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The Laser Interferometer Space Antenna (LISA) is an upcoming ESA mission that will detect
gravitational waves in space by interferometrically measuring the separation between free-falling
test masses at picometer precision. To reach the desired performance, LISA will employ the noise
reduction technique Time-Delay Interferometry (TDI), in which multiple raw interferometric read-
outs are time shifted and combined into the final scientific observables. Evaluating the performance
in terms of these TDI variables requires careful tracking of how different noise sources propagate
through TDI, as noise correlations might affect the performance in unexpected ways. One example
of such potentially correlated noise is the Relative Intensity Noise (RIN) of the six lasers aboard
the three LISA satellites, which will couple into the interferometric phase measurements. In this
article, we calculate the expected RIN levels based on the current mission architecture and the
envisaged mitigation strategies. We find that strict requirements on the technical design reduce the
effect from approximately 8.7 pm/

√
Hz per inter-Spacecraft (SC) interferometer to that of a much

lower sub–1 pm/
√

Hz noise, with typical characteristics of an uncorrelated readout noise after TDI.
Our investigations underline the importance of sufficient balanced detection of the interferometric
measurements.

PACS numbers: 07.05.Kf, 07.50.Qx, 07.60.Ly, 07.87.+v, 42.62.Eh, 95.55.Ym

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is a
future space mission that will detect gravitational waves
in the mHz range [1, 2]. It consists of a constellation of
three identical Spacecraft (SC), each of which follows a
heliocentric orbit at similar distance to the Sun as the
Earth, such that the whole constellation forms an almost
equilateral triangle either leading or trailing our planet
with an angular separation of (10 to 30)°. Each space-
craft hosts two free-falling Test Masses (TMs), which
are shielded inside the SCs from external disturbances
and act as geodesic reference points for the gravitational
wave detection. Laser beams are exchanged between the
SCs across the 2.5 Gm arms of the constellation, tracking
the distance variations between the TMs. Due to orbital
dynamics, the frequencies of the inter-SC lasers will be
subject to Doppler shifts in the MHz band, such that the
interferometers onboard LISA will detect heterodyne fre-
quencies with a bandwidth of about (5 to 25) MHz. Dis-
tance fluctuations between the spacecraft and the TMs
housed within them will be encoded as phase fluctuations
in these MHz beatnotes, which the LISA phasemeters will
be able to resolve with µ-cycle precision, corresponding
to a design sensitivity of about 10 pm/

√
Hz.

This ultra precise measurement will enable LISA to
simultaneously detect and characterize tens of thou-
sands of gravitational-wave sources, potentially answer-
ing many open questions in astrophysics, cosmology and
fundamental physics.

The precursor mission LISA Pathfinder (LPF) already
demonstrated the feasibility of many parts of the sys-
tem [3, 4], including the local interferometry inside each

SC up to approximately 30 fm/
√

Hz precision [5, 6]. The
inter-satellite interferometry has been partially demon-
strated with the GRACE-FO mission [7].

However, LISA presents a number of unique techni-
cal challenges. Contrary to GRACE-FO, the raw read-
out of the inter-satellite interferometers of LISA will be
completely overwhelmed by laser frequency noise, which
does not immediately cancel, due to the time-varying and
unequal arms of the constellation. Instead, LISA will
make use of post processing techniques such as Time-
Delay Interferometry (TDI), in which multiple interfer-
ometric readouts are combined with the appropriate de-
lays to suppress the dominant noise sources, such as laser
frequency noise [8]. These techniques, together with
strict requirements that are placed on the subsystems
and lasers, will ensure that LISA reaches its sensitiv-
ity goal. Different noises propagate through TDI with
various transfer functions [9], depending on their char-
acteristics, such that evaluating the final performance of
LISA requires detailed studies for all performance rele-
vant noise sources.

One of these noises is laser Relative Intensity Noise
(RIN), which is typically described by the laser power
fluctuations relative to its average power. Since it is a
property of each laser, it propagates through the con-
stellation into the various interferometers and generates
additive power noise to the time-varying beat signals on
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every Photodiode (PD). This noise couples inevitably to
the phase readout at around the heterodyne frequency
(so called “1f-RIN”) and its first harmonic (“2f-RIN”)
[10]. We show in this article that it is one of the dom-
inating metrology noise sources (after removal of laser
frequency noise) if not carefully controlled. 1f-RIN is typ-
ically the biggest contributor, since the resulting phase
noise is scaled by the ratio of the beam powers, which are,
for LISA, fairly large (magnification in the long-arm in-
terferometers by about 7 orders of magnitude). As such,
its impact on the sensitivity has to be understood and
mitigated.

We draw on the lessons learned from the LPF mission
that has also been used to study the effect of RIN in a
space-based heterodyne interferometer. In this article we
describe the coupling in the context of the LISA mission
architecture, taking into account the constellation char-
acteristics, possible correlations, the optical parameters
and the effects of LPF-comparable mitigation schemes.

Further, we study the impact of TDI on the RIN phase
error by means of simulation and compare it with ana-
lytical expectations. We find that the coupling exhibits
performance characteristics similar to that of an uncorre-
lated sub–1 pm/

√
Hz noise, assuming reasonable imple-

mentation of the mitigation strategies.

II. MISSION CHARACTERISTICS WITH
RESPECT TO RIN

In this section, we give an overview of important mis-
sion aspects that have an effect on the RIN-to-phase cou-
pling. The theory of the coupling itself will be discussed
in later sections.

In Fig. 1, a schematic of the constellation with the
commonly-used nomenclature is shown. The main mea-
surement is the “virtual” TM-to-TM measurement along
one LISA arm. For technical reasons (e.g., beam diver-
gence over millions of kilometers, very weak beam pow-
ers, straylight effects and optical design), no direct TM-
to-TM measurements are possible. Therefore, we use the
“split-interferometry” setup, in which 3 optical measure-
ments are combined to reconstruct the desired quantity:
the local TM-to-local SC measurement, the local SC-to-
distant SC measurement, and the distant SC-to-distant
TM measurement.

The total single link TM-to-TM metrology noise is con-
sidered to be below 10 pm/

√
Hz,

S
1/2
IFO ≤ 10

pm√
Hz
·
√
fR, (1)

fR = 1 +

(
2 mHz

f

)4

, (2)

with fR as a factor allowing for a relaxation towards lower
frequencies, where acceleration noise becomes dominant
and testing is difficult [1].

The lasers have an output power of 2 W at 1064 nm [1],
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FIG. 1. Simplified overview of the LISA triangular constella-
tion with the naming conventions as used in this article. De-
lays are denoted Dij ; Optical Benches OBij ; lasers are called
LAij . Reprint from [11].
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FIG. 2. Schematic of the optical interferometry on one LISA
MOSA from Fig. 1. A telescope collects the light from the
distant SC and interferes it with the local beam. The local
laser is also interfered with the laser from the adjacent MOSA
on the same SC in the local interferometers (TMIs and RFIs).
The Gravitational Reference Sensor (GRS) controls the TM
relative to the SC in the suspended degrees of freedom.

and are stabilized on a cavity. A total of six lasers are
powering 18 interferometers, and enable the TM-to-TM
measurement by linear combinations. Per SC, there are
two Moving Optical Sub-Assemblys (MOSAs), each at-
tached to a laser source (named “LAij”). They host three
interferometers:

• one inter-SC interferometer (ISI) containing the
Gravitational Wave (GW) signals,

• one TM-to-SC interferometer (TMI), used to mon-
itor the reference points in this split interferometry
setup, and
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• one reference interferometer (RFI), used for laser
locking and reduction of common noise.

Between the two SC of one LISA arm, there are two
symmetric laser links. Due to divergence of the Gaus-
sian output beam, the laser power reduces drastically
over the 2.5 Gm propagation distance to a few hundreds
pW at the receiving SC; it is then interfered with a local
mW beam. The laser beams will carry additional modu-
lation sidebands used for clock synchronization, ranging
information and data transfer, which further reduce the
available power in the main carrier-to-carrier beat signal
to about 81 % [1, 12].

The two adjacent MOSAs exchange their laser light
via fiber backlinks, see Fig. 2. To reduce backscatter, the
powers guided into the fibers are also relatively small (in
the order of mW to nW) and are interfered with beams
a few orders of magnitude stronger, such that the beam
power ratio in any interferometer is far from unity. By
design, the laser beam properties in each interferometer
are different. Even comparing the two local interferom-
eters between each MOSA on a single SC, which receive
beams from the same laser source and share the same ab-
solute beat frequency, shows that they have their power
ratios inverted due to the fiber transfer; thus the local
SC scaling of the RIN-to-phase couplings (that depend
on the power ratios for 1f-RIN) are not completely iden-
tical, as will be considered later in this article.

In every interferometer, two beams interfere at a re-
combination beamsplitter and PDs measure their imping-
ing time-varying power. The two output ports of each of
these beamsplitters are used to apply balanced detection
to the (naturally π-shifted) signals, which allows us to
subtract both ports to reduce noises like 1f-RIN, while
maintaining the signal information [10].

The phase measurement is performed by dedicated
Digital Phase-Locked Loops (DPLLs) [13, 14], as de-
picted in Fig. 3. The loops are able to track the
time-varying beatnote over many MHz and measure the
phase with µ-cycle precision. It resembles a typical I/Q-
demodulation scheme, but is all performed digitally and
uses a control loop on the Q quadrature as an error signal
for an Numerically Controlled Oscillator (NCO) to drive
the mixing process.

Since each laser is involved in 6 interferometers, they
can possibly add correlated noise in those interferome-
ters. However, the RIN-to-phase coupling depends on
the absolute beat frequency (and its harmonic), which
means that RINs at different heterodyne frequencies in
different interferometers can be considered uncorrelated
if the beatnote frequencies are reasonably well separated,
i.e., by more than the measurement band of a few Hz;
this holds even if the same laser is involved. RIN from
different laser sources is always considered uncorrelated,
especially at MHz frequencies. This means that RIN in
the TMIs and RFIs on the same SC is correlated, while
the Inter-Spacecraft Interferometers (ISIs) may not have
correlations. Furthermore, the ISIs are subject to orbital
Doppler shifts (in the MHz range) and thus their hetero-
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FIG. 1. An illustration of the DWS method. Two waves
impinge on the surface of a quadrant photodiode (QPD) at an
angle. The upper and lower segments of the QPD thus mea-
sure different phase offsets between the interfering wavefronts.
In the case of heterodyne interference, this angular misalign-
ment between wavefronts manifests as shifts of the phase of the
measured photocurrent beat-note signals.

the function of a DPLL as a phase-meter core is summa-
rized. The standard application of four independent DPLLs
to the segments of a QPD is described in Sec. III and
the proposed scheme in Sec. IV. A noise analysis of the
new technique, with a comparison against the conventional
method, is reported in Sec. V, followed by a conclusion in
Sec. VI.

II. PHASE MEASUREMENT WITH DIGITAL
PHASE-LOCKED LOOPS

The principle of a DPLL is to generate a digital sine
wave in a numerically controlled oscillator (NCO) and
make it track the incoming sinusoidal beat-note signal in
frequency and phase. After appropriate signal condition-
ing, the incoming signal is first digitized in an analog-
to-digital converter (ADC) and all remaining processing
happens in the digital domain, typically implemented in
a field-programmable gate array (FPGA) for the tracking
part (see Fig. 2).

The NCO consists of a phase-increment register (PIR)
that represents the instantaneous signal frequency, a phase
accumulator (PA), which holds the integral of the fre-
quency, i.e., the instantaneous phase, and a look-up table
(LUT) that converts the phase into a sine wave and option-
ally also a cosine wave. The ADC and all digital blocks are
driven synchronously from a common clock, which sets
the reference for any single phase measurement.

In order to make the NCO sine signal track the incoming
signal, both are mixed in a multiplier that acts as a phase
detector and the phase deviation thus measured is used
as error signal in a servo loop. When the loop is closed
and locked, both the incoming and the NCO sine signal
have the same frequency and their phase is shifted by 90◦,
such that their product, the error signal, has a zero aver-
age. The incoming and NCO sine signals are said to be “in
quadrature” (denoted by “Q”). An optional second branch
multiplies the incoming signal with a digital cosine signal,
which is then “in phase” (“I”) and which can be used to
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FIG. 2. The functional blocks of a DPLL. The input signal
from the ADC is separately mixed with a sine and a cosine deliv-
ered by the NCO, yielding the “in quadrature” Q and “in phase”
I signals. The second harmonic of the beat-note frequency 2f
is suppressed by low-pass filtering these signals. The Q signal
is then used as error signal for the servo. The output of the
proportional-integral (PI) controller gives the instantaneous sig-
nal frequency and is stored in the PIR. This is then integrated
and stored in the PA, which is fed to the sine and cosine look-up
tables (LUT) that close the loop.

measure the amplitude of the incoming signal. Low-pass
filters after the mixers suppress the second harmonic of the
signal frequency (“2f ”), a by-product of the multiplica-
tion, in order to prevent it from circulating around the loop
in an undesired nonlinear process. The primary achieve-
ment of such a DPLL is that the frequency and phase now
exist in digital form in the PIR and PA registers, respec-
tively, within the NCO, from where they can be directly
read out.

More specifically, the PIR holds the instantaneous sig-
nal frequency ω in units of cycles per clock period, with
0 < ω < 0.5. It slowly varies as the input signal frequency
changes. It is integrated in the PA, which always has a frac-
tional part ϕ, with 0 ≤ ϕ < 1 cycles, which is used by the
LUTs. It follows a rapid sawtooth function. In most cases,
the integer number of cycles (wavelengths) must also be
tracked. This can be achieved by including extra bits in the
PA that represent the integer number of cycles. We denote
that extended PA by #, with

ϕ = # mod 1 (1)

simply being the fractional part of #. The total phase # is
an ever-increasing ramp. Instead of using extra bits in the
PA, the total phase can, in principle, also be reconstructed
by integrating ω externally.

Among the many performance parameters of a DPLL,
the most important here is the ability to continuously track

054013-2

FIG. 3. Schematic of a DPLL in LISA. The input time series
from the ADC is mixed with the sine from an NCO, which
represents a closed control loop with the down-mixed instan-
taneous frequency as its error signal. The DPLL is able to
follow the input frequency (even for time-varying heterodyne
frequencies) within its bandwidth and accumulates the total
phase of the input, which is the desired phase measurement.
PA phase accumulator; PIR phase-increment register; LUT
look-up table; PI proportional-integral. Reprint from [14].

dyne frequencies vary. The expected shifts can be calcu-
lated beforehand and are used to enable and optimize the
interferometry and detection process. The absolute beat
frequencies are technically restricted to a range of ap-
proximately (5 to 25) MHz via an (offset) frequency lock-
ing scheme of the lasers. This results in a configuration
where one primary laser is locked to a cavity, while the
other five lasers are locked (with MHz offsets) to the pri-
mary laser. The required offset frequencies are calculated
on ground, yielding a so-called frequency plan. Various
possible locking topologies (with LA12 as the primary
laser) have been identified [12, 15], as shown in Fig. 4.

The locking also inevitably imprints any noise (and
signal) information of the interferometers used for lock-
ing onto the locked lasers. Therefore, RIN-induced phase
noise will also be added to the locked laser and propa-
gates through the constellation into all six interferome-
ters of that laser. Furthermore, the next laser that locks
on the first locked laser will continue to carry this noise
and thus have locally increased phase noise.

Figure 5 shows one possible schematic for the local
laser control loop used for locking. Here, we assume that
the error signal of the control loop has been balanced be-
tween the two interferometer output ports (current base-
line), which propagates only a reduced amount of phase
noise “echos” through the constellation.

We calculate and simulate these effects in this paper.
Luckily, TDI strongly suppresses any laser phase fluctua-
tions in post-processing, including echoes from the lock-
ing control loops, such that the final TDI variables are
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FIG. 4. Schematic of the different locking configurations,
here with laser LA12 as the primary laser. Reprint from [12].

unaffected by the choice of the locking topology [9, 12].

III. RIN COUPLING IN LISA

The RIN n = P (t)/〈P (t)〉 of any laser power P (t),
usually expressed in Amplitude Spectral Density (ASD)

units of 1/
√

Hz, causes phase noise in the interferomet-
ric readout via three distinct coupling channels [4, 10].
First, “DC-RIN” inside the measurement band at low
frequencies causes slow intensity fluctuations that lead
to radiation pressure on the SCs (negligible) and TMs
(not negligible). This drives the low-frequency RIN re-

quirements and has an assumed level of 100 ppm/
√

Hz at
0.1 mHz. It gives a small contribution to the TM acceler-
ation of about 0.35 fm/s2/

√
Hz, out of a total acceleration

noise allocation of roughly 10 fm/s2/
√

Hz at 0.1 mHz [1].
Secondly, 1f-RIN from around the heterodyne fre-

quency causes additive phase noise to the main signal
on the PDs.

Finally, 2f-RIN from around twice the heterodyne fre-
quency is optically down-mixed and also produces addi-

Laser control

BS

PDs

Phasemeter 
DPLLs

Balancing

FIG. 5. Schematic of the outer offset frequency locking con-
trol loop with DPLLs. This represents the simplified view of
one LISA interferometer, which is used for locking laser L1

to laser L2 with a typical bandwidth of multiple kHz. The
two lasers with phase evolution Φi(t) are brought to interfer-
ence via the BS, detected on the PDs (in reality redundant
QPDs) and measured in the phasemeter. The instantenous
(balanced) frequencies of the DPLL are used to offset lock the
lasers according to the predetermined frequency planning.

tive noise (to first order) at the heterodyne frequency.
We focus in this article on the latter two mechanisms.

They do not cause any direct force noise, and therefore
do not generate any real TM motion signal, but cause an
additive small-vector readout noise instead.

Since the RIN is a property of the laser beams, it ap-
pears correlated on all QPD segments of a single diode.
In this paper, we use the terms QPD and PD interchange-
ably, as it has no impact on our description of the RIN
coupling in the longitudinal degree of freedom.

A. Theory of DPLL readout

In the next sections, we derive the RIN-to-phase cou-
pling equations using the LISA-specific DPLL readout
architecture.

The DPLL depicted in Fig. 3 is a control loop that
uses the error signal, Q, to adjust the total phase and
frequency of an NCO. Contrary to a simple I/Q demod-
ulation, the phase readout is not directly given by com-
bining the I/Q channels, but instead available by digitally
reading out the NCO registers.

When the loop is closed, and if we assume it to work
perfectly with infinite gain in the measurement band, the
error signal will be exactly equal to zero. The error signal
is produced by multiplying the incoming signal (modeled
as a cosine) by a sine that is perfectly in phase.

We consider an input signal that has a strong main
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beatnote plus small additive disturbing terms, represent-
ing small-vector RIN. We write

V (t) = A cos
(
Φ(t)

)
+ n(t), (3)

where we assumeA to be constant, and
∣∣n(t)

∣∣� A. Here,

Φ̇(t) is typically in the order of MHz. n(t) represents our
different RIN terms, but could in principle also be any
other additive noise.

We assume that the phase error caused by the distur-
bance n(t) is small, of order � 1 expressed in cycles or
radian. Therefore, we consider the NCO signal used in
the lock to closely follow the main beatnote, and model
it as

U(t) = sin
(
Φ(t) + ϕ(t)

)
, (4)

where ϕ(t) � 1 accounts for the phase readout errors
due to the disturbance n(t). The total phase

ΦNCO(t) = Φ(t) + ϕ(t) (5)

represents our phase readout and is available from the
phasemeter phase accumulator.

The error signal is then computed by mixing the NCO
signal with the input signal,

Q(t) = 〈V (t)U(t)〉, (6)

where 〈·〉 denotes a low-pass filter removing frequency
content far away from DC. We assume that this filter is
a linear operation, in the sense that 〈aX+bY 〉 = a〈X〉+
b〈Y 〉. A typical example for such a filter is a moving
average.

The loop will adjust the phase of the NCO to drive
the error signal to zero. This means we can model how
the disturbance n(t) affects the output of the DPLL for
the closed loop by solving the equation Q ≡ 0 for ϕ;
i.e., by finding the NCO phase for which the error signal
vanishes.

B. Phase readout

Combining the previous equations, we can write

Q = 〈A cos
(
Φ(t)

)
sin
(
Φ(t) + ϕ(t)

)
〉

+ 〈n(t) sin
(
Φ(t) + ϕ(t)

)
〉.

(7)

Using trigonometric identities and that ϕ(t) � 1, the
first term on the right-hand side

〈A cos
(
Φ(t)

)
sin
(
Φ(t) + ϕ(t)

)
〉 ≈ A

2
ϕ(t). (8)

To treat the other term, we first expand to first order
in ϕ and then neglect the second-order term containing

ϕ(t)n(t), yielding

〈n(t) sin
(
Φ(t) + ϕ(t)

)
〉 ≈ 〈n(t) sin

(
Φ(t)

)
〉. (9)

Using this in Eq. (7), with the locking condition Q ≡ 0,
gives the phase error induced by n(t),

ϕ(t) ≈ − 2

A
〈n(t) sin

(
Φ(t)

)
〉, (10)

and the total phase readout will be given as

ΦNCO(t) ≈ Φ(t)− 2

A
〈n(t) sin

(
Φ(t)

)
〉. (11)

This means that, to first order, the disturbance is simply
mixed with the main beatnote and scaled by the recipro-
cal beatnote amplitude.

C. Scaling for RIN

We now need to apply Eq. (11) to the typical photo-
diode detection equations adapted for heterodyne inter-
ferometry. They provide the scaling factors for A and
n(t) that describe the RIN coupling correctly. The equa-
tions are derived in [10], and are given here with the rel-
evant RIN terms only. Note that any input DC contribu-
tions are neglected here. We use the equations adapted
for LISA to describe the interferometer output ports A
and B of the recombination beamsplitter (with amplitude
transmission and reflection coefficients τ, ρ, average beam
powers Pi, heterodyne efficiency ηhet, and RIN nm, nr for
a general measurement and general reference beam m, r
and a certain signal power in the carrier of εcarrier). They
yield, for the measured powers per output port,

PA = ρ2Pmnm + τ2Prnr︸ ︷︷ ︸
1f-RIN, port A

+(nm + nr)ρτεcarrier

√
ηhetPmPr cos

(
Φ(t)

)︸ ︷︷ ︸
2f-RIN, port A

+2ρτεcarrier

√
ηhetPmPr cos

(
Φ(t)

)︸ ︷︷ ︸
Signal, port A

,

(12)

and

PB = τ2Pmnm + ρ2Prnr︸ ︷︷ ︸
1f-RIN, port B

−(nm + nr)ρτεcarrier

√
ηhetPmPr cos

(
Φ(t)

)︸ ︷︷ ︸
2f-RIN, port B

−2ρτεcarrier

√
ηhetPmPr cos

(
Φ(t)

)︸ ︷︷ ︸
Signal, port B

.

(13)

Here, we already see that balanced detection of the form
(PA − PB)/2 is able to suppress 1f-RIN, since it appears
with the same sign in both ports. However, 2f-RIN ap-
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pears with opposite signs in the two ports, identical to
the main signal, and therefore cannot be suppressed by
balanced detection.

From these equations we can model the input signal to
the DPLL using

V (t) = ±A cos
(
Φ(t)

)
+aini(t)±

A

2
ni(t) cos

(
Φ(t)

)
, (14)

with the scale factor A = 2ρτεcarrier

√
ηhetPmPr, while ai

represents the scale factor for one of the 1f-RIN terms and
ni(t) the RIN of one of the beams. The ± encodes output
port A or B. Since the RIN between the two beams is
uncorrelated (as well as 1f- and 2f-RIN per beam), we can
calculate their resulting phase noise independently. In
terms of spectral densities, one can build their quadratic
sum for the total phase noise afterwards.

We assume a relative power stability of the lasers of
around 3× 10−8 Hz−1/2 in the relevant bandwidth, such
that the resulting phase noise will be small, ϕ(t) � 1.
This allows to use the previous result of Eq. (10).

Therefore, we insert n(t) = aini(t)± A
2 ni(t) cos

(
Φ(t)

)
into Eq. (10), which gives for the resulting phase noise
(generated by one laser beam i = m, r),

ϕi(t) = −2ai
A
〈ni(t) sin

(
Φ(t)

)
〉︸ ︷︷ ︸

1f-RIN phasenoise

∓1

2
〈ni(t) sin

(
2Φ(t)

)
〉︸ ︷︷ ︸

2f-RIN phasenoise

.

(15)
We find that the noise n(t) appears mixed both with
sin
(
Φ(t)

)
as well as sin

(
2Φ(t)

)
. This implies that

noise around Φ̇(t) and 2Φ̇(t) are down-converted to the
phasemeter base band and couple into the phase accu-
mulator. Due to the down- and up-conversion process
of the mixing, only half of that noise power is actually
contributing to ϕ(t), since the other half is filtered out.
We also see that the 2f-RIN is independent of the signal
amplitude or average beampowers.

The total RIN-to-phase coupling must contain the RIN
from both beams,

ϕtot(t) = ϕm(t) + ϕr(t), (16)

with the corresponding coupling factors am = ρ2Pm,
ar = τ2Pr in port A and am = τ2Pm, ar = ρ2Pr in
port B.

After balanced detection, these coupling factors be-
come

A = 2ρτεcarrier

√
ηhetPmPr, (17)

am = (ρ2Pm − τ2Pm)/2, (18)

ar = (τ2Pr − ρ2Pr)/2. (19)

These mixing equations are used in the simulation re-
sults presented in later sections to carry over any phase-
correlation information correctly. They also agree with
the results derived in [10] for a small-vector noise ap-
proach, which is slightly less general.

Each interferometer (ISI, TMI, RFI) will carry such
a phase error ϕtot (here named by interferometer and
usually scaled by λ/(2π)),

ϕISI(t) = ϕISI,m(t) + ϕISI,r(t), (20)

ϕTMI(t) = ϕTMI,m(t) + ϕTMI,r(t), (21)

ϕRFI(t) = ϕRFI,m(t) + ϕRFI,r(t), (22)

where the different 1f-RIN amplitudes and total phases
depend on the different interferometer optical settings
(see Table I).

Note that for our simulations, we do not use Eqs. (18)
and (19), but instead model imperfections in the bal-
anced detection by artificially introducing a balancing
efficiency, 0 ≤ b ≤ 1, and then model the residual 1f-RIN
terms as

ϕ1f,i(t) = −2ai
A
〈n(t) sin

(
Φ(t)

)
〉 · (1− b), (23)

while still using perfect 50/50 beamsplitters in the simu-
lation.

D. Simplified phase noise equations without
correlations

If only the maximum or RMS RIN-to-phase coupling
is required (for example for the noise level in only one
interferometer), one can simplify the equations above by
dropping the phase information in the mixing process.
This ignores correlation properties of RIN but still gives
the right level of phase noise per individual interferom-
eter. We use the effect of the filter to select two inde-
pendent noise series at the in-band sampling frequency.
These two time-series n1f (t), n2f (t) have to be scaled due
to the mixing and filtering process and represent RIN
from around Φ̇ (1f-RIN) and 2Φ̇ (2f-RIN). The scale fac-
tors arise from simplifying 〈n(t) sin

(
Φ(t)

)
〉, which has an

ASD of approximately 1√
2
ñ, with ñ as the ASD value of

n(t).

Therefore, if we want to replace the mixing and filter-
ing process with an in-band, downsampled version of the
n(t) noise that has the correct scaling, we can use

〈n(t) sin
(
Φ(t)

)
〉 ≈ 1√

2
n1f (t), (24)

〈n(t) sin
(
2Φ(t)

)
〉 ≈ 1√

2
, n2f (t) (25)

for the 1f and 2f-RIN terms, respectively. We typically
assume ñ1f = ñ2f = 3× 10−8 Hz−1/2. In total, that
gives for one beam

ϕi(t) ≈ −
2ai
A

n1f (t)√
2
− 1

2

n2f (t)√
2
. (26)

The total RIN-induced phase noise from two beams
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Parameter Value Description

λ 1064 nm Laser wavelength
fhet (5 to 25) MHz Heterodyne frequency
n1f, 2f 3× 10−8 1√

Hz
Maximum (white) RIN ASD in the band (5 to 50) MHz

τ2, ρ2 0.5 Beamsplitter (in power when squared as given) transmission and reflection coefficients
b [0.9, 0, 1] Balancing efficiency, i.e. matching of the 1f-RIN amplitudes in the interferometer ports
ηhet,ISI 0.75 Heterodyne efficiency from the overlap integral in a long-arm (ISI) interferometer
ηhet,TMI 0.82 Heterodyne efficiency from the overlap integral in a TM (TMI) interferometer
ηhet,RFI 0.82 Heterodyne efficiency from the overlap integral in a reference (RFI) interferometer
εcarrier 0.81 Portion of power in the carrier of the beams
PISI,1 350 pW Mean power of the remote laser in the long-arm interferometer (from distant SC)
PISI,2 1 mW Mean power of the local laser in the long-arm interferometer
PTMI,1 500 nW Mean power of the adjacent laser in the TM interferometer (from adjacent bench)
PTMI,2 500µW Mean power of the local laser in the TM interferometer
PRFI,1 500 nW Mean power of the adjacent laser in the reference interferometer (from adjacent bench)

PRFI,2 1 mW Mean power of the local laser in the reference interferometer

dxSC 10 nm/
√

Hz Residual translational jitter of the SC, with respect to inertial space. When used as
a residual path offset in the equations, we calculate a RMS value by integrating over

a frequency band from (0 to 1) Hz as in
√

(10 nm/
√

Hz)2 · 1 Hz = 10 nm. In LPF we

measured a RMS in x1 of about 2 nm, and a peak-to-peak difference of about 10 nm
φISI dxSC Without noises or signals the measured phase due to minimal residual translational

jitter in an ISI
φTMI dxSC, [−2π, 2π] Limit of TMI interferometer set-point due to residual jitter or TM guidance injection
φRFI 0 rad RFI interferometer phase offset

TABLE I. Parameters of the optical chain with special relevance for the RIN to phase coupling. Where multiple numbers are
stated they correspond to the different simulations performed. The values are estimates from current design studies, and are
subject to minor changes.

would then be the same sum as before, ϕtot(t) = ϕm(t)+
ϕr(t), but now expressed simply by four uncorrelated
noise time series with low sampling frequency and cor-
responding standard deviation. This can be used to set
upper boundaries per interferometer level or for the lo-
cally correlated measurements (by using correlated time
series for upper-boundary estimates).

E. Laser locking

The required control for laser locking adds another
outer loop that uses the instantaneous frequency mea-
sured by the inner DPLL, as depicted in Fig. 5. Each
laser has its own phase, Φ1(t),Φ2(t), such that the beat-
note is represented by the total difference phase Φ(t) =
Φ1(t) − Φ2(t). As before, we denote by n(t) an additive
noise source, in our case RIN.

From the locking condition of the DPLL, Eq. (11), we
know that

ΦNCO(t) ≈ Φ(t)− 2

A
〈n(t) sin

(
Φ(t)

)
〉.

The outer offset frequency locking loop has the (ideal

in-band) locking condition that

fNCO(t)− foff(t) ≡ 0, (27)

⇐⇒ Φ̇NCO(t)− foff(t) ≡ 0 (28)

where the frequency offsets foff(t) are predefined values
calculated from the frequency planning.

This locking is assumed to be perfect (in the measure-
ment band, within a bandwidth of ∼ 10 kHz), such that
any disturbance of the offset phase, for example due to
RIN, laser frequency noise, or even gravitational-wave
signals, is added sign-inverted to the laser phase (com-
pared to the phasemeter measurement). This implies
that any of those terms cancel in the respective interfer-
ometer. Note that we assume the current baseline, i.e.,
that the locking will use the balanced readout, such that
1f-RIN is already minimized at the input to the control
loop and therefore not fully imprinted on the laser, and
thus not canceled on the level of individual photodiodes.
Since 2f-RIN is not canceled by balanced detection, it
will be fully imprinted on the laser, i.e., it will be fully
canceled on the level of individual photodiodes.

We can see this easily if we look at the outer loop
locking equation. In the phase domain, after integrating
Eq. (27) and setting the integration constant to 0, we
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have

0 ≡ ΦNCO(t)− Φoff(t) (29)

⇒ Φoff(t) ≈ Φ(t)− 2

A
〈n(t) sin

(
Φ(t)

)
〉 (30)

⇐⇒ Φoff(t) ≈ Φ1(t)− Φ2(t)

− 2

A
〈n(t) sin

(
Φ1(t)− Φ2(t)

)
〉 (31)

⇒ Φ1(t) = Φ2(t) + Φoff(t)

+
2

A
〈n(t) sin

(
Φ1(t)− Φ2(t)

)
〉. (32)

We see that the equation is implicit and cannot be solved
analytically for Φ1(t). We can iteratively solve it to first
order,

Φ1(t) = Φ2(t) + Φoff(t)

+
2

A
〈n(t) sin

(
[Φ1(t) = . . . ]− Φ2(t)

)
〉 (33)

≈ Φ2(t) + Φoff(t) +
2

A
〈n(t) sin

(
Φoff(t)

)
〉 (34)

≈ Φ2(t) + Φoff(t) +
2

A
〈n(t) sin

(
Φ(t)

)
〉. (35)

We expect that the effect of the loop on the input signal
Φ1(t) is very small due to n � 1, which allows the ap-
proximations in the last two equations for simulation pur-
poses. It is assumed here that the loop will always have
enough bandwidth to perfectly cancel the measured noise
and imprint it on the laser phase, “echoing” it through
the constellation.

As an example, we give the locking propagation equa-
tions for the baseline N1-12 locking configuration, see
Fig. 4; laser phase is locked with the phase error mea-
sured in the respective locking interferometer, and prop-
agated with delays such that the laser phase errors can
be written as

R12 = Reference, (36)

R13 = sign(t13) · t13, (37)

R31 = sign(s31) · s31 +D31(R13), (38)

R32 = sign(t32) · t32 +R31, (39)

R21 = sign(s21) · s21, (40)

R23 = sign(t23) · t23 +R21, (41)

where Rij describes the RIN phase error that each laser
LAij is carrying. The shorthand notation tij stands for
the RIN phase error originating from RFIij and sij maps
the RIN phase error from ISIij . Delays Dij are defined
as in Fig. 1 and the sign(·) represents the sign of the beat
frequency in the corresponding interferometer.

F. RIN Correlations in LISA

In this section, we discuss possible correlations between
interferometers.

First, between the two ISIs where the same laser is
involved, a potential short-time correlation can appear
if the beatnote frequencies are identical at the times the
measurements are combined in TDI, i.e., at multiples of
the light travel time between the SC. This is very unlikely
to happen due to the frequency planning and the arm-
breathing.

In any case, the overall RIN contributions in the ISIs
will be completely dominated by the RIN of the local
beam, due to the power ratios

√
PISI,1/PISI,2 · n1f(t) �√

PISI,2/PISI,1 · n1f(t). Thus, any potential correlation
would involve one of the negligible terms, and can there-
fore be safely ignored.

Second, as explained before, 1f-RIN and 2f-RIN are
several MHz apart due to the mission design, and thus
can be considered as uncorrelated. However, the same
two lasers interfere in the four local TMIs and RFIs on
each SC and therefore produce correlated RIN. The cor-
relation (1f- with 1f-RIN) is not very strong, since the
power ratios are inverse in the local interferometers of
two adjacent MOSAs. In the case of 2f-RIN, there is full
correlation, since it does not depend on the beam powers.

Third, we consider possible correlations between the
2 ISIs and the 4 remaining interferometers on one SC.
To minimize crosstalk in the DPLL, the frequency plan
ensures that the RFIs/TMIs and the ISIs on one SC do
not share the same heterodyne frequency, with a mar-
gin of about 2 MHz. Therefore, no direct correlations are
expected to occur. The remaining possibility is for cor-
relations between 1f- and 2f-RIN, e.g., if one beat is at
12 MHz and the other one at 6 MHz. This would lead to
a correlation between 1f-RIN from the 12 MHz beat with
2f-RIN in the 6 MHz beat. However, this can be con-
sidered unproblematic, here again, as the 1f-RIN term
is likely to be dominating. In addition, such a scenario
is a rare event: even with a relatively large threshold
of 50 Hz difference between the beats (compared to the
∼ 4 Hz measurement band), the maximal duration in-
volving correlated measurements across all lasers and in-
terferometers is in the order of a few hours for over 10
years of simulated frequency plan data (shown in Fig. 6
for the baseline N1-L12 configuration). Furthermore, the
frequency plan could be further optimized to avoid such
crossings, if desired.

G. Influence of TDI

TDI strongly suppresses laser phase noise by about
8 orders of magnitude. For this purpose, it uses time
shifted combinations of the interferometric phase mea-
surements. As such, it also suppresses the laser locking
noise “echos”, since they appear in the measurements
identically to the laser frequency noise that TDI is de-
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FIG. 6. Locking beatnote differences between local and
ISI interferometers per laser. It shows the possibility of 1f-
2f-RIN correlations for the baseline configuration N1-12 for
more than 10 years of data. We show pairwise absolute beat
frequency differences for each laser. Only when the difference
is becoming as small as a few Hz, the correlation would show
up in the data. This only happens for a few hours in total
for all lasers per configuration for the whole duration of more
than 10 years and causes negligible extra phase noise. The
frequency plan considered here is computed for Earth-trailing
orbits provided by ESA.

signed to suppress. Unfortunately, this process also adds
other noises from the 18 interferometric measurements
into the resulting TDI variables. These noises have been
studied and are now well understood (see, for example,
[9]). To first order, RIN can be considered to behave like
any other uncorrelated readout noise due to its proper-
ties discussed before; especially since the most signifi-
cant RIN contribution appears uncorrelated in the ISIs,
while the correlated appearances (TMI, RFI) produce
much smaller noise contributions to the total measure-
ment chain. According to [9], an uncorrelated readout

noise (e.g., in units of m/
√

Hz) entering all ISIs with a
level of ϕ̃, which describes the dominant RIN contribu-
tion, has a Power Spectral Density (PSD) in the TDI
combination X2 of

SX2
(ω, ϕ̃) = 4ϕ̃2CXX(ω), (42)

CXX(ω) = 16 sin2

(
ω
L

c

)
sin2

(
ω

2L

c

)
, (43)

where ω = 2πf , and c is the speed of light in a vacuum.

IV. SIMULATION ARCHITECTURE

To verify the validity of the analytical derivations pre-
sented in the previous section and track the effects of pos-
sible correlations, we implemented a time-domain simu-
lation.

Figure 7 gives an overview of this simulator, which has
multiple stages and is able to simulate the whole LISA
constellation with its 18 interferometers. The simula-
tion is performed in phase domain to easily represent

Simulation configuration file 

- RIN levels
- Optical parameters
- Duration
- Sampling frequency
- Delays

Laser initialization 
 

- RIN 
- Frequencies
- Doppler shifts
- Heterodyne frequencies
- Laser RIN phase error (locking)
 

Interferometer Setup 
 

- Map Lasers to Interferometers
- Power levels per Interferometer
- Heterodyne efficiency
- Interferometer setpoints 
- ...

Propagate phases 
 

- Propagate laser phases 
- Delays

Interference 
 

- At interferometer level
- Construct interferometric phases

RIN phase error 

- Model the mixing process of the
 DPLL 
- Scaling according to photodiode
 equations

If locking
Interferometer outputs 

 
- RIN phase errors 
 for 18 interferometers

Repropagate errors once

Laser Locking 
 
- 6 configurations
- attach phase error to lasers 

TDI (pyTDI) 
 
- X, Y, Z
- A, E, T
- ...

LISA RIN Simulator

Analysis 

FIG. 7. Diagram to show the different stages of the RIN
simulation.

the mixing process inside the DPLL. The laser and op-
tical parameters are read from a configuration file and
then propagated to the interferometers, where the inter-
ference phase of two beams is simulated. Then, the RIN
phase error due to the mixing and demodulation process
is calculated at high sampling frequency, and used as an
output either for the locking scheme or directly for the
output of the interferometers. Consecutive scripts per-
form the data analysis tasks.

Typically, we simulate tens of thousands of seconds
with a sampling frequency of 1 kHz.

We simulate the total phase of each interferometer.
Since we cannot simulate MHz frequencies directly for
long time periods, we choose the offset frequencies such
that all beatnote frequencies are in a range between
100 Hz and 250 Hz, instead of 5 MHz and 25 MHz. This
is sufficient to accurately model the RIN coupling in the
time domain, as its behavior is independent of the abso-
lute heterodyne frequency.

We simulate laser locking, and correctly keep track of
the beatnote polarities. The locking control loop is as-
sumed to be perfect, such that the locking interferometer
error signal is sign-inverted and added to the locked laser,
and then propagates to all interferometers involving this
laser.

Following previous considerations for the frequency
planning, we assume that only local interferometers on
the same SC share the same heterodyne frequency. Addi-
tionally, each laser carries its own RIN noise time series,
which is propagated (and delayed where applicable) to
the corresponding interferometers.

The delays, in the order of 8 s, are constant and sym-
metric for the two directions of each arm, but not equal
between different arms. The initial assumption of un-
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equal beatnote frequencies would not be violated for
slowly-varying arm lengths due to the frequency lock-
ing, as explained above. This is especially valid for our
relatively short simulations, for which the frequencies do
not change much.

The RIN mixing is then applied using all beatnote
phases and corresponding lasers with their RIN time se-
ries. We include a model for balanced detection with
different balancing efficiencies. The RIN phase error is
propagated as its own time series through the constella-
tion, to avoid numerical problems with the large phase
ramps of the beatnote phases. The outputs are filtered
and downsampled, typically to a final output sampling
frequency of 10 Hz.

V. RESULTS

In this section, we present our analytical and simulated
results for the LISA mission parameters. The main find-
ings are summarized in Table II, Fig. 8 and Fig. 10. We
show the expected noise levels per interferometer, local
common-mode suppression, and the propagation through
TDI.

A. 1f-RIN estimates

Based on the theoretical derivation above (and [10])
and the optical parameters relevant for the RIN-to-phase
coupling from the current LISA design (given in Table I),
we estimate the expected noise levels in the three distinct
interferometers without locking.

The 1f-RIN couplings are strong contributors to
the phase noise in LISA. The TMI shows a 1f-
RIN contribution of about 155 fm/

√
Hz, the RFI has

a noise of about 220 fm/
√

Hz and the ISI reaches

even a level of 8.7 pm/
√

Hz. Assuming a bal-
ancing efficiency of 90 %, these values reduce to
15.5 fm/

√
Hz, 22 fm/

√
Hz, and 0.87 pm/

√
Hz. The cor-

related TMI − RFI subtraction in TDI is able to reduce
the contribution of these two interferometers to about
6.5 fm/

√
Hz. Contrary to the results presented in [10], a

complete subtraction is not possible in LISA due to the
unequal beam powers in the correlated interferometers,
even if the residual translational SC jitter dxSC vanishes.

In total, we get for a single link (uncorrelated
ISI, two uncorrelated TMI − RFI measurements)√

(0.87 pm/
√

Hz)2 + (
√

2 · 6.5 fm/
√

Hz)2, that is approx-

imately 0.87 pm/
√

Hz.

B. 2f-RIN estimates

We find white-noise baseline estimates for 2f-RIN of
about 2.5 fm/

√
Hz in the ISI, TMI and RFI. This value

is expected to be identical across the interferometers, be-
cause the coupling is independent of beam parameters,
such as powers. Since it is correlated in the TMI − RFI
subtraction performed in TDI, the contribution of these
two interferometers is further reduced by a similar sine
factor (with twice its argument) as the 1f-RIN only adds
marginal noise to the single link TM-to-TM measure-
ment [10]. Here, full subtraction is possible, since the
noise in the correlated interferometers does not depend
on the beam powers.

The total 2f-RIN noise in a sin-
gle TM-to-TM link can be estimated by√

(2.5 fm/
√

Hz)2 + (
√

2 · 0.3 fm/
√

Hz)2 ≈ 2.6 fm/
√

Hz.

Therefore, the phase noise due to 2f-RIN is much weaker
than the phase noise caused by 1f-RIN.

C. Differential Wavefront Sensing (DWS)

DWS uses pairs of photodiode quadrants to sense
wavefront tilts between the measurement and reference
beams. It is used for SC and TM angular control, since
the wavefront tilts can be calibrated to yield physical
TM-to-SC angles. As such, it uses the same phase read-
out (yet different quadrant combinations, see for example
[14]) as the longitudinal channels and will therefore also
be affected by RIN. The behavior is expected to be the
same as in the longitudinal TMI − RFI common mode
suppression (because pairs of quadrants are always com-
bined), but with better results due to effectively equal
power levels across the quadrants. Since the expected an-
gles measured through DWS are rather small (usually less
than 1 rad for the non-calibrated quadrant phase) and
the quadrants share the same correlated RIN, common-
mode suppression, together with balanced detection, are
expected to yield good minimization effects.

D. Contribution summary

In total, we find the quadratic sum of the 1f-RIN and
2f-RIN contributions for a single TM-to-TM link, with
90 % balancing efficiency and no laser locking, to be at a
level of 0.87 pm/

√
Hz for the longitudinal readout. This

amount of noise has to be considered as an entry in the
∼ 10 pm/

√
Hz noise budget of the total optical metrology

noise. Let us note how important it is that the balancing
requirements are met; if not, the total optical metrology
budget would already be dominated by the RIN-induced
phase noise.

More detailed estimates are given in Table II as a sum-
mary of the expected noise ASD levels per local inter-
ferometer and the biggest local noise measurements for
all locking schemes, based on the parameters of Table I.
These have been calculated both analytically (where di-
rectly possible) and numerically simulated using the RIN
simulator described above, where we disabled all other
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Locking config. Interferometer 1f-RIN 2f-RIN Total (b = 0.9) Total (b = 1) Total (b = 0)

None ISIij 8.7× 10−12 2.5× 10−15 0.87× 10−12 2.5× 10−15 8.7× 10−12

TMIij 0.16× 10−12 2.5× 10−15 16.2× 10−15 2.5× 10−15 0.16× 10−12

RFIij 0.22× 10−12 2.5× 10−15 22.2× 10−15 2.5× 10−15 0.22× 10−12

TMIij − RFIij 65.6× 10−15 3.0× 10−16 6.5× 10−15 3.0× 10−16 65.6× 10−15

N1-12 ISI32 1.5× 10−12 6.2× 10−15 15.0× 10−12

ISI23 1.5× 10−12 6.2× 10−15 15.0× 10−12

ISI13 1.2× 10−12 5.1× 10−15 12.3× 10−12

N2-12 ISI23 1.7× 10−12 6.2× 10−15 17.4× 10−12

RFI32 1.5× 10−12 6.2× 10−15 15.0× 10−12

RFI31 1.5× 10−12 6.2× 10−15 15.0× 10−12

N3-12 ISI23 1.7× 10−12 6.2× 10−15 17.4× 10−12

ISI13 1.5× 10−12 6.2× 10−15 15.0× 10−12

ISI31 1.5× 10−12 6.2× 10−15 15.0× 10−12

N4-12 ISI32 1.7× 10−12 7.2× 10−15 17.4× 10−12

RFI21 1.5× 10−12 6.2× 10−15 15.0× 10−12

RFI23 1.5× 10−12 6.2× 10−15 15.0× 10−12

N5-12 ISI32 1.7× 10−12 7.2× 10−15 17.4× 10−12

ISI21 1.5× 10−12 6.2× 10−15 15.0× 10−12

ISI12 1.5× 10−12 6.2× 10−15 15.0× 10−12

N6-12 ISI31 2.1× 10−12 8.0× 10−15 21.2× 10−12

ISI23 1.7× 10−12 6.2× 10−15 17.3× 10−12

RFI13 1.5× 10−12 6.2× 10−15 15.0× 10−12

TABLE II. Numerical simulation of the RIN-to-phase coupling in various interferometers, based on the parameters listed in
Table I. The first four rows show the resulting phase noise in the unlocked case. The following rows show the three interferometers
with the largest propagated phase noise for each locking configuration. The last columns report the total phase noise assuming
different balancing efficiencies (realistic case, best and worst). The laser locking is assumed to be applied to the data after
balanced detection with the stated balancing efficiency. The numerical estimates are averages of the flat PSD in the band
(0.01 to 2) Hz (using 24 averages and a Blackman-Harris92 window), from 30 000 s of data sampled with 1 kHz each. All values
are given in m Hz−0.5. The relative standard deviation is of the order of a few %, values are rounded to the last digit.

noises.

E. Local common-mode rejection

In Fig. 8, we present the local correlated behavior of
the frequency-averaged RIN phase error in the TMIij −
RFIij subtraction. The results follow the expected theo-
retical pattern (also agrees with Table II) and show the
common-mode rejection for a differential phase (labeled
TM setpoint here) between the two interferometers. The
theoretical pattern is described in [10]. An important
observation is that even for the correlated subtraction on
the same MOSA, the noise cannot be fully reduced due
to the unequal beam powers. Note that this rejection
would be even weaker if two interferometers from adja-
cent optical benches would be used in the subtraction,
due to the even more unequal beam powers. Figure 9
shows the measured correlations in this simulation.

Similar effects have been observed in LPF and on
ground [10]. During the mission, a set-point close to

0 rad could be chosen to further minimize the noise.

F. Propagation through TDI

Having simulated all interferometers with and without
locking, the phase outputs need to be propagated through
TDI, similar to the real mission data. For this purpose
we are using the software package PyTDI [18].

In Fig. 10, we show the results with different balanc-
ing efficiencies for the baseline locking configuration (N1-
12), and compare these scenarios to the case of unlocked
lasers. We also overlay the analytical expectations given
below. As expected, we find that TDI suppresses the
additional noises due to laser locking, and that the final
noise resembles an uncorrelated readout noise, with the
transfer function given in Eq. (42). The relevant noise
level is given by

ϕ̃ = ϕ̃ISI ≈ (1− b) · 8.7 pm√
Hz

, (44)
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FIG. 8. Simulated data for one local TMIij − RFIij subtraction with different balancing efficiencies, in the unlocked case.
This shows the possible correlation properties of the RIN phase error, following the expected sinusoidal shape. For perfect
1f-RIN subtraction (b = 1), only 2f-RIN remains. The different noise floors are due to the unmatched power levels in the two
interferometers. For these simulations, a slow sine injection from [−2π, 2π] has been injected to mimic TM motion for 30 000 s
of data sampled at 1 kHz. Each point shown here corresponds to the total measurement having been cut into 100 s segments,
and their flat PSDs averaged between 1 and 3 Hz.

with the condition that the ISIs dominate, and b < 1.
The residual 2f-RIN terms of 2.5 fm/

√
Hz only have to

be considered for perfect balanced detection (b = 1, see
below), when the correlated noise in the TMI and RFI
also becomes relevant.

A more detailed (yet still simplified) upper bound for
the total noise after TDI can be estimated by adding the
transfer function of the individual interferometer contri-
butions, assuming the TMI and RFI add uncorrelated
noise only. This leads to

√
2 smaller noise than the max-

imal possible contribution due to their correlation, but
assuming good suppression due to the sin(dxSC) factor,
this would still be a reasonably high upper bound that
reduces the required estimation effort drastically. The to-
tal RIN propagation after TDI would then follow (using
the results from [9]),

SX2
= SX2,ISI + SX2,TMI + SX2,RFI, (45)

where

SX2,ISI = 4CXX(ω) · ϕ̃2
ISI, (46)

SX2,RFI = 4CXX(ω) · ϕ̃2
RFI, (47)

SX2,TMI = CXX(ω)

(
3 + cos

(
ω

2L

c

))
· ϕ̃2

TMI. (48)

The noise levels according to the results from the deriva-
tion in the previous sections,

ϕ̃IFO =
λ

2π

√(
(1− b) · aIFO,1f · ñ1f

)2
+

(
1

2
ñ2f

)2

.

(49)
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FIG. 9. Correlations between noises of the local interferome-
ters from Fig. 8, here for SC 1, with 90 % balancing efficiency
and in the unlocked case. The diagonal shows the histogram;
off-diagonal elements show density plots with units of picome-
ters. The reason for the slightly rectangular correlations be-
tween the local RFI and TMI arises from the mixing pro-
cess, which contains a sinusoidal multiplication with a phase
modulation (the TM setpoint) in this case. We see that the
RIN-induced phase noise can be considered largely uncorre-
lated, even between adjacent local interferometers, due to the
inversely distributed powers. The plot has been produced
using [16].

This translates for the three distinct interferometers (as-
suming 50/50 beamsplitters) to

aISI,1f =
1

ηcarrier

√
P 2

ISI,1 + P 2
ISI,2

2ηhet,ISIPISI,1PISI,2
, (50)

aRFI,1f =
1

ηcarrier

√
P 2

RFI,1 + P 2
RFI,2

2ηhet,RFIPRFI,1PRFI,2
, (51)

aTMI,1f =
1

ηcarrier

√
P 2

TMI,1 + P 2
TMI,2

2ηhet,TMIPTMI,1PTMI,2
, (52)

such that we find for the noise levels

ϕ̃ISI ≈ (1− b) · 8.7 pm√
Hz

, (53)

ϕ̃RFI ≈ (1− b) · 220
fm√
Hz

, (54)

ϕ̃TMI ≈ (1− b) · 155
fm√
Hz

, (55)

which is clearly dominated by the ISI terms.
However, in the limit of b → 1, the 2f-RIN contribu-

tions and their correlations become relevant. Then, the
RIN residual is expected to be dominated by the sum of
uncorrelated contributions in the ISIs and the fully corre-
lated contribution among the local interferometers (TMI
and RFI) in the two adjacent MOSAs. This special case

of 2f-RIN correlation is not discussed in the literature,
hence we give the derivation here.

If we assign the same noise to all local interferometers
on one spacecraft (RFIij = RFIik = TMIij = TMIik =
ni,2f-RIN) and perform a derivation similar to that pre-
sented in [9] (assuming equal arm lengths), we recover
the following residual in X2,

X2,2f-RIN,corr. = (1−D2)2(1−D4)ϕ1,2f-RIN. (56)

We note that only the RIN contribution of SC1 remains
in X2, while those of the other two SC cancel. We com-
pute the PSD by taking the Fourier transform of the
previous equation and calculating the expectation value
of the squared magnitude, yielding

SX2,2f-RIN,corr. = 4 sin2

(
ω
L

c

)
CXX(ω) · ϕ̃2

2f-RIN, (57)

where ñ2f-RIN is the equal level of 2f-RIN in all interfer-
ometers and the usual TDI transfer function is modulated
by an additional sine squared factor. This causes a faster
roll-off of the PSD towards low frequencies and is thus
only relevant at the maxima of the TDI transfer func-
tion. The sum of the uncorrelated ISI RIN SX2,ISI term
for b = 1 and the locally correlated 2f-RIN SX2,2f-RIN,corr.

term is plotted in Fig. 10 and agrees well with the simu-
lation result.

In a nutshell, the simulated noise coupling propagation
through TDI are in very good agreement with the theo-
retical predictions, and the correlations do not have any
significant influence under realistic circumstances.

VI. CONCLUSIONS

We have analyzed, derived, and simulated the RIN-
to-phase noise coupling in LISA, a future gravitational-
wave observatory in space, and present for the first time
a complete analysis of the influence of RIN in the in-
terferometric readout. We have considered the mission
characteristics such as laser properties, optical bench de-
sign, and orbital dynamic influences, as well as mitigation
strategies.

We conclude that the resulting phase noise follows
our theoretical understanding and experience from LISA
Pathfinder (LPF). It is well under control for the cur-
rent design parameters of reasonably low input RIN and
strong suppression of the dominating 1f-RIN through suf-
ficient balanced detection.

With the mitigation strategies considered here, the
RIN phase noise is of the order of 0.87 pm/

√
Hz for the

single link TM-to-TM measurement along one LISA arm,
and dominated by the 1f-RIN terms in the inter-SC inter-
ferometers. The 2f-RIN coupling only plays a subdomi-
nant role.

This amount of noise is below other secondary noises
that are in the order up to a few pm/

√
Hz.
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FIG. 10. Propagation of the RIN phase error through TDI, with a simulation duration of 1× 105 s and fs = 1000 Hz, for
different balancing efficiencies and a comparison between unlocked lasers and the N1-12 locking scheme. We see that the RIN
phase error behaves like an ISI uncorrelated readout noise. This plot has been produced with the lpsd algorithm [17]. The
theoretical expectations are plotted without the usual relaxation towards lower frequencies.

Due to Doppler shifts and frequency planning, the RIN
coupling can essentially be considered as an uncorrelated
readout noise, and behaves as such when it is propagated
through TDI.

We confirm that an additional mitigation of 1f- and
2f-RIN in the local TMIij − RFIij can be achieved by
choosing an interferometric operating point close to 0 rad.
This, however, cannot lead to perfect cancellation due to
the unequal power levels.

In the DWSs, both 1f-RIN and 2f-RIN are expected to
be strongly suppressed due to the recombination of cor-
related neighboring quadrants with almost equal powers,
and therefore good common-mode suppression character-
istics.

Future work may be focused on verifying our results
using actual hardware representative of the real LISA
system, as well as failure studies and the more detailed
analysis of the physical effects influencing the balancing
efficiency.
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