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The plunge-merger stage of the binary-black hole coalescence, when the bodies’ velocities reach a large
fraction of the speed of light and the gravitational-wave luminosity peaks, provides a unique opportunity to
probe gravity in the dynamical and nonlinear regime. How much do the predictions of general relativity
differ from the ones in other theories of gravity for this stage of the binary evolution? To address this
question, we develop a parametrized waveform model, within the effective-one-body formalism, that
allows for deviations from general relativity in the plunge-merger-ringdown stage. As first step, we focus
on nonprecessing-spin, quasicircular black hole binaries. In comparison to previous works, for each
gravitational wave mode, our model can modify, with respect to general-relativistic predictions, the instant
at which the amplitude peaks, the instantaneous frequency at this time instant, and the value of the peak
amplitude. We use this waveform model to explore several questions considering both synthetic-data
injections and two gravitational wave signals. In particular, we find that deviations from the peak
gravitational wave amplitude and instantaneous frequency can be constrained to about 20% with
GW150914. Alarmingly, we find that GW200129_65458 shows a strong violation of general relativity.
We interpret this result as a false violation, either due to waveform systematics (mismodeling of spin
precession) or due to data-quality issues depending on one’s interpretation of this event. This illustrates the
use of parametrized waveform models as tools to investigate systematic errors in plain general relativity.
The results with GW200129_65458 also vividly demonstrate the importance of waveform systematics and
of glitch mitigation procedures when interpreting tests of general relativity with current gravitational wave
observations.
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I. INTRODUCTION

Remarkably, so far, the theory of general relativity (GR),
introduced by Albert Einstein in 1915, has passed all
available experimental and observational tests [1]: on
cosmological [2] and short scales [3,4], in the low-velocity,
weak-field [5] and strong-field settings [6–8], and in the
dynamical, high-velocity and strong-field regime [9–13].
The latter has been probed, since 2015, through the
gravitational wave (GW) observation of the coalescence
of binary black holes (BBHs) [14–19], neutron-star–black-
hole (BH) binaries [20], and binary neutron stars [21,22] by
the LIGO and Virgo detectors [23,24].

Generally, tests of GR with GW observations have been
developed following two strategies: theory independent and
theory specific. The former assumes that the underlying
GW signal is well-described by GR, and non-GR degrees
of freedom (or parameters) are included to characterize any
potential deviation. These tests use GW observations to
check consistency with their nominal predictions in GR,
and then constrain the non-GR parameters at a certain
statistical level of confidence. Eventually, the non-GR
parameters can be translated to the ones in specific
modified theories of gravity, albeit there could be subtleties
in doing it due to the choice of the priors and the actual
parameters on which the measurements are done. By
contrast, analyses that compare directly the data with
proposed modified theories of gravity belong to the
theory-specific framework of tests of GR.
Here, we focus on theory-independent tests of GR

for BBHs. Historically, those tests have been proposed
introducing deviations in (or parametrizations of) the
gravitational waveform, whether for the inspiral, the
merger or the ringdown stages, in time or frequency
domain. Those parametrizations are clearly not unique;
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neither they guarantee to fully represent the infinite space
of modified gravity-theory waveforms. Furthermore,
non-GR parameters may be degenerate with each other,
limiting the study to a subset of them [9] or demanding the
use of principal-component-analysis methods [25].
Many parametrizedwaveforms have been suggested in the

literature, originally focusing on the inspiral phase [26–28],
when the BBH system slowly but steadily looses energy
throughGWemission, and the bodies come closer and closer
to each other until they merge. When the first frequency-
domain models for the inspiral-merger-ringdown (IMR)
waveforms in GR became available [29,30], a parametrized
frequency-domain IMR waveform model was proposed in
Ref. [31], variations of which were soon after employed
in Ref. [32] for data-analysis explorations. Those initial
works, together with other developments [33,34], are at the
foundation of the Test Infrastructure for GEneral Relativity
(TIGER) [35–37], Flexible Theory Independent (FTI) [38],
pSEOBNR [39,40], and pyRing [41–43] pipelines, which
today are routinely used by the LIGO-Virgo-KAGRA (LVK)
Collaboration [9–13] to perform parametrized tests of GR,
probing the generation of GWs and the remnant properties,
in the linear and nonlinear strong-field gravity regime.
Other theory-independent tests were also performed, e.g.,
in Refs. [44–51].
In this manuscript, we develop a parametrized time-

domain IMR waveform model within the effective-one-
body (EOB) formalism [52–59]. The EOB approach builds
semianalytical IMR waveforms by combining analytical
predictions for the inspiral [notably from post-Newtonian
(PN), post-Minkowskian (PM), and gravitational self-force
(GSF) approximations] and ringdown phases (from BH
perturbation theory) with physically-motivated Ansätze for
the plunge-merger stage. The EOB waveforms are then
made highly accurate via a calibration to numerical relativity
(NR) waveforms of BBHs. The EOB formalism relies on
three key ingredients: the EOB conservative dynamics (i.e.,
a two-bodyHamiltonian), the EOB radiation-reaction forces

(i.e., the energy and angularmomentum fluxes) and the EOB
GWmodes. Since the EOBwaveforms are computed on the
EOB dynamics by solving Hamilton’s equations, in princi-
ple deviations from GR can be introduced in all the three
building blocks, consistently. Here, for simplicity, following
previouswork [39,40]which focused on the ringdown stage,
we introduce non-GR parameters in the plunge-merger-
ringdownGWmodes.We leave to futurework the extension
of the parametrization to the conservative and dissipative
dynamics, notably by including in the EOB dynamics
fractional deviations to the PN (as well as PM and GSF)
terms, to NR-informed terms or specific new terms moti-
vated by phenomena observed in modified gravity theories.
We note that non-GR deviations in the EOB energy flux
were implemented in Refs. [60,61], and the corresponding
EOB waveforms were used in IMR consistency and other
tests of gravity in Refs. [60–62].
Although the parametrized IMR model can in principle

be constructed for precessing spinning BBHs, as first step,
we consider nonprecessing BHs. There are two main
EOB families, SEOBNR (e.g., see Refs. [63–65]) and
TEOBResumS (e.g., see Refs. [66–68]). We consider here
the former, and in particular we focus on the SEOBNRHM
model developed in Refs. [63,64], which contains GW
modes beyond the dominant quadrupole. We denote the
parametrized version pSEOBNRHM. In Fig 1, we contrast a
GR SEOBNRHM waveform with parameters similar to the
first GW observation, GW150914, with a pSEOBNRHM
waveformwhere the fractional deviations fromGRare of the
order of a few tens of percent. We can see that differences
from GR occur just before, during, and after the merger
stage, which is when the gravitational strain peaks.
The paper is organized as follows. In Sec. II, we describe

how we build the pSEOBNRHM model starting from the
baseline model SEOBNRHM, and introduce the non-GR
parameters that describe potential deviations from GR
during the plunge-merger-ringdown stage. In Sec. III,
we study in detail the morphology of the parametrized

FIG. 1. Illustrative BBH waveform obtained with the pSEOBNRHM model introduced here (dashed line) and the corresponding
baseline model SEOBNRHM [64,71,86] (solid line) for a face-on, nonspinning and quasicircular binary with GW150914-like mass-ratio
q ¼ m2=m1 ≈ 0.867, and detector-frame total mass M ¼ m1 þm2 ¼ 71.9M⊙. The pSEOBNRHM waveform is generated with non-GR
parameters values δΔt ¼ −0.2, δω ¼ −0.4, and δA ¼ 0.5. These parameters change respectively, in comparison to GR, the instant at
which the GWamplitude peaks, the orbital frequency at this time instant, and the value of the peak amplitude. Both waveforms are phase
aligned and time shifted around 20 Hz using the prescription of Refs. [59,86,89,90]. The details of how the waveform model is
developed are in given Sec. II, and additional details about its morphology are presented in Sec. III.

MAGGIO, SILVA, BUONANNO, and GHOSH PHYS. REV. D 108, 024043 (2023)

024043-2



waveform, and understand which parts of the waveform
change when the non-GR parameters are varied one at the
time. After discussing the basics of Bayesian analysis in
Sec. IV, we perform a synthetic-signal injection study in
Sec. V, and then apply our parametrized IMR model to real
data in Secs. VI and VII, analyzing two events, GW150914
and GW200129. Finally, we summarize our conclusions
and future work in Sec. VIII.
Unless stated otherwise, we work in geometrical units in

which G ¼ 1 ¼ c.

II. THE PARAMETRIZED PLUNGE-MERGER-
RINGDOWN WAVEFORM MODEL

In this section we first review the GR waveform model
developed within the EOB formalism. In Sec. II B, we
explain how we deform this baseline model by introducing
deformations away from GR in the plunge-merger-ring-
down phase.

A. A brief review of the effective-one-body
gravitational waveform model

The GW signal produced by a spinning, nonprecessing,
and quasicircular BBH with component massesm1 andm2,
and total massM ¼ m1 þm2, is described in GR by a set of
eleven parameters, ϑGR, given by

ϑGR ¼ fm1; m2; χ1; χ2; ι;ψ ; α; δ; DL; tc;ϕcg; ð2:1Þ

where χi (i ¼ 1, 2) are the constant-in-time projections of
each BH’s spin vectors Si in the direction of the unit vector
perpendicular to the orbital plane L̂, i.e., χi ¼ Si · L̂=m2

i ,
where jχij ≤ 1, ðι;ψÞ describe the binary’s orientation
through the inclination and polarization angles, ðα; δÞ
describe the sky location of the source in the detector frame,
DL is the luminosity distance, and tc andϕc are the reference
time and phase, respectively. It is convenient to define the
chirp mass M ¼ Mν3=5, where ν ¼ m1m2=M2 is the sym-
metric mass ratio, the asymmetric mass ratio q ¼ m2=m1,
and the effective spin χeff ¼ ðχ1m1 þ χ2m2Þ=M. We adopt
the convention that m1 ≥ m2 and thus q ≤ 1.
The GW polarizations can be written in the observer’s

frame as

hþðι;φ0; tÞ − ih×ðι;φ0; tÞ

¼
X∞
l¼2

Xl
m¼−l

−2Ylmðι;φ0ÞhlmðtÞ; ð2:2Þ

where φ0 is the azimuthal direction of the observer, where,
without loss of generality, we set φ0 ¼ ϕc, and −2Ylm are
the −2 spin-weighted spherical harmonics [69], l is the
angular number and jmj ≤ l is the azimuthal number of
each GW mode, hlm.

We follow Refs. [40,70] and use as our baseline model
(i.e., the waveform model upon which the non-GR
deviation parameters are added) the time-domain IMR
waveform developed in Refs. [63,64,71] within the EOB
formalism [52–59], SEOBNRv4HM_PA.1 The model uses
the postadiabatic (PA) approximation, which was originally
introduced in Refs. [74–76] (and also subsequently used in
the TEOBResumS waveform models) to speed up the
generation of the time-domain waveforms for spinning,
nonprecessing, and quasicircular compact binaries. It
includes the ðl; jmjÞ ¼ ð2; 2Þ, (2, 1), (3, 3), (4, 4), and
(5, 5) GW modes. For nonprecessing BBHs (i.e., with
component spins aligned or antialigned with the orbital
angular momentum), we have that hlm ¼ ð−1Þlh�l−m.
Hence, we can consider m> 0 without loss of generality.
Hereafter, we refer to SEOBNRv4HM_PA as SEOBNRHM
for brevity.
As explained in Refs. [63,64], the SEOBNRHM wave-

form is constructed by attaching the merger-ringdown
waveform, hmerger−RD

lm ðtÞ, to the inspiral-plunge waveform,
hinsp−plungelm ðtÞ, at a matching time t ¼ tlmmatch,

hlmðtÞ ¼ hinsp−plungelm ðtÞΘðtlmmatch − tÞ
þ hmerger−RD

lm ðtÞΘðt − tlmmatchÞ; ð2:3Þ

where ΘðtÞ is the Heaviside step function and the value of
tlmmatch is defined as

tlmmatch ¼
� t22peak; ðl;mÞ ¼ ð2;2Þ; ð3;3Þ; ð2;1Þ; ð4;4Þ
t22peak − 10M; ðl;mÞ ¼ ð5;5Þ;

ð2:4Þ

where t22peak is the time at which the amplitude of the (2, 2)
mode [i.e., h22ðtÞ in Eq. (2.2)] has its maximum value. We
impose that the amplitude and phase of hlmðtÞ at t ¼ tlmmatch
are C1 (i.e., they are continuously and differentiable at this
time instant). The time t22peak is defined as

t22peak ¼ tΩpeak þ Δt22peak; ð2:5Þ

where tΩpeak is the time in which the EOB orbital frequency
peaks [77]. Calculations performed in the test-particle
limit using BH perturbation theory found that the amplitude
and the orbital frequency peak at different times, especially
when the central BH has large spins [78–81]. This

1The model’s name indicates that the EOB model (EOB) is
calibrated to NR simulations (NR), includes spin effects (S),
contains high-order radiation modes (HM), and uses the post-
adiabatic approximation (PA) to reduce the waveform generation
time. The version of the model used here is v4. The first version
of this waveform family is the nonspinning EOBNRv1 model of
Refs. [72,73].
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motivates the introduction of the time-lag parameter Δt22peak
in Eq. (2.5), which can be fitted against NR waveforms as
function of the symmetric mass ratio ν and the BH’s spins
χ1;2 (see Sec. II B in Ref. [63] for details). We impose
the conditionΔt22peak ≤ 0 to ensure that the attachment of the
merger-ringdown waveform happens before the peak of the
orbital frequency, and thus before the end of the binary’s
dynamics. For later convenience, we define

ΔtGRlm ¼ −Δt22peak: ð2:6Þ

Because we are interested in adding non-GR terms to
hmerger−RD
lm ðtÞ, we now briefly review how the merger-

ringdown waveform is constructed. Further details can
be found in Sec. IV E of Ref. [64]. The merger-ringdown
mode is written as

hmerger−RD
lm ¼ νÃlmðtÞeiϕ̃lmðtÞeiσlm0ðt−tlmmatchÞ; ð2:7Þ

where σlm0 are the complex-valued frequencies of the
least damped quasinormal mode (QNM) of the remnant
BH [82–84]. We define σRlm0 ¼ Imðσlm0Þ < 0 and
σIlm0 ¼ −Reðσlm0Þ < 0. The functions Ãlm and ϕ̃lm are
given by [63]

Ãlm ¼ clm1;c tanh½clm1;fðt − tlmmatchÞ þ clm2;f � þ clm2;c ; ð2:8aÞ

ϕ̃lm ¼ ϕlm
match − dlm1;c log

�
1þ dlm2;fe

−dlm
1;fðt−tlmmatchÞ

1þ dlm2;f

�
; ð2:8bÞ

where ϕlm
match is the phase of the inspiral-plunge mode

hinsp−plungelm at t ¼ tlmmatch. We see that Eq. (2.8) depend on the
set of parameters clmi and dlmi (i ¼ 1, 2), which are either
constrained by imposing that Ãlm, ϕ̃lm are C1 at t ¼ tlmmatch
(we append the subscript “c”) or free parameters to be
determined by fitting against NR waveforms (we append
the subscript “f”).
We now impose that hlm is C1 at t ¼ tlmmatch. This yields

two equations that relate the constrained coefficients clm1;c
and clm2;c to the free coefficients c

lm
1;f , c

lm
2;f , to σ

R
lm0 and to the

mode amplitude of hinsp−plungelm and its first time derivative

at the matching time, namely jhinsp−plungelm ðtlmmatchÞj and

∂tjhinsp−plungelm ðtlmmatchÞj. The equations are

clm1;c ¼ 1

νclm1;f
½∂tjhinsp−plungelm ðtlmmatchÞj

− σRlm0jhinsp−plungelm ðtlmmatchÞj�cosh2clm2;f ; ð2:9aÞ

clm2;c ¼ −
1

ν
jhinsp−plungelm ðtlmmatchÞj

þ 1

νclm1;f
½∂tjhinsp−plungelm ðtlmmatchÞj

− σRlm0jhinsp−plungelm ðtlmmatchÞj� cosh clm2;f sinh clm2;f :
ð2:9bÞ

We also obtain one equation that relates the constrained
parameter dlm1;c to the free coefficients d

lm
1;f , d

lm
2;f , to σ

I
lm0 and

to the angular frequency of hinsp−plungelm at the matching time.

The latter is defined as ωlm ¼ dϕinsp−plunge
lm =dt, where

ϕinsp−plunge
lm ¼ argðhinsp−plungelm Þ is the phase of the inspiral-

plunge GW mode. The equation is

dlm1;c ¼ ½ωinsp−plunge
lm ðtlmmatchÞ − σIlm0�

1þ dlm2;f
dlm1;fd

lm
2;f

: ð2:10Þ

The values of

jhinsp−plungelm j; ∂tjhinsp−plungelm j; and ωinsp−plunge
lm ;

at t ¼ tlmmatch are fixed by the so-called nonquasicircular
(NQC) terms, NlmðtÞ. The NQC terms describe nonqua-
sicircular corrections to the modes during the late inspiral
and plunge. The NQCs are a parametrized time series that is
multiplied with the factorized PN GRmodes, hFlm, such that
the resultant time series is calibrated against NR simula-
tions. They are crucial in guaranteeing a very good agree-
ment of the SEOBNRHM amplitude and phase (relative to
NR) during the late inspiral and plunge.
The GW modes in the inspiral-plunge part of the EOB

waveform are given as

hinsp−plungelm ðtÞ ¼ hFlmðtÞNlmðtÞ; ð2:11Þ

where we refer the reader to Sec. IV C in Ref. [64] for
details on how hFlm and Nlm are constructed. For our

purposes, it is sufficient to say that jhinsp−plungelm jðtlmmatchÞ,
∂tjhinsp−plungelm ðtlmmatchÞj, and ωinsp−plunge

lm ðtlmmatchÞ are the same
as the NR values of

jhNRlmj; ∂tjhNRlmj; and ωNR
lm;

at t ¼ tlmmatch. The values of these three quantities are
obtained for each BBH, from the Simulating eXtreme
Spacetimes (SXS) catalog of NR waveforms [85], after
which a fitting formula that depends on the symmetric mass
ratio ν and spins χ1 and χ2 is obtained to interpolate over
the parameter space covered by the catalog. Their explicit
forms can be found in Ref. [64], Appendix B. At this point,
we are left with the free parameters clmi;f and dlmi;f (i ¼ 1, 2)
to fix. This is accomplished through fits against NR and
Teukolsky equation-based waveforms [79,80], written also
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as functions of ν, χ1 and χ2. The explicit form of these fits
can be found in Ref. [64], Appendix C.

B. Construction of the parametrized model

With this framework established, our strategy to develop
a parametrized SEOBNRHMmodel (hereafter pSEOBNRHM)
is the following. We will introduce fractional deviations to
the NR-informed formulas for the mode amplitudes and
angular frequencies at t ¼ tlmmatch, i.e.,

jhNRlmj → jhNRlmjð1þ δAlmÞ; ð2:12aÞ

ωNR
lm → ωNR

lmð1þ δωlmÞ; ð2:12bÞ

and we will also allow for changes to tlmmatch by modifying
the time-lag parameter ΔtGRlm [defined in Eq. (2.6)] as

ΔtGRlm → ΔtGRlmð1þ δΔtlmÞ; ð2:13Þ

where we constrain δΔtlm > −1 to ensure that tlmmatch
remains less than tΩpeak, and thus before the end of the
dynamics, as originally required [64,86]. Equations (2.12)
and (2.13) modify the constrained parameters clmi;c and dlmi;c
through Eqs. (2.9) and (2.10), and consequently Ãlm and
ϕ̃lm that appear in the merger-ringdown waveform (2.7)
and are given by Eq. (2.8). It is important to emphasize that
Eqs. (2.12) and (2.13) also modify the NQC coefficients
which enter the inspiral-plunge waveform in Eq. (2.11).
This is because both jhNRlmj and ωNR

lm are used to fix some
parameters in the explicit form of Nlm. We refer the reader
to Refs. [63,87] and in particular to Ref. [64], Sec. III C, for
details. Hence, although we will refer to δAlm, δωlm, and
δΔtlm as “merger parameters” they, strictly speaking, also
modify the plunge.
We also introduce non-GR deformations to the

QNMs, following the same strategy applied in
Refs. [33,34,39,40,43,88]. It consists in modifying
the QNM oscillation frequency and damping time,
defined respectively for the zero overtone n ¼ 0, as

flm0 ¼
1

2π
Reðσlm0Þ ¼ −

1

2π
σIlm0; ð2:14aÞ

τlm0 ¼ −
1

Imðσlm0Þ
¼ −

1

σRlm0

; ð2:14bÞ

according to the substitutions

flm0 → flm0ð1þ δflm0Þ; ð2:15aÞ

τlm0 → τlm0ð1þ δτlm0Þ; ð2:15bÞ

and we impose that δτlm0 > −1 to ensure that the remnant
BH is stable (i.e., it rings downs, instead of “ringing-up”

exponentially). Note that in Refs. [39,40], such deforma-
tions also concerned with the higher overtones, since the
EOB model used for the merger-ringdown included higher
overtones.
Put it all together, we have the following set of plunge-

merger-ringdown parameters:

ϑnGR ¼ ϑmerger
nGR ∪ ϑRD

nGR

¼ fδAlm; δωlm; δΔtlmg ∪ fδflm0; δτlm0g; ð2:16Þ

intended to capture possible signatures of beyond-GR
physics in the most dynamical and nonlinear stage of a
BBH coalescence. We will casually refer to them as “non-
GR” or as “deformation” (away from GR) parameters. In
Table I, we summarize the ϑnGR parameters, their meaning,
and the constraints, if any, on their values. The GR limit is
recovered when all parameters in ϑnGR are set to zero.
The pSEOBNRHM model allows us to change the non-

GR plunge-merger parameters ϑmerger
nGR for each (l,m) mode

individually. Here, for a first study, we will assume that
their values are the same across different modes, that is
to say,

δAlm¼ δA; δωlm ¼ δω; and δΔtlm¼ δΔt; ð2:17Þ

for all the l and m modes in the waveform model. This
choice is motivated by the fact that in GW150914 there are
no significant changes in the posterior distributions of the
binary parameters when using all the modes and only the
l ¼ m ¼ 2 mode. As for the non-GR ringdown parameters
ϑRD
nGR, we will assume that they are nonzero only for the

least-damped (n ¼ 0) (2, 2) mode. Under these assump-
tions, we have a 16-dimensional parameter space to work
with,

TABLE I. Summary of the non-GR parameters in the
pSEOBNRHM model. The ringdown deformation parameters
δflm0 and δτlm0 were introduced to the SEOBNRHM model in
Ref. [40], while the merger deformation parameters δAlm, δωlm,
and δΔtlm are introduced here for the first time. As explained in
Sec. II B, although we call these merger parameters, they do also
affect the late inspiral-plunge part of the waveform. We quote
under the column labeled “bound” the constraints on the
parameter’s values required by our waveform model.

Parameter Deformation Bound

Merger δAlm Amplitude
δωlm Instantaneous frequency
δΔtlm Time lag > − 1

Ringdown δflm0 Oscillation frequency
δτlm0 Damping time > − 1
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ϑ ¼ ϑGR ∪ ϑnGR; ð2:18Þ

where the GR parameters ϑGR are defined in Eq. (2.1).
Some comments follow in order. First, the parametrized

deformation of SEOBNRHM we have introduced is not
unique. For instance, we could have added additional
fractional changes to ∂tjhNRlmjðtlmmatchÞ or to the free param-
eters in the merger-ringdown waveform segment [see
Eq. (2.8)]. We have found a compromise between the
number of new parameters we can introduce and the
physics we want to model; the optimal scenario being that
of having the most flexible GW model that depends on the
least number of deviation parameters. In our case, we find
the parameters ϑnGR defined in Eq. (2.16) to be sufficient
for our purposes. Second, one may fear that by effectively
“undoing” the NR calibration we would obtain nonphysical
GWs. This is not the case, as shown in Fig. 1 and as we will
see in Sec. III. Our model produces waveforms that are
smooth deformations of the ones of GR and have sufficient
flexibility to be applied in tests of GR (Secs. Vand VI) and
provide a diagnostic tool for the presence of systematic
effects in GR GW models (Sec. VII).

III. WAVEFORM MORPHOLOGY

Having introduced our waveform model, we now discuss
how each of the parameters ϑmerger

nGR modify the GW signal in
GR. An analogous exploration was done for ϑRD

nGR in
Ref. [40], for this reason the present discussion is restricted
to the merger parameters. In each of the following sections,
we vary the parameters δA, δω, and δΔt one at a time. We
take the binary component masses and spins to be

q ¼ 0.867; ν ¼ 0.249; χ1 ¼ χ2 ¼ 0; ð3:1Þ

which are archetypal values of a GW150914-like event [15],
the inclination to be ι ¼ 0 and, for clarity, we show results
only for h22. This is the dominant mode for such a
quasicircular, nonspinning, and comparable-mass BBH.
We end each section by showing how the waveform is
modified when we apply the deformations, with the same
values, simultaneously to all GW modes present in
pSEOBNRHM.

A. The amplitude parameter δA

Let us start with δA, the amplitude parameter. In Fig. 2
we show the real part of h22ðtÞ, rescaled by the luminosity
distanceDL and total massM, for two values of δA: 0.5 (top
panel) and −0.5 (bottom panel). The dashed segment
corresponds to t ≤ t22match (i.e., the inspiral-plunge part of
waveform), whereas the solid segment corresponds to
t > t22match (i.e., the merger-ringdown part of the waveform).
In both panels, the black curve corresponds to the GR
signal (δA ¼ 0) with the same binary parameters. Both the
GR and non-GR waveforms have been shifted in time and

aligned in phase around 20 Hz following the prescription of
Refs. [59,86,89,90]. The amplitudes of the non-GR wave-
forms �jh22j are shown by the dotted lines and form the
envelope around Reðh22Þ.
Unsurprisingly, for positive values of δA, the amplitude

jh22j increases relative to its GR value while keeping
t22match ≈ 1704M the same. The situation is more interesting
for δA < 0. For the binary under consideration, we find that
jh22j decreases for δA≳ −0.31, but for δA≲ −0.31, we see
that δA pinches downwards the amplitude enough to result
in a local minimum (which we will refer to as t22min) and two
maxima, located before and after t22min, with the global
maximum happening at t22max < t22min. The values of both
maxima are smaller than the GR peak amplitude. By
construction, the matching time t22match is then shifted to
earlier times relative to its GR value. For the example of
δA ¼ −0.5 shown in the bottom panel of Fig. 2, the
matching time is at approximately 1670M (compare the
location of the vertical lines in this panel).
In Fig. 3, we show a “continuum” of waveforms around

the time of merger, obtained by finely covering the interval
δA ∈ ½−0.5; 0.5�, and including δA modifications to all
modes in pSEOBNRHM. The GR prediction is shown by the
black solid line. The top panel shows the real part of
the strain, the middle panel the strain amplitude, and the
bottom panel the instantaneous frequency, defined as
f ¼ ð2πÞ−1d argðhþ − ih×Þ=dt. As expected, we see that
f does not change by varying δA, while the middle panel
shows clearly how δA changes the GW amplitude. For
negative values of δA, the presence of a local minimum in
the GW amplitude is evident, as discussed previously.

FIG. 2. The time evolution near the merger of the real part of
the h22 mode for nonzero values of the amplitude parameter δA.
We show the GR prediction (δA ¼ 0) with the black lines. Top
panel: for δA ¼ 0.5. Bottom panel: for δA ¼ −0.5. In both panels,
we also show�jh22j for the non-GR waveform (dotted lines), and
we use different line styles for the segment t ≤ t22match (dashed
lines) and t > t22match (solid lines) for all waveform illustrated. The
matching times t22match are marked by the vertical lines.
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B. The frequency parameter δω

We now consider δω, the frequency parameter. Figure 4
is analogous to Fig. 2, except that we now consider
δω ¼ 0.5 (top panel) and δω ¼ −0.5 (bottom panel). We
see that δω induces a time-dependent phase shift to the
waveform, with its effects being most noticeable near the
merger, and causing tmatch to happen later (earlier) relative
to GR when δω> 0 (δω < 0), while keeping the peak
amplitude unaffected.
In Fig. 5, we show an analogous version of Fig. 3, but

now for δω. Once more, the top panel shows the real part of
the strain, the middle panel the strain amplitude, and the
bottom panel the instantaneous frequency. We focus on the
region near the merger and we plot the GR curves (δω ¼ 0)
with black solid lines. In the top panel, we can see the phase
differences between the non-GR and GRwaveforms, which
are the largest around the time of merger and ringdown.
This is in part due to the δω itself, but also to the phase-shift
and time-alignment procedure already mentioned, which
we perform with respect to the GR waveform. The effect of
the latter is small, as can be seen in the middle panel for the

amplitude, where all curves nearly overlap in time. In the
bottom panel, we note sharp changes to f when jδωj ≈ 0.5.
They originate from us not imposing the continuity of the
time derivative of ωNR

lm at t ¼ tlmmatch [63,64].

C. The time shift parameter δΔt
Finally, we now consider δΔt, the time shift parameter.

In Fig 6, which is analogous to both Figs. 2 and 4, we show
waveforms for δΔt ¼ 0.5 (top panel) and δΔt ¼ −0.5
(bottom panel). Overall, we see small changes to the GR
waveform, in the form of an earlier tmatch when δΔt > 0,
and later tmatch when δΔt < 0. Here, the changes due to the
phase-shift and time-alignment are negligible, and the shifts
seen in the figure are due to δΔt.
Finally, in Fig. 7 we show a sequence of waveforms

around the time of merger, obtained by finely covering the
interval δΔt ∈ ½−0.5; 0.5�. The GR prediction is shown by
the black solid line. We see that the changes to the strain
(top panel), its amplitude (middle panel), and its frequency
evolution (bottom panel) are small. Therefore, δΔt intro-
duces changes to the GR waveform which are in general
subdominant relative to those due to δA and δω. We also
remark that ΔtGRlm is not very sensitive to the EOB
calibration against NR waveform. Hence, the fractional
changes we are introducing on ΔtGRlm are comparable with
the NR fitting errors. This explains why this parameter
affects the GR waveforms so little.

IV. PARAMETER ESTIMATION

In the previous section, we have introduced our wave-
form model and discussed the properties of the waveform

FIG. 3. The time evolution near the merger of the GW strain for
nonzero values of the amplitude parameter δA, taken to affect in
the same way all the hlm modes. The GR prediction (δA ¼ 0) is
shown by the black curves. We show the real part of the strain
(top panel), the strain amplitude (middle panel), and the instanta-
neous frequency (bottom panel). As expected, the latter is
unaffected by the changes to the peak amplitude of the various
GW modes.

FIG. 4. The time evolution near the merger of the real part of the
h22 mode for nonzero values of the frequency parameter δω. We
show the GR prediction (δω ¼ 0) with the black lines. Top panel:
for δω ¼ 0.5. Bottom panel: for δω ¼ −0.5. In both panels, we
also show�jh22j for the non-GR waveform (dotted lines), and we
use different line styles for the segment t ≤ t22match (dashed lines)
and t > t22match (solid lines) for all waveform illustrated. The
matching times t22match are marked by the vertical lines.
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morphology. Here, we summarize the Bayesian inference
formalism used for parameter estimation of GW signals and
synthetic-data studies. We describe the prior choices and
the criteria for the GW event selection.

A. Bayesian parameter estimation

Our hypothesis, H, is that in the detector data, d, an
observed GW signal is described by the waveform model
pSEOBNRHM. The model pSEOBNRHM has a set of GR and
non-GR parameters, as in Eqs. (2.1) and (2.16), where

ϑnGR ¼ fδA; δω; δΔt; δf220; δτ220g: ð4:1Þ

As said, we assume that the merger modifications are
the same for all ðl; mÞ modes present in the model
pSEOBNRHM.

The posterior probability distribution on the parameters
of the model, ϑ, given the hypothesis,H, is obtained using
Bayes’ theorem,

Pðϑjd;HÞ ¼ PðϑjHÞPðdjϑ;HÞ
PðdjHÞ ; ð4:2Þ

where PðϑjHÞ is the prior probability distribution,
Pðdjϑ;HÞ is the likelihood function, and PðdjHÞ is the
evidence of the hypothesis H. For a detector with sta-
tionary, Gaussian noise and power spectral density SnðfÞ,
the likelihood function can be written as

Pðdjϑ;HÞ ∝ exp

�
−
1

2
hd − hðϑÞjd − hðϑÞi

�
; ð4:3Þ

where the noise-weighted inner product is defined as

hAjBi ¼ 2

Z
fhigh

flow

df
Ã�ðfÞB̃ðfÞ þ ÃðfÞB̃�ðfÞ

SnðfÞ
; ð4:4Þ

where ÃðfÞ is the Fourier transform of AðtÞ, and the
asterisk denotes the complex conjugation, and SnðfÞ is
the one-sided power spectral density of the detector. The
integration limits flow and fhigh set the bandwidth of the
detector’s sensitivity. We follow the LVK analysis and set
flow ¼ 20 Hz, while fhigh is the Nyquist frequency [19].
The posterior distributions are computed by using
LALInferenceMCMC [91,92], a Markov-chain Monte Carlo
that uses the Metropolis-Hastings algorithm to survey the

FIG. 5. The time evolution near the merger of the GW strain for
nonzero values of the frequency parameter δω, assumed to be the
same for all hlm modes. The GR prediction (δω ¼ 0) is shown by
the black curves. We show the real part of the strain (top panel),
the strain amplitude (middle panel), and the instantaneous
frequency (bottom panel). In the top panel, we clearly see the
phase difference between the non-GR and GR waveform near the
merger. This is partially due to the δω itself, but also to the phase-
shift and time-alignment done with respect to the GR waveform.
The effect of the latter is small as can be seen in the middle panel,
which shows the amplitude. The sharp changes to f in the bottom
panel for jδωj ≈ 0.5 originate from us not imposing the continuity
of the time derivative of ωNR

lm at t ¼ tlmmatch.

FIG. 6. The time evolution near the merger of the real part of
the h22 mode for nonzero values of the time shift parameter δΔt.
We show the GR prediction (δΔt ¼ 0) with the black lines. Top
panel: for δΔt ¼ 0.5. Bottom panel: for δΔt ¼ −0.5. In both
panels, we also show �jh22j for the non-GR waveform (dotted
lines), and we use different line styles for the segment t ≤ t22match
(dashed lines) and t > t22match (solid lines) for all waveform
illustrated. The matching times t22match are marked by the vertical
lines. For reference, we also show the instant in which the EOB
frequency peaks (tΩpeak) with vertical dashed lines.
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likelihood surface and is implemented in LALInference [93],
part of the LALSuite software suite [94].

B. Prior choices

The prior distributions on the GR parameters are
assumed to be uniform in the component masses
ðm1; m2Þ, uniform and isotropic in the spin magnitudes
ðχ1; χ2Þ, isotropic on the binary orientation, and isotropi-
cally distributed on a sphere for the source location
with PðDLÞ ∝ D2

L.
For the non-GR parameters, as explained in Sec. II B, the

internal consistency of thepSEOBNRHMmodel requires that
both δΔt and δτ220 are larger than −1 (cf. Table I). We use
this fact to fix a common lower limit on the uniformpriors on
all ϑnGR. We set 1 to be an upper limit on the uniform priors
on the non-GRparameters. Thiswas sufficient inmost of our
analysis, but in a few cases we found that the marginalized
posteriors distributions for one or more non-GR parameters
had support at ϑnGR ≈ 1. In such cases we extended the
priors’ domains to ϑnGR ∈ ð−1;þ2�. Even at this wider
range, we did not find anomalies in the waveform.

C. Event selection

The pSEOBNRHM ringdown analysis performed in
Ref. [13] selected GWevents from the GWTC-3 catalog [19]
which had a signal-to-noise ratio ðSNRÞ ≥ 8 in the inspiral
and post-inspiral regimes. The requirement on the inspiral
regime allows one to break the strong degeneracy between
the total mass of the binary and the ringdown deviation
parameters [39,40]. Among the GW events that meet this
criteria, two stand out in terms of their constraining power on
ϑRD
nGR, namely GW150914 [14,15] and GW200129_065458

(hereafterGW200129) [19]. These two events,with amedian
total source-frame masses of 64.5M⊙ and 63.4M⊙, respec-
tively, are among the loudest BBH signals to date with a
median total network SNR of 26.0 and 26.8, respec-
tively [18,19]. GW150914 was detected by the two LIGO
detectors at Hanford and Livingston, whereas GW200129
was detected by the three-detector network of LIGO
Hanford, Livingston, and Virgo.
We guide ourselves by this result and use these two

events to investigate what constraints we can place on the
merger-ringdown parameters. We remark that this SNR
selection criteria may be too strong if we are interested in
ϑmerger
nGR only. We leave the study of the optimal SNR to

constrain only the merger parameters to a future work.

V. RESULTS: SYNTHETIC-SIGNAL
INJECTION STUDIES

In this section, we use pSEOBNRHM to perform a number
of synthetic-signal injection studies. As we saw in Sec. II,
pSEOBNRHM is a smooth deformation of the GR waveform
model SEOBNRHM, which is recovered when all ϑnGR
parameters are set to zero. This allows us to explore
different scenarios that differ from one another on whether
the GW signal and the GW model used to infer the
parameters of this signal are described by GR
(ϑnGR ¼ 0) or not (ϑnGR ≠ 0). We summarize these pos-
sibilities in Table III.
To prepare theGWsignalwe need to fixϑ ¼ ϑGR ∪ ϑnGR.

In all cases,weusevaluesofϑGR illustrative of aGW150914-
like BBH as in Table II. We set all non-GR parameters to the
samevalue,ϑnGR ¼ 0.1, whenever the injected signal is non-
GR. By working exclusively with the pSEOBNRHM wave-
form model, we avoid introducing systematic errors due to
waveform modeling in our analysis. We also employ an
averaged (zero-noise) realization of the noise to avoid
statistical errors due to noise. The resulting GW signal is
then analyzed with the power spectral density SnðfÞ of the
LIGO Hanford and Livingston detectors both at design
sensitivity [95]. In all cases, we set the distance to the binary
to be such that the total network SNR is approximately 100.
In Sec. VA, we do a preliminary analysis where both

injected and model waveforms are described by GR. This
allows us to access the accuracy with which different binary
parameters can be recovered from the data in the detector

FIG. 7. The time evolution near the merger of the GW strain for
nonzero values of the time shift parameter δΔt, assumed to be the
same for all hlm modes. The GR prediction (δΔt ¼ 0) is shown
by the black curves. We show the real part of the strain (top
panel), the strain amplitude (middle panel), and the instantaneous
frequency (bottom panel). The insets zoom into the time intervals
t=M ∈ ½1700; 1720� in the middle panel and t=M ∈ ½1500; 1775�
in the bottom panel.
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network. With these results as a benchmark, we can
then proceed to inject a non-GR waveform and analyze
it with a GR model. This allows us to study the systematic
error introduced on the inferred binary parameters by
assuming a priori that GR is true, while nature may not
be so (the so-called fundamental bias). In Sec. V B, we
inject a GR waveform and try to recover its parameters with
a non-GR model. This allows us to answer how much the
non-GR parameters can be constrained given an event
consistent with GR. Finally, in Sec. V C, we use non-GR
waveforms as both our injection and our model. This
answers whether we can detect the presence of the non-GR
parameters in our signal.

A. Fundamental biases on binary parameters

We first explore the presence (or not) of biases in the
inference of binary parameters when the template wave-
form model assumes GR, while the injected GW signal is
non-GR [31,96]. For this purpose, we first inject a synthetic
GR GW signal with SNR ¼ 98 and recover the binary
parameters with a GR model. By doing this exercise first,
we gain an idea on the accuracy with which the parameters

of the binary (cf. Table II) can be recovered in our set up.
Next, we repeat the same analysis but now using as our
synthetic GW signal the one obtained with pSEOBNRHM.
The signal is prepared using the same binary parameters
ϑGR shown in Table II with SNR ¼ 104, but now we let
ϑnGR ¼ 0.1.
The results of our two analyses are shown in Fig. 8. We

show the one- and two-dimensional posterior distributions
of a subset of the intrinsic binary parameters, namely, the
mass ratio q, the detector-frame chirp mass M and the
effective spin χeff . In all panels, the “true” (injection) values
of these parameters are marked by the vertical and horizon
lines. We see that in the case of a non-GR injection (solid
curves), the posterior distributions of the parameters are
shifted from the injected values and from the posterior
distributions in the case of a GR injection (dashed curves).
We attribute the differences in the 90% contours of the
posterior distributions to the fact that in the non-GR
injection a smaller value of the chirp mass M is inferred.
This suggests that the GR waveform that best fits the data
has a longer inspiral and this makes the inference of the
other binary parameters more precise. The recovered SNR
from the GR analysis of the non-GR signal is almost the
same as the injected one, i.e., SNR ¼ 104. Hence, if a GW
signal with deviations from GR would be analyzed by

TABLE II. Values of the parameters ϑGR used in all synthetic-
signal injection studies in Sec. V. The parameters are represen-
tative of GW150914, except for the luminosity distance, which is
chosen such that the total SNR, in a detector network constituted
by LIGO Hanford and Livingston operating at design sensitivity,
is approximately 100.

Parameter (detector frame) Value

Primary mass, m1 [M⊙] 38.5
Secondary mass, m2 [M⊙] 33.4
Primary spin, χ1 3.47 × 10−3

Secondary spin, χ2 −4.40 × 10−2

Inclination, ι [rad] 2.69
Polarization, ψ [rad] 1.58
Right ascension, α [rad] 1.22
Declination, δ [rad] −1.46
Luminosity distance, DL [Mpc] 337
Reference time, tc [GPS] 1126285216
Reference phase, ϕc [rad] 0.00

TABLE III. Summary of the synthetic-signal injection simu-
lations performed in Sec. V. The label “GR” refers to the
SEOBNRHM waveform model, whereas the label “non-GR” refers
to the pSEOBNRHMwaveform model, where all merger-ringdown
parameters are set deviate in 10% deviations relative to their
corresponding GR values.

Model

GR non-GR

Injection
GR Section VA Section V B

non-GR Section VA Section V C

FIG. 8. The one- and two-dimensional posterior distributions
on the intrinsic binary parameters of mass ratio q, detector-frame
chirp mass M and effective spin χeff for a GR injection (dashed
curve) and a non-GR injection (solid curve) with 10% deviations
in the merger-ringdown parameters ϑnGR. All contours indicate
90% credible regions. The parameter estimation is performed
assuming the GR SEOBNRHM waveform model. The vertical and
horizontal lines mark the injected values. The measurements with
non-GR injections are visibly biased, most preeminently in χeff
and M.
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current GR templates, the GW event would be interpreted
as a BBH in GR with different values of the binary
parameters.

B. Constraints on deviations to general relativity

We now inject a synthetic GW signal in GR using the
parameters ϑGR in Table II with SNR ¼ 98. We analyze the
signal using the pSEOBNRHM waveform model, allowing
both ϑGR in Eq. (2.1) and ϑnGR in Eq. (4.1) to vary. This
simulates a scenario where we have a GW event consistent
with GR and we want to understand which constraints it
places on the non-GR parameters in our waveform model.
We summarize the results of the analysis in Fig. 9, where

we show the one- and two-dimensional posterior proba-
bility distributions of the merger-ringdown parameters
ϑnGR. We find that the marginalized posterior distributions
of the non-GR parameters are consistent with the corre-
sponding injected values in GR, which are indicated by the
markers. We can infer that a GW150914-like event with
SNR ¼ 98 would constrain the deformation parameters in
the range between 5% (for δA and δf220) and 20% (for
δτ220) at 90% credible level. In the Appendix, Fig. 15, we
show the posterior distributions on the intrinsic binary
parameters.
The best constrained parameter is the amplitude, δA,

whereas the less constrained parameter is the time shift,

δΔt. For the latter, we obtain a posterior distribution that
has support onto a wide range of the prior. This is perhaps
unsurprising due to the small deviations caused by δΔt in
the waveform in comparison with δω (compare Figs. 4
and 6). We also observe a negative correlation between
these two parameters and hence increasing precision on one
is likely to increase uncertainty on the other; see the
δΔt–δω panel in Fig. 9. Together, these results suggest
that considering δA and δω is sufficient, if one is interested
in doing a test of GR only in the plunge-merger stage of the
binary’s coalescence.

C. Detecting deviations from general relativity

We now study whether we can detect the presence of the
non-GR parameters. To do so, we inject a synthetic GW
signal where the binary parameters are shown in Table II,
SNR ¼ 104, and we set the merger-ringdown parameters to
be 10% larger than their corresponding GR values.
We summarize the outcome of our parameter estimation

in Fig. 10, where we show the one- and two-dimensional
posterior distributions for the ϑnGR parameters. We see that
all posteriors are consistent with the injected values,
indicated by the markers. Moreover, the posteriors for
ϑnGR have support at their null, GR value. The exceptions
are the amplitude δA and the QNM frequency δf220

FIG. 9. The one- and two-dimensional posterior distributions
on the merger-ringdown parameters ϑnGR. All contours indicate
90% credible regions. We considered a GR injection and
recovered with the pSEOBNRHM model. The vertical and hori-
zontal lines mark the injected values for the deviation parameters,
i.e., ϑnGR ¼ 0. The inferred values on ϑnGR are consistent
with the zero, and their width of the marginalized posterior
distribution inform us with which accuracy we may constrain
these parameters.

FIG. 10. The one- and two-dimensional posterior distributions
on the merger-ringdown parameters ϑnGR. All contours corre-
spond to 90% credible regions. In comparison to Fig. 9, this time
we use pSEOBNRHM prepare the injection. This allow us to
understand how well we can measure the non-GR parameters.
The vertical and horizontal lines mark the injected values for the
deviation parameters, i.e., ϑnGR ¼ 0.1. The marginalized pos-
terior distributions on ϑnGR are consistent with their injection
values.
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parameters, which have no support at their GR values at
90% credible level. This suggests that these two parameters
are the most promising ones in signaling the presence of
beyond-GR physics for GW150914-like binaries. In fact,
we will see this suggestion taking place in our analysis of
GW200129 in Sec. VII.

VI. ANALYSIS OF GW150914: CONSTRAINTS
ON THE PLUNGE-MERGER-RINGDOWN

PARAMETERS

Having gained some intuition on the role of the merger-
ringdown parameters in the synthetic-signal injections
presented in Sec. V, we now apply the pSEOBNRHM
model to the analysis of real GW events. Our analysis,
here and in Sec. VII, uses the power spectral density of the
detectors from the Gravitational Wave Open Science
Center (GWOSC) [97], and calibration envelopes as used
for the analyses in Ref. [13]. We will start with
GW1501914, the first GW event observed by the LIGO-
Virgo Collaboration [14].
We will focus our analysis to two subsets of merger-

ringdown parameters due to the smaller SNR of this event
(and of GW200129) in comparison to the SNR ≈ 100
scenarios studied in the previous section. First, we have
seen that the time-shift parameter δΔt is the hardest
parameter to constrain, and that it has wide posteriors even
at such large SNRs. This motivates us to consider, among
the merger parameters, only

ϑnGR ¼ fδA; δωg; ð6:1Þ

to perform a “merger test of GR.” Second, we performed a
parameter estimation of GW150914, using all ϑnGR param-
eters in Eq. (4.1). We found correlations between the
frequency parameter δω and the QNM deformations
parameters δf220 and δτ220. Moreover, we also did a series
of synthetic-signal injection studies using the binary
parameters listed in Table II, with SNR ¼ 26, and in
Gaussian noise. In some of these cases, we also found
correlations between δω and δf220 and δτ220. In summary,
these correlations arise either when the GW event has low
SNR or due to noise. This suggests using

ϑnGR ¼ fδA; δf220; δτ220g; ð6:2Þ

to perform a “merger-ringdown test of GR.”
In Fig. 11 we show the results of our merger test of GR.

The corner plot shows the one- and two-dimensional
posterior probability distributions of δA and δω. The
posterior distributions are consistent with the null value
predicted in GR. We obtain from GW150914,

δA ¼ −0.01þ0.27
−0.19 ; and δω ¼ 0.00þ0.17

−0.12 ; ð6:3Þ

at 90% credible level. This shows that we can already
constrain deviations from GR around the merger time of
BBH coalescences to about 20% with present GW events.
Figure 12 is a similar plot, but for the merger-ringdown

test of GR. Once more, we find that the inferred values of
the non-GR parameters are consistent with GR,

δA¼0.03þ0.29
−0.20 ; δf220¼0.041þ0.151

−0.084 ; δτ220¼0.04þ0.27
−0.29 ;

ð6:4Þ

at 90% credible level. The bound on the amplitude
parameter is similar to the one obtained in the merger test
shown in Eq. (6.3). Also, the bounds on the ringdown
parameters are similar to those obtain in Ref. [40]
(δf220 ¼ 0.05þ0.11

−0.07 and δτ220 ¼ −0.07þ0.26
−0.23 ), which had

only these two quantities as its non-GR parameters. In
the Appendix, Fig. 16, we show the posterior distributions
on the intrinsic binary parameters for both tests of GR.
When interpreting our inferences on these parameters, it

is important to note that the statistical error in our analysis
(≈20%) is larger than the systematic error due to fitting
jhNRlmj and ωNR

lm against NR data, which is at most around 4%
with current models [63,64], depending on where one is in
the η–χeff parameter space. In fact, we see that the median
values of δA and δω fall within this fitting error. In
conclusion, we can claim to have placed a constraint on
these non-GR parameters with GW150914.

FIG. 11. The one- and two-dimensional posterior distributions
on δA and δω obtained by analyzing GW150914. All contours
correspond to 90% credible regions. The marginalized posterior
distributions are consistent with GR, i.e., δA ¼ δω ¼ 0, identified
in the plot with the horizontal and vertical lines. We found that
δA ¼ −0.01þ0.27

−0.19 and δω ¼ 0.00þ0.17
−0.12 at 90% credible level.
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VII. THE CASE OF GW200129: THE IMPORTANCE
OF WAVEFORM SYSTEMATICS
AND DATA-QUALITY IN TESTS
OF GENERAL RELATIVITY

We now turn our attention to GW200129 and, following
what we have learned in the previous section, we first
consider pSEOBNRHM with only δA and δω as non-GR
parameters. We show the one- and two-dimensional mar-
ginalized posteriors of these parameters with the black
solid curves in the left panel of Fig. 13. We see that while
our inferred value of δω (δω ¼ −0.002þ0.097

−0.082 at the 90%
credible level) is consistent with GR, our inferred value of
δA (δA ¼ 0.44þ0.38

−0.28 at the 90% credible level) exhibits a
gross violation of GR.
Have we found a strong evidence of violation of GR in

GW200129? Assuming that this is not the case, the apparent
violation of GR could be either due to statistical errors or to
systematic errors. To explore the first possibility, we perform
a series of synthetic-data injection studies. As our first step,
we do a parameter-estimation study in zero noise, where the
injectedGWsignal is generatedwithSEOBNRHM andwe use
the binary parameters corresponding to the maximum like-
lihood point from the GWTC-3 data release by the LVK [98]
analysis of GW200129. The LVK analysis was done sep-
aratelywith two quasicircular and spin-precessingwaveform

FIG. 12. The one- and two-dimensional posterior distributions on
themerger parameter δA, and ringdown parameters δf220 and δτ220,
obtained by analyzing GW150914. The marginalized posterior
distributions are consistentwithGR, i.e., δA ¼ δf220 ¼ δω220 ¼ 0,
identified in the plot with the horizontal and vertical lines.We found
that GW150914 constrains these parameters to be δA ¼ 0.03þ0.29

−0.20 ,
δf220 ¼ 0.041þ0.151

−0.084 , and δτ220 ¼ 0.04þ0.27
−0.29 at 90% credible level.

FIG. 13. Corner plots showing the one- and two-dimensional posterior distribution functions for δA and δω for our studies of
GW200129 and GW200129-like BBHs. All contours indicate 90% credible regions. Left panel: results of our reanalysis of GW200129
data with pSEOBNRHM (black solid curves) and for a GW200129-like injection generated with SEOBNRHM. For the latter, we used the
maximum-likelihood point of LVK’s original analysis of GW200129 which employed the IMRPhenomXPHM model to generate the
synthetic GW signal. We performed the parameter estimation of these injections in zero noise (dashed curves) and in ten Gaussian noise
realizations (yellow solid curves). Right panel: Similar, but having generated two additional GW200129-like synthetic signals with
NRSur7dq4 (dot-dashed curves) and with SEOBNRv4PHM (dotted curves). Both models include spin-precession effects. Observe how
the posteriors distributions are in tension with GR [marker at ðδA; δωÞ ¼ ð0; 0Þ] when we include spin-precession effects in the synthetic
data and we recover with a nonprecessing and non-GR waveform model.
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models, SEOBNRv4PHM [65] and IMRPhenomXPHM [99],
employing different parameter estimation libraries,
RIFT [100–102] and Bilby [103,104], respectively. Here,
as a reference, we use the maximum likelihood point of the
analysis that employed the IMRPhenomXPHM model, and
we expect the results to be qualitatively similar had we used
SEOBNRv4PHM.More specifically, because theSEOBNRHM
model we are using is nonprecessing, we use only themasses
and luminosity distance from themaximum-likelihoodpoint.
The resultant posterior distributions are shown in the left

panel of Fig. 13 (dashed curves) and they are, reassuringly,
consistent with GR. We also repeat this analysis for ten
Gaussian noise realizations, using the same synthetic GW
signal (yellow solid curves in the left panel of Fig. 13).
Consistent with the expectations, two noise realizations
yield marginalized posteriors on δω and δA which are not
consistent with GR at 90% credible level (shown by the
thicker yellow solid curves). It is worth observing how the
Gaussian noise curves have qualitatively the same shapes
(spreads), with the two outliers being shifted away from
ðδA; δωÞ ¼ ð0; 0Þ. This is an expected behavior consistent
with the stationary, Gaussian assumption of statistical
noise. These results, hence, disfavor the possibility that
the violations of GR we are observing are due to Gaussian
noise or due to the particular binary parameters inferred for
this event. The latter alternative would have been quite
unlikely in the first place, because both GW200129 and
GW150914 have similar binary parameters and SNRs, and
we have already found that GW1501914 is consistent with
GR in Sec. VI (cf. Fig. 11).
As our next step, we perform two additional parameter

estimation runs, in zero noise, but now generating our
synthetic GW signal with the SEOBNRv4PHM [65] and the
NRSur7dq4 [105,106] waveform models. Both models
allow for spin precession, unlike our pSEOBNRHM. Hence,
we can study if the GR deviations we are finding are due to
systematic errors in the GW modeling. Once again, the
maximum-likelihood point of the LVK analysis of
GW200129 using IMRPhenomXPHM was used, but this
time with the binary in-plane spin components included.
We show our results in the right panel of Fig. 13. The one-
and two-dimensional posterior distributions of δω and δA
are shown in dash-dotted curves for the NRSur7dq4
injection and with dotted curves for the SEOBNRv4PHM
injection. For reference, we also include the posterior
distribution associated to the SEOBNRHM injection (dashed
curves) and to the data from GW200129 (solid curves). We
see that these two spin-precessing GW signals, when
analyzed in zero noise, are also in disagreement with
GR, when analyzed with our nonprecessing non-GR
model. We also see that our results using NRSur7dq4
(which compares the best against NR simulations in its
regime of validity) are in good agreement with what we
obtain by analyzing the GW200129 data. These results,
compared with those obtained from the SEOBNRHM

injection, suggest that the presence of spin precession in
the GR signal biases us to find a false evidence for beyond-
GR effects when we use a nonprecessing non-GR model.
Is this the full story? InRef. [107], Payne et al. revisited the

evidence of spin precession in GW200129 [108]. They
concluded that the evidence for spin precession originates
from the LIGO Livingston data, in the 20–50 Hz frequency
range, alone. This range coincides with the frequency range
that displays data quality issues, due to a glitch in the detector
that overlapped in time with the signal [19]. By reanalyzing
theGW200129 datawith flow > 50 Hz (while leaving LIGO
Hanford data intact and not using Virgo data), they showed
that the evidence in favor of spin precession in this event
disappears. See Ref. [107] for a detailed discussion.
Moreover, a reanalysis of the LIGO Livingston glitch
mitigation showed that the difference between the spin-
precessing and nonprecessing interpretations of this event is
subdominant relative to uncertainties in the glitch subtrac-
tion [107]. Since we have used the glitch-subtracted data in
our parameter estimation, we are then led to the second
conclusion of our study of this event, namely that, issueswith
data quality can introduce biases in non-GRparameters, to an
extent that one can find significant false violations of GR in
GW events detected with present GW observatories. See
Ref. [109] for a recent study of this issue.
Furthermore, we repeat here the analysis we have per-

formed for GW150914 where we considered ϑnGR ¼
fδA; δf220; δτ220g as our non-GR parameters. For the dis-
cussion that follows, we assume that GW200129 is an
unmistakable genuine spin-precessing BBH. We show our
results in Fig. 14. We see that while our inferred values of
δf220 and δτ220 are consistent with GR at 90% confidence
level, our inference of the amplitude parameter, δA ¼
0.50þ0.46

−0.30 at 90% credible level, remains inconsistent with
GR.Moreover, this value hardly changes fromour fδA; δωg-
study, i.e., δA ¼ 0.44þ0.38

−0.28 , at the same credible level.
This result is interesting for two reasons. First, it indi-

cates that the systematic error caused by spin-precession
mismodeling is robust to the inclusion of deformations to
the ringdown QNM frequencies, at least for this event.
Second, there is a commonality between our finding for
GW150914 (see Fig. 12) and GW200129 (see Fig. 14)
namely, that in both cases the posterior distributions of
δf220 and δτ220 are consistent with GR, despite the larger
parameter space due to the inclusion of δA. In the case in
which one considers only δf220 and δτ220 as non-GR
parameter, the consistency with GR had already been
established in Ref. [40], and in particular in Ref. [13];
see Sec. VIII, Fig. 14 there.2 Our analysis of these two GW

2The LVK Collaboration also does an independent analysis of
the ringdown using pyRing. This analysis lead to an odds ratio
log10OnGR

GR ¼ −0.09 for GW200129, the largest among all events
studied [11]. A positive value would quantify the level of
disagreement with GR.
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events with the new pSEOBNRHM waveform model sug-
gests the following: the model would be able to detect
deviations from nonprecessing quasicircular GW signals in
the plunge-merger ringdown which otherwise would not be
seen when having deformations to the ringdown only.
We close our discussion of GW200129 with two

remarks. First, data-quality issues aside, we can think of
our spin-precessing injection studies as illustrative of what
could happen in upcoming LVKobservation runs. By doing
so, we have then demonstrated the existence of a systematic
error on the non-GR parameters caused by spin-precession
mismodeling.3 Second, although we have proposed
pSEOBNRHM as a means of constraining (or detecting)
potential non-GR physics in BBH coalescences, we can
also interpret the merger parameters as indicators of our
ignorance in GR waveform modeling.4 More concretely, in
a hypothetical scenario where GW modelers did not know
that BBH can spin precess, an analysis of GW200129 with
pSEOBNRHM would suggest that their model of the peak
GW-mode amplitudes is insufficient to describe this event
and hence be an indicative of new, nonmodeled binary
dynamics that was absent in their waveform model. They

would not be able to say that spin precession is the missing
dynamics, but they would at least realize that something is
missing.

VIII. DISCUSSIONS AND FINAL REMARKS

We presented a time-domain IMR waveform model that
accommodates parametrized deviations from GR in the
plunge-merger-ringdown stage of nonprecessing and qua-
sicircular BBHs. This model generalizes the previous
iterations of the pSEOBNRHM model [38–40], which
included deviations from GR in the inspiral phase or
modified the QNM frequencies only, by introducing
deformations parameters ϑmerger

nGR that, for each GW mode,
can change the time at which the GW mode peaks, the
mode frequency at this instant, and the peak mode
amplitude. This new version of pSEOBNRHM reduces to
the state-of-the-art SEOBNRHM model [63,64,71] for non-
precessing and quasicircular BBHs in the limit in which all
deformations parameters are set to zero.
We used pSEOBNRHM to perform a series of injections

studies for GW150914-like events exploring (i) the con-
straints that one could place on these non-GR parameters,
(ii) the biases introduced on the intrinsic binary parameters
in case nature is not described by GR and we model the
signal with a GR template, and, finally, and (iii) we studied
the measurability of these non-GR parameters.
We also used pSEOBNRHM in a reanalysis of GW150914

and GW200129. For GW150914, we found that the
deviations from the GR peak amplitude and the instanta-
neous GW frequency can already be constrained to about
20% at 90% credible level. For GW200129, we found an
interesting interplay between spin precession and false
violations of GR that manifests as a ∼2σ deviation from GR
in the peak amplitude parameter. By interpreting the
evidence for spin precession in this event as due to data-
quality issues in the LIGO Livingston detector [19,107], we
found a further a connection between data-quality issues
and false violations of GR [109].
These results warrant further studies on the systematic

bias due to spin precession in tests of GR. In the context of
plunge-merger-ringdown test, this could be achieved by
extending the SEOBNRv4PHM waveform model [65] to
include the same set of non-GR parameters ϑnGR used here.
It is also natural to explore which systematic effects higher
GW modes [110] and binary eccentricity can introduce in
tests of GR. For the latter, see Ref. [111] for work in this
direction for IMR consistency tests [60,112] and Ref. [113]
in the context of deviations in the post-Newtonian (PN) GW
phasing [31,36,114]. It would also be interesting to inves-
tigate these issues in the context of the ringdown test within
the EOB framework employed by LVK Collaboration [13]
and which relies on pSEOBNRHM [39,40]. This could
be done by adding non-GR deformations to the
SEOBNRv4EHM waveform model of Ref. [115]. It would
also be important to investigate whether pSEOBNRHM can

FIG. 14. The one- and two-dimensional posterior distribution
functions for δA, δf220, and δτ220 for GW200129. All contours
indicate 90% credible regions. We see that while our inferred
values for δf220 and δτ220 are consistent with GR, δA is not.

3If the GW signal had a smaller total-mass binary, signatures of
spin precession could have been observed from the inspiral
portion of the waveform only.

4In this interpretation, the questions we investigated in Secs. V
A and V B become: (i) how large are the systematic errors in
one’s parameter inference due to GW modeling? and (ii) how
large can our GW-modeling uncertainties be such that we are still
consistent with the “true” binary parameters?
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be used to detect signatures of non-GR physics, as predicted
by the rapidly growing field of NR in modified gravity
theories (see e.g., Refs. [116–125]); some of which predict
nonperturbative departures from GR only in late-inspiral
andmerger ringdown [126–129]. One could also studywhat
the theory-agnostic boundswe obtainedwithGW150914 on
the amplitude and GW frequency imply to the free param-
eters of various modified gravity theories.
The deformations parameters ϑmerger

nGR in our pSEOBNRHM
model should have an approximate correspondence to
the phenomenological deviation parameters (from NR
calibrated values) in the “intermediate region” of the
IMRPhenom waveform model used in the TIGER pipe-
line [35–37] of the LVK Collaboration [9–12]. Such a
mapping could be derived through synthetic injection
studies. This work only introduced non-GR parameters
in the EOB GWmodes and only during the plunge-merger-
ringdown. Importantly, and more consistently, in the near
future we will extend the parametrization to the EOB
conservative and dissipative dynamics.
The interplay between GW waveform systematics,

characterization and subtraction of nontransient Gaussian
noises in GW detectors, and non-GR physics will become
increasingly important in the future. Planned ground-
based [130,131] and space-borne GW observatories [132]
will detect GW transients with SNRs that may reach the
thousands depending on the source. Having all these
aspects under control is a daunting task that will need to
be faced if one wants to confidently answer the question “Is
Einstein still right?” [133] in the stage of BBH coales-
cences where his theory unveils its most outlandish aspects.
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APPENDIX: ESTIMATION OF THE INTRINSIC
BINARY PARAMETERS

In this appendix, we compare the posterior distributions
on the intrinsic binary parameters obtained using the
SEOBNRHM and pSEOBNRHM waveform models. This
complements the results shown in Sec. V B (Fig. 15)
and Sec. VI (Fig. 16). For simplicity, we focus on the
total massM, the mass ratio q, the effective spin χeff and the
luminosity distance DL.

FIG. 15. The one- and two-dimensional posterior distributions
on the intrinsic binary parameters of the total mas M, the mass
ratio q, the effective spin χeff , and the luminosity distance DL for
a GR injection with the parameters in Table II. The parameter
estimation is performed using SEOBNRHM (solid curves) and
pSEOBNRHM (dashed curves) waveform models. All contours
indicate 90% credible regions and the vertical lines mark the
inferred median values for each parameter.
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Figure 15 shows the posterior distributions on the
intrinsic binary parameters for a GR signal with the
properties shown in Table II. The solid curves are obtained
when the parameter estimation is performed with the
GR waveform model SEOBNRHM, whereas the dashed

curves are obtained with the parametrized plunge-merger-
ringdown waveform model pSEOBNRHM (cf. Sec. V B). In
both cases, the SNR is 98. We see that the 90% confidence
intervals of the posterior distributions in the two analyses
overlap in the parameter space. The most important differ-
ence is that the 90% credible intervals are wider in the
pSEOBNRHM analysis. There are also changes to the
median values of the binary parameters, as can be seen
through the vertical lines in the plot.
To be more precise, the posteriors of the pSEOBNRHM

model have a tail, most evidently in the mass ratio q. For
the mass ratio, at 90% confidence interval, we find q ¼
0.87þ0.12

−0.10 (for the SEOBNRHM recovery) and q ¼ 0.84þ0.15
−0.20

(for the pSEOBNRHM recovery). The broader posteriors,
and tails, are due to the fact that the pSEOBNRHM model
has five additional parameters with respect to SEOBNRHM.
Qualitatively, by increasing the number of parameters in the
model we increase the number of possible waveforms that
match, to some extent, the injected signal. This will be most
evidently seen in Fig. 16 which we discuss below.
Figure 16 shows the posterior distributions on the intrin-

sic binary parameters for our analyses of GW150914
(cf. Sec. VI). The solid curves are obtained when we
use SEOBNRHM for parameter estimation, whereas the
dashed and dotted curves are obtained when we use
pSEOBNRHM with non-GR parameters fδA; δωg (“merger
test of GR”) and fδA; δf220; δτ220g (“merger-ringdown test
of GR”), respectively. The figure is similar to Fig. 15,
discussed above. Again, we see that the 90% confidence
intervals of the posterior distributions in the three analyses
overlap in the parameter space. However, here we can see
more explicitly how the increase of extra non-GR param-
eters in the waveform model results in wider posteriors and
tails appearance.
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