν
δΩµν = 0 =⇒ DSµνrot

Dτ
= 2Ω[µ

ρS
ν]ρ
rot ,

(2.10)

and we can eliminate the RHS using Eq. (2.9) by tak-
ing its antisymmetric part [which leads to (∂L/∂gµν)
vanishing] and we get

DSµνrot

Dτ
= 2p[µuν] +

4

3
R[µ

λρσJλ
ν]τρσ +

2

3
∇λR[µ

τρσJλ
ν]τρσ +

1

6
∇[µRλτρσJ

ν]λτρσ

+

∞∑
l=2

(l + 1)

∞∑
n=0

D

Dτ
[P

[µ
E,nµL−1

Q
ν]µL−1

E,n + (E ↔ B)], (2.11)

where we have used MµL
E(B),n = ṖµLE(B),n, valid

on the worldline. We can now redefine the spin
angular momentum as Sµν = Sµνrot −

∑∞
l=2(l +

1)
∑∞
n=0[P

[µ
E,nµL−1

Q
ν]µL−1

E,n + (E ↔ B)], to get

DSµν

Dτ
= 2p[µuν] +

4

3
R[µ

λρσJλ
ν]τρσ (2.12)

+
2

3
∇λR[µ

τρσJλ
ν]τρσ +

1

6
∇[µRλτρσJ

ν]λτρσ.

This is the appropriate definition of total spin angu-
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lar momentum of the body as reinforced by the fact
that this also shows up in the stress energy tensor
(see Eq. 2.14) in the expected manner. To solve the
equations of motion, we also need to impose a “spin
supplementary condition” (SSC) to ensure that it is a
spatial tensor with the right number of degrees of free-
dom. Here, we impose the “covariant” or Tulczyjew-
Dixon SSC at the level of the equations of motion
upon the total physical spin angular momentum as
Sµνpµ = 0.

The equation of motion for momentum can be ob-
tained by variation of the action with respect to the
worldline zµ(τ), which can be done following the co-

variant approach as shown in Ref. [48] to get

Dpµ
Dτ

= −1

2
Rµνρσu

νSρσ − 1

6
Jλνρσ∇µRλνρσ (2.13)

− 1

12
Jτλνρσ∇µ∇τRλνρσ.

Note that only the sum of multipole moments∑
nQ

µl
E,n, appear in the expressions for the time

derivatives of momentum and spin angular momen-
tum.

Finally, the stress energy tensor of the particle can
be derived by varying the effective action with respect
to the metric gµν as Tµν = 1√

−g
δS
δgµν

, where all de-

pendency of the action on gµν needs to be taken into
account during the variation. This variation was per-
formed in Ref. [48] to obtain

Tµν = Tµνpole−dipole + Tµνquadrupole + Tµνoctupole, (2.14)

Tµνpole−dipole =

∫
dτp(µuν) δ

(4)(x− z)√
−g

−∇ρ
∫
dτSρ(µuν) δ

(4)(x− z)√
−g

, (2.15)

Tµνquadrupole =

∫
dτ

1

3
R

(µ
λρσJ

ν)λρσ δ
(4)(x− z)√
−g

−∇ρ∇σ
∫
dτ

2

3
Jρ(µν)σ δ

(4)(x− z)√
−g

, (2.16)

Tµνoctupole =

∫
dτ

[
1

6
∇λR(µ

ξρσJ
ν)ξρσ

λ +
1

12
∇(µRξτρσJ

ν)ξτρσ

]
δ(4)(x− z)√

−g
(2.17)

+∇ρ
∫
dτ

[
− 1

6
R

(µ
ξλσJ

|ρ|ν)ξλσ − 1

3
R

(µ
ξλσJ

ν)ρξλσ +
1

3
RρξλσJ

(µν)ξλσ

]
δ(4)(x− z)√

−g
(2.18)

+∇λ∇ρ∇σ
∫
dτ

1

3
Jσρ(µν)λ δ

(4)(x− z)√
−g

, (2.19)

which holds true even in the presence of inducible
multipole moments when the contribution of the mul-
tipole moments is included in the definitions of the
momentum and spin angular momentum. Since we
are only interested in linear tides, we can drop all

nonlinear (in curvature or metric perturbation) con-
tributions in the quadrupolar and octupolar stress en-
ergy tensor to get a simpler truncated stress energy
tensor as

Tµν =

∫
dτp(µuν)δ(4)(x− z)−∇ρ

∫
dτSρ(µuν)δ(4)(x− z)−∇ρ∇σ

∫
dτ

2

3
Jρ(µν)σδ(4)(x− z)

+∇λ∇ρ∇σ
∫
dτ

1

3
Jσρ(µν)λδ(4)(x− z). (2.20)

This truncated stress energy tensor will be important
later to solve the problem of gravitational waves scat-
tering off the effective particle.

To proceed further, we need to relate the tidal fields
to the multipole moments. We will now motivate

and write down general ansätze for the multipole mo-
ments.
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B. Ansätze for multipole moments

Going forward, we define the sum of all multi-
pole moments for a given l and parity (electric or
magnetic) as individual moments for convenience as
QµLE =

∑
nQ

µL
E,n. Now, as mentioned earlier, when the

particle obeys spherical symmetry, only the tidal fields
to which the multipole moment explicitly couples to
in the action can affect it and we have Eq. (2.2). How-
ever, in the presence of spin, it is possible to have more
fields in the formula for multipole moments. Since

we intend to model the spinning black hole, which
breaks spherical symmetry but still respects parity,
we can only have tidal fields with the same transfor-
mation under parity as the moment in the right hand
side. The transformation under reflection is (−1)l for
E fields and (−1)l+1 for B fields. Furthermore, we
restrict our attention to quadrupolar and octupolar
tidal fields as the higher multipolar order tidal fields
are not relevant to the order of interest in this work.
Thus, we can write a general ansatz as

QµνE = M

∞∑
m

(GM)4+mλµνE,mρσ
Dm

Dσm
Eρσ +M

∞∑
m

(GM)5+mζµνB,mρσγ
Dm

Dσm
Bρσγ , (E ↔ B),

QµνρB = M

∞∑
m

(GM)5+mηµνρE,mσγ
Dm

Dσm
Eσγ +M

∞∑
m

(GM)6+mΛµνρB,mασδ
Dm

Dσm
Bασδ, (E ↔ B), (2.21)

where we have rendered the response tensors dimen-
sionless by removing factors of GM . The response
tensors can only have a nontrivial structure due to
the spin of the particle. Additionally, they must be or-
thogonal to uµ and be traceless in the upper and lower
set of indices separately. One can thus generally de-
compose the response tensors as linear combination of
building-block tensors made up of the spin tensor Sµν ,

Pauli-Lubanski spin vector sµ ≈ −(1/2)εµνρσu
νSρσ,5

and the orthogonal (to four-velocity uµ) projection
operator Pµν = δµν + uµuν . While infinitely many
such combinations may be written, only a handful
of them are linearly independent and we can gener-
ally decompose the response tensors λ, ζ, η, as (see,
e.g., Ref. [21] where the correlation function for the
quadrupole moment was fixed)

λµνE,nρσ = f0
E,nP

〈µ
〈ρP

ν〉
σ〉 + f1

E,nŜ
〈µ
〈ρP

ν〉
σ〉 + f2

E,nŝ
〈µŝ〈ρδ

ν〉
σ〉 + f3

E,nŝ
〈µŝ〈ρŜ

ν〉
σ〉 + f4

E,nŝ
〈µŝ〈ρŝ

ν〉ŝσ〉, (E ↔ B)

ζµνB,nρσγ = λµνE,n〈ρσ ŝγ〉(fE,n → gB,n), ηµνρE,n ρσ = ŝ〈ρλ
µν〉
E,nρσ(fE,n → hE,n), (E ↔ B) (2.22)

where the sets of coefficients f , g, h can now only
depend on the spin parameter χ = J/(GM2), where

J =
√

(1/2)SµνSµν is the magnitude of spin angular

momentum. Also, we have defined Ŝµν and ŝµ as the
normalized versions of the spin-tensor (Ŝµν Ŝµν = 2)
and spin-vector (ŝµŝµ = 1) so they are dimension-
less and independent of any parameter. Adding any
other tensor made up of the same ingredients will be
linearly dependent on the remaining pieces, which
follows simply from the relations Ŝµν ŝν = 0, and
ŜµρŜ

ν
σ = −PµσPνρ+PµνPρσ−Pρσ ŝµŝν+Pµσ ŝν ŝρ+

Pνρŝµŝσ−Pµν ŝρŝσ, and thus no more free coefficients

5 The Pauli Lubanski spin vector is actually defined as sµ =
−[1/(2m)]εµνρσpνSρσ . However, as pµ = muµ + O(R), we
can neglect the curvature-dependent corrections when sub-
stituting in the linear tidal-response.

can be introduced. We have transferred all freedom
in choosing the response to the associated sets of χ-
dependent parameters f , g, and h. We can similarly
decompose the tensor Λµνρασδ but it turns out to be ir-
relevant to the order of interest in this work, so we
just drop its contribution from now on. We can drop
most of the time-derivatives of the tidal fields in the
ansätze for the same reason and work with simpli-
fied truncated ansätze by including terms only up to
(GM)5,

QµνE = (GM)4λµνE,0ρσE
ρσ + (GM)5λµνE,1ρσ

D

Dσ
Eρσ

+ (GM)5νµνB,0〈ρσ ŝγ〉B
ρσγ , (E ↔ B),

QµνρB = (GM)5ŝ〈ρξ
µν〉
E,0 αβE

αβ , (E ↔ B), (2.23)

where we have defined νµνB,0ρσ = λµνB(E),0ρσ(fE(B),0 →
gB(E),0), and ξµνE,0ρσ = λµνE,0ρσ(fE(B),0 → hE,0). The 40
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coefficients, f iE(B),0, f iE(B),1, giB(E),0, hE(B),0 character-

ize the tidal response of the particle. Some contribute
to dissipative effects whereas others contribute only
to conservative effects. Unlike for the spinless case,
it is not obvious here which ones contribute to dis-
sipation and which ones do not, due to coupling be-
tween different multipolar orders. At leading order,
focussing only on the quadrupolar tidal field inducing
the quadrupolar multipole moment, it can be shown
(see Ref. [21]) that the part of the tensor λµνρσE,0 that
is antisymmetric under µν ↔ ρσ contributes to dissi-
pation. This criteria is flipped for λµνE,1ρσ as it is next
to an odd power of a time-derivative. This includes
the coefficients f1

E(B),0, f3
E(B),0, f0

E(B),1, f2
E(B),1, f4

E(B),1.

It is less trivial for the coefficients entering tensors
that mix the different multipolar orders. We will see
in Sec. III D which coefficients are conservative and
which are dissipative among these. We accomplish
this by scattering gravitational waves off the effective
particle and computing the degree of absorption for
the l = 2 spheroidal modes and comparing with the
analogous result obtained by solving the Teukolsky
equation. This comparison, along with demanding
that the different spheroidal modes of the Newman-
Penrose scalar ψ4 scatter independently in the effec-
tive theory will help identify which coefficients lead
to dissipation and which only to conservative effects.
Additionally, we will also be able to fix the coefficients
that contribute to dissipative effects through compar-
ison with results from BHPT.

III. FIXING THE UNKNOWN
PARAMETERS IN ANSÄTZE FOR THE

MULTIPOLE MOMENTS

To fix the dissipative part of the response, we now
scatter gravitational waves off the effective particle
with mass M and compute a suitable quantity in-
dicating the degree of absorption. We can then fix
the free parameters by comparison with the analogous
quantity for actual spinning black holes, obtained by
solving the Teukolsky equation. We will only consider
the effect of the linearly induced tidal moments in the
scattering of the wave in what follows, since the other
contributions to the scattered wave are expected to
be purely conservative or irrelevant (up to the order
of interest). However, in this way we also neglect
the leading-order effect of nonlinearities due to the
wave scattering off the stationary gravitational back-
ground, leading to certain subtleties when matching
with the result from the Teukolsky equation which we
will have to address.

A. The gravitational wave environment

Let the unperturbed particle be at the origin at
rest, uµ = (1, 0, 0, 0) and zµ = (τ = t, 0, 0, 0), where
τ is the proper time of the particle which is identi-
cal to the background time t when undisturbed. We
add to the particle’s background a general gravita-
tional wave perturbation hµν =

√
−ggµν − ηµν . We

choose the perturbation to be in the harmonic and
transverse-traceless (TT) gauge, satisfying ∂µh

µν =
0, hµνuν = 0, hµνηµν = 0. At zeroth order (in G),
when the interactions of the metric perturbation with
the stationary gravitational field of the particle are
neglected, it just satisfies the flat space-time wave
equation ηµν∂µ∂νh

αβ = 0 (except at origin where the
particle is present). Then, we can write the general
tensor wave solution in the rest frame of the particle
(defined by uµ) at leading order as

hij =

∞∑
l=2

1

ωl−2

(
CKlE,inΠ

kl−1kl
ij ∂̂Kl−2

+
1

ω
CKlB,inΠklm

ij εkl−1mn∂̂Kl−2n

)
ψin + (in→ out), (3.1)

where ω is the frequency of the wave in the rest frame
of the particle and Πij

kl = (1/2)(P ikP
j
l + P jkP

i
l −

P ijPkl), with P ij = δij + ∂i∂j/ω2, is a differen-
tial projection operator which ensures that the har-
monic and TT gauge conditions are satisfied. ψin =
exp[−iω(t+r)]/(ωr) and ψout = exp[−iω(t−r)]/(ωr)
are the incoming and outgoing wave solutions for the
l = 0 mode of a scalar wave respectively. CKlE/B,in/out

are dimensionless symmetric trace-free (STF) tensors
characterizing the amplitudes of each l mode. E , B

label the coefficients tuning the electric and magnetic
polarizations respectively.6 The different l modes and

6 In general, there are two distinct solutions for each ω, l,
and m for a massless tensor wave (except for scalars). We
split them according to parity in this work, with E modes
transforming as (−1)l and B modes transforming as (−1)l+1

under reflection. The labels are also related to the manner in
which different coefficients contribute to the tidal fields (see
Eq. (3.6)).
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polarizations (E , B) do not mix under rotations. How-
ever, that does not mean we can tune them sepa-
rately in the presence of the particle, as the parti-
cle’s inducible multipole moments combined with its
spin can couple different modes with each other. The
general solution in Eq. (3.1) can be understood by
noting that a basis of solutions to the homogeneous
wave equation in flat space-time (albeit allowing for
irregular behaviour at the origin) can be obtained by
acting arbitrary number of spatial derivatives upon
the spherically symmetric solutions, i.e., ψin, ψout and
any linear combination of them. We can then gener-
ally write the solution for hij as a linear combination
of the basis solutions with undetermined tensors con-
tracting them to get the appropriate tensor structure.
One can then decompose them into rotationally inde-
pendent pieces by splitting the undetermined tensors
into STF tensors and then separating them according
to parity (E and B). Finally, one uses the projection

operator Πij
kl to ensure hij is traceless and satisfies the

harmonic gauge condition.

Now, we want to split the total general solution in
Eq. (3.1) into two parts, one that can be regarded as
the “input” part of the wave which corresponds to the
part that induces the tidal moments and an “output”
part which is sourced from the induced tidal moments.
Naively, one might think that the input part can be
obtained by simply setting the outgoing mode coeffi-
cients CKlE/B,out = 0, but that is incorrect as there will

be an outgoing wave in general even in the absence of
a particle due to the the fact that an incoming wave
packet in the distant past becomes an outgoing wave
packet in the distant future (after crossing the ori-
gin). Also, the incoming part of the wave by itself is
irregular at the origin and thus cannot be sustained
without the presence of a particle. In fact, the correct
splitting is given by the regular (input) and irregular
(output) parts of the wave respectively, as follows

hij =

∞∑
l=2

1

ωl−2

(
CKlE,regΠ

kl−1kl
ij ∂̂Kl−2

+
1

ω
CKlB,regΠklm

ij εkl−1mn∂̂Kl−2n

)
ψreg + (reg→ irr), (3.2)

ψreg =
1

2i
(ψout − ψin) =

exp(−iωt) sin(ωr)

ωr
, ψirr = (ψout + ψin) =

exp(−iωt) cos(ωr)

ωr
, (3.3)

Creg = (Cout − Cin)i, Cirr = Cout + Cin, (3.4)

where ψreg is regular at the origin and obeys the wave
equation everywhere whereas ψirr is irregular at the
origin and requires support from a source, such as the
stress energy tensor of the effective particle. More
specifically, ηµν∂µ∂νψreg = 0, and ηµν∂µ∂νψirr =

(4π/ω)δ(3)(~r) exp(−iωt). Thus, we will use the reg-
ular part of hij , which has finite values at the origin
to compute the tidal fields that will induce the multi-
pole moments and the irregular part of the fields will
be related to the stress energy tensor of the particle’s
induced tidal moments through the relation

ηµν∂µ∂νh
irr
ij =

∞∑
l=2

exp(−iωt)
ωl−1

(
CKlE,irrΠ

kl−1kl
ij ∂̂Kl−2

+
1

ω
CKlB,irrΠ

klm
ij εkl−1mn∂̂Kl−2n

)
4πδ(3)(~r)

= 16πG|g|Πkl
ijTkl(~r), (3.5)

where we have projected out the stress energy ten-
sor appropriately since we are focusing on the radia-
tive part of the field and using hirr

ij to label the ir-
regular part of the metric perturbation (i.e., the part
generated from acting spatial derivatives on ψirr) .
We will have to solve this relation with the stress en-
ergy tensor corresponding to that due to the induced

quadrupolar and octupolar multipole moments given
to leading order in the curvature tensor in Eq. (2.20).

B. Induced multipole moments

As mentioned earlier, the regular part of the wave,
which can exist without support and satisfies the ho-
mogeneous wave equation, should be seen as the input
part of the wave. We will use this part of the met-
ric perturbation to compute the tidal fields which will
induce the multipole moments. With the definitions
given earlier in Eqs. (2.1), and the formula for the
regular part of the wave given in Eq. (3.2), we find
that the value of the tidal fields at the origin is given
by

E ijorigin = −1

5
ω2CijE,reg, (3.6a)

Bijorigin =
i

5
ω2CijB,reg, (3.6b)

E ijkorigin =
1

21
ω3CijkE,reg, (3.6c)

Bijkorigin =
−i
21
ω3CijkB,reg. (3.6d)
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The multipole moments can now be computed by
substituting these fields in Eqs. (2.23). However, we
see that the nontrivial (due to spin) response tensors
mix the various components together. While this is
inconvenient, a simple way to rewrite these expres-
sions in a basis that does not mix components is to ori-
ent the coordinate system so that the Pauli-Lubanski
spin vector is along the z-axis and expand in spin-
weighted spherical harmonics. For later convenience,
we choose spherical harmonics with spin weight ‘-2’.
The simplest way to transform to this basis from the
Cartesian basis is to define

~m =
1√
2

(θ̂ + iφ̂),

θ̂ = cos(θ) cos(φ)x̂+ cos(θ) sin(φ)ŷ − sin(θ)ẑ,

φ̂ = − sin(φ)x̂+ cos(φ)ŷ,

r̂ = sin(θ) cos(φ)x̂+ sin(θ) sin(φ)ŷ + cos(θ)ẑ, (3.7)

and then expand Qijm̄im̄j and Oijkm̄im̄j r̂k in spin
weight -2, spherical harmonics by projection as

Ql=2,m
E/B =

∫
dΩ QijE/Bm̄im̄j Ȳ

l=2,m
−2 (θ, φ),

Ol=3,m
E/B =

∫
dΩ QijkE/Bm̄im̄j r̂kȲ

l=3,m
−2 (θ, φ), (3.8)

where we are using Y lms=−2(θ, φ) to denote spherical
harmonics with spin weight -2. They are normalized
to 1 [i.e.,

∫
dΩ Y lm−2 (θ, φ)Ȳ lm−2 (θ, φ) = 1]. We similarly

define the incoming and outgoing mode coefficients in
this basis as

Cl=2,m
E/B =

∫
dΩ CijE/Bm̄im̄j Ȳ

2m
−2 (θ, φ)

Cl=3,m
E/B =

∫
dΩ CijkE/Bm̄im̄j r̂kȲ

3m
−2 (θ, φ), (3.9)

where we have suppressed the ‘in’ (‘out’) subscript for
brevity. The definitions are identical for both incom-
ing and outgoing mode coefficients. Note that we are
using the symbol O for octupole tensor in spherical
harmonic (with spin weight -2) basis. Then, we can
write down the expressions for the multipole moments
obtained by substituting Eq. (3.6) into the ansätze in
Eq. (2.23) simply as

Q2m
E = −e−iωtMω2 (GM)4

30
{6F0,reg

E + 3iF1,reg
E m+ (m2 − 4)[−F2,reg

E − iF3,reg
E m+ F4,reg

E (m2 − 1)]},

O3m
B = −e−iωtMω2

√
9−m2(GM)5

90
√

7
{6h0
E + 3ih1

E m+ (m2 − 4)[−h2
E − ih3

E m+ h4
E (m2 − 1)]}C2m

E,reg,

Q2m
B = ie−iωtMω2 (GM)4

30
{6F0,reg

B + 3iF1,reg
B m+ (m2 − 4)[−F2,reg

B − iF3,reg
B m+ F4,reg

B (m2 − 1)]},

O3m
E = ie−iωtMω2

√
9−m2(GM)5

90
√

7
{6h0
B + 3ih1

B m+ (m2 − 4)[−h2
B − ih3

B m+ h4
B (m2 − 1)]}C2m

B,reg, (3.10)

where F i,reg
E(B) = (f iE(B),0 − iGMωf iE(B),1)C2m

E(B),reg +

[(i
√

9−m2)/(3
√

7)]GMωgiB(E),0C
3m
B(E),reg, and we see

that there is no longer any mixing of different m
modes. This is simply because we oriented the co-
ordinate system so that the z-axis is along the spin,
and thus it has 0 azimuthal quantum number to add
or remove from that of the STF tensors characteriz-
ing the field. However, there is still mixing between
different l modes due to the tidal response mixing the
quadrupolar and octupolar sectors. This complicates
the process of defining a degree of absorption or a scat-
tering phase, and we will tackle this problem later in
Sec. III D, by switching to a basis where there is no
mixing of modes.

C. Solving for the outgoing wave

Now, we can use the wave equation with the ap-
propriate source in Eq. (3.5) to relate the multipole
moments to the irregular part of the wave. The rel-
evant (projected) part of the stress energy tensor in
the chosen coordinate system is given by

T klΠij
kl = Πij

kl

(1

2
Q̈klE +

1

2
ε〈kmnQ̇

l〉n
B ∂m − 1

2
Q̈klE m∂

m

− 1

2
ε〈kmnQ̇

l〉no
B ∂m∂o

)
δ(3)(~x), (3.11)

which is obtained by substituting the expressions for
Jµνρσ and Jλµνρσ in terms of the multipole moments
given in Eqs. (2.7), (2.8) into the stress energy ten-
sor Eq. (2.20) and discarding terms with components
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along uµ (as they will be eliminated upon projection).
Now, substituting Eq. (3.11) into the RHS of Eq. (3.5)
and comparing, we get the relations

e−iωtCijE,irr = 2Gω3QijE , e
−iωtCijB,irr = 2iGω3QijB ,

e−iωtCijkE,irr = −2Gω4QijkE , e−iωtCijkB,irr = −2iGω4QijkB ,

(3.12)

which are simple proportionality relations and thus
can be trivially transformed to the l,m basis.

Substiting Eq. (3.12) in Eq. (3.10), we get the rela-
tions

C2m
E/B,irr = − ε

5

15
{6F0,reg

E/B + 3iF1,reg
E/B m+ (m2 − 4)[−F2,reg

E/B − iF
3,reg
E/B m+ F4,reg

E/B (m2 − 1)]},

C3m
B,irr = i

√
9−m2ε6

45
√

7
{6h0
E + 3ih1

E m+ (m2 − 4)[−h2
E − ih3

E m+ h4
E (m2 − 1)]}C2m

E,reg,

C3m
E,irr = −i

√
9−m2ε6

45
√

7
{6h0
B + 3ih1

B m+ (m2 − 4)[−h2
B − ih3

B m+ h4
B (m2 − 1)]}C2m

B,reg, (3.13)

where we have defined ε = GMω. Now, we can use
the relations in Eqs. (3.4) to solve the the outgoing co-
efficients. Since we are only interested in linear tides,

and the leading-order tidal effects already start at a
very high order in ε, we can approximate in the RHS
as ClmE/B,reg ≈ −2iClmE/B,in + O(ε5). Then we get the

expressions for ClmE/B,out as

C2m
E(B),out = −C2m

E(B),in +
2iε5

15
{6F0,in

E(B) + 3iF1,in
E(B) m+ (m2 − 4)[−F2,in

E(B) − iF
3,in
E(B) m+ F4,in

E(B) (m2 − 1)]},

C3m
B,out = −C3m

B,in +
2
√

9−m2ε6

45
√

7
{6h0
E + 3ih1

E m+ (m2 − 4)[−h2
E − ih3

E m+ h4
E (m2 − 1)]}C2m

B,in,

C3m
E,out = −C3m

E,in −
2
√

9−m2ε6

45
√

7
{6h0
B + 3ih1

B m+ (m2 − 4)[−h2
B − ih3

B m+ h4
B (m2 − 1)]}C2m

B,in. (3.14)

D. Degree of absorption

Now we need to compute a suitable quantity that
measures the degree of absorption. If there were
no spin, there would be no mixing of different l
modes, and we could simply define the degree of
absorption (or emission) for each l,m mode as 1 −
|ClmE/B,out/C

lm
E/B,in|. We can still do the same if we in-

stead use a different basis, formed by a linear combi-
nation of the mode coefficients in the spherical ba-
sis. To guess the appropriate combination (basis)
in which the modes should scatter independently, we
now turn to hints from BHPT. In BHPT, the Teukol-
sky equation [47] governs the behaviour of curvature
perturbations in an exact Kerr background. Specif-

ically, it governs the behaviour of the spin weight (-
2) Teukolsky scalar −2ψ(t, r, θφ) related to the stan-
dard Newman-Penrose curvature scalar ψ4 by −2ψ =
(r − ia cos(θ))4ψ4, where a = GMχ. A crucial prop-
erty of the Teukolsky equation for −2ψ is that it
is separable in spheroidal harmonic basis with spin
weight -2 with fixed frequency eigen solutions with
the form −2ψ ∝ exp(−iωt)Slm−2(θ, φ, aω)−2Rlmω(r)

where we are using Slms=−2 to denote normalized (to
1) spheroidal harmonics with spin weight -2 and

−2Rlmω(r) is an eigen solution to the radial Teukol-
sky equation (see Sec. III E). Asymptotically far away
from the black hole, i.e., as r → ∞, the standard
Newman-Penrose curvature scalar ψ4 takes the form
(see Eq. (2.6) in Ref. [49])
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ψ4 → ω2
∑

l,m,P=±1

{
Kout
lmP

exp[−iω(t− r∗)]
ωr

+
1

16
[Re(C) + 12iεP ]

1

ω4r4
K in
lmP

exp[−iω(t+ r∗)]

ωr

}
Sl−2,m(θ, φ)

+O
(

1

r6

)
, (3.15)

where r∗ is the tortoise coordinate and P = ±1 is
the index denoting the transformation under parity
for each mode with P = 1 (P = −1) for modes
that are symmetric (anti-symmetric) under reflection.
The expression for Re(C) can be found in Eq. (31)
of Ref. [50]. The outgoing and incoming mode co-
efficients for each spheroidal mode l,m and parity
P = ±1 are related simply as

Kout
lmP = −(−1)l+mηPlm exp(2iδlmP )K in

lmP , (3.16)

where δlmP ∈ R is the conservative scattering phase
for each mode and ηlm is the degree of absorp-
tion/emission (i.e., the mode coefficients do not mix
under scattering). Although these scattering phases
and degree of absorption are defined for these abstract

mode coefficients K
out/in
lmP , they are directly related to

the scattering of a gravitational wave off a Kerr black
hole and often employed for that purpose (see for e.g.,
Refs. [50, 51]). In particular, ηPlm characterizes the
dissipation due to energy flux into the horizon with
the transmission factor for each mode defined as

Tlm = 1− |η±lm|
2. (3.17)

Absorption or emission of energy at the horizon is
only nonzero when |ηPlm| differs from 1, and thus this
is a suitable quantity to be labelled as ”degree of ab-
sorption” in the real theory.

In the effective worldline theory, we can continue
to use the same quantity as the degree of absorption
provided we relate the outgoing (incoming) mode co-
efficients ClmE/B,out(in) of the wave-like metric perturba-

tion to the outgoing (incoming) mode coefficients of

ψ4 i.e., K
out(in)
lmP . In other words, relating ClmE/B,out(in)

to K
out(in)
lmP will reveal the basis in which the modes

of the wave will scatter without mixing. We accom-
plish this by writing down the asymptotic behaviour
of ψ4 in the effective theory using its definition ψ4 =
−Rµνγδm̄µm̄γnνnδ, where mµ, m̄, nµ, lµ form a null
tetrad field satisfying l2 = m2 = n2 = 0 = l·m = n·m,
l · n = −1,m · m̄ = 1, where lµ and nµ are real vec-
tors whereas mµ is a complex null vector with m̄µ as
its complex conjugate. In flat space, or at leading or-
der when the background curvature may be treated as
a small perturbation such as far away from the par-
ticle, we can write them in term of spherical polar

coordinates as m̂ = (θ̂ + iφ̂)/
√

2, nµ = (tµ − rµ)/
√

2,

lµ = (tµ + r̂µ)/
√

2. In the effective worldline picture,
we can thus evaluate ψ4 at large distances by using
the flat space-time null tetrad, using the linearized
curvature due to the wave-like metric perturbation in
Eq. (3.1), yielding

ψ4 = ω2 exp[−iω(t− r)]
ωr

(3.18)

×
∑
a=E,B

∞∑
l=2

il−2C
Kl−2ij
a,out r̂Kl−2

m̂im̂j +O
( 1

r2

)
,

which we can rewrite as an expansion in spherical
harmonics of spin weight -2 using the conventions in
Eq. (3.9) as

ψ4 = ω2 exp[−iω(t− r)]
ωr

∑
a=E,B

[

2∑
m=−2

Y 2m
−2 (θ, φ)Clma,out

+ i

3∑
m=−3

Y 3m
−2 (θ, φ)Clma,out] +O

( 1

r2

)
, (3.19)

where we have dropped modes above l = 3 (hexade-
capolar and above) as they are not relevant to the
order of interest here. Also note that that our effec-
tive theory does not couple l ≥ 4 modes with any of
the lower modes (up to the order of interest in this
work) and thus we can safely set the associated STF
tensors to zero.

We can then switch to spheroidal harmon-
ics of spin weight -2 via the relations Y 2m

−2 =

S2m
−2 − εχ(2

√
9−m2)/(9

√
7)S3m
−2 , Y 3m

−2 = S3m
−2 +

εχ(2
√

9−m2)/(9
√

7)S2
−2,m, valid at leading order in

spheroidicity = εχ, which is sufficient for our pur-
poses. Also note that we have dropped the contribu-

tion to Y 3m
−2 from Sl=4,m

−2 . This gives us

ψ4 = ω2 exp[−iω(t− r)]
ωr

3∑
l,m,P

ClmP,outS
lm
−2(θ, φ)

+O
(

1

r2

)
, (3.20)

where we have defined the coefficients characterizing
spheroidal modes as
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C2m
P=1,out =

(
C2m
E,out + i

2εχ
√

9−m2

9
√

7
C3m
B,out

)
, C2m

P=−1,out =
(
C2m
B,out + i

2εχ
√

9−m2

9
√

7
C3m
E,out

)
, (3.21)

C3m
P=1,out =

(
iC3m
B,out −

2εχ
√

9−m2

9
√

7
C2m
E,out

)
, C3m

P=−1,out =
(
iC3m
E,out −

2εχ
√

9−m2

9
√

7
C2m
B,out

)
, (3.22)

and P is used to split them according to parity, with
P = 1 for parity symmetric modes and P = −1 for
parity antisymmetric modes. We can now compare
with the known asymptotic form of ψ4 from Eq. (3.15)
to leading order in 1/r. This gives us the simple
identification between the coefficients of the outgo-
ing modes of ψ4 and that of the gravitational wave in
effective theory as

Kout
lmP = ClmP,out, (3.23)

where we used the fact that the tortoise coordinate
r∗ asymptotes to r in the limit r → ∞. Now, we
know the appropriate combination of coefficients of
outgoing modes in the effective theory to use. To
get a similar relation between K in

lmP and the coef-
ficients of incoming modes in the effective theory,
the simplest way is to just guess the form by con-
sidering the limit where there is no scattering. In
the real theory, this is the limit where ηPlm = 1 and
δlmP = 0, and we have Kup

lmP = −(−1)l+mK in
lmP . In

the effective theory, this is simply when the irreg-
ular part of the wave should vanish or ClmE/B,irr =

0 =⇒ ClmE/B,in = −ClmE/B,in, which in turn implies

C2m
P=±1,out = −C2m

P=±1,in, where C2m
P=±1,in is defined ex-

actly as C2,m
P=±1,out in Eqs. (3.21),(3.22) except after

transforming out → in. Thus, we can simply iden-
tify K in

lmP = (−1)l+mC2,m
P=±1,in. Then, the scattering

phase relation in Eq. (3.16) can now be written in the
effective theory simply as

ClmP,out = −ηPlm exp(2iδlmP )ClmP,in, (3.24)

and the degree of absorption can be defined in the
effective worldline theory as

1− ηPlm = 1−
∣∣∣∣ClmP,out

ClmP,in

∣∣∣∣. (3.25)

Note that in this way, we have defined a common
quantity as the degree of absorption valid for both
real and effective setups. Thus, this quantity will also

serve for matching between the real and effective the-
ories to fix the unknown tidal coefficients in the next
subsection.

Essentially, comparing the form of ψ4 in the full
and effective theories at large distances has revealed
to us the combination of incoming and outgoing co-
efficients in the spherical basis that scatter without
mixing. However, unsurprisingly, for general choices
of tidal coefficients, the relation between the outgo-
ing and incoming spheroidal coefficients is not going
to nicely factorize as given in Eq. (3.24). In fact, the
tidal coefficients that mix the spherical l = 2, and
l = 3 modes giE/B and hiE/B have to be chosen on

the effective theory side such that the combinations
given in Eqs. (3.21), (3.22) scatter without mixing. In
this work, we impose this on the effective theory by
plugging in the expressions for the spherical outgoing
modes from Eq. (3.14) into the LHS of Eq. (3.24) and
demanding that it be proportional to the RHS, i.e.,
ClmP,in. We refer to this as imposing spheroidal separa-
bility on the effective theory and doing so yields the
constraints

giB,0 = hiE,0 =
2

3
χfE,0,

giE,0 = hiB,0 = −2

3
χf iB,0, (3.26)

which greatly reduces our list of unknown variables
entering the tidal response, and fixes the ratio of
the coefficients connecting the octupole(quadrupole)
fields to the quadrupole(octupole) moments, i.e., the
coefficients giE/B,0(hiE/B,0), to the coefficients connect-

ing the quadrupole fields to quadrupole moments, i.e.,
the coefficients f iE/B,0.

Provided these relations are true, The different
spheroidal modes will be scattered without mixing
by the tidal moments in the effective worldline the-
ory and we can compute the degree of absorption for
the various modes using Eq. (3.25) with constraints
in Eq. (3.26) to be
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1−
∣∣∣∣C2m
P=1,out

C2m
P=1,in

∣∣∣∣ = −ε5m
[

2f1
E,0

5
− (m2 − 4)

2

15
f3
E,0

]
+ ε6

{
4f0
E,1

5
− (m2 − 4)

[
2f2
E,1

15
+

2f4
E,1

15
(m2 − 1)

]}
+O(ε7),

1−
∣∣∣∣C2m
P=−1,out

C2m
P=−1,in

∣∣∣∣ = −ε5m
[

2f1
B,0

5
− (m2 − 4)

2

15
f3
B,0

]
+ ε6

{
4f0
B,1

5
− (m2 − 4)

[
2f2
B,1

15
+

2f4
B,1

15
(m2 − 1)

]}
+O(ε7),

1−
∣∣∣∣C3m
P=1,out

C3m
P=1,in

∣∣∣∣ = 1−
∣∣∣∣C3m
P=−1,out

C3m
P=−1,in

∣∣∣∣ = O(ε7), (3.27)

where we find that the degree of absorption for the
spheroidal l = 3 modes vanishes up to O(ε7) in the
effective theory. Also note that the coefficients f0

E/B,0,

f2
E/B,0, f4

E/B,0, f1
E/B,1, f3

E/B,3 do not appear anywhere

in the degree of absorption. These coefficients thus
only add to the conservative phase, and we will see
later in Eqs. (4.6), (4.7) that they behave similarly
with mass/spin evolution equations as well contribut-
ing only total time derivatives to dm/dt and dJ/dt.
We can now compare Eq. (3.27) with the degree of
absorption derived in the real theory by solving the
Teukolsky equation for ηPlm and fix the coefficients
that contribute to dissipation. However, because we
solved the scattering problem in effective theory in
flat space-time thus ignoring the nonlinear interac-
tions between the wave and the stationary gravita-
tonal field of the particle, there are some subtleties in
this matching process which we will have to tackle.
We will very briefly outline the computation of ηPlm in
the real theory by solving the Teukolsky equation and
then match with the result from the effective theory
while keeping the subtleties in mind.

E. Matching with Teukolsky solution

In the full theory, the degree of absorption defined
from the O(1/r6) expansion of ψ4 in Eq. (3.15) as
1−|Kout

lmP /K
in
lmP | can be computed from analytical so-

lutions [52] to the Teukolsky equation [47] as follows.
Following the review [52], the Teukolsky equation for

−2ψ [= (r − ia cos(θ))4ψ4 in Boyer-Lindquist coor-
dinates] is separable with fixed-frequency solutions
given by −2ψ ∝ e−iωt Slms (θ, φ, aω)−2Rlmω(r), where
Slms (θ, φ, aω) are spin-weighted spheroidal harmonics,
and sRlmω(r) is a solution to the (homogeneous) ra-
dial Teukolsky equation, with s = −2,[

∆−s
d

dr

(
∆s+1 d

dr

)
+
K2 − 2is(r −GM)K

∆

+ 4isωr − sλlm

]
sR`mω(r) = 0, (3.28)

where ∆ = r2 + a2 − 2GMr, K = (r2 + a2)ω − am,
and sλlm is the spheroidal eigenvalue. The rele-
vant physical solutions, labelled −2R

in
`mω(r), satisfy

the boundary condition demanding that they con-
sist of purely ingoing radiation at the event horizon
r = r+ := GM +

√
(GM)2 − a2,

−2R
in
`mω = Btrans

`mω ∆2e−iω̃r∗ as r → r+, (3.29)

where r∗ is the tortoise coordinate and ω̃ = ω −
ma/(2GMr+). This fixes the asymptotic behavior at
radial infinity to be of the form

−2R
in
`mω = Binc

`mωr
−1e−iωr∗ +Bref

`mωr
3eiωr∗ (3.30)

as r →∞,

where Binc
`mω and Bref

`mω
7 are the coefficients of the in-

cident and reflected waves. The ratio Bref
`mω/B

inc
`mω is

completely determined by demanding that −2R
in
`mω(r)

solve the radial Teukolsky equation (3.28) with the
boundary condition (3.29). We refer the reader to
Ref. [52] for details of a procedure to produce the
expansion of this ratio in powers of GMω. Finally,
the relevant scattering phase shifts and transmission

factor ηPlme
2iδPlmω (equivalent to ClmP,out/ClmP,in from the

effective theory above) for waves of parity P = ±1 are
given, e.g. as in Eq. (30) of Ref. [50], by

ηPlm exp(2iδPlmω) = (−1)l+1

(
Re(C) + 12iGMωP

16ω4

)
× Bref

`mω

Binc
`mω

, (3.31)

with [Re(C)]2 as given in Eq. (31) of Ref. [50].

7 Note that the above form is identical to the one used earlier
in Eq. (3.15) except that the parity dependent factors have
been absorbed into Binc

lmω . As a result, the expression for the
scattering phase now contains a parity-dependent factor [see
Eq. (3.31)]. This maybe a more convenient convention for
BHPT but the former is more transparent for matching with
the effective theory.
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This yields the complete expression for the degree of absorption for l = 2 and l = 3 spheroidal modes up
to O(ε7) to be

1− |ηP=±
2m | =− ε5m

[
2A1

0

5
− (m2 − 4)

2

15
A3

0

]
(1 + 2επ) (3.32)

+ ε6
{

4A0
1

5
− (m2 − 4)

[
2A2

1

15
+

2A4
1

15
(m2 − 1)

]}
+O(ε7),

1− |ηP=±
3m | =O(ε7), (3.33)

where

A1
0 =

16χ

45
(1 + 3χ2), A3

0 = −4χ3

3
, (3.34)

A0
1 =

16

405
(9 + 9κ+ 97χ2 + 117κχ2 − 6χ4 + 54σχ4 + 36χB2 + 108χ3B2),

A2
1 = − 8

135
(115χ2 + 135κχ2 + 5χ4 + 90κχ4 − 24χB1 + 18χ3B1 + 48χB2 + 144χ3B2),

A4
1 =

8

135
(20χ4 + 45κχ4 − 24χB1 + 18χ3B1 + 12χB2 + 36χ3B2),

and we are using the notation Bm =
Im[PolyGamma(0, 3 + imχ/κ)], which is odd in

χ, and κ =
√

1− χ2. Note that the degree of
absorption obtained from solving the Teukolsky
equation in Eqs. (3.32), (3.33) has almost exactly the
same form as that obtained from the effective theory
given in Eq. (3.27), with the only difference being
the factor of (1 + 2επ) next to the leading-order ε5

result for l = 2 mode. This factor is missing in the
degree of absorption derived in the effective theory
in Eq. (3.27) due to us neglecting the leading-order
nonlinear interaction between the gravitational
wave and the gravitational field of the particle. In
principle, this can be also obtained from the effective
worldline theory by including the nonlinearities
and regulating any resulting divergences. However,
including the leading-order nonlinearities in this
classical setup which we are using is a complicated
task, and not very illuminating. It is easier instead to
just replace the factor with 1 on the Teukolsky side
by tracing its origins to the nonlinearities neglected
in the scattering problem in the effective picture.
We establish this explicitly for the simpler case of
a scalar field scattering of a Schwarzschild black
hole by including the leading-order nonlinearities
on the effective theory side in Appendix. A. There
are essentially two physical processes involved in
the effective theory picture, both arising from the
interaction of the external wave (gravitational or
otherwise) with the stationary gravitational field
sourced by the particle. The first is that the value of
the tidal field of the wave at the origin (location of

the particle) is modified, as shown for a scalar wave
in Eq. (A19) by a factor of (1 + πε). This in turn
modifies the strength of the tidally induced multipole
moment subsequently affecting the irregular (output)
part of the wave and the degree of absorption.
Additionally, the wave is modified in its journey
away (to) the particle to (from) infinity again due to
scattering off the particle’s gravitational field. This
factor modifies the form of the wave asymptotically
far away from the particle, as shown again for a
scalar wave in Eq. (A15) in such a way that the
degree of absorption is further multiplied by a factor
of (1 + πε). This result has also been derived for
the case of gravitational wave amplitudes sourced
by arbitrary multipole moments in Refs. [38, 53]
and is seen to modify the radiated power by the
square of that factor. Together, these two effects
modify the leading-order degree of absorption by a
factor (1 + επ)2 ≈ (1 + 2επ) + O(ε2) which is seen
in Eq. (3.32). We have in fact verified the presence
of this factor multiplying the leading-order degree of
absorption for all different l modes (for which we had
the solution) for scalar, and tensor (gravitational)
fields, specifically l = 0, 1, 2, 3 modes for the scalar
field and l = 2, 3 for gravitational field. Thus, to
match the part of the true degree of absorption which
corresponds to the flat space-time scattering in the
effective picture, it is sufficient to simply replace the
(1 + 2πε) factor for 1 from Eq. (3.32).

Thus, dropping the (1+2επ) factor from Eq. (3.32),
and then comparing it with Eq. (3.27), we fix the
unknown coefficients to be
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f1
E/B,0 =

16χ

45
(1 + 3χ2), f3

E/B,0 = −4χ3

3
, (3.35)

f0
E/B,1 =

16

405
(9 + 9κ+ 97χ2 + 117κχ2 − 6χ4 + 54κχ4 + 36χB2 + 108χ3B2),

f2
E/B,1 = − 8

135
(115χ2 + 135κχ2 + 5χ4 + 90κχ4 − 24χB1 + 18χ3B1 + 48χB2 + 144χ3B2),

f4
E/B,1 =

8

135
(20χ4 + 45κχ4 − 24χB1 + 18χ3B1 + 12χB2 + 36χ3B2),

giB,0 = hiE,0 =
2

3
χfE,0,

giE,0 = hiB,0 = −2

3
χfB,0, (3.36)

where we have also restated the constraints obtained
by imposing spheroidal separability from Eq. (3.26).
Having fixed the (dissipative) response coefficients, we
can now compute the (dissipative part of the) induced
multipole moments in any setup. In particular, we
can now consider the effect of induced tides in a bi-
nary system with two spinning black holes in the in-
spiral phase. Our focus is on computing the change
in mass and angular momentum due to tidal effects
in the worldline effective theory (and horizon fluxes
in the real setup). In the next section, we derive gen-
eral formulae for evolution equations of mass and spin
and then specialize to the case of parallel-spin–quasi-
circular orbits, which can then be compared with ear-
lier results available in literature.

IV. GENERAL EXPRESSIONS FOR
EVOLUTION EQUATIONS OF MASS AND

SPIN

In this section, we derive general formulae for com-
puting the evolution of of mass and spin from the
equations of motion. Then, we proceed to com-
pute them explicitly using the now fixed response co-
efficients for the special case of parallel-spin–quasi-
circular inspiral to relative 1.5PN order. We conclude
this section by comparing these results with those ob-
tained earlier in Refs. [19, 20, 28].

We can derive the formula for mass and spin evo-
lution from the equations of motion for momentum
and spin angular momentum respectively. For mass,
we start with the equation of motion for momentum,
i.e.,

Dpµ

Dτ
= −1

2
Rµνρσu

νSρσ − 1

6
Jλνρσ∇µRλνρσ

− Jτλνρσ 1

12
∇µ∇τRλνρσ, (4.1)

where we substitute the expressions for Jµνρσ and

Jλµνρσ given in Eqs. (2.7), (2.8), yielding

Dpµ

Dτ
= −1

2
Rµνρσu

νSρσ − 1

2
Qρσ∇µEρσ −

1

2
QρσB ∇

µBρσ

− 1

2
QρσλE ∇

µEρσλ −
1

2
QρσλB ∇

µBρσλ. (4.2)

Now, we define in the effective worldline theory the

mass m simply as
√
−p2. Then we have

pµ
Dpµ

Dτ
= −mdm

dτ

=⇒ dm

dτ
=

1

2m
pµuνRµνρσS

ρσ +
1

2m
QρσE (p · ∇)Eρσ

+
1

2m
QρσB (p · ∇)Bρσ +

1

2m
QρσλE (p · ∇)Eρσλ

+
1

2m
QρσλB (p · ∇)Bρσλ, (4.3)

and the first term can be shown to vanish using the
relation between pµ and uµ if we neglect terms cubic
or higher powers in curvature. They are not relevant
to the relative 1.5PN order (in horizon fluxes) we are
interested in this work. Similarly, we can substitute
pµ = muµ in the terms with multipole moments to
the order of interest to get

dm

dτ
=

1

2
QρσE Ėρσ +

1

2
QρσλE Ėρσλ + (E ↔ B) (4.4)

which gives us the general formula for mass evolu-
tion valid to relative 1.5PN order. We expect this
to match with the horizon energy flux up to any to-
tal time derivatives of functions of tidal fields, which
should vanish for scattering events or for quasi peri-
odic processes (like parallel-spin–quasi-circular inspi-
ral which we shall consider shortly). The quadrupolar
contribution to mass-change matches with that given
in Ref. [21] if we identify our quadrupole tensors as
twice of theirs. This is because they choose a different
normalization in the tidal coupling terms. 8

8 In Ref. [21], the quadrupole tidal coupling terms in the ac-
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We can similarly derive the equation for spin evo- lution from the equation of motion for spin angular
momentum, i.e.,

DSµν

Dτ
= 2p[µuν] +

4

3
R[µ

τρσJ
ντρσ +

2

3
∇λR[µ

τρσJλ
ντρσ +

1

6
∇[µRλτρσJ

ν]λτρσ

J
DJ

dτ
=

1

2
Sµν

DSµν

Dτ
=

2

3
RµτρσJ

ντρσSµν +
1

3
∇λRµτρσJλντρσSµν +

1

12
∇µRλτρσJνλτρσSµν

DJ

dτ
=

1

J
QµνE Eµ

ρSρν +
3

2J
OµνλE EµλρSνρ + (E ↔ B), (4.5)

where we have defined J2 = (1/2)SµνSµν as the mag-
nitude of spin angular momentum of the black hole.
Again, the quadrupolar contribution to evolution of
spin(dJ/dt) is identical to that in Ref. [21] once the
multipole moments are properly identified (see foot-

note. 8).

Now, substituting the ansätze for the multipole mo-
ments from Eqs. (3.7) into the expressions for the evo-
lution of mass and spin in Eqs. (4.4), (4.5). We get

dm∗

dτ
=
m

2
(Gm)4{f1

E,0(ĖµνEµρŜνρ) + f3
E,0(ĖµρEνσ ŝµŝν Ŝρσ)

+ (Gm)[f0
E,1(Ėµν Ėµν) + f2

E,1(ĖµρĖνρŝµŝν) + f4
E,1(Ėµν Ėρσ ŝµŝν ŝρŝσ)

+ ξ
2

3
χf1
E,0(BµρσĖνρ − ḂµρσEνρ)ŝµŜνσ + ξ

2

3
χf3
E,0(BνρλĖµσ − ḂνρλEµσ)ŝµŝν ŝρŜσ

λ]}

+ (E ↔ B, ξ → −ξ), (4.6)

dJ∗

dτ
=
M

2
(Gm)4{−2f1

E,0(EijE ij) + (3f1
E,0 − f3

E,0)(EikEjkŝiŝj) + f3
E,0(Eij ŝiŝj)2

− (Gm)[f0
E,1(ĖµνEµρŜνρ) + f2

E,1(ĖµρEνσ ŝµŝν Ŝρσ)

+ ξ
2

3
χf1
E,0(BµσλEνρŝµŜνσŜρλ) + ξ

2

3
χf1
E,0(BµρλEνρŝµŜνσŜσλ) + ξ

2

3
χf3
E,0(BνρτEµσ ŝµŝν ŝρŜσλŜλτ )]}

+ (E ↔ B, ξ → −ξ), (4.7)

where dots represent covariant derivatives w.r.t proper time, ξ = 1, and we have imposed the constraints
obtained by demanding spheroidal separability from Eq. (3.26). Additionally, we have

m∗ = m− m

4
(Gm)4{f0

E,0(EµνEµν) + f2
E,0(EµρEσνρŝµŝν) + f4

E,0(EµνEρσ ŝµŝν ŝρŝσ)

+ (Gm)[ξ
2

3
χf0
E,0(BµνρEνρŝµ) + ξ

2

3
χf2
E,0(BνρσEµσ ŝµŝν ŝρ) + ξ

2

3
χf4
E,0(BρσλEµν ŝµŝν ŝρŝσ ŝλ)]}

+ (E ↔ B, ξ → −ξ), (4.8)

J∗ = J − M

4
(GM)5{f1

E,1[(EµνEρσŜµρŜνσ)− (EµνEµρŜνσŜρσ)]− f3
E,1(EµρEνσ ŝµŝν ŜρλŜσλ)}, (4.9)

and we see that all the tidal coefficients that do
not enter the degree of absorption in the RHS of
Eq. (3.27) only shift the definition of mass and

tion are QµνE Eµν + (E ↔ B). Thus, before comparing the
expressions in this work with that in Ref. [21]. One must
first transform as QµνE(B) → 2QµνE(B)

angular-momentum by quadratic functions of fields
(i.e., they only contribute terms that are total-time
derivatives to dm/dt and dJ/dt). Whereas the ones
that do show up in degree of absorption contribute
terms that cannot be absorbed as such in total time-
derivatives. Thus, for any quasi periodic setup (like
for parallel-spin–quasi-circular orbits) or in a scatter-
ing set up where the two particles are infinitely far in
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the distant past or future, the average or total change
in mass/spin respectively is determined entirely by
the coefficients that contribute to dissipation, which
we have already fixed through comparison with the
degree of absorption obtained in the real theory by
solving the Teukolsky equation in Sec. III E. This
is since the total-time derivative terms either vanish
(when the particles are far away) or cancel (in a pe-
riodic setup). In deriving the above result, we have
also used the fact that the covariant time-derivative
of spin tensor and vector (which enter the ansätze)
vanishes up to the relative order to which we have ex-
panded the expressions for dm/dt and dJ/dt (i.e., up
to relative 1.5PN).

The expressions for mass and spin evolution in
Eqs. (4.6), (4.7) can be compared with those in
Refs. [20, 21] by substituting the response coefficients
from Eq. (3.35), and we indeed find that our expres-
sions are identical at leading order in GM (i.e., the
(GM)4 part), but differs from Ref. [20] at next or-
der in GM . A crucial difference in our expressions
when compared with those in Ref. [20] is that oc-
tupolar tidal fields do not enter their expressions at
all. Another interesting difference is that there are
π2-containing coefficients in their next-to-leading or-
der expression for dJ/dt (and subsequently in dm/dt),
whereas π2 does not enter any of our tidal-response
coefficients. However, we will see later in Sec. IV B
that our expression for mass and spin evolution is con-
sistent with Ref. [19] for the special case of a test-body
in a circular orbit around a Kerr black hole to relative
1.5PN order, unlike Ref. [20].

In the next section, we specialize to the parallel-
spin–quasi-circular setting to compute the expres-
sion mass and spin evolution during inspiral up to
1.5PN relative to the same at leading order (4PN w.r.t
leading-order flux to infinity), and compare with ear-
lier works that produced expressions for the same.

A. Results for the special case of binaries with
parallel spins in and circular orbits

Now, we consider a system of two black holes with
initial masses m1 and m2 and spin parameters χ1 and
χ2. Their spins are parallel and orthogonal to the or-

bital plane and they are in a quasi-circular orbit. We
can compute the rate of change of (initial) mass m1

and spin J1 = Gm2
1χ1 averaged over one orbit using

the equations Eqs. (4.4),(4.5). In this section, we will
refer to the black hole with initial mass m1 and J1 as
the primary black hole, and the other black hole as
secondary here onwards. The tidal fields are sourced
by the other black hole of mass m2 with spin parame-
ter χ2, although they are affected by nonlinear inter-
action with the fields due to the primary black hole
(m1, J1). This is most conveniently done when the
tidal fields are computed in a locally flat rest frame

FIG. 1: A graphic illustrating a
parallel-spin–quasi-circular binary with two black

holes with masses m1 and m2, and spins J1 and J2.
The spin vectors are orthogonal to the orbital plane.
The image is drawn in the comoving frame of black

hole with mass m1, with n̂ being the unit-vector
pointing towards the other black hole (m2, J2) and
v̂ being the unit-vector along the other black hole’s
velocity. Ω is the angular velocity of the other black
hole and hence of the tidal fields in this frame. τ is

the proper time of mass m1.

of the primary black hole (see Fig. 1), since then the
covariant derivatives of the field w.r.t proper time can
be treated simply as ordinary time derivatives . This
has already been done for the quadrupolar fields Eµν
and Bµν in Ref. [20], and we simply borrow the ex-
pressions from there. Rewriting the expressions here
here, we have
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1

2
(E11 + E22) = −m2

2r3

[
1 +

X1

2
V 2 − 6X2χ2V

3 +O(V 4)

]
,

1

2
(E11 − E22) = −3m2

2r3

[
1 +

X1 − 4

2
V 2 − 2X2χ2V

3 +O(V 4)

]
cos(2Ωτ),

E12 = −3m2

2r3

[
1 +

X1 − 4

2
V 2 − 2X2χ2V

3 +O(V 4)

]
sin(2Ωτ), (4.10)

B13 =
−3m2

r3
V (1−X2χ2V ) cos(Ωτ) +O(V 3),

B23 =
−3m2

r3
V (1−X2χ2V ) sin(Ωτ) +O(V 3), (4.11)

where Ω is the angular velocity of the tidal field in the primary black-hole frame (m1) given by

Ω =

√
M

r3

[
1− 1

2
(3 + η)V 2 − 1

2
χ̄V 3 +O(V 4)

]
, (4.12)

χ̄ = X1(1 +X1)χ+ 3ηχ2, (4.13)

and we are using the notation : M = m1 + m2 and
X1 = m1/M , X2 = m2/M are the mass-fractions.
η = X1X2 is the symmetric mass ratio, r is the orbital

separation in harmonic coordinates and V =
√

M
r .

Here, we are working in units with G = c = 1, as was
done in Ref. [20] so that we can easily compare our
results although we have changed the notation quite
a bit. Additionally, in Ref. [20], a sign factor ε = ±1
was used in front of the expression for Ω, to denote
whether the secondary black hole was spin aligned
or antialigned w.r.t the orbital angular momentum.
However, we simply let the spin parameter(s) χ1,2

range over [-1,1] (instead of [0,1]) and always fix the
orbital angular momentum to be aligned along the
positive z-axis without loss of generality.

The octupolar fields were not derived in Ref. [20]
since they were not relevant in their expression for the
mass or spin evolution. For us, the octupolar fields do
contribute to the expressions for mass and spin evolu-
tion as seen from Eqs. (4.6), (4.7). Fortunately, they
(octupolar fields) are only relevant at leading order
and thus can be easily computed from the test-body
limit at leading post Newtonian order where the sec-

ondary black hole (as test mass) is orbiting the pri-
mary black hole in the limit m2 � m1. The formula
for leading-order fields does not change from this for
generic mass-ratio. We get the expressions

Eijk = −15
m2

r4
n̂〈in̂j n̂k〉, (4.14)

Bijk = 30
m2

r4
V ε〈i

mnn̂j n̂k〉n̂mv̂n, (4.15)

n̂ = (n̂1, n̂2, n̂3) = (cos(Ωτ), sin(Ωτ), 0),

v̂ = (v̂1, v̂2, v̂3) = (− sin(Ωτ), cos(Ωτ), 0)

where ni is the normal vector directed from the pri-
mary black hole to the secondary black hole in har-
monic coordinates, and v̂ = ˙̂n is the relative velocity
vector of the secondary black hole w.r.t primary black
hole.

Now, substituting these tidal fields from
Eqs. (4.10), (4.11), (4.14), and (4.15) into the formu-
las for mass and spin evolution in Eqs. (4.6), (4.7),
with the fixed coefficients listed in Eqs. (3.35), (3.36),
we get the orbit-averaged results

〈dm1

dτ

〉
= Ω(ΩH − Ω)CV , (4.16)〈dJ1

dτ

〉
= (ΩH − Ω)CV , (4.17)〈dA1

dτ

〉
=

(dm1 − ΩHdJ1)

dτ

8π

κ
=
−8π

κ
(ΩH − Ω)2CV , (4.18)

where ΩH = χ1/[2m1(1 +κ1)], is the horizon angular velocity of the primary black hole and A1 = 8πm2
1(1 +κ),
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is the horizon-surface area and

CV =− 16

5
m2

1X
2
1η

2(1 + κ1)V 12
{

1 + 3χ2
1 + V 2

(
− 3 +X1 −

51

4
χ2

1 + 3X1χ
2
1

)
+ V 3

[−X1χ1

3
(64 + 60κ1 + 33χ2

1 + 36κ1χ
2
1)− 3

2
X2(4 + 7χ2

1)χ2 − 8X1(1 + χ2
1)B2(χ1)

]}
. (4.19)

The contributions to the definition of mass and an-
gular momentum due to the conservative tidal co-
efficients as seen in Eqs. (4.8), (4.9) were removed
upon averaging over an orbit. They will also not con-
tribute in a scattering scenario provided we can set
the tidal fields to zero along the worldlines of the par-
ticle asymptotically (in the distant past and future).

However, the results in Eqs. (4.16), (4.17), and
(4.18) are written in terms of gauge-dependent quan-
tities, namely r (which enters through V ) and is the
separation between the two bodies in harmonic coor-
dinates. Further more, it is written in the frame of
the primary black hole as opposed to the more conve-
nient PN barycentric frame (which coincides with the
primary black hole frame in the test-body limit for
the secondary black hole). Thus, before comparison,

we convert the results to the PN barycentric frame
using the relations

V = x
[
1 +

1

6
(3− η)x2 +

1

6
χ̃x3 +O(x4)

]
, (4.20)

t = τ
[
1 +

1

2
(2X1 + 3X2)X2x

2 +O(x4)
]
, (4.21)

where x = (Mωorb)1/3 with ωorb is the orbital angu-
lar velocity, which is gauge invariant PN expansion
parameter and χ̃ = (2X2

1 + 3η)χ1 + (3η + 2X2
2 )χ2.

t is the PN barycentric time and its relation to the
proper time of the primary black hole τ , is given in
Eq. (4.21). These expressions have been taken from
Eqs.(39) and (40) in Ref. [20]. Then, the expressions
in Eqs. (4.16), (4.17), and (4.18) can be rewritten in
the PN barycentric frame as an expansion in the gauge
invariant parameter x as

〈dm1

dt

〉
= Ω(ΩH − Ω)Cx, (4.22)〈dJ1

dt

〉
= (ΩH − Ω)Cx, (4.23)〈dA

dt

〉
=

(dm1 − ΩHdJ1)

dt

8π

κ
=
−8π

κ
(ΩH − Ω)2Cx, (4.24)

where

Cx =− 16

5
M2X2

1η
2(1 + κ1)x12

(
1 + 3χ2

1 +
1

4
[3(2 + χ2

1) + 2X1(1 + 3χ2
1)(2 + 3X1)]x2 (4.25)

+ x3
{1

2
(−4 + 3χ2

1)χ2 − 2X1(1 + 3χ2
1)(X1(χ1 + χ2) + 4B2(χ1)) +X1

[
− 2

3
(23 + 30κ1)χ1 + (7− 12κ1)χ3

1 + 4χ2

+
9χ2

1χ2

2

]})
,

which can now be conveniently compared with the
expressions for the same quantities given in Eq. (45)
of Ref. [20]. We find that our expression for Cx for
generic-mass ratios is consistent with the result [20]
to NLO (to x14) but not at NNLO (at x15). An
important visible difference is that we have no π2-
containing terms at NNLO. However, as we will see
in the next subsection, it is consistent in the test
body limit with earlier results computed by solving
the Teukolsky equation for the curvature perturba-
tion sourced by a test-body moving in a circular orbit

around a spinning black hole up to relative 1.5PN or-
der (x15).

B. The test body limit for circular orbits with
parallel spins

In the special case where the other black hole with
mass m2 becomes a test particle, we only evaluate
the quantities to leading order in X2, mass ratio of
other particle. This is equivalent to simply setting
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X1 = 1, X2 → 0 and thus M = m1 → ∞ such that MX2 = m2 remains constant. Then the result
simplifies to

dm1

dt
=F∞

{
− x5

4
(χ1 + 3χ3

1)− x7(χ1 +
33

16
χ3

1) +
x8

12
[6 + 70χ2

1 − 3χ4
1 + 6κ1(1 + 13χ2

1 + 6χ4
1) + 24(χ1 + 3χ3

1)B2(χ1)]

}
,

where F∞ =
32

5

(
m2

M

)2

x10 and Ω
dJ1

dt
=
dm1

dt
, (4.26)

which is consistent with the results obtained via black
hole perturbation theory for the case of a tiny test par-
ticle orbiting a spinning black hole in Refs. [19]. This
result has been produced by solving the Teukolsky
equation for a perturbation sourced by a tiny nonspin-
ning black hole (Mext) around a large spinning black
hole M and computing the energy flux down the hori-
zon. This result has also been reproduced in Ref. [54]
and the method has been employed to push the results
for flux to infinity and horizon fluxes to a very high
PN order in the test-body limit (see Refs. [54–56]).
It is thus reassuring that our expression for mass-loss
matches with this in the appropriate limits, suggest-
ing that our effective worldline picture is suitable for
the purpose of modelling horizon-related dissipation
in spinning black holes.

V. EFFECT OF HORIZON FLUXES ON THE
WAVEFORM FOR CIRCULAR ORBITS

A simple way to derive the contribution to the
waveform phase from horizon fluxes for parallel-spin–
quasi-circular inspiral in the adiabatic limit is via the
stationary-phase approximation (SPA) [57–59]. This
was used to incorporate the effect of leading-order rate
of change of mass (at 2.5PN) in the waveform in the
appendix of Ref. [26]. We now use the same method
here and extend it appropriately to 4PN order, and
compute the phase contribution to the waveform due
to horizon fluxes. We use x as the gauge-invariant–
PN-counting parameter to relative 1.5PN (and abso-
lute 4PN) order. We start from the relation

x = (Mωorb)
1
3 =

(
M
dφ

dt

) 1
3

, (5.1)

where φ is the orbital phase and M = m1 +m2 is the
total mass of the system. The binding energy E of the
system is given to 1.5PN order9 (see, e.g., Ref. [26])

9 It is sufficient for us to include the expression for the binding
energy to 1.5PN order as we are only interested in computing
the waveform phase contribution due to horizon fluxes which
were derived in this work to relative 1.5PN order.

as

E = −Mηx2

2

{
1 + x2

(
−3

4
− η

12

)
+ x3

[
8δχa

3
+

(
8

3
− 4η

3

)
χs

]}
, (5.2)

where δ = (m1−m2)/M , η = m1m2/M
2, χa = (χ1−

χ2)/2, χs = (χ1 + χ2)/2. Now, we use the energy
balance law valid for circular orbits given by

Ė = −F∞ − Ṁ, (5.3)

where F∞ is the energy flux to infinity and over-dot
represents derivative with respect to time. For non-
circular orbits, one may have to include additional
Schott terms [60]. Now, we see from Eq. (5.2) that E
is a function of x, the masses m1, m2 and the spins
χ1, χ2, and thus we can write

Ė =
∂E

∂x
ẋ+

∂E

∂m1
ṁ1 +

∂E

∂m2
ṁ2

+
∂E

∂χ1
χ̇1 +

∂E

∂χ2
χ̇2, (5.4)

which, along with the balance relation, yields

ẋ = −
(
∂E

∂x

)−1

(F∞ + Ṁ + ṁ1∂m1
E + ṁ2∂m2

E

+ χ̇1∂χ1E + χ̇2∂χ2E), (5.5)

where we can drop the terms arising from the spin-
dependence as they do not contribute until relative
2.5PN order in horizon fluxes. Similarly, we can
substitute the leading-order formula for E in partial
derivatives with respect to m1 and m2 and only sub-
stitute the flux to infinity up to 1.5PN relative order
to get

ẋ = −
(
∂E

∂x

)−1

[F1.5PN
∞ + Ṁ − x2

2M2
(m2

2ṁ1 +m2
1ṁ2)].

(5.6)

The flux to infinity up to 1.5PN order can be found in
Ref. [26]. We can then invert this expression and in-
tegrate to compute the time function t(x) and orbital
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phase φ(x) as

δt(x) =

∫
1

ẋ
dx,

∫
dφ

dt
dt =

∫
x3

M

dt

dx
dx = φ(x).

(5.7)

Then, the orbital phase function φ(x) and the time
function t(x), can be related to the waveform phase
ψ, in Fourier domain for any spherical mode m, via
the relation [59]

ψlm(f) = 2πftf −mφ(tf )− π

4
, (5.8)

where f is the Fourier variable (frequency) and
tf corresponds to the time when the instantaneous
gravitational-wave frequency coincides with f , i.e.,

dmφ

dt
(tf ) = 2πf =⇒ x(tf ) = v =

(
2πMf

m

) 1
3

.

(5.9)

ψlm(f) is a useful quantity directly relevant for detec-
tors and we provide its correction due to the horizon
fluxes explicitly as

δψlm(f) =
3

128ηv5

m

2

[ 8∑
n=5

δψ(PN)
n vn

+

8∑
n=5

δψ
(PN)
n(l) v

nlog(v)

]
, (5.10)

v =

(
2πMf

m

) 1
3

, (5.11)

where δψlm(f) is the correction to ψlm(f) due to hori-

zon fluxes with coefficients δψ
(PN)
n and δψ

(PN)
n(l) start-

ing from 2.5PN (n = 5) and up to 4PN (n = 8) given
by

δψ
(PN)
5 = −10

9
[(1− 3η)χs(1 + 9χ2

a + 3χ2
s) + δ(1− η)χa(1 + 3χ2

a + 9χ2
s)], (5.12)

δψ
(PN)
5(l) = 3δψ

(PN)
5 , (5.13)

δψ
(PN)
7 =

5

168
{δχa[−1667− 4371χ2

a − 13113χ2
s + 616η2(1 + 3χ2

a + 9χ2
s) + 5η(311 + 807χ2

a + 2421χ2
s)]

+ χs
[
840η2

(
9χ2

a + 3χ2
s + 1

)
+ η

(
38331χ2

a + 12777χ2
s + 4889

)
− 13113χ2

a − 4371χ2
s − 1667

]
}, (5.14)

δψ
(PN)
7(l) = 0, (5.15)

and

δψ
(PN)
8 = δψ

(PN),a
8 + δψ

(PN),b
8 + δψ

(PN),c
8 (5.16)

δψ
(PN)
8(l) = −3δψ

(PN)
8 , (5.17)

with

δψ
(PN),a
8 = − 5

27
{144πδ(η − 1)χ3

a + 48πδ(η − 1)χa + 3
(
278η2 − 370η + 75

)
χ4
a +

(
−36η2 + 213η − 67

)
χ2
a

+ χs
[
−12δ

(
η2 + 190η − 75

)
χ3
a + 2δ

(
10η2 + 124η − 67

)
χa + 432π(3η − 1)χ2

a + 48π(3η − 1)
]

+ χ2
s

[
432πδ(η − 1)χa + 90

(
36η2 − 62η + 15

)
χ2
a − 172η2 + 303η − 67

]
+ 3

(
82η2 − 250η + 75

)
χ4
s

+ χ3
s

[
12δ

(
21η2 − 130η + 75

)
χa + 144π(3η − 1)

]
− 12

(
2η2 − 4η + 1

)
}, (5.18)

δψ
(PN),b
8 = −20

9
{[δ(2η − 1)κa + (−1− 2η2 + 4η)κs][1 + 6χ4

a + 13χ2
s + 6χ4

s + χ2
a(13 + 36χ2

s)]

− 2[κa(1− 4η + 2η2) + δ(1− 2η)κs]χaχs[13 + 12(χ2
a + χ2

s)]} (5.19)

δψ
(PN),c
8 =

80

9
{B2,s[

(
2η2 − 4η + 1

)
χs
(
9χ2

a + 3χ2
s + 1

)
− δ(2η − 1)χa

(
3χ2

a + 9χ2
s + 1

)
] (5.20)

+B2,a[3
(
2η2 − 4η + 1

)
χ3
a + 9δ(1− 2η)χ2

aχs +
(
2η2 − 4η + 1

)
χa
(
9χ2

s + 1
)
− δ(2η − 1)χs

(
3χ2

s + 1
)
]}

where we have defined κs = (κ1 + κ2)/2, κa = (κ1 − κ2)/2, and B2,s = [B2(χ1) +B2(χ2)]/2, B2,a =
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[B2(χ1) − B2(χ2)]/2 for convenience. Note that
the 2.5PN and 3.5PN corrections vanish for spin-
less case which is consistent with the fact that hori-
zon fluxes only start at 4PN for nonspinning black
holes (and 2.5PN for spinning case). We also find
that the 4PN correction to the waveform phase
contains functions that are nonpolynomial in the

spin parameters through κ =
√

1− χ2 and B2 =
Im[PolyGamma(0, 3 + i2χ/κ)], as expected from the
expression for the horizon energy fluxes (or rate of
change of masses) in Eq. (4.22) at relative 1.5PN or-
der. The Fourier phase solely due to the flux to in-
finity (i.e., neglecting horizon fluxes) to 3.5PN can be
found in Eq. (7) and Appendix A in Ref. [61]. The
correction to the Fourier phase δψlm(f), can now be
conveniently incorporated in waveform models to in-
clude the effect of horizon fluxes to next-to-next-to-
leading order (up to 1.5PN relative, or 4PN absolute)
during inspiral for quasi-circular aligned-spin binaries.

To get a qualitative idea of the relevance of hori-
zon fluxes to the waveform, we can look at the cor-
rection to the orbital phase φ(x) and compute how
many additional (or fewer) orbital cycles occur, as
a result of the inclusion of those effects, for some
specific choices of the initial masses of the black
holes. We consider first the case of two initially
equal-mass m1 = m2 = 10M� and equal-aligned-spin
χ1 = χ2 = χ black holes, and second the case for a
binary consisting of a 1.4 M� neutron star and a 10
Modot black hole. In the latter case, only the black
hole’s horizon-flux contribution is considered and the
neutron star is treated as a structureless particle. We
then compute the additional (or fewer) number of cy-
cles due to horizon flux(es) starting from the mini-
mum lower frequency of the bandwidth of LVK detec-
tors, ω = π × 10Hz10 to that of the innermost-stable
circular orbit (ISCO) ω = ωISCO = 1/(6

3
2M)Hz (in

Schwarzschild), which generally is a good approxima-
tion of the binary’s merger frequency. We use the
formula

NGW =
δφ[x = (MωISCO)

1
3 ]− δφ[x = (Mπ × 10Hz)

1
3 ]

π
,

(5.21)

where the correction to the orbital phase function due
to horizon fluxes is obtained as shown in Eq. (5.7).
We list the results obtained for the aforementioned
special cases in Tables I and II. In Table I, we also
list the contribution to the number of cycles due to
the flux to infinity up to 3.5PN (but with only non-
spinning contributions to flux to infinity at 3PN and
3.5PN) using the expressions for fluxes and binding
energy from Ref. [26]. This is to facilitate comparison
and get a qualitative understanding of the relevance

10 Note that we are working in units where G=c=1.

of the horizon flux to the waveforms. Similar tables
with flux-to-infinity contributions can be found for ex-
ample in Refs. [62, 63]. There are slight numerical dif-
ferences between Table I here and the tables in these
works, because the final result is very sensitive to the
precision used for the mass of the Sun and the grav-
itational constant. As clearly evident from the table,
the contribution to the number of cycles from hori-
zon fluxes (boxed terms in the table) is quite small
when compared to the usual contributions from the
flux to infinity even at the same PN order, although
it is better for larger mass ratios. This is due to the
(relatively) small numerical value of the coefficients
in the horizon fluxes when compared with analogous
terms in the fluxes to infinity when the masses are
equal. This fact (relative smallness of horizon flux
contributions) does not change for other configura-
tions of spins and masses either, at least for the fre-
quency band of LVK detectors. Although the effect of
the horizon flux on the waveform phase is small, they
would need to be included when building highly ac-
curate waveform models for next generation detectors
on the ground and in space.

VI. CONCLUSION

In this work, we set out to tackle the problem of
including horizon-related dissipation effects in spin-
ning black holes in an effective worldline theory, which
is an important physical effect to include in preci-
sion gravitational-wave predictions for future detec-
tors. For that purpose, we wrote down an effective
action with additional multipolar moment degrees of
freedom which couple directly with tidal fields in the
action, and are tidally induced by them in accordance
with the symmetries of a Kerr black hole, namely
axissymmetry and parity invariance. We fixed the re-
maining freedom in the ansatz relating the tidal fields
to the multipole moments by considering a scattering
scenario wherein gravitational waves were scattered
off the effective particle and the degree of absorption
was compared with that obtained from the full the-
ory by solving the Teukolsky equation. A crucial in-
gredient in being able to fix the complete dissipative
part of the ansatz through this method was to im-
pose upon the effective theory the requirement that
the scattering be independent for different spheroidal
modes of the Weyl scalar ψ4, which follows from the
separability of the Teukolsky equation in the full the-
ory in spheroidal harmonics with spin weight -2. Hav-
ing fixed the relevant part (for horizon-related dissi-
pation) of the ansatz in this way, we used the model
to compute the orbit averaged variation in mass and
spin due to horizon fluxes to relative 1.5PN order for
a binary in circular orbit with parallel spins. The
mass and spin rate of change derived using our ef-
fective model is consistent with the results obtained
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10 + 10M�, equal aligned spins χ1 = χ2 = χ

0PN 603.6

1PN 59.4

1.5PN −51.4 + 32χ

2PN 4.1 − 4.4χ2

2.5PN −7.1 + 11.3χ+ 10−312.8(1 + 3χ2)χ

3PN 2.2 − 6.5χ− 0.64χ2

3.5PN −0.8 + 3.6χ+ 1.3χ2 − 0.4χ3 + 10−3(8.4 + 22χ2)χ

4PN 10−3[−0.3(1 + κ) − (6.7 + 1.1B2)χ(1 + 3χ2) − (0.4 + 3.5κ)χ2 + (9.5 − 1.6κ)χ4]

TABLE I: Number of orbital cycles as the frequency increases from f = 10πHz to the frequency at the
innermost stable circular orbit (ISCO) fISCO = 1/(63/2M)Hz for equal masses (10 M�) and equal aligned (to

orbital angular momentum) spins. Recall that κ =
√

1− χ2. Here, B2 = PolyGamma(0, 3 + 2iχ/κ) lies
between 0 (at χ = 0) and π/2 (at χ = 1). The terms in boxes are contributions from horizon fluxes, and the

remaining terms come from the flux to infinity, written here for comparison.

10(BH) +1.4(NS)M�, equal aligned spins χ1 = χ2 = χ

0PN 3587.6

1PN 213.5

1.5PN −181.5 + 126.2χ

2PN 9.8 − 13.5χ2

2.5PN −20.0 + 36.8χ+ 10−29.4(1 + 3χ2)χ

3PN 2.3 − 18.6χ− 0.5χ2

3.5PN −1.8 + 10.5χ+ 3.1χ2 − χ3 + 10−2(5.9 + 15.4χ2)χ

4PN 10−2[−0.3(1 + κ) − (4.3 + 1.2B2)χ(1 + 3χ2) − (1.5 + 3.9κ)χ2 + (6.2 − 1.8κ)χ4]

TABLE II: Number of orbital cycles as the frequency increases from f = 10πHz to the frequency at the
innermost stable circular orbit (ISCO) fISCO = 1/(63/2M)Hz for a 1.4 M� neutron star (NS) with 10 M�

black hole (BH) with equal aligned spins.

in the test-body limit in Ref. [19] to relative 1.5PN
order, and with Ref. [20] for generic mass ratios up
to relative 1PN order and at leading order with the
generic mass ratio results in Refs. [21–25, 28]. Im-
portantly, we have weighed in one side (specifically
on the side of Ref. [19]) in the previous discrepancy
in the expression for evolution of mass in a binary in
the literature between Refs. [19] and [20]. While the
source of the earlier discrepancy is still unclear and
remains to be settled, our approach suggests that it
may have something to do with including the effect
of octupolar tidal fields in the evolution of mass and
spin.

Having consistently modelled the horizon-related
dissipation and the associated changes in mass, spin
and area of the horizon in this manner, we then pro-
ceeded to compute the contribution to the phasing
of the waveform due to the relative 1.5PN horizon
fluxes, which is relevant to the waveform at 4PN with
respect to that of the leading-order quadrupolar flux

to infinity. This was done using the SPA valid in the
adiabatic quasi-circular regime of interest during in-
spiral. We found that a qualitative measure of the
contribution of the horizon fluxes, i.e., the number
of cycles in the waveform as the frequency evolves
from 10Hz to fISCO is very small ( 2 to 3 orders of
magnitude) compared to other contributions arising
from gravitational-wave energy flux to infinity at the
same PN orders for typical masses observed by LIGO-
Virgo-KAGRA detectors.

An interesting future direction will be to use the
model to derive the contribution to the waveform
phasing without relying on the stationary-phase ap-
proximation to get a result valid outside of the adia-
batic regime. This can be done for example by deriv-
ing the radiation-reaction forces due to the tidally-
induced moments obtained from first-principles in-
stead of relying on balance arguments. It is also of
interest to consider how these results, namely the vari-
ation in mass and spin and the contribution to wave-
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form phasing are affected in the presence of eccentric-
ity or nonparallel spins. It may also be of interest to
study possible resummations for the evolution equa-
tions of mass and spin and their contribution to the
waveform phase along the lines of Refs. [16–18], now
aided by an expression valid at higher (relative 1.5)
PN orders for generic mass ratios. Finally, the ap-
proach used for modelling the particle in this work
may be extended to generic compact bodies wherein
the changes in mass and spin may occur due to tidal
heating, e.g., in a viscous fluid. Parametrizing the
changes in mass, spin and the subsequent contribu-

tion to waveform phasing for generic bodies could be
very useful for testing the predictions of general rel-
ativity, and more specifically in the search for exotic
compact bodies using next-generation gravitational-
wave detectors.
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Appendix A: Scalar field scattering in effective worldline theory including leading-order tail effects

In the main text, we mentioned that the leading-order tail effect, due to the scattering of gravitational
waves off the particle’s gravitational field leads to a factor of (1 + 2επ) multiplying the leading-order degree of
absorption. This is seen clearly in the Teukolsky solution given in Eq. (3.32), but not in the one derived using
effective worldline theory in Eq. (3.27) since we only solved the scattering problem in flat space. We motivated
that this can be reproduced in the effective theory as well by including the effect of leading-order nonlinearities
due to the gravitational field of the particle while solving the wave equation but did not prove it. Here, we
show this explicitly in the case of a scalar field scattering off a spinless black hole. In particular, we consider the
scattering of the monopole mode l = m = 0 to O(ε4) and show that an identical factor of (1 + 2επ) multiplies
the leading-order degree of absorption for this mode when the leading-order tail effects are included.

In the effective theory, we model the spinless black hole as a particle with mass m with an inducible monopole
moment mφ(τ) in the presence of an external scalar field. We write an effective worldline action including a
tidal scalar monopole moment as

S = −
∫
dτ(m−KQmφ(τ)φ)− Kφ

2

∫
dtd3~x

√
−ggαβ∇αφ∇βφ+

1

16πG

∫
d4x
√
−gR, (A1)

which is identical to the action used in Ref. [44] except we have restricted to just including a monopole moment
for simplicity.

Spherical symmetry ensures that the scalar monopole moment can only be induced by a scalar monopole
mode. Since we are only interested in dissipative effects, we can write a general ansatz for the moment simply
as

mφ(τ) = GMKφ

∞∑
n=0

(GM)nνn
d2n+1φ

dτ2n+1
, (A2)

The particle sources a static gravitational field given at linear order in G in the rest frame as

h00 = −4
GM

r
, h0i = hij = 0, (A3)

hµν =
√
−ggµν − ηµν , (A4)

which will affect the behaviour of the scalar field through the Klein Gordon equation. The scalar field obeys
the Klein Gordon equation in curved space-time, which to linear order in G with the above metric perturbation
is given by

�φ = −φ̈+∇2φ =
4GM

r
φ̈+

KQ

Kφ
mφ(τ)δ(3)(~r), (A5)

=⇒ ω2φ+∇2φ = −4εω

r
φ+

KQ

Kφ
mφ(τ)δ(3)(~r), (A6)
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in the rest frame of the particle. Here we have dropped divergent terms arising from the expansion of (
√
−g −

1) × δ(3)(~x) in the Klein-Gordon equation. Such terms can also be shown to cancel amongst themselves
perturbatively but it is not relevant to our purpose. We have also restricted our attention to a single frequency
mode of the wave, i.e., we set φ ∼ exp(−iωt)ψ(~r). Now, we can expand the scalar field as

φ = φ(0) + εφ(1), (A7)

φ(0) = Cout
exp[−iω(t− r)]

ωr
+ Cin

exp[−iω(t+ r)]

ωr
= Creg

sin(ωr)

ωr
+ Cirr

cos(ωr)

ωr
, (A8)

�φ(0) = mφ(τ)δ(3)(~r) (A9)

where φ(0) is the leading-order flat space-time solution and φ(1) is the leading-order correction due to gravita-
tional interaction. We have split φ(0) into incoming (Cin) and outgoing modes ( Cout), and into regular (Creg)
and irregular (Cirr) modes. The regular mode is the homogeneous part of the flat space-time wave equation
and the irregular part is the particular solution obtained from the source with the time-symmetric propagator.
We can perturbatively write down an equation for φ(1) as

�φ(1) = −4ω

r
φ(0) +O(ε2). (A10)

Solving this in general is difficult, but we only need to understand the asymptotic behaviour far away of φ(1)

and its behaviour at origin (location of the particle). This is because the asymptotic behaviour dictates the
form of the wave as measured by a distant observer who can then measure the degree of absorption from that,
and the value at origin perturbs the strength of the induced monopole moment through the ansatz.

The general solution can be written as

φ(1) =
ω

2π

∫
d3~r′

[
φ(0)(t− |~r′ − ~r|, ~r′)

r′|~r − ~r′|
+
φ(0)(t+ |~r′ − ~r|, ~r′)

r′|~r − ~r′|

]
, (A11)

where we are using the time-symmetric propagator for consistency (as the irregular part of the leading-order
solution contains both incoming and outgoing modes) and convenience. We can now derive its asymptotic
behaviour as

lim
r→∞

εφ(1) =
εω

2πr

∫
d3~r′

[
φ(0)(t− r + r̂ · ~r′)

r′
+
φ(0)(t+ r − r̂ · ~r′)

r′

]
, (A12)

= 4ε exp(−iωt)cos(ωr)

ωr

[
Cirr

∫ ∞
0

dρ
cos(ρ) sin(ρ)

ρ
+ iCreg

∫ ∞
0

dρ
sin2(ρ)

ρ

]
, (A13)

= exp(−iωt)cos(ωr)

ωr

(
πεCirr + 4εiCreg

∫ ∞
0

dρ
sin2(ρ)

ρ

)
, (A14)

where the second integral next to Creg which comes from the scattering of the homogenous solution off the
static gravitational field of the particle is divergent but also does not contribute to absorption due to the i in
front of it. Thus, we can ignore it. The remaining part has the familiar πε factor in front of it. Thus dropping
the irrelevant part, we can write the total field asymptotically as

lim
r→∞

φ = lim
r→∞

[φ(0) + εφ(1)] = Creg
sin(ωr)

ωr
+ Cirr(1 + επ)

cos(ωr)

ωr
. (A15)

Now, before deriving the degree of absorption, we need to find the relation between Creg and Cirr through the
induced monopole moment. The strength of induced monopole moment depends on the value of the field at
origin, and thus we also need to understand how the value of the field at origin is affected due to gravitational
interaction. We will only use the regular part of the wave for computing the value of the field at origin since it
is the input which induces the moment. Also, we are only interested in linear tidal effects in this work.

At origin, we have

lim
r→0

εφ(1) =
εω

2π

∫
d3~r′

[
φ

(0)
reg(t− r′, ~r′)

(r′)2
+
φ

(0)
reg(t+ r′, ~r′)

(r′)2

]
(A16)

= 4ε exp(−iωt)
[
Creg

∫ ∞
0

dρ
cos(ρ) sin(ρ)

ρ

]
(A17)

= exp(−iωt)πεCreg. (A18)
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Thus, we have for the total regular part of the field

lim
r→0

φ(0)
reg = (1 + επ)Creg exp(−iωt), (A19)

which as claimed in the main text brings in another factor of επ. We can now compute the induced monopole
moment as

mφ(t) = −KφGM exp(−iωt)(1 + επ)iCreg

∞∑
n=0

νn(−1)nε2n+1. (A20)

Finally, we can now use the leading-order wave equation to solve for the relation between the regular and
irregular coefficients as

�φ(0) =
4π

ω
δ(3)(~r)Cirr =

KQ

Kφ
mφ(t)δ(3)(~r), (A21)

=⇒ Cirr =
KQ

Kφ
mφ(t)

ω

4π
= −(1 + επ)

KQ

4π
iCregε

2
∞∑
n=0

νn(−1)nε2n, (A22)

which we can now substitute in Eq. (A15) to get

lim
r→∞

φ =
sin(ωr)

ωr
Creg −

cos(ωr)

ωr
(1 + επ)2KQ

4π
iCregε

2
∞∑
n=0

νn(−1)nε2n, (A23)

=
sin(ωr)

ωr
Creg +

cos(ωr)

ωr
Ceff

irr . (A24)

Note the factor of (1 + επ)2 = [1 + 2επ+O(ε2)] modifying the effective values of the irregular part (Ceff
irr ) of the

wave far away from the source. This in turn modifies the coefficients next to the incoming and outgoing parts
of the wave as well, changing the degree of absorption and the scattering phase. The the degree of absorption
can now be obtained as

1−
∣∣∣∣Ceff

out

Ceff
in

∣∣∣∣ = 1−
∣∣∣∣Creg + iCeff

irr

Creg − iCeff
irr

∣∣∣∣ = 1−
∣∣∣∣1 + (1 + 2επ)K̂Qε

2
∑∞
n=0 νn(iε)2n

1− (1− 2επ)K̂Qε2
∑∞
n=0 νn(iε)2n

∣∣∣∣, (A25)

where Ceff
in/out are the coefficients next to the incoming/outgoing parts of the complete solution at asymptotic

infinity. We have also defined K̂Q = KQ/(4π). Note that in the absence of tail corrections, there are no odd
powers of ε in the degree of absorption for a spinless black hole. Now, expanding this in ε, we get

1−
∣∣∣∣Ceff

out

Ceff
in

∣∣∣∣ = −2K̂Qε
2(1 + 2επ) +O(ε4), (A26)

where we have truncated our expression to next-to-leading order since we only included leading-order tail effects
in this analysis. Here, we see explicitly that the leading-order tail effect, arising from the scattering of the wave
off the static gravitational field of the particle modifies the leading-order degree of absorption by a factor
of (1 + 2επ). Crucially, this introduces odd powers of ε as well which the effective theory cannot otherwise
reproduce. We have checked it against the same result obtained in the real theory by solving the Klein Gordon
equation in the vicinity of a real black hole with incoming boundary conditions at the horizon and obtained

8ε2(1 + 2πε) +O(ε4), (A27)

as the degree of absorption for the monopole mode of a scalar wave. Note that this has a form identical to that
obtained from the effective theory when leading-order tail effects are included, thus proving our claim in the
main text for the special case of monopolar scalar-field scattering.
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