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The plunge-merger stage of the binary–black-hole (BBH) coalescence, when the bodies’ velocities
reach a large fraction of the speed of light and the gravitational-wave (GW) luminosity peaks,
provides a unique opportunity to probe gravity in the dynamical and nonlinear regime. How much
do the predictions of general relativity differ from the ones in other theories of gravity for this
stage of the binary evolution? To address this question, we develop a parametrized waveform
model, within the effective-one-body formalism, that allows for deviations from general relativity
in the plunge-merger-ringdown stage. As first step, we focus on nonprecessing-spin, quasicircular
BBHs. In comparison to previous works, for each GW mode, our model can modify, with respect to
general-relativistic predictions, the instant at which the amplitude peaks, the instantaneous frequency
at this time instant, and the value of the peak amplitude. We use this waveform model to explore
several questions considering both synthetic-data injections and two GW signals. In particular, we
find that deviations from the peak GW amplitude and instantaneous frequency can be constrained
to about 20% with GW150914. Alarmingly, we find that GW200129 065458 shows a strong violation
of general relativity. We interpret this result as a false violation, either due to waveform systematics
(mismodeling of spin precession) or due to data-quality issues depending on one’s interpretation of
this event. This illustrates the use of parametrized waveform models as tools to investigate systematic
errors in plain general relativity. The results with GW200129 065458 also vividly demonstrate the
importance of waveform systematics and of glitch mitigation procedures when interpreting tests of
general relativity with current GW observations.

I. INTRODUCTION

Remarkably, so far, the theory of general relativity
(GR), introduced by Albert Einstein in 1915, has passed
all available experimental and observational tests [1]: on
cosmological [2] and short scales [3, 4], in the low-velocity,
weak-field [5] and strong-field settings [6–8], and in the
dynamical, high-velocity and strong-field regime [9–13].
The latter has been probed, since 2015, through the grav-
itational wave (GW) observation of the coalescence of
binary black holes (BBHs) [14–19], neutron-star–black-
hole binaries [20], and binary neutron stars [21, 22] by
the LIGO and Virgo detectors [23, 24].

Generally, tests of GR with GW observations have been
developed following two strategies: theory independent
and theory specific. The former assumes that the under-
lying GW signal is well-described by GR, and non-GR
degrees of freedom (or parameters) are included to char-
acterize any potential deviation. These tests use GW
observations to check consistency with their nominal pre-
dictions in GR, and then constrain the non-GR parame-
ters at a certain statistical level of confidence. Eventually,
the non-GR parameters can be translated to the ones in
specific modified theories of gravity, albeit there could
be subtleties in doing it, due to the choice of the priors
and the actual parameters on which the measurements
are done. By contrast, analyses that compare directly the
data with proposed modified theories of gravity belong
to the theory-specific framework of tests of GR.

Here, we focus on theory-independent tests of GR for
BBHs. Historically, those tests have been proposed intro-

ducing deviations in (or parametrizations of) the gravita-
tional waveform, whether for the inspiral, the merger or
the ringdown stages, in time or frequency domain. Those
parametrizations are clearly non-unique; neither they
guarantee to fully represent the infinite space of modified
gravity-theory waveforms. Furthermore, non-GR param-
eters may be degenerate with each other, limiting the
study to a subset of them [9] or demanding the use of
principal-component-analysis methods [25].

Many parametrized waveforms have been suggested in
the literature, originally focusing on the inspiral phase [26–
28], when the BBH system slowly, but steadly looses
energy through GW emission, and the bodies come closer
and closer to each other until they merge. When the
first frequency-domain models for the inspiral-merger-
ringdown (IMR) waveforms in GR became available [29,
30], a parametrized frequency-domain IMR waveform
model was proposed in Ref. [31], variations of which
were soon after employed in Ref. [32] for data-analysis
explorations. Those initial works, together with other
developments [33, 34], are at the foundation of the Test
Infrastructure for GEneral Relativity (TIGER) [35–37],
Flexible Theory Independent (FTI) [38], pSEOBNR [39, 40],
and pyRing [41–43] pipelines, which today are routinely
used by the LIGO-Virgo-KAGRA (LVK) Collaboration [9–
13] to perform parametrized tests of GR, probing the
generation of GWs and the remnant properties, in the
linear and non-linear strong-field gravity regime. Other
theory-independent tests were also performed, e.g., in
Refs. [44–51].

In this manuscript, we develop a parametrized time-
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domain IMR waveform model within the effective-one-
body (EOB) formalism [52–59]. The EOB approach builds
semianalytical IMR waveforms by combining analytical
predictions for the inspiral, notably from post-Newtonian
(PN), post-Minkowskian (PM) and gravitational-self force
(GSF) approximations, and ringdown phases (from BH
perturbation theory) with physically-motivated ansatzes
for the plunge-merger stage. The EOB waveforms are
then made highly accurate via a calibration to numerical
relativity (NR) waveforms of BBHs. The EOB formal-
ism relies on three key ingredients: the EOB conserva-
tive dynamics (i.e., a two-body Hamiltonian), the EOB
radiation-reaction forces (i.e., the energy and angular
momentum fluxes) and the EOB GW modes. Since the
EOB waveforms are computed on the EOB dynamics
by solving Hamilton’s equations, in principle deviations
from GR can be introduced in all the three building
blocks, consistently. Here, for simplicity, following previ-
ous work [39, 40], which focused on the ringdown stage, we
only introduce non-GR parameters in the plunge-merger-
ringdown GW modes. We leave to future work the ex-
tension of the parametrization to the conservative and
dissipative dynamics, notably by including in the EOB
dynamics fractional deviations to the PN (PM and GSF)
terms, to NR-informed terms or specific new terms moti-
vated by phenomena observed in modified gravity theories.
We note that non-GR deviations in the EOB energy flux
were implemented in Ref. [60], and the corresponding
EOB waveforms were employed to test the IMR consis-
tency test [61, 62].

Although the parametrized IMR model can in principle
be constructed for precessing spinning BBHs, as first
step, we consider nonprecessing BHs. There are two
main EOB families, SEOBNR (e.g., see Refs. [63–65]) and
TEOBResumS (e.g., see Refs. [66–68]). We consider here
the former, and in particular we focus on the SEOBNRHM
model developed in Refs. [63, 64], which contains GW
modes beyond the dominant quadrupole. We denote the
parametrized version pSEOBNRHM. In Fig. 1 we contrast
the GR SEOBNRHM with pSEOBNRHM for a choice of binary
parameters that resembles the very first GW observation,
GW150914, and use fractional deviations from GR on the
order of a few tens of percent. We can see that differences
from GR occur just before, during and after the merger
stage, which is when the gravitational strain peaks.

The paper is organized as follows. In Sec. II, we de-
scribe how we build the pSEOBNRHM model starting from
the baseline model SEOBNRHM, and introduce the non-GR
parameters that describe potential deviations from GR
during the plunge-merger-ringdown stage. In Sec. III,
we study in detail the morphology of the parametrized
waveform, and understand which parts of the waveform
change when the non-GR parameters are varied one at
the time. After discussing the basics of Bayesian analysis
in Sec. IV, we perform a synthetic-signal injection study
in Sec. V, and then apply our parametrized IMR model
to real data in Secs. VI and VII, analyzing two events,
GW150914 and GW200129. Finally, we summarize our

conclusions and future work in Sec. VIII.

Unless stated otherwise, we work in geometrical units
in which G = 1 = c.

II. THE PARAMETRIZED
PLUNGE-MERGER-RINGDOWN WAVEFORM

MODEL

In this section we first review the GR waveform model
developed within the EOB formalism. In Sec. II B, we
explain how we deform this baseline model by introduc-
ing deformations away from GR in the plunge-merger-
ringdown phase.

A. A brief review of the effective-one-body
gravitational waveform model

The GW signal produced by a spinning, nonprecessing,
and quasicircular BBH with component masses m1 and
m2, and total mass M = m1 +m2, is described in GR by
a set of eleven parameters, ϑGR, given by

ϑGR = {m1,m2, χ1, χ2, ι, ψ, α, δ,DL, tc, φc} , (2.1)

where χi (i = 1, 2) are the constant-in-time projections
of each black hole (BH)’s spin vectors Si in the direction

of the unit vector perpendicular to the orbital plane L̂,
i.e., χi = Si · L̂/m2

i , where |χi| 6 1, (ι, ψ) describe the
binary’s orientation through the inclination and polariza-
tion angles, (α, δ) describe the sky location of the source
in the detector frame, DL is the luminosity distance, and
tc and φc are the reference time and phase, respectively.
It is convenient to define the chirp mass M = Mν3/5,
where ν = m1m2/M

2 is the symmetric mass ratio, the
asymmetric mass ratio q = m2/m1, and the effective spin
χeff = (χ1m1 + χ2m2)/M . We adopt the convention that
m1 > m2 and thus q 6 1.

The GW polarizations can be written in the observer’s
frame as,

h+(ι, ϕ0; t)− ih×(ι, ϕ0; t) =

∞∑
`=2

∑̀
m=−`

−2Y`m(ι, ϕ0)h`m(t),

(2.2)

where ϕ0 is the azimuthal direction of the observer, where,
without loss of generality, we set ϕ0 = φc, and −2Y`m are
the −2 spin-weighted spherical harmonics [73], ` is the
angular number and |m| 6 ` is the azimuthal number of
each GW mode, h`m.

We follow Refs. [40, 74] and use as our baseline model
(i.e., the waveform model upon which the non-GR devia-
tion parameters are added) the time-domain IMR wave-
form developed in Refs. [63, 64, 70] within the EOB
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FIG. 1. Illustrative BBH waveform obtained with the pSEOBNRHM model introduced here (dashed line) and the corresponding
baseline model SEOBNRHM [64, 69, 70] (solid line) for a face-on, nonspinning and quasicircular binary with GW150914-like
mass-ratio q = m2/m1 ≈ 0.867, and detector-frame total mass M = m1 +m2 = 71.9 M�. The pSEOBNRHM waveform is generated
with non-GR parameters values δ∆t = −0.2, δω = −0.4, and δA = 0.5. These parameters change respectively, in comparison
to GR, the instant at which the GW amplitude peaks, the orbital frequency at this time instant, and the value of the peak
amplitude. Both waveforms are phase aligned and time shifted around 20 Hz using the prescription of Refs. [59, 69, 71, 72]. The
details of how the waveform model is developed are in given Sec. II, and additional details about its morphology are presented
in Sec. III.

formalism [52–59], SEOBNRv4HM_PA1. The model uses the
post-adiabatic (PA) approximation, which was originally
introduced in Refs. [77–79] (and also subsequently used
in the TEOBResumS waveform models) to speed up the
generation of the time-domain waveforms for spinning,
nonprecessing and quasicircular compact binaries. It in-
cludes the (`, |m|) = (2, 2), (2, 1), (3, 3), (4, 4), and (5, 5)
GW modes. For nonprecessing BBHs (i.e., with compo-
nent spins aligned or anti-aligned with the orbital angular
momentum), we have that h`m = (−1)` h∗`−m. Hence, we
can consider m > 0 without loss of generality. Hereafter,
we refer to SEOBNRv4HM_PA as SEOBNRHM for brevity.

As explained in Refs. [63, 64], the SEOBNRHM wave-
form is constructed by attaching the merger-ringdown

waveform, hmerger−RD
`m (t), to the inspiral-plunge waveform,

hinsp−plunge
`m (t), at a matching time t = t`mmatch,

h`m(t) = hinsp−plunge
`m (t) Θ

(
t`mmatch − t

)
+ hmerger−RD

`m (t) Θ
(
t− t`mmatch

)
, (2.3)

where Θ(t) is the Heaviside step function and the value
of t`mmatch is defined as

t`mmatch =


t22
peak , (`,m) = (2, 2), (3, 3), (2, 1),

(4, 4)

t22
peak − 10M , (`,m) = (5, 5) ,

(2.4)

where t22
peak is the time at which the amplitude of the (2, 2)

mode [i.e., h22(t) in Eq. (2.2)] has its maximum value.

1The model’s name indicates that the EOB model (EOB) is calibrated
to NR simulations (NR), includes spin effects (S), contains high-order
radiation modes (HM), and uses the post-adiabatic approximation
(PA) to reduce the waveform generation time. The version of the
model used here is v4. The first version of this waveform family is
the nonspinning EOBNRv1 model of Refs. [75, 76].

We impose that the amplitude and phase of h`m(t) at
t = t`mmatch are C1 (i.e., they are continuously differentiable
at this time instant). The time t22

peak is defined as

t22
peak = tΩpeak + ∆t22

peak , (2.5)

where tΩpeak is the time in which the EOB orbital frequency

peaks [80]. Calculations performed in the test-particle
limit using BH perturbation theory found that the am-
plitude and the orbital frequency peak at different times,
especially when the central BH has large spins [81–84].
This motivates the introduction of the time-lag parame-
ter ∆t22

peak in Eq. (2.5), which can be fitted against NR
waveforms as function of the symmetric mass ratio ν and
the BH’s spins χ1,2 (see Sec. II B in Ref. [63] for details).
We impose the condition ∆t22

peak 6 0 to ensure that the
attachment of the merger-ringdown waveform happens
before the peak of the orbital frequency, and thus before
the end of the binary’s dynamics. For later convenience,
we define

∆tGR
`m = −∆t22

peak . (2.6)

Because we are interested in adding non-GR terms to

hmerger−RD
`m (t), we now briefly review how the merger-

ringdown waveform is constructed. Further details can
be found in Sec. IV E of Ref. [64]. The merger-ringdown
mode is written as

hmerger−RD
`m = ν Ã`m(t) eiφ̃`m(t) eiσ`m0(t−t`mmatch) , (2.7)

where σ`m0 are the complex-valued frequencies of the
least damped quasinormal mode (QNM) of the remnant
BH [85–87]. We define σR

`m0 = Im(σ`m0) < 0 and σI
`m0 =

−Re(σ`m0) < 0. The functions Ã`m and φ̃`m are given
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by [63]

Ã`m = c`m1,c tanh
[
c`m1,f (t− t`mmatch) + c`m2,f

]
+ c`m2,c , (2.8a)

φ̃`m = φ`mmatch − d`m1,c log

[
1 + d`m2,f e

−d`m1,f (t−t`mmatch)

1 + d`m2,f

]
,

(2.8b)

where φ`mmatch is the phase of the inspiral-plunge mode

hinsp−plunge
`m at t = t`mmatch. We see that Eqs. (2.8) depend

on the set of parameters c`mi and d`mi (i = 1, 2), which are

either constrained by imposing that Ã`m, φ̃`m are C1 at
t = t`mmatch (we append the subscript “c”) or free parame-
ters to be determined by fitting against NR waveforms
(we append the subscript “f”).

We now impose that h`m is C1 at t = t`mmatch. This
yields two equations that relate the constrained coef-
ficients c`m1,c and c`m2,c to the free coefficients c`m1,f , c`m2,f ,

to σR
`m0 and to the mode amplitude of hinsp−plunge

`m and
its first time derivative at the matching time, namely

|hinsp−plunge
`m (t`mmatch)| and ∂t|hinsp−plunge

`m (t`mmatch)|. The
equations are:

c`m1,c =
1

ν c`m1,f

[
∂t|hinsp−plunge

`m (t`mmatch)|

−σR
`m0 |hinsp−plunge

`m (t`mmatch)|
]

cosh2 c`m2,f , (2.9a)

c`m2,c = −1

ν
|hinsp−plunge
`m (t`mmatch)|

+
1

ν c`m1,f

[
∂t|hinsp−plunge

`m (t`mmatch)|

−σR
`m0 |hinsp−plunge

`m (t`mmatch)|
]

cosh c`m2,f sinh c`m2,f .

(2.9b)

We also obtain one equation that relates the constrained
parameter d`m1,c to the free coefficients d`m1,f , d`m2,f , to σI

`m0

and to the angular frequency of hinsp−plunge
`m at the match-

ing time. The latter is defined as ω`m = dφinsp−plunge
`m /dt,

where φinsp−plunge
`m = arg(hinsp−plunge

`m ) is the phase of the
inspiral-plunge GW mode. The equation is,

d`m1,c =
[
ωinsp−plunge
`m (t`mmatch)− σI

`m0

] 1 + d`m2,f
d`m1,f d

`m
2,f

. (2.10)

The values of

|hinsp−plunge
`m |, ∂t|hinsp−plunge

`m |, and ωinsp−plunge
`m ,

at t = t`mmatch are fixed by the so-called nonquasicircular
(NQC) terms, N`m(t). The NQC terms describe nonqua-
sicircular corrections to the modes during the late inspiral
and plunge. They multiply the factorized post-Newtonian
(PN) GR modes, hF

`m, and are calibrated against NR sim-
ulations. They are crucial in guaranteeing a very good
agreement of the SEOBNRHM amplitude and phase (relative
to NR) during the late inspiral and plunge.

The GW modes in the inspiral-plunge part of the EOB
waveform are given as

hinsp−plunge
`m (t) = hF

`m(t)N`m(t) , (2.11)

where we refer the reader to Sec. IV C in Ref. [64] for
details on how hF

`m and N`m are constructed. For our

purposes, it is sufficient to say that |hinsp−plunge
`m |(t`mmatch),

∂t|hinsp−plunge
`m (t`mmatch)|, and ωinsp−plunge

`m (t`mmatch) are the
same as the NR values of

|hNR
`m |, ∂t|hNR

`m |, and ωNR
`m ,

at t = t`mmatch. The values of these three quantities are
obtained for each BBH, from the Simulating eXtreme
Spacetimes (SXS) catalog of NR waveforms [88], after
which a fitting formula that depends on the symmetric
mass ratio ν and spins χ1 and χ2 is obtained to interpolate
over the parameter space covered by the catalog. Their
explicit forms can be found in Ref. [64], Appendix B. At
this point, we are left with the free parameters c`mi,f and

d`mi,f (i = 1, 2) to fix. This is accomplished through fits

against NR and Teukolsky-equation-based waveforms [82,
83], written also as functions of ν, χ1 and χ2. The explicit
form of these fits can be found in Ref. [64], Appendix C.

B. Construction of the parametrized model

With this framework established, our strategy to
develop a parametrized SEOBNRHM model (hereafter
pSEOBNRHM) is the following. We will introduce fractional
deviations to the NR-informed formulas for the mode
amplitudes and angular frequencies at t = t`mmatch, i.e.,

|hNR
`m | → |hNR

`m | (1 + δA`m) , (2.12a)

ωNR
`m → ωNR

`m (1 + δω`m) , (2.12b)

and we will also allow for changes to t`mmatch by modifying
the time-lag parameter ∆tGR

`m [defined in Eq. (2.6)] as,

∆tGR
`m → ∆tGR

`m (1 + δ∆t`m) , (2.13)

where we constrain δ∆t`m > −1 to ensure that t`mmatch
remains less than tΩpeak, and thus before the end of the

dynamics, as originally required [64, 69]. Equations (2.12)
and (2.13) modify the constrained parameters c`mi,c and

d`mi,c through Eqs. (2.9)-(2.10), and consequently Ã`m and

φ̃`m that appear in the merger-ringdown waveform (2.7)
and are given by Eqs. (2.8). It is important to empha-
size that Eqs. (2.12) and (2.13) also modify the NQC
coefficients which enter the inspiral-plunge waveform in
Eq. (2.11). This is because both |hNR

`m | and ωNR
`m are used

to fix some parameters in the explicit form of N`m. We
refer the reader to Refs. [63, 89] and in particular to
Ref. [64], Sec. III C, for details. Hence, although we will
refer to δA`m, δω`m, and δ∆t`m as “merger parameters”
they, strictly speaking, also modify the plunge.
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Parameter Deformation Bound

merger
δA`m amplitude
δω`m instantaneous frequency
δ∆t`m time lag > −1

ringdown
δf`m0 oscillation frequency
δτ`m0 damping time > −1

TABLE I. Summary of the non-GR parameters in the
pSEOBNRHM model. The ringdown deformation parameters
δf`m0 and δτ`m0 were introduced to the SEOBNRHM model in
Ref. [40], while the merger deformation parameters δA`m,
δω`m, and δ∆t`m are introduced here for the first time. As ex-
plained in Sec. II B, although we call these merger parameters,
they do also affect the late inspiral-plunge part of the waveform.
We quote under the column labeled “bound” the constraints
on the parameter’s values required by our waveform model.

We also introduce non-GR deformations to the QNMs,
following the same strategy applied in Refs. [33, 34, 39,
40, 43, 90]. It consists in modifying the QNM oscillation
frequency and damping time, defined respectively for the
zero overtone n = 0, as,

f`m0 =
1

2π
Re(σ`m0) = − 1

2π
σI
`m0 , (2.14a)

τ`m0 = − 1

Im(σ`m0)
= − 1

σR
`m0

, (2.14b)

according to the substitutions

f`m0 → f`m0 (1 + δf`m0) , (2.15a)

τ`m0 → τ`m0 (1 + δτ`m0) , (2.15b)

and we impose that δτ`m0 > −1 to ensure that the rem-
nant BH is stable (i.e., it rings downs, instead of “ringing-
up” exponentially). Note that in Ref. [39], such defor-
mations also concerned with the higher overtones, since
the EOB model used for the merger-ringdown included
higher overtones.

Put it all together, we have the following set of plunge-
merger-ringdown parameters:

ϑnGR = ϑmerger
nGR ∪ ϑRD

nGR (2.16)

= {δA`m, δω`m, δ∆t`m} ∪ {δf`m0, δτ`m0} ,

intended to capture possible signatures of beyond-GR
physics in the most dynamical and nonlinear stage of a
BBH coalescence. We will casually refer to them as “non-
GR” or as “deformation” (away from GR) parameters.
In Table I, we summarize the ϑnGR parameters, their
meaning, and the constraints, if any, on their values. The
GR limit is recovered when all parameters in ϑnGR are
set to zero.

The pSEOBNRHM model allows us to change the non-GR
plunge-merger parameters ϑmerger

nGR for each (`, m) mode
individually. Here, for a first study, we will assume that
their values are the same across different modes, that is
to say,

δA`m = δA, δω`m = δω, and δ∆t`m = δ∆t , (2.17)

for all the ` and m modes in the waveform model. This
choice is motivated by the fact that in GW150914 there
are no significant changes in the posterior distributions
of the binary parameters when using all the modes and
only the ` = m = 2 mode. As for the non-GR ringdown
parameters ϑRD

nGR, we will assume that they are nonzero
only for the least-damped (n = 0) (2, 2) mode. Under
these assumptions, we have a 16 dimensional parameter
space to work with,

ϑ = ϑGR ∪ ϑnGR , (2.18)

where the GR parameters ϑGR are defined in Eq. (2.1).
Some comments follow in order. First, the parametrized

deformation of SEOBNRHM we have introduced is not
unique. For instance, we could have added additional
fractional changes to ∂t|hNR

`m |(t`mmatch) or to the free pa-
rameters in the merger-ringdown waveform segment [see
Eq. (2.8)]. We have found a compromise between the
number of new parameters we can introduce and the
physics we want to model; the optimal scenario being
that of having the most flexible GW model that depends
on the least number of deviation parameters. In our case,
we find the parameters ϑnGR defined in Eq. (2.16) to be
sufficient for our purposes. Second, one may fear that
by effectively “undoing” the NR calibration we would ob-
tain nonphysical GWs. This is not the case, as shown in
Fig. 1 and as we will see in Sec. III. Our model produces
waveforms that are smooth deformations of the ones of
GR and have sufficient flexibility to be applied in tests
of GR (Secs. V and VI) and provide a diagnostic tool
for the presence of systematic effects in GR GW models
(Sec. VII).

III. WAVEFORM MORPHOLOGY

Having introduced our waveform model, we now discuss
how each of the parameters ϑmerger

nGR modifies the GW
signal in GR. In each of the following sections, we vary
the parameters δA, δω, and δ∆t one at a time. We take
the binary component masses and spins to be,

q = 0.867, ν = 0.249, χ1 = χ2 = 0, (3.1)

which are archetypal values of a GW150914-like event [91],
the inclination to be ι = 0 and, for clarity, we show
results only for h22. This is the dominant mode for
such a quasicircular, nonspinning, and comparable-mass
BBH. We end each section by showing how the waveform
is modified when we apply the deformations, with the
same values, simultaneously to all GW modes present in
pSEOBNRHM.

A. The amplitude parameter δA

Let us start with δA, the amplitude parameter. In Fig. 2
we show the real part of h22(t), rescaled by the luminosity
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match (dashed lines) and t > t22
match (solid lines) for all

waveform illustrated. The matching times t22
match are marked

by the vertical lines.

distance DL and total mass M , for two values of δA: 0.5
(top panel) and −0.5 (bottom panel). The dashed segment
corresponds to t 6 t22

match (i.e., the inspiral-plunge part of
waveform), whereas the solid segment corresponds to t >
t22
match (i.e., the merger-ringdown part of the waveform).

In both panels, the black curve corresponds to the GR
signal (δA = 0) with the same binary parameters. Both
the GR and non-GR waveforms have been shifted in
time and aligned in phase around 20 Hz following the
prescription of Refs. [59, 69, 71, 72]. The amplitudes of
the non-GR waveforms ±|h22| are shown by the dotted
lines and form the envelope around Re(h22).

Unsurprisingly, for positive values of δA, the ampli-
tude |h22| increases relative to its GR value while keeping
t22
match ≈ 1704M the same. The situation is more inter-

esting for δA < 0. For the binary under consideration,
we find that |h22| decreases for δA & −0.31, but for
δA . −0.31, we see that δA pinches downwards the am-
plitude enough to result in a local minimum (say, at t22

min)
and two maxima, located before and after t22

min, with the
global maximum happening at t22

max < t22
min. The values

of both maxima are smaller than the GR peak amplitude.
By construction, the matching time t22

match is then shifted
to earlier times relative to its GR value. For the example
of δA = −0.5 shown in the bottom panel of Fig. 2, the
matching time is at approximately 1670M (compare the
location of the vertical lines in this panel).

In Fig. 3, we show a “continuum” of waveforms around
the time of merger, obtained by finely covering the interval
δA ∈ [−0.5, 0.5], and including δA modifications to all
modes in pSEOBNRHM. The GR prediction is shown by the
black solid line. The top panel shows the real part of
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FIG. 3. The time evolution near the merger of the GW strain
for nonzero values of the amplitude parameter δA, taken to
affect in the same way all the h`m modes. The GR prediction
(δA = 0) is show by the black curves. We show the real part
of the strain (top panel), the strain amplitude (middle panel),
and the instantaneous frequency (bottom panel). As expected,
the latter is unaffected by the changes to the peak amplitude
of the various GW modes.

the strain, the middle panel the strain amplitude, and
the bottom panel the instantaneous frequency, defined as
f = (2π)−1 d arg(h+ − ih×)/dt. As expected, we see that
f does not change by varying δA, while the middle panel
shows clearly how δA changes the GW amplitude. For
negative values of δA, the presence of a local minimum
in the GW amplitude is evident, as discussed previously.

B. The frequency parameter δω

We now consider δω, the frequency parameter. Figure 4
is analogous to Fig. 2, except that we now consider δω =
0.5 (top panel) and δω = −0.5 (bottom panel). We
see that δω induces a time-dependent phase shift to the
waveform, with its effects being most noticeable near
the merger, and causing tmatch to happen later (earlier)
relative to GR when δω > 0 (δω < 0), while keeping the
peak amplitude unaffected.

In Fig. 5, we show an analogous version of Fig. 3, but
now for δω. Once more, the top panel shows the real
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FIG. 4. The time evolution near the merger of the real part
of the h22 mode for nonzero values of the frequency parameter
δω. We show the GR prediction (δω = 0) with the black lines.
Top panel: for δω = 0.5. Bottom panel: for δω = −0.5. In
both panels, we also show ±|h22| for the non-GR waveform
(dotted lines), and we use different line styles for the segment
t 6 t22

match (dashed lines) and t > t22
match (solid lines) for all

waveform illustrated. The matching times t22
match are marked

by the vertical lines.

part of the strain, the middle panel the strain amplitude,
and the bottom panel the instantaneous frequency. We
focus on the region near the merger and we plot the GR
curves (δω = 0) with black solid lines. In the top panel,
we can see the phase differences between the non-GR and
GR waveforms, which are the largest around the time of
merger and ringdown. This is in part due to the δω itself,
but also to the phase-shift and time-alignment procedure
already mentioned, which we perform with respect to the
GR waveform. The effect of the latter is small, as can
be seen in the middle panel for the amplitude, where all
curves nearly overlap in time. In the bottom panel, we
note sharp changes to f when |δω| ≈ 0.5. They originate
from us not imposing the continuity of the time derivative
of ωNR

`m at t = t`mmatch [63, 64].

C. The time shift parameter δ∆t

At last, we now consider δ∆t, the time shift parameter.
In Fig 6, which is analogous to both Figs. 2 and 4, we
show waveforms for δ∆t = 0.5 (top panel) and δ∆t = −0.5
(bottom panel). Overall, we see small changes to the GR
waveform, in the form of an earlier tmatch when δ∆t > 0,
and later tmatch when δ∆t < 0. Here, the changes due
to the phase-shift and time-alignment are negligible, and
the shifts seen in the figure are due to δ∆t.

Finally, in Fig. 7 we show a sequence of waveforms
around the time of merger, obtained by finely covering
the interval δ∆t ∈ [−0.5, 0.5]. The GR prediction is
shown by the black solid line. We see that the changes
to the strain (top panel), its amplitude (middle panel),
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FIG. 5. The time evolution near the merger of the GW strain
for nonzero values of the frequency parameter δω, assumed to
be the same for all h`m modes. The GR prediction (δA = 0)
is show by the black curves. We show the real part of the
strain (top panel), the strain amplitude (middle panel), and
the instantaneous frequency (bottom panel). In the top panel,
we clearly see the phase difference between the non-GR and
GR waveform near the merger. This is partially due to the
δω itself, but also to the phase-shift and time-alignment done
with respect to the GR waveform. The effect of the latter is
small as can be seen in the middle panel, which shows the
amplitude. The sharp changes to f in the bottom panel for
|δω| ≈ 0.5 originate from us not imposing the continuity of
the time derivative of ωNR

`m at t = t`mmatch.

and its frequency evolution (bottom panel) are small.
Therefore, δ∆t introduces changes to the GR waveform
which are in general subdominant relative to those due
to δA and δω. We also remark that ∆tGR

`m is not very
sensitive to the EOB calibration against NR waveform.
Hence, the fractional changes we are introducing on ∆tGR

`m
are comparable with the NR fitting errors. This explains
why this parameter affects so little the GR waveforms.

IV. PARAMETER ESTIMATION

In the previous section, we have introduced our wave-
form model and discussed the properties of the waveform
morphology. Here, we summarize the Bayesian inference
formalism used for parameter estimation of GW signals
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FIG. 6. The time evolution near the merger of the real
part of the h22 mode for nonzero values of the time shift
parameter δ∆t. We show the GR prediction (δ∆t = 0) with
the black lines. Top panel: for δ∆t = 0.5. Bottom panel:
for δ∆t = −0.5. In both panels, we also show ±|h22| for the
non-GR waveform (dotted lines), and we use different line
styles for the segment t 6 t22

match (dashed lines) and t > t22
match

(solid lines) for all waveform illustrated. The matching times
t22
match are marked by the vertical lines. For reference, we also

show the instant in which the EOB frequency peaks (tΩpeak)
with vertical dashed lines.

and synthetic-data studies. We describe the prior choices
and the criteria for the GW event selection.

A. Bayesian parameter estimation

Our hypothesis, H, is that in the detector data, d, a
GW signal described by the waveform model pSEOBNRHM
is observed. The parametrized model pSEOBNRHM has a set
of GR and non-GR parameters, as in Eqs. (2.1) and (2.16),
where

ϑnGR = {δA, δω, δ∆t, δf220, δτ220} . (4.1)

As said, we assume that the merger modifications are the
same for all (`,m) modes present in the model pSEOBNRHM.

The posterior probability distribution on the parame-
ters of the model, ϑ, given the hypothesis, H, is obtained
using Bayes’ theorem,

P (ϑ|d,H) =
P (ϑ|H)L(d|ϑ,H)

P (d|H)
, (4.2)

where P (ϑ|H) is the prior probability distribution,
L(d|ϑ,H) is the likelihood function, and P (d|H) is the
evidence of the hypothesis H. For a detector with sta-
tionary, Gaussian noise and power spectral density Sn(f),
the likelihood function can be written as,

L(d|ϑ,H) ∝ exp
[
− 1

2 〈d− h(ϑ)|d− h(ϑ)〉
]
, (4.3)
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FIG. 7. The time evolution near the merger of the GW strain
for nonzero values of the time shift parameter δ∆t, assumed to
be the same for all h`m modes. The GR prediction (δ∆t = 0)
is show by the black curves. We show the real part of the
strain (top panel), the strain amplitude (middle panel), and
the instantaneous frequency (bottom panel). The insets zoom
into the time intervals t/M ∈ [1700, 1720] in the middle panel
and t/M ∈ [1680, 1710] in the bottom panel.

where the noise-weighted inner product is defined as,

〈A|B〉 = 2

∫ fhigh

flow

df
Ã∗(f)B̃(f) + Ã(f)B̃∗(f)

Sn(f)
, (4.4)

where Ã(f) is the Fourier transform of A(t), and the
asterisk denotes the complex conjugation, and Sn(f) is
the one-sided power spectral density of the detector. The
integration limits flow and fhigh set the bandwidth of
the detector’s sensitivity. We follow the LVK analy-
sis and set flow = 20 Hz, while fhigh is the Nyquist
frequency [19]. The posterior distributions are com-
puted by using LALInferenceMCMC [92, 93], a Markov-
chain Monte Carlo that uses the Metropolis-Hastings
algorithm to survey the likelihood surface and is imple-
mented in LALInference [94], part of the LALSuite soft-
ware suite [95].
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B. Prior choices

The prior distributions on the GR parameters are as-
sumed to be uniform in the component masses (m1,m2),
uniform and isotropic in the spin magnitudes (χ1, χ2),
isotropic on the binary orientation, and isotropically
distributed on a sphere for the source location with
P (DL) ∝ D2

L.
For the non-GR parameters, as explained in Sec. II B,

the internal consistency of the pSEOBNRHM model requires
that both δ∆t and δτ220 are larger than −1 (cf. Table I).
We use this fact to fix a common lower limit on the
uniform priors on all ϑnGR, that we assume to extend up
to one. This was sufficient in most of our analysis, but
in a few cases we found that the marginalized posteriors
distributions for one or more non-GR parameters had
support at ϑnGR ≈ 1. In such cases we extended the
priors’ domains to ϑnGR ∈ (−1, +2]. Even at this wider
range, we did not find anomalies in the waveform.

C. Event selection

The pSEOBNRHM ringdown analysis performed in
Ref. [13] selected GW events from the GWTC-3 cata-
log [19] which had a signal-to-noise ratio (SNR) > 8 in
the inspiral and post-inspiral regimes. The requirement on
the inspiral regime allows one to break the strong degener-
acy between the total mass of the binary and the ringdown
deviation parameters [39, 40]. Among the GW events
that meet this criteria, two stand out in terms of their
constraining power on ϑRD

nGR, namely GW150914 [14, 15]
and GW200129 065458 (hereafter GW200129) [19]. These
two events, with a median total source-frame masses of
64.5 M� and 63.4 M�, respectively, are among the loud-
est BBH signals to date with a median total network
SNR of 26.0 and 26.8, respectively [18, 19]. GW150914
was detected by the two LIGO detectors at Hanford and
Livingston, whereas GW200129 was detected by the three-
detector network of LIGO Hanford, Livingston, and Virgo.

We guide ourselves by this result and use these two
events to investigate what constraints we can place on the
merger-ringdown parameters. We remark that this SNR
selection criteria may be too strong if we are interested in
ϑmerger

nGR only. We leave the study of the optimal SNR to
constrain only the merger parameters to a future work.

V. RESULTS: SYNTHETIC-SIGNAL
INJECTION STUDIES

In this section, we use pSEOBNRHM to perform a num-
ber of synthetic-signal injection studies. As we saw in
Sec. II, pSEOBNRHM is a smooth deformation of the GR
waveform model SEOBNRHM, which is recovered when all
ϑnGR parameters are set to zero. This allows us to explore

Parameter (detector frame) Value
Primary mass, m1 [M�] 38.5
Secondary mass, m2 [M�] 33.4
Primary spin, χ1 3.47× 10−3

Secondary spin, χ2 −4.40× 10−2

Inclination, ι [rad] 2.69
Polarization, ψ [rad] 1.58
Right ascension, α [rad] 1.22
Declination, δ [rad] −1.46
Luminosity distance, DL [Mpc] 337
Reference time, tc [GPS] 1126285216
Reference phase, φc [rad] 0.00

TABLE II. Values of the parameters ϑGR used in all synthetic-
signal injection studies in Sec. V. The parameters are repre-
sentative of GW150914, except for the luminosity distance,
which is chosen such that the total SNR, in a detector network
constituted by LIGO Hanford and Livingston operating at
design sensitivity, is approximately 100.

different scenarios that differ from one another on whether
the GW signal and the GW model used to infer the pa-
rameters of this signal are described by GR (ϑnGR = 0)
or not (ϑnGR 6= 0). We summarize these possibilities in
Table III.

To prepare the GW signal we need to fix ϑ = ϑGR ∪
ϑnGR. In all cases, we use values of ϑGR illustrative of a
GW150914-like BBH as in Table II. We set all non-GR
parameters to the same value, ϑnGR = 0.1, whenever the
injected signal is non-GR. By working exclusively with
the pSEOBNRHM waveform model, we avoid introducing
systematic errors due to waveform modeling in our analy-
sis. We also employ an averaged (zero-noise) realization
of the noise to avoid statistical errors due to noise. The
resulting GW signal is then analyzed with the power spec-
tral density Sn(f) of the LIGO Hanford and Livingston
detectors both at design sensitivity [96]. In all cases, we
set the distance to the binary to be such that the total
network SNR is approximately 100.

In Sec. V A, we do a preliminary analysis where both
injected and model waveforms are described by GR. This
allows us to access the accuracy with which different bi-
nary parameters can be recovered from the data in the
detector network. With these results as a benchmark,
we can then proceed to inject a non-GR waveform and
analyze it with a GR model. This allows us to study
the systematic error introduced on the inferred binary
parameters by assuming a priori that GR is true, while
nature may not be so (the so-called fundamental bias).
In Sec. V B, we inject a GR waveform and try to recover
its parameters with a non-GR model. This allows us to
answer how much the non-GR parameters can be con-
strained given an event consistent with GR. Finally, in
Sec. V C, we use non-GR waveforms as both our injection
and our model. This answers whether we can detect the
presence of the non-GR parameters in our signal.
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Model
GR non-GR

Injection
GR Sec. V A Sec. V B

non-GR Sec. V A Sec. V C

TABLE III. Summary of the synthetic-signal injection sim-
ulations performed in Sec. V. The label “GR ” refers to the
SEOBNRHM waveform model, whereas the label “non-GR” refers
to the pSEOBNRHM waveform model, where all merger-ringdown
parameters are set deviate in 10% deviations relative to their
corresponding GR values.

A. Fundamental biases on binary parameters

We first explore the presence (or not) of biases in the
inference of binary parameters when the template wave-
form model assumes GR, while the injected GW signal is
non-GR [31, 97]. For this purpose, we first inject a syn-
thetic GR GW signal and recover the binary parameters
with a GR model. By doing this exercise first, we gain
an idea on the accuracy with which the parameters of
the binary (cf. Table II) can be recovered in our set up.
Next, we repeat the same analysis but now using as our
synthetic GW signal the one obtained with pSEOBNRHM.
The signal is prepared using the same binary parameters
ϑGR shown in Table II, but now we let ϑnGR = 0.1.

The results of our two analyses are shown in Fig. 8. We
show the one- and two-dimensional posterior distributions
of a subset of the intrinsic binary parameters, namely,
the mass ratio q, the detector-frame chirp mass M and
the effective spin χeff . In all panels, the “true” (injection)
values of these parameters are marked by the vertical
and horizon lines. We see that in the case of a non-GR
injection (solid curves), the posterior distributions of the
parameters are shifted from the injected values and from
the posterior distributions in the case of a GR injection
(dashed curves). Hence, if a GW signal with deviations
from GR would be analyzed by current GR templates,
the GW event would be interpreted as a BBH in GR with
different values of the binary parameters.

B. Constraints on deviations to general relativity

We now inject a synthetic GW signal in GR using the
parameters ϑGR in Table II with SNR = 98. We analyze
the signal using the pSEOBNRHM waveform model, allowing
both ϑGR in Eq. (2.1) and ϑnGR in Eq. (4.1) to vary. This
simulates a scenario where we have a GW event consistent
with GR and we want to understand which constraints it
places on the non-GR parameters in our waveform model.

We summarize the results of the analysis in Fig. 9,
where we show the one- and two-dimensional posterior
probability distributions of the merger-ringdown parame-
ters ϑnGR. We find that the marginalized posterior dis-
tributions of the non-GR parameters are consistent with
the corresponding injected values in GR, which are indi-

non-GR injection

GR injection
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FIG. 8. The one- and two-dimensional posterior distributions
on the intrinsic binary parameters of mass ratio q, detector-
frame chirp mass M and effective spin χeff for a GR injection
(dashed curve) and a non-GR injection (solid curve) with 10%
deviations in the merger-ringdown parameters ϑnGR. All con-
tours indicate 90% credible regions. The parameter estimation
is performed assuming the GR SEOBNRHM waveform model.
The vertical and horizontal lines mark the injected values.
The measurements with non-GR injections are visibly biased,
most preeminently in χeff and M.

cated by the markers. We can infer that a GW150914-like
event with SNR = 98 would constrain the deformation
parameters in the range between 5% (for δA and δf220)
and 20% (for δτ220) at 90% credible level.

The best constrained parameter is the amplitude, δA,
whereas the less constrained parameter is the time shift,
δ∆t. For the latter, we obtain a posterior distribution
that has support onto a wide range of the prior. This is
perhaps unsurprising due to the small deviations caused
by δ∆t in the waveform in comparison with δω (compare
Figs. 4 and 6). We also observe a correlation between
these two parameters; see the δ∆t–δω panel in Fig. 9.
Together, these results suggest that considering δA and δω
is sufficient, if one is interested in doing a test of GR only
in the plunge-merger stage of the binary’s coalescence.

C. Detecting deviations from general relativity

We now study whether we can detect the presence of
the non-GR parameters. To do so, we inject a synthetic
GW signal where the binary parameters are shown in
Table II, SNR = 104, and we set the merger-ringdown
parameters to be 10% larger than their corresponding GR
values.
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FIG. 9. The one- and two-dimensional posterior distributions
on the merger-ringdown parameters ϑnGR. All contours in-
dicate 90% credible regions. We considered a GR injection
and recovered with the pSEOBNRHM model. The vertical and
horizontal lines mark the injected values for the deviation
parameters, i.e., ϑnGR = 0. The inferred values on ϑnGR are
consistent with the zero, and their width of the marginalized
posterior distribution inform us with which accuracy we may
constrain these parameters.

We summarize the outcome of our parameter estimation
in Fig. 10, where we show the one- and two-dimensional
posterior distributions for the ϑnGR parameters. We
see that all posteriors are consistent with the injected
values, indicated by the markers. Moreover, the posteriors
for ϑnGR have support at their null, GR value. The
exceptions are the amplitude δA and the QNM frequency
δf220 parameters, which have no support at their GR
values at 90% credible level. This suggests that these
two parameters are the most promising ones in signaling
the presence of beyond-GR physics for GW150914-like
binaries. In fact, we will see this suggestion taking place
in our analysis of GW200129 in Sec. VII.

VI. ANALYSIS OF GW150914: CONSTRAINTS
ON THE PLUNGE-MERGER-RINGDOWN

PARAMETERS

Having gained some intuition on the role of the merger-
ringdown parameters in the synthetic-signal injections
presented in Sec. V, we now apply the pSEOBNRHM model
to the analysis of real GW events. Our analysis, here and
in Sec. VII, uses the calibrated power spectral density of
the detectors from the Gravitational Wave Open Science
Center (GWOSC) [98]. We will start with GW1501914,
the first GW event observed by the LIGO-Virgo Collabo-
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FIG. 10. The one- and two-dimensional posterior distribu-
tions on the merger-ringdown parameters ϑnGR. All contours
correspond to 90% credible regions. In comparison to Fig. 9,
this time we use pSEOBNRHM prepare the injection. This allow
us to understand how well we can measure the non-GR pa-
rameters. The vertical and horizontal lines mark the injected
values for the deviation parameters, i.e., ϑnGR = 0.1. The
marginalized posterior distributions on ϑnGR are consistent
with their injection-values.

ration [14].
We will focus our analysis to two subsets of merger-

ringdown parameters due to the smaller SNR of this
event (and of GW200129) in comparison to the SNR
≈ 100 scenarios studied in the previous section. First, we
have seen that the time-shift parameter δ∆t is the hardest
parameter to constrain, and that it has wide posteriors
even at such large SNR. This motivates us to consider,
among the merger parameters, only

ϑnGR = {δA, δω} , (6.1)

to perform a “merger test of GR”. Second, we have ob-
served correlations between the frequency parameter δω
and the QNM deformations parameters δf220 and δτ220.
This suggests us to use,

ϑnGR = {δA, δf220, δτ220} , (6.2)

to perform a “merger-ringdown test of GR”.
In Fig. 11 we show the results of our merger test of

GR. The corner plot shows the one- and two-dimensional
posterior probability distributions of δA and δω. The
posterior distributions are consistent with the null value
predicted in GR. We obtain from GW150914:

δA = −0.03+0.21
−0.20 , and δω = 0.04+0.18

−0.13 , (6.3)
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FIG. 11. The one- and two-dimensional posterior distributions
on δA and δω obtained by analyzing GW150914. All contours
correspond to 90% credible regions. The marginalized posterior
distributions are consistent with GR, i.e., δA = δω = 0,
identified in the plot with the horizontal and vertical lines.
We found that δA = −0.03+0.21

−0.20 and δω = 0.04+0.18
−0.13 at 90%

credible level.

at 90% credible level. This shows that we can already
constrain deviations from GR around the merger time of
BBH coalescences to about 20% with present GW events.

Figure 12 is a similar plot, but for the merger-ringdown
test of GR. Once more, we find that the inferred values
of the non-GR parameters are consistent with GR,

δA = −0.01+0.23
−0.18 , δf220 = 0.04+0.10

−0.07 , δτ220 = 0.02+0.32
−0.22 ,

(6.4)

at 90% credible level. The bound on the amplitude pa-
rameter is similar to the one obtained in the merger
test, shown in Eq. (6.3). Also, the bounds on the ring-
down parameters are similar to those obtain in Ref. [40]
(δf220 = 0.05+0.11

−0.07 and δτ220 = −0.07+0.26
−0.23), which had

only these two quantities as its non-GR parameters.

When interpreting our inferences on these parameters,
it is important to note that the statistical error in our
analysis (≈ 20%) is larger than the systematic error due
to fitting |hNR

`m | and ωNR
`m against NR data, which is at

most around 4% with current models [63, 64], depending
on where one is in the η–χeff parameter space. In fact,
we do see that the median values of δA and δω fall within
this fitting error. In conclusion, we can claim to have
placed a constraint on these non-GR parameters with
GW150914.
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FIG. 12. The one- and two-dimensional posterior distribu-
tions on the merger parameter δA, and ringdown parame-
ters δf220 and δτ220, obtained by analyzing GW150914. The
marginalized posterior distributions are consistent with GR,
i.e., δA = δf220 = δω220 = 0, identified in the plot with the hor-
izontal and vertical lines. We found that GW150914 constrains
these parameters to be δA = −0.01+0.23

−0.18, δf220 = 0.041+0.104
−0.070,

and δτ220 = 0.02+0.32
−0.22 at 90% credible level.

VII. THE CASE OF GW200129: THE
IMPORTANCE OF WAVEFORM SYSTEMATICS
AND DATA-QUALITY IN TESTS OF GENERAL

RELATIVITY

We now turn our attention to GW200129 and, follow-
ing what we have learned in the previous section, we
first consider pSEOBNRHM with only δA and δω as non-
GR parameters. We show the one- and two-dimensional
marginalized posteriors of these parameters with the black
solid curves in the left panel of Fig. 13. We see that while
our inferred value of δω (δω = 0.00+0.07

−0.08 at the 90% cred-
ible level) is consistent with GR, our inferred value of δA
(δA = 0.47+0.30

−0.28 at the 90% credible level) exhibits a gross
violation of GR.

Have we found a strong evidence of violation of GR
in GW200129? Assuming that this is not the case, the
apparent violation of GR could be either due to statis-
tical errors or to systematic errors. To explore the first
possibility, we perform a series of synthetic-data injection
studies. As our first step, we do a parameter-estimation
study in zero noise, where the injected GW signal is
generated with SEOBNRHM and we use the binary parame-
ters corresponding to the maximum likelihood point from
the GWTC-3 data release by the LVK [99] analysis of
GW200129. The LVK analysis was done separately with
two quasicircular and spin-precessing waveform models,
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SEOBNRv4PHM [65] and IMRPhenomXPHM [100], employing
different parameter estimation libraries, RIFT [101–103]
and Bilby [104, 105], respectively. Here, as a reference,
we use the maximum likelihood point of the analysis that
employed the IMRPhenomXPHM model. More specifically,
because the SEOBNRHM model we are using is nonprecess-
ing, we use only the masses and luminosity distance from
the maximum-likelihood point.

The resultant posterior distributions are shown in the
left panel of Fig. 13 (dashed curves) and they are, reas-
suringly, consistent with GR. We also repeat this analysis
for ten Gaussian noise realizations, using the same syn-
thetic GW signal (yellow solid curves in the left panel
of Fig. 13). Consistent with the expectations, two noise
realizations yield marginalized posteriors on δω and δA
which are not consistent with GR at 90% credible level
(shown by the thicker yellow solid curves). It is worth
to observe how the Gaussian noise curves have qualita-
tively the same shapes (spreads), with the two outliers
being shifted away from (δA, δω) = (0, 0). This is an
expected behavior associated to statistical noise. These
results, hence, disfavor the possibility that the violations
of GR we are observing are due to the noise or due to
the particular binary parameters inferred for this event.
The latter alternative would have been quite unlikely in
the first place, because both GW200129 and GW150914
have similar binary parameters and SNRs, and we have
already found that GW1501914 is consistent with GR in
Sec. VI (cf. Fig. 11).

As our next step, we perform two additional parameter
estimation runs, in zero noise, but now preparing our
synthetic GW signal with the SEOBNRv4PHM [65] and the
NRSur7dq4 [106, 107] waveform models. Both models
allow for spin-precession, unlike our pSEOBNRHM. Hence,
we can study if the GR deviations we are finding are due
to systematic errors in the GW modeling. Once again,
the maximum-likelihood point of the LVK analysis of
GW200129 using IMRPhenomXPHM was used, but this time
with the binary components’ spins included. We show
our results in the right panel of Fig. 13. The one- and
two-dimensional posterior distributions of δω and δA are
shown in dash-dotted curves for the NRSur7dq4 injection
and with dotted curves for the SEOBNRv4PHM injection.
For reference, we also include the posterior distribution
associated to the SEOBNRHM injection (dashed curves) and
to the data from GW200129 (solid curves). We see that
these two spin-precessing GW signals, when analyzed
in zero noise, are also in disagreement with GR, when
analyzed with our nonprecessing non-GR model. We also
see that our results using NRSur7dq4 (which compares
the best against NR simulations in its regime of validity)
are in good agreement with what we obtain by analyzing
the GW200129 data. These results, compared with those
obtained from the SEOBNRHM injection, suggest that the
presence of spin-precession in the GR signal, biases us to
find a false evidence for beyond-GR effects when we use
a nonprecessing non-GR model.

Is this the full story? In Ref. [108], Payne et al. revis-

ited the evidence of spin-precession in GW200129 [109].
They concluded that the evidence for spin-precession orig-
inates from the LIGO Livingston data, in the 20–50 Hz
frequency range, alone. This range coincides with the
frequency range that displays data quality issues, due
to a glitch in the detector that overlaped in time with
the signal [19]. By reanalyzing the GW200129 data with
flow > 50 Hz (while leaving LIGO Hanford data intact
and not using Virgo data), they showed that the evidence
in favor of spin-precession in this event disappears. See
Ref. [108] for a detailed discussion. Moreover, a re-analysis
of the LIGO Livingston glitch mitigation showed that the
difference between the spin-precessing and nonprecessing
interpretations of this event is subdominant relative to
uncertainties in the glitch substraction [108]. Since we
have used the glitch-subtracted data in our parameter
estimation, we are then led to the second conclusion of
our study of this event, namely that: issues with data
quality can introduce biases in non-GR parameters, to an
extent that one can find significant false violations of GR
in GW events detected with present GW observatories.
See Ref. [110] for a recent study of this issue.

Furthermore, we repeat here the analysis we have per-
formed for GW150914 where we considered ϑnGR =
{δA, δf220, δτ220} as our non-GR parameters. For the
discussion that follows, we assume that GW200129 is an
unmistakable genuine spin-precessing BBH. We show our
results in Fig. 14. We see that while our inferred values
of δf220 and δτ220 are consistent with GR at 90% con-
fidence level, our inference of the amplitude parameter,
δA = 0.49+0.25

−0.17 at 90% credible level, remains inconsis-
tent with GR. Moreover, this value hardly changes from
our {δA, δω}-study, i.e., δA = 0.47+0.30

−0.28, at the same
credible level. This result is interesting for two reasons.
First, it indicates that the systematic error caused by
spin-precession mismodeling is robust to the inclusion of
deformations to the ringdown QNM frequencies, at least
for this event. Second, there is a commonality between
our finding for GW150914 (see Fig. 12) and GW200129
(see Fig. 14) namely, that in both cases the posterior
distributions of δf220 and δτ220 are consistent with GR,
despite the larger parameter space due to the inclusion
of δA. In the case in which one considers only δf220 and
δτ220 as non-GR parameter, the consistency with GR had
already been established in Ref. [40], and in particular
in Ref. [13]; see Sec. VIII, Fig. 14 there1. Our analysis
of these two GW events with the new pSEOBNRHM wave-
form model suggests the following: the model would be
able to detect deviations from nonsprecessing quasicircular
GW signals in the plunge-merger-ringdown which other-
wise would not be seen when having deformations to the
ringdown only.

1The LVK Collaboration also does an independent analysis of
the ringdown using pyRing. This analysis lead to an odds ratio
log10OnGR

GR = −0.09 for GW200129, the largest among all events
studied [11]. A positive value would quantify the level of disagree-
ment with GR.



14

−0.4 0.0 0.4 0.8 1.2
δA

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

δω

GW200129 (real data)
SEOBNRHM (zero noise)
SEOBNRHM (Gaussian noise)

−0.4 0.0 0.4 0.8 1.2
δA

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

δω

GW200129 (real data)
SEOBNRHM (zero noise)
NRSur (zero noise)
SEOBNRPHM (zero noise)

FIG. 13. Corner plots showing the one- and two-dimensional posterior distribution functions for δA and δω for our studies
of GW200129 and GW200129-like BBHs. All contours indicate 90% credible regions. Left panel: results of our reanalysis of
GW200129 data with pSEOBNRHM (black solid curves) and for a GW200129-like injection generated with SEOBNRHM. For the
latter, we used the maximum-likelihood point of LVK’s original analysis of GW200129 which employed the IMRPhenomXPHM

model to generate the synthetic GW signal. We performed the parameter estimation of these injections in zero noise (dashed
curves) and in ten Gaussian noise realizations (yellow solid curves). Right panel: Similar, but having prepared two additional
GW200129-like synthetic data with NRSur7dq4 (dot-dashed curves) and with SEOBNRv4PHM (dotted curves). Both models include
spin precession effects. Observe how the posteriors distributions are in tension with GR [marker at (δA, δω) = (0, 0)] when we
include spin-precession effects in the synthetic data and we recover with a nonprecessing and non-GR waveform model.

We close our discussion of GW200129 with two re-
marks. First, data-quality issues aside, we can think
of our spin-precessing injection studies as illustrative of
what could happen in upcoming LVK observation runs.
By doing so, we have then demonstrated the existence
of a systematic error on the non-GR parameters caused
by spin-precession mismodeling 1. Second, although we
have proposed pSEOBNRHM as a means of constraining (or
detecting) potential non-GR physics in BBH coalescences,
we can also interpret the merger parameters as indicators
of our ignorance in GR waveform modeling 2. More con-
cretely, in a hypothetical scenario where GW modelers
did not know that BBH can spin precess, an analysis
of GW200129 with pSEOBNRHM would suggest that their
model of the peak GW-mode amplitudes is insufficient
to describe this event and hence be an indicative of new,

1If the GW signal had a smaller total-mass binary, signatures of spin
precession could have been observed from the inspiral portion of
the waveform only.

2In this interpretation, the questions we investigated in Secs. V A
and V B become: (i) how large are the systematic errors in one’s
parameter inference due to GW modeling? (ii) how large can our
GW-modeling uncertainties be such that we are still consistent with
the “true” binary parameters.

non-modeled binary dynamics that was absent in their
waveform model. They would not be able to say that
spin precession is the missing dynamics, but they would
at least realize that something is missing.

VIII. DISCUSSIONS AND FINAL REMARKS

We presented a time-domain IMR waveform model
that accommodates parametrized deviations from GR in
the plunge-merger-ringdown stage of nonprecessing and
quasicircular BBHs. This model generalizes the previous
iterations of the pSEOBNRHM model [38–40], which included
deviations from GR in the inspiral phase or modified the
QNM frequencies only, by introducing deformations pa-
rameters ϑmerger

nGR that, for each GW mode, can change
the time at which the GW mode peaks, the mode fre-
quency at this instant, and the peak mode amplitude.
This new version of pSEOBNRHM reduces to the state-of-
the-art SEOBNRHM model [63, 64, 70] for nonprecessing and
quasicircular BBHs in the limit in which all deformations
parameters are set to zero.

We used pSEOBNRHM to perform a series of injections
studies for GW150914-like events exploring (i) the con-
straints that one could place on these non-GR parameters,
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FIG. 14. The one- and two-dimensional posterior distribution
functions for δA, δf220, and δτ220 for GW200129. All contours
indicate 90% credible regions. We see that while our inferred
values for δf220 and δτ220 are consistent with GR, δA is not.

(ii) the biases introduced on the intrinsic binary parame-
ters in case nature is not described by GR and we model
the signal with a GR template, and, finally, (iii) we studied
the measurability of these non-GR parameters.

We also used pSEOBNRHM in a reanalysis of GW150914
and GW200129. For GW150914, we found that the devia-
tions from the GR peak amplitude and the instantaneous
GW frequency can already be constrained to about 20% at
90% credible level. For GW200129, we found an interest-
ing interplay between spin-precession and false-violations
of GR that manifests as a ∼ 2σ deviation from GR in the
peak amplitude parameter. By interpreting the evidence
for spin-precession in this event as due to data-quality
issues in the LIGO Livingston detector [19, 108], we found
a further a connection between data-quality issues and
false-violations of GR [110].

These results warrant further studies on the systematic
bias due to spin-precession in tests of GR. In the context
of plunge-merger-ringdown test, this could be achieved
by extending the SEOBNRv4PHM waveform model [65] to
include same set of non-GR parameters ϑnGR used here.
It also natural to explore which systematic effects higher
GW modes [111] and binary eccentricity can introduce
in tests of GR. For the latter, see Ref. [112] for work
in this direction for IMR consistency tests [61, 113] and
Ref. [114] in the context of deviations in the PN GW
phasing [31, 36, 115]. It would also be interesting to
investigate these issues in the context of the ringdown
test within the EOB framework employed by LVK Col-
laboration [13] and which relies on pSEOBNRHM [39, 40].
This could be done by adding non-GR deformations to

the SEOBNRv4EHM waveform model of Ref. [116]. It would
also be important to investigate whether pSEOBNRHM can
be used to detect signatures of non-GR physics, as pre-
dicted by the rapidly growing field of NR in modified
gravity theories (see e.g., Refs. [117–126]); some of which
predict nonperturbative departures from GR only in late-
inspiral and merger-ringdown [127–130]. One could also
study what the theory-agnostic bounds we obtained with
GW150914 on the amplitude and GW frequency imply to
the free parameters of various modified gravity theories.

The deformations parameters ϑmerger
nGR in our pSEOBNRHM

model should have a correspondence to the phenomeno-
logical deviation parameters (from NR calibrated values)
in the “intermediate region” of the IMRPhenom waveform
model used in the TIGER pipeline [35–37] of the LVK
Collaboration [9–12]. Such a mapping could be derived
through synthetic injection studies. This work only intro-
duced non-GR parameters in the EOB GW modes and
only during the plunge-merger-ringdown. Importantly,
and more consistently, in the near future we will extend
the parametrization to the EOB conservative and dissipa-
tive dynamics.

The interplay between GW waveform systematics, char-
acterization and subtraction of nontransient Gaussian
noises in GW detectors, and non-GR physics will become
increasingly important in the future. Planned ground-
based [131, 132] and space-borne GW observatories [133]
will detect GW transients with SNRs that may reach
the thousands depending on the source. Having all these
aspects under control is a daunting task that will need
to be faced if one wants to confidently answer the ques-
tion “Is Einstein still right?” [134] in the stage of BBH
coalescences where his theory unveils its most outlandish
aspects.
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