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LISA is a space-based mHz gravitational-wave observatory, with a planned launch in 2034. It is expected
to be the first detector of its kind, and will present unique challenges in instrumentation and data analysis.
An accurate preflight simulation of LISA data is a vital part of the development of both the instrument and
the analysis methods. The simulation must include a detailed model of the full measurement and analysis
chain, capturing the main features that affect the instrument performance and processing algorithms. Here,
we propose a new model that includes, for the first time, proper relativistic treatment of reference frames
with realistic orbits, a model for onboard clocks and clock synchronization measurements, proper modeling
of total laser frequencies (including laser locking), frequency planning and Doppler shifts, better treatment
of onboard processing, and updated noise models. We then introduce two implementations of this model,
LISANode and LISA Instrument. We demonstrate that TDI processing successfully recovers gravitational-wave
signals from the significantly more realistic and complex simulated data. LISANode and LISA Instrument are
already widely used by the LISA community and, for example, currently provide the mock data for the
LISA data challenges.
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I. INTRODUCTION

Following the opening of the gravitational Universe by
the many observations of ground-based gravitational-wave
detectors [1–15], the European Space Agency (ESA) has
selected the Laser Interferometer Space Antenna (LISA) as
the L3 mission. LISA is a space-borne gravitational-wave
observatory sensitive to gravitational signals between
0.1 mHz and 1 Hz, where we expect a large diversity of
sources, ranging from supermassive black-hole binaries,
quasimonochromatic Galactic binaries, extreme mass-ratio
inspirals, and stellar-mass binaries [16]. In addition to these
expected sources, a number of potential signals might be
detected, including stochastic gravitational-wave signals
from the early Universe, cusps and kinks of cosmic strings
and other unmodeled burst sources. Precise measurements
of the source parameters will help answer many astro-
physical and cosmological questions, as well as constrain
models beyond the general theory of relativity.

Achieving these outstanding science objectives will
present challenges in both instrumentation and data analy-
sis. Contrary to ground-based gravitational-wave observa-
tories, LISA is expected to be signal dominated, with tens
of thousands of sources of different kind present in the
LISA band at all times. Telling all of these sources apart
and estimating their parameters requires novel approaches
to data analysis (explored in the context of the LISA data
challenges), the development and testing of which neces-
sitates realistic simulated data. In addition, LISAwill make
use of sophisticated noise-reduction algorithms to reject the
most dominant instrumental-noise sources. The core of
these algorithms is known as time-delay interferometry
(TDI), in which multiple data streams are combined with
appropriate time shifts to generate virtual equal-arm inter-
ferometers in postprocessing. Understanding how different
noise sources couple into the data is crucial to guide the
development of such noise-reduction pipelines. Finally,
with a planned launch in 2034, the LISA mission is
currently preparing for adoption. The development of a
simulation model is needed to support these activities,
validate the instrument design and ensure that the science
objectives can be achieved.
To fulfill these objectives, one needs to capture in the

simulation model the main features that affect the instrument
performance and processing algorithms. The simulated data
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should be representative of the time series we will receive
from the real instrument. Therefore, we focus in this paper on
a time-domain instrument model. In addition, we must be
able to simulate several years of data in a reasonable time to
evaluate different instrument configurations for full mission
duration, currently planned as 4 years [16]; this makes a
detailed engineering-level simulation unfeasible.
This instrument model builds on a legacy of previous

constellation-level LISA simulators. LISA Simulator was
developed to quickly generate measurement data [17,18].
The simulator worked exclusively in the frequency domain
and was based on transfer functions for a simple instru-
mental model. Synthetic LISA was a Python-based simulator
that worked in the time domain and used an idealized (and
now out-of-date) instrumental configuration to study the
performance of noise reduction algorithms for a constella-
tion with time-varying arm lengths [19]. TDISim was a
prototype TDI simulation tool programmed in MATLAB.
The simulation fully operated in the time domain and
performed both data generation and TDI, including for the
first time the updated split-interferometry optical bench
design and a simplified state-space model for the motion of
the test mass and the spacecraft [20].
We based our simulation efforts on LISACode, which was

initiated with the similar ambition to include most of the
ingredients that were thought to influence LISA’s perfor-
mance at the time [21]. Since then, developments in the
instrument and mission design revealed new important
effects that must be included in the simulations. The model
that we propose in this paper is an attempt to extend
LISACode’s model to capture those effects.
Section II introduces the conventions we use, and, for

the first time, a description of the time frames relevant for
LISA Instrument simulations. In Sec. III, we describe the
optical simulation model, which includes the up-to-date
split-interferometry optical bench design. Contrary to
previous simulators, we properly model the total laser
frequencies, as well as realistic orbits and any Doppler
effects arising from differential spacecraft motion. We
also account for the sideband modulations used to correct
for clock errors. Then, we describe in Sec. IV the readout
of the interferometric beatnotes and how it is affected by
imperfections of onboard clocks. Our treatment of the
onboard processing is presented in Sec. V; here, we also
give the equations for the final phasemeter readouts.
In Sec. VI, we describe how we model laser locking,
and its impact on the measurements. Lastly, in Sec. VII,
we give a high-level model of the pseudoranging mea-
surements that are used to estimate the arm lengths. We
then introduce LISANode and LISA Instrument, two imple-
mentations of this simulation model, and discuss their
performances in Sec. VIII. Finally, in Sec. IX, we show
simulation results and highlight the main features that
differ from previously simulated data. We demonstrate
that despite the added complexity, we can recover

gravitational signals using the latest noise-reduction
algorithms. We conclude in Sec. X.

II. FRAMEWORK AND CONVENTIONS

A. Constellation overview

LISA is an almost equilateral triangle, composed of three
identical spacecraft, which we label 1, 2, 3 clockwise when
looking down at their solar panels. These spacecraft
exchange laser beams, which are combined on optical
benches inside movable optical subassemblies (MOSAs).
To uniquely label these MOSAs, we use two indices. The

first one is that of the spacecraft the MOSA is mounted,
while the second index is that of the spacecraft the MOSA
is pointing to. Most components of interest (such as the
optical benches, test masses, etc.) can be uniquely asso-
ciated to one of the MOSAs, in which case we use the same
two indices. Elements that exist only once onboard a
spacecraft, such as the ultrastable oscillators (USOs), are
indexed by that spacecraft index. These labeling conven-
tions, which are largely based on the proposed unified
conventions of the LISA consortium [22], are summarized
in Fig. 1.
Quantities that describe a process that involves the

propagation between two spacecraft will be interpreted
as being associated with the spacecraft in which the
quantity is measured. For example, the gravitational-wave
signal observed in the interferometer on MOSA 12 will be
indexed with the same indices 12. The same convention
applies to the propagation delay of a beam arriving on
spacecraft 1 from spacecraft 2, which will be labeled by the
indices 12.
In this paper, we often derive equations for a specific

spacecraft or MOSA. The expressions for the other 2
spacecraft or the other 5 MOSAs can then be deduced by
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FIG. 1. Labeling conventions used for spacecraft, light travel
times, lasers, MOSAs, and interferometric measurements
(from [23]).
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combining cyclic permutations f1 → 2; 2 → 3; 3 → 1g,
and reflections f1 → 1; 2 → 3; 3 → 2g.

B. Time-coordinate frames

The instrumental simulation mostly concerns itself with
the physics inside a spacecraft (e.g., the evolution of laser
beam phases and their interferometric beatnotes), which is
best modeled in the three spacecraft proper time (TPS).
These time frames are defined as the times shown by
perfect clocks comoving with the spacecraft centers of
mass. We denote them with τ1, τ2, and τ3.
The spacecraft proper times (TPSs) are idealized time-

scales, which cannot be realized in practice. All measure-
ments instead refer to an imperfect on-board timer, which
represents an approximation of the associated TPS. We
denote these three onboard clock time frames as τ̂1, τ̂2,
and τ̂3.
Finally, processes on the Solar-System scale are modeled

according to a global time frame, such as the barycentric
coordinate time (TCB), denoted t. This is the case for the
spacecraft orbits or the gravitational waveforms. Our
instrumental simulation does not make a direct use of
the barycentric coordinate time. Instead, we rely on
external tools, such as LISA Orbits [24], to directly compute
quantities expressed in the TPSs.
In general, signals are expressed in their natural time

coordinate. E.g., laser beam phases and beatnotes are
expressed in the TPS of the spacecraft housing the laser.
It is sometimes useful to express a signal in a different time
coordinate. To prevent confusion, we will use the same
symbol but add a superscript denoting the time coordinate.
For example, a phase ϕ could be expressed as a function of
the TPS 1, writing ϕτ1ðxÞ, or as a function of the clock time
of that spacecraft, writing ϕτ̂1ðxÞ. Note that the symbol used
for the function argument is arbitrary, and does not specify
the reference frame. We will often use τ without subscripts
as a generic function argument.
Conversions between time coordinates can easily be

expressed with these conventions. For example, ττ̂11 ðτÞ is
the TPS as a function of the clock time onboard spacecraft
1. Trivially,

ttðτÞ ¼ ττ11 ðτÞ ¼ τ̂τ̂11 ðτÞ ¼ τ: ð1Þ

It is often useful to model the deviation of the onboard
clock time with respect to the associated TPS. We adopt the
notation

ττ̂11 ðτÞ ¼ τ þ δττ̂11 ðτÞ; ð2aÞ

τ̂τ11 ðτÞ ¼ τ þ δτ̂τ11 ðτÞ: ð2bÞ

One important class of signals we study are phases ϕ of
electromagnetic waves. As scalar quantities, these are

invariant under coordinate transformations, such that they
transform from one time frame to another using a simple
time shift,

ϕτ1ðτÞ ¼ ϕτ̂1ðτ̂τ11 ðτÞÞ: ð3Þ

III. OPTICAL SIMULATION

In this section, we derive the model for the generation
and propagation of the laser beams, as well as their
interference at the photodiodes.

A. Optical-bench design

As illustrated in Fig. 1, each spacecraft hosts two optical
benches. We usually refer to one optical bench as the local
optical bench; the other optical bench hosted by the same
spacecraft as the adjacent optical bench; we call the distant
optical bench the one situated on the spacecraft exchanging
light with the local optical bench. Each optical bench is
associated with a laser source, a gravitational reference
sensor (GRS) containing a free-falling test mass, and
telescope to send and collect light to and from distant
spacecraft.
Laser beams are combined in three different heterodyne

interferometers. The interspacecraft interferometer (ISI)
mixes the local beam with the distant beam (coming from
the distant optical bench) and the test-mass interferometer
(TMI) mixes the local and adjacent beams, after it has
bounced on the local test mass; and the reference interfer-
ometer (RFI) mixes the local and adjacent beams without
interaction with the test mass. Fig. 2 gives an overview of
the optical bench 12.
In reality, each single interferometer output is imple-

mented using redundant balanced detection with four
quadrant photodiodes (QPDs). We do not simulate bal-
anced detection, and only consider a single data stream for
each interferometer. Additional readouts related to the laser

FIG. 2. Schematics of the optical design implemented in the
simulation, along with notations for the laser beam and beatnote
total phases, here for MOSA 12.
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beams alignment, such as the differential wave front
sensing (DWS), are not included in the model presented
here. We are currently working to implement them in the
simulation by propagating additional independent variables
representing the different beam tilts. We plan to describe
this model in more detail in a follow-up paper.

B. Laser-beam model

1. Simple laser beam

We use a number of assumptions to model the informa-
tion carried by the electromagnetic field of a laser beam
(in all generality, these are two 3-vector fields).
We work in the plane-wave approximation, and assume

that any effects due to wave front imperfections can be
modeled as equivalent longitudinal path length variations.
In addition, we neglect effects related to the fields polari-
zation, and assume that the waves propagate in a perfect
vacuum, such that we only model the scalar electric field
amplitude (we do not model the magnetic field amplitude,
as it is completely determined by the electrical field
amplitude [25]).
At any fixed point inside a spacecraft, the complex

amplitude of the electromagnetic field associated with a
laser beam can be written as

EðτÞ ¼ E0ðτÞei2πΦðτÞ; ð4Þ

where ΦðτÞ is the total phase in units of cycles.
LISA ultimately measures phase differences, such that

we do not simulate the field amplitude term E0, but only the
phase ΦðτÞ. We expect couplings between the field
amplitude and the measured phase difference (e.g., the
relative intensity noise [26]). We currently do not model
these effects, but assume that they can be modeled as
equivalent phase noise in the final readout.

2. Phase or frequency?

The optical frequency of the lasers is around
ν0 ¼ 281.6 THz, such that the total phase increases quickly
with time. This makes using it challenging for numerical
simulations, as any variable representing the total phase
will either numerically overflow when using fixed-point
arithmetic, or eventually suffer an unacceptable loss of
precision when using floating-point arithmetic.1

To avoid these issues, we simulate frequencies instead of
phase (given by ν ¼ _Φ, since we express the phase in units
of cycles), which are controlled to remain at the same order
of magnitude during the whole mission duration. However,
modeling the propagation of laser beams is often easier in

phase. Therefore, we will derive most of the equations of
this paper both in units of phase and frequency.

3. Two-variable decomposition

In LISA, effects on the laser beams come into play at
completely different timescales and dynamic ranges. On the
one hand, some effects modulate the frequency of our
beams on a time scale of the orbital revolution around the
Sun, which lies well outside our measurement frequency
band (below 10−4 Hz). These effects tend to have large
dynamic ranges; for instance, the Doppler shifts caused by
the relative spacecraft motion can fluctuate by several
megahertz over the mission duration.
On the other hand, we want to track small phase or

frequency fluctuations within our measurement band (from
10−4 Hz and up to 1 Hz), caused by gravitational-wave
signals and instrumental noises. These fluctuations have a
much smaller amplitude. The laser noise being the dom-
inant effect, causing the heterodyne beatnote frequency to
shift by about a few tens of Hertz, while gravitational waves
typically cause frequency shifts of a few hundreds of
nanohertz.
To address this problem, we model these different effects

independently. We decompose the laser beam frequency
into one constant and two variables,

νðτÞ ¼ ν0 þ νoðτÞ þ νϵðτÞ: ð5Þ

The large frequency offsets νoðτÞ are used to represent
frequency-plan offsets and Doppler shifts, both on the order
of megahertz, as well as the gigahertz sideband frequency
offsets. The small frequency fluctuations νϵðτÞ, on the other
hand, are used to describe gravitational signals and noises.
A simple laser beam would therefore be entirely repre-
sented by the couple fνoðτÞ; νϵðτÞg.
Alternatively, we can express Eq. (5) in phase units by

writing the total phase as

ΦðτÞ ¼ ν0τ þ ϕoðτÞ þ ϕϵðτÞ þ ϕ0; ð6Þ

where the definitions of large phase drifts ϕoðτÞ and small
phase fluctuations ϕϵðτÞ follow from Eq. (5),

νoðτÞ ¼ _ϕoðτÞ and νϵðτÞ ¼ _ϕϵðτÞ: ð7Þ

As we simulate frequencies, we do not track the initial
phase of the laser beam ϕ0 ∈ ½0; 2π� in the following.
Let us stress that this decomposition is entirely artificial.

In reality, we will only have access to the total phase or
frequency. Therefore, to produce data representative of the
real instrument telemetry, we always compute the total
phase or frequency as the final simulation output.

1For a precision better than a micro-cycle, a 64-bit integer
representing the total phase will overflow every 0.07 s.
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4. Modulated beams

In LISA, laser beams are phase-modulated using a
gigahertz signal derived from the local clock. The electric
field reads

EðτÞ ¼ E0ei2πΦcðτÞeim cosð2πΦmðτÞÞ; ð8Þ

wherem is the modulation depth;ΦcðτÞ is the total phase of
the carrier, and ΦmðτÞ is the total phase of the modulating
signal, both expressed in cycles.
The Jacobi-Anger expansion lets us write the previous

expression using Bessel functions. Because the modulation
depth m ≈ 0.15 is small [20], we can further expand the
result to first order in m and write the complex field
amplitude as the sum

EðτÞ ≈ E0

�
ei2πΦcðτÞ þ i

m
2

h
ei2πΦsbþðτÞ þ ei2πΦsb− ðτÞ

i�
; ð9Þ

where we have defined the upper and lower sideband
phases,

ΦsbþðτÞ ¼ ΦcðτÞ þΦmðτÞ; ð10aÞ

Φsb−ðτÞ ¼ ΦcðτÞ −ΦmðτÞ: ð10bÞ

The modulated laser beam can then be written as the
superposition of carrier, upper sideband, and lower side-
band,

EðτÞ ≈ EcðτÞ þ EsbþðτÞ þ Esb−ðτÞ: ð11Þ

For the purpose of our simulation, the information content
of the upper and lower sidebands are almost identical (one
difference is that they lie at a different frequencies, and are
thus affected differently by Doppler shifts). We make the
assumption that they can be combined in such a way that
we can treat them as one signal. Therefore, we only
simulate the upper sideband. For clarity, we drop the sign
in all sideband indices and simply use sb when we refer to
the upper sideband.
We apply the same two-variable decomposition to the

sideband total frequency. Ultimately, each modulated laser
beam is then implemented using four quantities,

νðτÞ≡ fνoc ðτÞ; νϵcðτÞ; νosbðτÞ; νϵsbðτÞg; ð12Þ

where νoc and νosb are the carrier and sideband frequency
offsets, respectively, and νϵc and νϵsb are the carrier and
sideband frequency fluctuations.

C. Local beams

1. Local beam at laser source

As illustrated in Fig. 2, optical bench 12 has an
associated laser source. We call local beam the modulated
beam produced by this laser source. We denote the total
phase and frequency of the carrier as Φ12;cðτÞ and ν12;cðτÞ,
respectively. Similarly, the sideband total phase and fre-
quency are denotes as Φ12;sbðτÞ and ν12;sbðτÞ. All these
signals are functions of the spacecraft proper time (TPS) τ1.
The total phase Φ12;cðτÞ ¼ ν0τ þ ϕo

12;cðτÞ þ ϕϵ
12;cðτÞ of

the carrier is decomposed in terms of drifts and fluctua-
tions, with

ϕo
12;cðτÞ ¼

Z
τ

τ1;0

O12ðτ0Þdτ0; ð13aÞ

ϕϵ
12;cðτÞ ¼ p12ðτÞ; ð13bÞ

where O12ðτÞ is the carrier frequency offset for this laser
source with respect to the central frequency ν0, and p12ðτÞ
is the laser source phase fluctuations expressed in cycles.
As explained in Sec. VI, pijðτÞ can either describe the

noise Np
ijðτÞ of a cavity-stabilized laser (cf. Appendix B) or

the fluctuations resulting from an offset frequency lock.
Likewise, O12ðτÞ is either set as an offset from the nominal
frequency,2 or computed based on the locking conditions.
In terms of frequency, we simply have

νo12;cðτÞ ¼ O12ðτÞ; ð14aÞ

νϵ12;cðτÞ ¼ _p12ðτÞ: ð14bÞ

Let us now look at the sideband, which is derived from the
local clock. As described in detail in Sec. IV, the modu-
lating signal inherits any USO timing errors q1, such that
we have

Φ12;mðτÞ ¼ νm12 · ðτ þ qo1ðτÞ þ qϵ1ðτÞ þM12ðτÞÞ ð15Þ

for the total phase of the modulating signal. Here, νm12 ¼
2.4 GHz is the constant nominal frequency of the modu-
lating signal on optical bench 12. We use the same
modulation frequency for all optical benches indexed
cyclically (12, 23, 31), while the remaining ones (13,
32, 21) are instead at 2.401 GHz. The modulation noise
term M12ðτÞ accounts for any additional imperfections
(either in the electrical frequency conversion to 2.4 GHz or
the optical modulation).

2In the current mission baseline, there is no way to measure or
set the absolute laser frequency with high precision. Therefore,
the values set in the simulation cannot be accessed in reality.
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The total phase of the modulating signal can then be
decomposed into

ϕo
12ðτÞ ¼ νm12 · ðτ þ qo1ðτÞÞ; ð16aÞ

ϕϵ
12;mðτÞ ¼ νm12 · ðqϵ1ðτÞ þM12ðτÞÞ: ð16bÞ

Inserting these terms in Eq. (10), we get the phase and
frequency offsets and fluctuations for the local sideband,

ϕo
12;sbðτÞ ¼

Z
τ

τ1;0

O12ðτ0Þdτ0 þ νm12ðτ þ qo1ðτÞÞ; ð17aÞ

ϕϵ
12;sbðτÞ ¼ p12ðτÞ þ νm12ðqϵ1ðτÞ þM12ðτÞÞ; ð17bÞ

and

νo12;sbðτÞ ¼ O12ðτÞ þ νm12ð1þ _qo1ðτÞÞ; ð18aÞ

νϵ12;sbðτÞ ¼ _p12ðτÞ þ νm12ð _q1ðτÞ þ _M12ðτÞÞ: ð18bÞ

Note that there is only one clock per spacecraft, such that
we use the same q1 for sideband beams on both optical
benches on spacecraft 1.

2. Local beams at the interspacecraft and reference
interferometer photodiodes

As shown in Fig. 2, local beams propagate in the local
optical bench 12 and interfere at the ISI, TMI, and RFI
photodiodes. In our simulations, we neglect any phase term
due to the propagation time. However, all beams pick up a
generic optical path length noise term NobðτÞ (different for
each interferometer), which models all optical path length
variations due to, e.g., jitters of optical components in the
path of the laser beams. By convention, we choose that a
positive value of the optical path length noise term
corresponds to a decrease in the actual optical path length,
which in turn corresponds to a positive shift in phase or
frequency.
Therefore, we write the phase drifts and fluctuations of

the local beams at the ISI and RFI photodiodes (valid for
both carriers and sidebands) as

ϕo
isi=rfi12←12ðτÞ ¼ ϕo

12ðτÞ; ð19aÞ

ϕϵ
isi=rfi12←12ðτÞ ¼ ϕϵ

12ðτÞ þ
ν0
c
Nob

isi=rfi12←12ðτÞ: ð19bÞ

Equivalently, the frequency offsets and fluctuations of the
same beams read

νoisi=rfi12←12ðτÞ ¼ νo12ðτÞ; ð20aÞ

νϵisi=rfi12←12ðτÞ ¼ νϵ12ðτÞ þ
ν0
c

_Nob
isi=rfi12←12ðτÞ: ð20bÞ

3. Local beam at the test-mass
interferometer photodiode

The local beam reflects off the test mass before imping-
ing on the TMI photodiode. As a consequence, it couples to
the test-mass motion.
In reality, the motion of the test mass and spacecraft will

be coupled by the drag-free attitude control system
(DFACS). The spacecraft motion is expected to be sup-
pressed in on-ground processing [20]. For our purposes, we
simply assume that the spacecraft (and the associated
optical benches) perfectly follows a geodesic.
The laser beam then picks up an additional noise term

Nδ
23ðτÞ due to any deviation in the motion of the test-mass

from geodesic, caused by spurious forces (cf. Appendix B).
This noise represents the movement of the test mass
towards the measuring optical bench, such that a posi-
tive value corresponds to a decrease in path length (see
Fig. 3), and thus a positive phase shift. The noise term
enters with a factor of 2, since the beam travels to the test
mass and back.
Therefore, at the TMI photodiode, the phase components

of the local beam (carrier and sideband) read

ϕo
tmi12←12ðτÞ ¼ ϕo

12ðτÞ; ð21aÞ

ϕϵ
tmi12←12ðτÞ ¼ ϕϵ

12ðτÞ þ
ν0
c

�
Nob

tmi12←12ðτÞ þ 2Nδ
12ðτÞ

�
;

ð21bÞ

while the frequency offsets and fluctuations read

νotmi12←12ðτÞ ¼ νo12ðτÞ; ð22aÞ

FIG. 3. Definition of line-of-sight displacement of the test
mass. Positive values of Nδ

12 indicate a motion towards the
measuring optical bench.
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νϵtmi12←12ðτÞ ¼ νϵ12ðτÞ þ
ν0
c

�
_Nob
tmi12←12ðτÞ þ 2 _Nδ

12ðτÞ
�
:

ð22bÞ

D. Adjacent beams

In this section, we study the propagation of a modulated
laser beam generated by laser source 13 (attached to the
adjacent optical bench), which travels through the optical
fiber to the local optical bench 12, to finally interfere on the
TMI and RFI photodiodes (see Fig. 2). We call it the
adjacent beam. We express all phase and frequency
quantities as functions of the TPS τ1.
Similarly to local beams, we neglect the propagation

time for the adjacent beams, and model fluctuations in the
optical path length by a noise term NobðτÞ. We model any
nonreciprocal noise terms related to the propagation
through the optical fibers by the backlink noise term
Nbl

12←13ðτÞ, expressed as an equivalent path length change.
Therefore, the phase drifts and fluctuations of adjacent

beams (carrier and sideband) at the TMI and RFI photo-
diodes read

ϕo
tmi=rfi12←13ðτÞ ¼ ϕo

13ðτÞ; ð23aÞ

ϕϵ
tmi=rfi12←13ðτÞ ¼ ϕϵ

13ðτÞ þ
ν0
c
Nbl

12←13ðτÞ þ
ν0
c
Nob

tmi=rfi12←13;

ð23bÞ

where ϕo
13ðτÞ and ϕϵ

13ðτÞ are the phase drifts and fluctua-
tions of the laser beam produced by laser source 13,
respectively. The equivalent frequency quantities are

νotmi=rfi12←13ðτÞ ¼ νo13ðτÞ; ð24aÞ

νϵtmi=rfi12←13ðτÞ ¼ νϵ13ðτÞ þ
ν0
c

_Nbl
12←13ðτÞ þ

ν0
c

_Nob
tmi=rfi12←13:

ð24bÞ

E. Distant beams

Finally, we study the propagation of a modulated laser
beam generated by laser source 21 (attached to the distant
optical bench), which travels roughly 2.5 million kilo-
meters in free space before it reaches the local optical bench
12. This distant beam eventually interferes on the ISI
photodiode, see Fig. 2.

1. Interspacecraft propagation

As described in Sec. III B, modulated beams are repre-
sented as the superposition of simple beams, each treated
independently. Consequently, the same propagation equa-
tions apply to both carrier and sideband beams.

We shall derive the expression of a simple laser beam’s
phase Φ12←21ðτÞ and frequency ν12←21ðτÞ measured on
receiver optical bench 12 (expressed in comoving time
coordinate τ1) as a function of the same beam’s phase
Φ21ðτÞ and frequency ν21ðτÞ measured on emitter optical
bench 21 (expressed in comoving time coordinate τ2). We
write

Φ12←21ðτÞ ¼ Φ21ðτ − d12ðτÞÞ; ð25Þ
where d12ðτÞ is the proper pseudorange (PPR), which
includes not only the light time of flight, but also con-
versions between reference frames associated to τ1 and τ2.
Since we model small in-band and large out-of-band

effects independently, we need to decompose the PPR in a
similar manner. We define do12ðτÞ as slowly varying PPR
offsets (e.g., due to constant path lengths and variations in
orbital motion, relativistic effects, and coordinate trans-
formations), and dϵ12ðτÞ as small in-band PPR fluctuations.
In our simulation, we only consider the effect of

gravitational waves and neglect any other small in-band
fluctuations of the PPRs (such as spacecraft jitter motion or
variations of the interplanetary medium optical index).
Therefore, if H12ðτÞ denotes the integrated fluctuations of
the PPR due to gravitational waves measured onMOSA 12,
we have dϵ12ðτÞ ¼ H12ðτÞ. The total PPR now reads

d12ðτÞ ¼ do12ðτÞ þH12ðτÞ: ð26Þ

Applying this decomposition to Eqs. (6) and (25), we
have

Φ12←21ðτÞ ¼ ν0 · ðτ − do12ðτÞ −H12ðτÞÞ
þ ϕo

21ðτ − do12ðτÞ −H12ðτÞÞ
þ ϕϵ

21ðτ − do12ðτÞ −H12ðτÞÞ: ð27Þ
We expand the previous equation to first order in both the
small fluctuations H12ðτÞ, and ϕϵ

21ðτÞ and neglect any
second-order cross terms,

Φ12←21ðτÞ ¼ ν0 · ðτ − do12ðτÞ −H12ðτÞÞ
þ ϕo

21ðτ − do12ðτÞÞ
− νo21ðτ − do12ðτÞÞH12ðτÞ
þ ϕϵ

21ðτ − do12ðτÞÞ: ð28Þ

We can again write the previous quantity as the sum
of large phase drifts and small phase fluctuations,
Φ12←21ðτÞ ¼ ν0τ þ ϕo

12←21ðτÞ þ ϕϵ
12←21ðτÞ, with

ϕo
12←21ðτÞ ¼ ϕo

21ðτ − do12ðτÞÞ − ν0do12ðτÞ; ð29aÞ

ϕϵ
12←21ðτÞ ¼ ϕϵ

21ðτ − do12ðτÞÞ
− ½ν0 þ νo21ðτ − do12ðτÞÞ�H12ðτÞ: ð29bÞ

UNIFIED MODEL FOR THE LISA MEASUREMENTS AND … PHYS. REV. D 107, 083019 (2023)

083019-7



Wewrite the equivalent instantaneous frequency ν12←21ðτÞ ¼
ν0 þ νo12←21ðτÞ þ νϵ12←21ðτÞ as the sum of a large frequency
offsets and small frequency fluctuations,

νo12←21ðτÞ ¼ νo21ðτ− do12ðτÞÞð1− _do12ðτÞÞ− ν0 _d
o
12ðτÞ; ð30aÞ

νϵ12←21ðτÞ ¼ νϵ21ðτ − do12ðτÞÞð1 − _do12ðτÞÞ
− ½ν0 þ νo21ðτ − do12ðτÞÞ� _H12ðτÞ: ð30bÞ

Here, we have neglected first-order terms in _νoAH12ðτÞ, so
these equations are only valid if the laser frequency is
evolving slowly. This is discussed in more detail in
Appendix C.

2. Distant beams at the interspacecraft
interferometer photodiode

The received distant beam propagates inside the optical
bench to interfere with the local beam at the ISI photodiode.
As for the other beams, we only add a generic optical path
length noise term Nob

isi12←21ðτÞ.
We write the phase drifts and fluctuations of the distant

beam at the ISI photodiode (valid for both carrier and
sideband) as

ϕo
isi12←21ðτÞ ¼ ϕo

21ðτ − do12ðτÞÞ − ν0do12ðτÞ; ð31aÞ

ϕϵ
isi12←21ðτÞ ¼ ϕϵ

21ðτ − do12ðτÞÞ
− ½ν0 þ νo21ðτ − do12ðτÞÞ�H12ðτÞ
þ ν0

c
Nob

isi12←21ðτÞ: ð31bÞ

Equivalently, the frequency offsets and fluctuations read

νoisi12←21ðτÞ ¼ νo21ðτ − do12ðτÞÞð1 − _do12ðτÞÞ − ν0 _d
o
12ðτÞ;

ð32aÞ

νϵisi12←21ðτÞ ¼ νϵ21ðτ − do12ðτÞÞð1 − _do12ðτÞÞ
− ½ν0 þ νo21ðτ − do12ðτÞÞ� _H12ðτÞ
þ ν0

c
_Nob
isi12←21ðτÞ: ð32bÞ

F. Interferometers

1. Beatnote for simple beams

Using definitions given in Eq. (4), let us write the
complex amplitude for two simple beams 1 and 2 interfer-
ing at a photodiode,

E1ðτÞ ¼ E1;0ðτÞei2πΦ1ðτÞ; ð33aÞ

E2ðτÞ ¼ E2;0ðτÞei2πΦ2ðτÞ: ð33bÞ

We ignore any effects due to spatial dimensions of the beam
or the photodiode, and assume that such effects will be
modeled as either an equivalent phase error in the readout
signal, or as an independent quantity.3

The power of the total electromagnetic field measured
near the photodiode is

PðτÞ ∝ jE1ðτÞ þ E2ðτÞj2: ð34Þ

Substituting the expressions of the two beams yields

PðτÞ ∝ jE1;0ðτÞj2 þ jE2;0ðτÞj2
þ 2E1;0ðτÞE2;0ðτÞ cosð2πðΦ1ðτÞ −Φ2ðτÞÞÞ: ð35Þ

The power near the photodiode has an oscillating
component with a total phase of ΦPDðτÞ¼Φ1ðτÞ−Φ2ðτÞ.
We call this signal the beatnote.
Let us use the two-variable representation described in

Eq. (6),

Φ1ðτÞ ¼ ν0τ þ ϕo
1ðτÞ þ ϕϵ

1ðτÞ; ð36aÞ

Φ2ðτÞ ¼ ν0τ þ ϕo
2ðτÞ þ ϕϵ

2ðτÞ; ð36bÞ

to express the total phase of the beatnote as the sum of large
phase drifts and small phase fluctuations,

ΦPDðτÞ ¼ ϕo
PDðτÞ þ ϕϵ

PDðτÞ; ð37Þ

with

ϕo
PDðτÞ ¼ ϕo

1ðτÞ − ϕo
2ðτÞ; ð38aÞ

ϕϵ
PDðτÞ ¼ ϕϵ

1ðτÞ − ϕϵ
2ðτÞ: ð38bÞ

We simulate the equivalent instantaneous frequency
defined as νPDðτÞ ¼ _ΦPDðτÞ. It can be written as

νPDðτÞ ¼ νoPDðτÞ þ νϵPDðτÞ; ð39Þ

where the beatnote frequency offsets νoPDðτÞ and the
beatnote frequency fluctuations νϵPDðτÞ are defined by

νoPDðτÞ ¼ νo1ðτÞ − νo2ðτÞ; ð40aÞ

νϵPDðτÞ ¼ νϵ1ðτÞ − νϵ2ðτÞ: ð40bÞ

2. Beatnote polarity

A closer look at Eq. (35) shows that we do not have
direct access to the total phase of the beatnote ΦPDðτÞ, but

3For example, DWS could be modeled as a direct measurement
of beam tilt angles, with all beam angles represented by
independent variables.
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only measure its cosine value. Therefore, the total phase
can only be known up to a sign and a multiple of 2π.
Physically, this sign ambiguity corresponds to the fact

that the electrical signal does not contain any information
about which of the two interfering laser beams is of higher
frequency. In practice, however, the beatnote polarity can
be determined at all times by applying a known frequency
offset on the local laser beam and observing the resulting
change in the beatnote frequency. In addition, once all
lasers are locked, the beatnote polarities can simply be read
from the frequency plan, as described in Sec. VI.
Therefore, we do not include the beatnote polarity

ambiguity in our optical models, and we will instead
assume that it is solved directly by the phasemeter, or in
a first processing step on ground.

3. Beatnotes for modulated beams

We now study the electromagnetic field of two interfer-
ing modulated beams, labeled k ¼ 1, 2. As derived in
Sec. III B, we write both modulated beams as the sum of
three independent simple beams, namely the carriers and
the upper and lower sidebands,

EkðτÞ ¼ Ek;cðτÞ þ Ek;sbþðτÞ þ Ek;sb−ðτÞ; ð41Þ

with total phases

Φk;cðτÞ ¼ ν0τ þΦo
k;cðτÞ þΦϵ

k;cðτÞ; ð42aÞ

Φk;sbþðτÞ ¼ ν0τ þΦo
k;sbþðτÞ þΦϵ

k;sbþðτÞ; ð42bÞ

Φk;sb−ðτÞ ¼ ν0τ þΦo
k;sb−ðτÞ þΦϵ

k;sb−ðτÞ: ð42cÞ

or the equivalent instantaneous frequencies

νk;cðτÞ ¼ ν0 þ νok;cðτÞ þ νϵk;cðτÞ; ð43aÞ

νk;sbþðτÞ ¼ ν0 þ νok;sbþðτÞ þ νϵk;sbþðτÞ; ð43bÞ

νk;sb−ðτÞ ¼ ν0 þ νok;sb−ðτÞ þ νϵk;sb−ðτÞ: ð43cÞ

The total power at the photodiode reads

jE1ðτÞ þE2ðτÞj2 ¼ jE1;cðτÞ þE1;sbþðτÞ þE1;sb−ðτÞ þE2;cðτÞ
þE2;sbþðτÞ þE2;sb−ðτÞj2: ð44Þ

Expanding this expression yields cross terms between all 6
terms, which correspond to beatnotes at their difference
frequencies.
Because the sidebands are modulated at a frequency of

about 2.4 GHz, most of these beatnote frequencies lie far
outside of the phasemeters measurement bandwidth
(approximately 5 MHz to 25 MHz).
Only three beatnotes lie inside this region:

(i) The carrier-carrier beatnote,

ΦPD;cðτÞ ¼ Φ1;cðτÞ −Φ2;cðτÞ; ð45aÞ

νPD;cðτÞ ¼ ν1;cðτÞ − ν2;cðτÞ. ð45bÞ

(ii) The upper sideband-upper sideband beatnote,

ΦPD;sbþðτÞ ¼ Φ1;sbþðτÞ −Φ2;sbþðτÞ; ð46aÞ

νPD;sbþðτÞ ¼ ν1;sbþðτÞ − ν2;sbþðτÞ. ð46bÞ

(iii) The lower sideband-lower sideband beatnote,

ΦPD;sb−ðτÞ ¼ Φ1;sb−ðτÞ −Φ2;sb−ðτÞ; ð47aÞ

νPD;sb−ðτÞ ¼ ν1;sb−ðτÞ − ν2;sb−ðτÞ. ð47bÞ

Because the sidebands of the lasers on MOSAs 12, 23, and
31 (respectively 13, 32, and 21) are offset by 2.4 GHz
(respectively, 2.401 GHz), and because we always interfere
beams from both types of MOSA, these three beatnotes will
always be offset by 1 MHz. Therefore, they can be tracked
individually by the phasemeter.
Each of these beatnote frequencies can be decomposed

again as a sum of large frequency offsets and small fluctua-
tions, and we recover equations similar to Eq. (40).
Therefore, the carrier and sideband parts of a modulated
laser beam can be implemented as three distinct beams in the
simulation, from which we form three beatnotes.
As described in the previous sections, we only include

the carrier and upper-sideband laser beams in our model; as
a consequence, we only compute the carrier-carrier and the
upper sideband-upper sideband beatnotes.

4. Interspacecraft, test-mass, and reference
interferometer beatnotes

To obtain the beatnote phases (or frequencies) measured
by the ISI, TMI, and RFI, we can substitute in the pre-
vious equations the phases (or frequencies) of the interfer-
ing beams.
As discussed above, the beatnote polarities are arbitrary.

As a convention, we will always write the beatnote phase
(and frequencies) as the difference of the distant or adjacent
beam phase (or frequency) and the local beam phase (or
frequency),

ϕðτÞ ¼ ϕdistant=adjacentðτÞ − ϕlocalðτÞ; ð48aÞ

νðτÞ ¼ νdistant=adjacentðτÞ − νlocalðτÞ: ð48bÞ

Following the optical-bench design of Fig. 2, we have the
following beatnote phase offsets and fluctuations, for both
carriers and sidebands,
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ϕisi12ðτÞ ¼ ϕisi12←21ðτÞ − ϕisi12←12ðτÞ; ð49aÞ

ϕtmi12ðτÞ ¼ ϕtmi12←13ðτÞ − ϕtmi12←12ðτÞ; ð49bÞ

ϕrfi12ðτÞ ¼ ϕrfi12←13ðτÞ − ϕrfi12←12ðτÞ; ð49cÞ

and similarly for beatnote frequencies.

IV. PHASE READOUT, FREQUENCY
DISTRIBUTION, AND CLOCK

ERROR MODELING

We show in Fig. 4 an overview of the LISA phase
readout chain, adapted from [27] (where technical details
on the phase readout and frequency distribution system
can be found). The optical beatnotes are converted to
electrical signals by photoreceivers, which are then digi-
tized by an analog-to-digital converter (ADC). The phase of
these digital signals are then tracked by digital phase-
locked loops (DPLLs).
The phasemeter is driven by an 80 MHz clock signal.

Inside the phasemeter, the ADC samples the electrical
beatnotes at the same rate, with an additional timing jitter
intrinsic to the ADC. This ADC jitter results in a phase
error in the measured beatnotes, which is expected above
the requirements. To correct for the ADC jitter, an addi-
tional periodic pilot tone signal at 75 MHz is derived from
the on-board clock and superimposed on each electrical
signal fed to the phasemeter. The pilot tone phase is tracked
alongside the main beatnotes in dedicated DPLL channels.
By comparing the measured pilot tone phase against its
nominal 75MHz value, theADC jitter can be corrected in the
main beatnotes, such that the pilot tone becomes the effective
reference clock signal for the phase measurements.

A. Readout noise

We directly simulate the optical beatnote frequencies.
Our simulated electrical signals are therefore the same
quantities, with the addition of a readout noise term NroðτÞ.
This readout noise accounts for both shot noise and any

errors due to front-end electronic in the photoreceivers;
refer to Appendix B for more details.

B. Phasemeter and pilot tone

Because the photoreceiver signals are already simulated
as discrete beatnote frequency samples, we do not directly
simulate the digitization process of the ADC nor the phase
tracking by the DPLLs.
Furthermore, we do not simulate the pilot tone correc-

tion, but assume that it perfectly removes the ADC jitter.
We do account for timing errors in the pilot tone itself,
which are also expected above the requirements. These
pilot tone errors will be corrected using the sidebands
introduced in Sec. III B. Refer to the next Sec. IV for how
we model the pilot tone and sideband signals.

C. Frequency distribution and clock signals

1. Frequency-distribution scheme

Most subsystems on board LISA are driven by timing
signals derived from the USO. In our simulation model, we
focus on processes for which timing is performance critical,
which are summarized in Fig. 5.
Following the current mission design, each LISA space-

craft uses one dedicated clock (realized by an USO), from
which all timing signals are derived. As described above,
the timing reference for all phasemeter measurements is the
pilot tone, which is derived from the USO by first up-
converting its nominal frequency4 to 2.4 GHz, and then
converting that signal to the desired νPT ¼ 75 MHz using
frequency dividers. This conversion chain allows for a very
stable phase relationship between the electrical pilot tone
and the 2.4 GHz optical sideband [27], which are used in
post-processing to reduce the timing errors of the pilot tone
itself [22,28–32].
The 2.401 GHz sidebands used on right MOSAs, on the

other hand, are less stable with respect to the pilot tone.
This is acceptable, as additional clock noise in this signal
can be corrected for using the sideband beatnotes in the
RFI [22,32].
Lastly, any errors in the 80 MHz phasemeter clock are

also corrected by the pilot tone correction, such that it is not
performance critical and could either be directly syn-
thesized from the USO or from the 2.4 GHz signal. This
choice is currently irrelevant for our simulation since we
directly simulate the pilot tone as reference clock for all
measurements.

2. Clock-signal model

We model the pilot tone signal as a periodic signal of
the form

FIG. 4. Overview of the phase readout chain of LISA, adapted
from [27]. The photoreceiver converts the optical signal to
electric signals, which are then digitized by the ADC. The
intrinsic timing jitter of the ADC is corrected by a 75 MHz
pilot tone superimposed to the photoreceiver signal. The phase-
meter DPLLs then tracks the beatnote phases.

4No final decision has been made on the precise USO
frequency that will be used for LISA.
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VPTðτÞ ¼ cosð2πνPT½τ þ q1ðτÞ�Þ: ð50Þ

Here, q1ðτÞ describes the timing deviations of the pilot tone
generated on spacecraft 1 with respect to the TPS τ1,
expressed in the latter. Note that the dominant noise source
in the pilot tone generation is the USO itself [27], such that
we assume the statistical properties of the pilot tone noise to
be identical to those of the USO noise.
We further decompose q1ðτÞ using two time series,

q1ðτÞ ¼ qo1ðτÞ þ qϵ1ðτÞ; ð51Þ

to model large deterministic effects (such as clock fre-
quency offsets and drifts) and small in-band stochastic
fluctuations. As before, we do not simulate the 75 MHz
signal itself, but only qo1ðτÞ and qϵ1ðτÞ [or rather _qo1ðτÞ and
_qϵ1ðτÞ as the pilot tones fractional frequency fluctuations].
The clock signal is used to create the sidebands, as

described in Sec. III C. The total phase of the sideband
modulation signals is modeled as

νm12 · ðτ þ q1ðτÞ þM12ðτÞÞ: ð52Þ

Here, νm12 is the constant nominal frequency5 of the
modulating signal on optical bench 12. Imperfections in
the frequency conversion between the pilot tone and the
sidebands are modeled by an additional modulation noise
term M12ðτÞ.

D. Timer model

In order to model timestamping and pseudoranging
(cf. Sec. VII), we not only need the frequency fluctuations
of the local clock, but also the time shown by each

spacecraft timer. These times must be tracked down to at
least ns precision while reaching values of around 108 s at
the end of the 10 years of extended mission. The use of
double-precision floating-point numbers is not compatible
with such a dynamic range. Therefore, we simulate offsets
of that timer relative to the associated TPS δτ̂τ11 ðτÞ≡ δτ̂1ðτÞ,
called timer deviations, which evolve slowly with time. The
total clock time6 τ̂τ11 ðτÞ as a function of the TPS can then be
computed by

τ̂τ11 ðτÞ ¼ τ þ δτ̂1ðτÞ: ð53Þ

Timer deviations are closely related to the clock timing
jitter,

δτ̂1ðτÞ ¼ q1ðτÞ þ δτ̂1;0: ð54Þ

In this equation, δτ̂1;0 accounts for the fact that we don’t
know the true time τ1;0 at which we turn on the timer, i.e.,
we cannot directly relate the initial phase of the clock signal
q1ðτ1;0Þ to any external time frame.

E. Signal sampling

1. Signal sampling in terms of phase

The photoreceiver signals recorded, say, on spacecraft 1,
are generated according to the TPS τ1. The measurements
that are eventually telemetered, however, are recorded and
timestamped with clock time τ̂1. As a consequence, we
need to resample the photoreceiver signals from the TPS to
the clock time frame.
If a photoreceiver signal ΦPD is expressed in terms of

phase, this can be achieved following Eq. (3),

Φτ̂1
PDðτÞ ¼ Φτ1

PDðττ̂11 ðτÞÞ: ð55Þ

Therefore, we need to compute the TPS ττ̂11 ðτÞ given a given
clock time τ. This quantity can be computed by writing
Eq. (53) evaluated at ττ̂11 ðτÞ,

τ̂τ11 ðττ̂11 ðτÞÞ ¼ ττ̂11 ðτÞ þ δτ̂1ðττ̂11 ðτÞÞ: ð56Þ

We use Eq. (3) to rewrite the left-hand side, which gives,
after rearranging,

ττ̂11 ðτÞ ¼ τ − δτ̂1ðττ̂11 ðτÞÞ: ð57Þ

We can solve this implicit equation for ττ̂11 ðτÞ iteratively, by
computing

FIG. 5. Overview over the USO frequency distribution on one
optical bench, based on [27]. Not depicted is a possible electrical
comparison between the 2.4 GHz and 2.401 GHz signals. Note
that the phasemeter clock is not performance critical, and could
be synthesized from either the 2.4 GHz signal or directly from the
USO, indicated by two possible connections in dotted lines.

5By definition, these frequencies are at their nominal values.
The real modulation signals will have a frequency offset due to
the terms q1 and M12 in Eq. (15).

6This timescale will be realized in practice by the so-called
spacecraft elapsed time (SCET), which is the only timescale
directly available onboard the satellites.
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δτ̂ð0Þ1 ðτÞ ¼ δτ̂1ðτÞ; ð58aÞ

δτ̂ðnþ1Þ
1 ðτÞ ¼ δτ̂1ðτ − δτ̂ðnÞ1 ðτÞÞ; ð58bÞ

such that

lim
n→∞

δτ̂ðnÞ1 ðτÞ ¼ δτ̂1ðττ̂11 ðτÞÞ: ð59Þ

Since the timer deviations are evolving slowly, the iteration
converges quickly. In our simulations, we stop after two
iterations, such that

ττ̂11 ðτÞ ≈ τ − δτ̂ð2Þ1 ðτÞ: ð60Þ

We can then plug the previous equation in Eq. (55) to
write all frame-independent measurements as a functions of
the correct recording times Φτ̂1

PDðτÞ, given the same quan-
tities expressed in the TPS. We find

Φτ̂1
PDðτÞ ≈Φτ1

PDðτ − δτ̂ð2Þ1 ðτÞÞ: ð61Þ

This operation can be implemented with a time-varying
fractional-delay filter (interpolation).
We introduce the timestamping operator T1, which shifts

a signal sðτÞ from the TPS to the clock time of spacecraft 1.
Formally, its action is given by

T1sðτÞ ¼ sðτ − δτ̂ð2Þ1 ðτÞÞ: ð62Þ

Using this shorthand notation, Eq. (61) now reads

Φτ̂1
PDðτÞ ¼ Φτ1

PDðττ̂11 ðτÞÞ ≈ T1Φ
τ1
PDðτÞ: ð63Þ

Note that this is only valid for measurements expressed
in phase, as frequencies are not frame-independent
quantities.

2. Sampling errors in terms of frequency

The effect of sampling can also be expressed in terms of
total frequency, where it manifests itself as a Doppler-like
frequency shift.
In the following paragraph, we compute frequencies

by taking the derivative of phase with respect to the
clock time, since this is the time reference that the
phasemeter will use to measure the signal frequency.
From Eq. (55), and denoting function composition as
ðΦτ1

PD∘ττ̂11 ÞðτÞ ¼ Φτ1
PDðττ̂11 ðτÞÞ, we have

ντ̂1PDðτÞ ¼
dΦτ̂1

PD

dτ
ðτÞ ¼ dðΦτ1

PD∘ττ̂11 Þ
dτ

ðτÞ: ð64Þ

Using the chain rule,

ντ̂1PDðτÞ ¼ ντ1PDðττ̂11 ðτÞÞ ×
dττ̂11
dτ

ðτÞ: ð65Þ

To compute the derivative of ττ̂11 ðτÞ, let us differentiate
the defining implicit Eq. (57),

dττ̂11
dτ

ðτÞ ¼ 1 −
dðδτ̂1∘ττ̂11 Þ

dτ
ðτÞ

¼ 1 −
dδτ̂1
dτ

ðττ̂11 ðτÞÞ ×
dττ̂11
dτ

ðτÞ: ð66Þ

Using Eq. (54), we find dδτ̂1=dτ ¼ _q1ðτÞ. Inserting this
identity, we can rearrange the previous equation to get

dττ̂11
dτ

ðτÞ ¼ 1

1þ _q1ðττ̂11 ðτÞÞ
; ð67Þ

which finally yields for the total frequency,

ντ̂1PDðτÞ ¼
ντ1PDðττ̂11 ðτÞÞ

1þ _q1ðττ̂11 ðτÞÞ
≈ T1

�
ντ1PDðτÞ

1þ _q1ðτÞ
�
: ð68Þ

3. Sampling in two-variable decomposition

We now want to describe the effect of timing errors in the
framework of two-variable decomposition. This will allow
us to split the sampling errors derived previously into large
deterministic offsets in the measurement timestamps, and
small stochastic fluctuations that enter as an additional
noise term. The latter represent what is often referred to as
clock noise, see, e.g., [20].
However, we want to make it clear once more that this

decomposition is entirely artificial. Both slow drifts and in-
band clock noise describe the same physical process,
namely the instability of the USO, on different time scales.
The sampling process applies to the total phase of each

photoreceiver signal, given by Eq. (37) as

Φτ̂1
PDðτÞ ¼ Φτ1

PDðττ̂11 ðτÞÞ
¼ ϕo

PDðττ̂11 ðτÞÞ þ ϕϵ
PDðττ̂11 ðτÞÞ: ð69Þ

Since ϕo
PDðτÞ is very quickly evolving, small (first-order)

timing fluctuations in ττ̂11 ðτÞ must appear in the measure-
ment described by ϕϵ

PDðτÞ. Thus, we must account for the
cross coupling between ϕo

PDðτÞ and ϕϵ
PDðτÞ, and we cannot

simply time shift both components individually.
We can insert Eqs. (51) and (54) into Eq. (57) to get

ττ̂11 ðτÞ ¼ τ − δτ̂1;0 − qo1ðττ̂11 ðτÞÞ − qϵ1ðττ̂11 ðτÞÞ: ð70Þ

We model clock-noise fluctuations _qϵ1 as band-limited
noise, such that they remain small and we can expand
the ϕo term in Eq. (69) to first order in _qϵ1,

JEAN-BAPTISTE BAYLE and OLAF HARTWIG PHYS. REV. D 107, 083019 (2023)

083019-12



Φτ̂1
PDðτÞ ¼ ϕo

PDðτ − δτ̂1;0 − qo1ðττ̂11 ðτÞÞÞ þ ϕϵ
PDðττ̂11 ðτÞÞ

− νoPDðτ − δτ̂1;0 − qo1ðττ̂11 ðτÞÞÞqϵ1ðττ̂11 ðτÞÞ: ð71Þ

Finally, we obtain the two variable-decomposition for the
resampled photoreceiver phase.

ϕτ̂1;o
PD ðτÞ ≈ ϕo

PDðτ − δτ̂1;0 − T1qo1ðτÞÞ; ð72aÞ

ϕτ̂1;ϵ
PD ðτÞ ≈ T1ϕ

ϵ
PDðτÞ − νoPDðτ − δτ̂1;0 − T1qo1ðτÞÞT1qϵ1ðτÞ:

ð72bÞ

For frequency data, we start with Eq. (68), and decompose
again clock noise _q1 into two variables, as explained in
Sec. IV. We then expand it to first order in _qϵ1 to get

1

1þ _qo1ðττ̂11 ðτÞÞ þ _qϵ1ðττ̂11 ðτÞÞ

≈
1

1þ _qo1ðττ̂11 ðτÞÞ
−

_qϵ1ðττ̂11 ðτÞÞ
½1þ _qo1ðττ̂11 ðτÞÞ�2

: ð73Þ

So in total, we have

ντ̂1PDðτÞ ≈ ντ1PDðττ̂11 ðτÞÞ
�

1

1þ _qo1ðττ̂11 ðτÞÞ
−

_qϵ1ðττ̂11 ðτÞÞ
½1þ _qo1ðττ̂11 ðτÞÞ�2

�
:

ð74Þ

We now expand ντ1PDðτÞ ¼ ντ1;oPD ðτÞ þ ντ1;ϵPD ðτÞ, and neglect
the small coupling of qϵ1ðτÞ to the already small fluctuations
ντ1;ϵPD ðτÞ. We collect the terms to express the photodiode
signal offsets ντ̂1;oPD ðτÞ and fluctuations ντ̂1;ϵPD ðτÞ after shifting
to the clock time, using Eq. (61),

ντ̂1;oPD ðτÞ ≈ T1ν
τ1;o
PD ðτÞÞ

1þ T1 _qo1ðτÞ
; ð75aÞ

ντ̂1;ϵPD ðτÞ ≈ T1ν
τ1;ϵ
PD ðτÞ

1þ T1 _qo1ðτÞ
−
T1ν

τ1;o
PD ðτÞT1 _qϵ1ðτÞ

½1þ T1 _qo1ðτÞ�2
: ð75bÞ

To simplify further our equations, we define the frequency
timestamping operator, which includes the rescaling by
1þ _qo1 . It is formally defined by its action on a signal sðτÞ,

_T1sðτÞ ¼ T1

�
sðτÞ

1þ _qo1ðτÞ
�
¼ T1sðτÞ

1þ T1 _qo1ðτÞ
: ð76Þ

Now, photoreceiver frequency signals in the clock-time
frame of spacecraft 1 read

ντ̂1;oPD ðτÞ ≈ _T1ν
τ1;o
PD ðτÞ; ð77aÞ

ντ̂1;ϵPD ðτÞ ≈ _T1

�
ντ1;ϵPD ðτÞ − ντ1;oPD ðτÞ _qϵ1ðτÞ

1þ _qo1ðτÞ
�
: ð77bÞ

V. ONBOARD PROCESSING

In this section, we describe the processing steps the
readout signals undergo on board the spacecraft, and in
particular the filtering and downsampling steps. The
sampling rates used in our simulation are shown schemati-
cally in Fig. 6. We then give the expression of the main
measurement signals, which are the main outputs of the
simulation.

A. Filtering and downsampling

1. Physics sampling rate

As described in Sec. IV and following the current
mission design, the onboard phasemeters track the phase
(or, equivalently, the instantaneous frequency) of sampled
and digitized versions of the MHz beatnotes using DPLLs
running at 80 MHz.
For performance reasons, we cannot simulate continuous

analog signals nor DPLL signals at their real sampling rate.
Instead, we use a discretized representation and rely on
high-level models to capture the most significant effects. In
our simulations, continuous quantities, as well as photo-
receiver signals and beatnote measurements, are simulated
at the physics rate

fphys ¼ 16 Hz: ð78Þ

Note that this physics rate matches the penultimate down-
sampling step of the real onboard decimation chain
(described below), which is used by the DFACS.

ADC & DPPL Downsampling Downsampling16 Hz

Continous
EM amplitude

16 Hz

Continous
voltage

16 Hz

80 MHz
beatnote phase

(or frequency)

16 Hz

16 Hz
beatnote phase

used by DFACS

4 Hz

4 Hz
telemetered

beatnote phase

Photoreceiver

FIG. 6. Overview of the real signal sampling rates, from continuous optical and electrical signals, to the cascaded downsampled
signals down to the telemetered 4 Hz data. We also indicate the sampling rates used in the simulation (in gray boxes) to represent these
signals; continuous and high-frequency signals are represented by discrete 16 Hz simulated quantities, while the telemetry data is
simulated at their true 4 Hz rate.
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2. Antialiasing filters

The current mission design suggests that the raw 80MHz
phasemeter beatnote signals are then filtered and down-
sampled to various lower sampling rates, and ultimately to
the final measurement rate of 4 Hz. This last measurement
sampling rate is in line with the mission instrument design,
and compatible with the limited telemetry budget and the
required bandwidth for on-ground processing. The 4 Hz
data are then telemetered down to Earth.
High-order digital low-pass finite impulse response

(FIR) filters, as well as cascading filters, are expected to
be used to prevent noise aliasing in the frequency band
relevant for LISA data analysis, between 10−4 Hz and 1 Hz
[33]. These filters must strongly attenuate the signals above
the Nyquist frequency, while maintaining a gain close to
unity and low phase distortion below 1 Hz. Their precise
implementation is still under development.
In the simulation, we use a single digital symmetrical

FIR filter to go from fphys to the final measurement
sampling rate of

fmeas
s ¼ 4 Hz: ð79Þ

The default implementation of the antialiasing filter is
described in Appendix D.

3. Decimation

Once the beatnote frequency measurements are filtered,
we use a four-fold decimation (we select one sample out of
four) to produce the final 4 Hz telemetry data. They are the
main output of the simulation.
Analytically, we model the filtering and downsampling

step with the continuous, linear filter operator F, which is
applied to the beatnote frequency measurements.

B. Telemetered beatnote measurements

We summarize here the downsampled, filtered beatnote
measurements output by the phasemeter, i.e., the interspace-
craft, test-mass, reference carrier and sideband beatnote
frequencies. They are ultimately telemetered down to Earth.7

1. Beatnote measurement notation

For these beatnote measurements, we introduce a clear
notation that uses the name of the associated interferometer
and its index, complemented by the type of beam (carrier or
sideband). The real phasemeter will only produce the total
frequency or the total phase of the signal. For our studies,
however, it is often useful to also have access to the
underlying offsets and fluctuations in two separate varia-
bles, which is why we give here the signals in this form.

The simulation will provide an additional output for the
total frequency, given as the sum of the two components.
For readability’s sake, we drop all time arguments. We

use delay operators to account for time shifts that
appear when propagating signals. We denote D12 the
delay operator associated with the PPR do12ðτÞ defined in
Sec. III E, such that for any signal sðτÞ,

D12sðτÞ ¼ sðτ − do12ðτÞÞ: ð80Þ

Furthermore, we introduce the Doppler-delay operator,
which is defined as

_D12sðτÞ ¼ ð1 − _do12ðτÞÞsðτ − do12ðτÞÞ: ð81Þ

We also make use of the timestamping operators _Ti
introduced in Sec. IV E, and the downsampling and filter-
ing operator F.
We will also use a shorthand notation for the beatnote

frequency offsets in the TPS, which we define by

ac12 ≡ νoisi12;c ¼ _D12O21 − ν0 _d
o
12 −O12; ð82aÞ

asb12 ≡ νoisi12;sb ¼ ac12 þ _D12½νm21ð1þ _qo2Þ� − νm12ð1þ _qo1Þ;
ð82bÞ

bc12 ≡ νorfi12;c ¼ O13 −O12; ð82cÞ

bsb12 ≡ νorfi12;sb ¼ bc12 þ ðνm13 − νm12Þð1þ _qo1Þ: ð82dÞ

In addition, most of the laser-related terms p12, O12 will be
determined by the laser-locking scheme, as described
in Sec. VI.

2. Interspacecraft interferometer beatnote frequencies

The carrier-carrier beatnote frequency measurement in
the ISIs contains the delayed distant and local laser
frequency fluctuations _p21 and _p12, as well as the delayed
distant and local optical-bench path length noises appearing
as Doppler shifts _Nob

isi12←21 and _Nob
isi12←12. The effect of the

gravitational-wave signal _H12 also appears as an extra
Doppler shifts on the distant beam. Lastly, the readout
_Nro
isi12;c and clock noise ac12 _q

ϵ
1=ð1þ qo1Þ terms are added.

isio12;c ¼ F _T1ac12; ð83aÞ

isiϵ12;c ¼ F _T1

�
_D12 _p21 − ðν0 þ D12O21Þ _H12

þ ν0
c

_Nob
isi12←21 −

�
_p12 þ

ν0
c

_Nob
isi12←12

�

þ _Nro
isi12;c −

ac12 _q
ϵ
1

1þ _qo1

	
; ð83bÞ

7As mentioned before, there are other data streams, such as the
angular readouts provided by DWS, which we do not model here.
The measured pseudorange (MPR) measurements are described
in Sec. VII.
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isi12;c ¼ isio12;c þ isiϵ12;c: ð83cÞ

The sideband-sideband beatnote frequency measurement is
similar with two main differences. First, the distant and
local laser frequency fluctuations are affected by the
coupling of the modulation frequency with clock jitter
and modulation noise νm21ð _qϵ2 þ _M21Þ and νm12ð _qϵ1 þ _M12Þ.
Secondly, the distant sideband beatnote frequency offsets
are shifted by the modulation frequency affected by out-of-
band clock errors νm21ð1þ _qo2Þ. Overall, we get

isio12;sb ¼ F _T1asb12; ð84aÞ

isiϵ12;sb ¼ F _T1

�
_D12ð _p21 þ νm21ð _qϵ2 þ _M21ÞÞ

− ðν0 þD12½O21 þ νm21ð1þ _qo2Þ�Þ _H12 þ
ν0
c

_Nob
isi12←21

−
�
_p12 þ νm12ð _qϵ1 þ _M12Þ þ

ν0
c

_Nob
isi12←21

�

þ _Nro
isi12;sb −

asb12 _q
ϵ
1

1þ _qo1

	
; ð84bÞ

isi12;sb ¼ isio12;sb þ isiϵ12;sb: ð84cÞ

3. Reference interferometer beatnote frequencies

The carrier-carrier beatnote frequency measurement in
the RFIs contains the frequency fluctuations of the adjacent
and local laser beams _p13 and _p12, as well as the associated
optical-bench path length noises _Nob

rfi12←13 and _Nob
rfi12←12. The

adjacent beam that travels through the optical fiber picks up
the backlink noise _Nbl

12. The readout _N
ro
rfi12;c and clock noise

bc12 _q
ϵ
1=ð1þ qo1Þ terms are then added,

rfio12;c ¼ F _T1bc12; ð85aÞ

rfiϵ12;c ¼ F _T1

�
_p13 þ

ν0
c
ð _Nob

rfi12←13 þ _Nbl
12Þ

−
�
_p12 þ

ν0
c

_Nob
rfi12←12

�
þ _Nro

rfi12;c −
bc12 _q

ϵ
1

1þ _qo1

	
;

ð85bÞ

rfi12;c ¼ rfio12;c þ rfiϵ12;c: ð85cÞ

The expression for the sideband-sideband beatnote fre-
quency measurement follows the same logic, with the
adjacent and local laser frequency fluctuations affected
by the in-band clock and modulation noises νm13ð _q1 þ _M13Þ
and νm12ð _q1 þ _M12Þ,

rfio12;sb ¼ F _T1bsb12; ð86aÞ

rfiϵ12;sb ¼ F _T1

�
_p13 þ νm13ð _q1 þ _M13Þ þ

ν0
c
ð _Nob

rfi12←13 þ _Nbl
12Þ

−
�
_p12 þ νm12ð _q1 þ _M12Þ þ

ν0
c

_Nob
rfi12←12

�

þ _Nro
rfi12;sb −

bsb12 _q
ϵ
1

1þ _qo1

	
; ð86bÞ

rfio12;sb ¼ rfio12;sb þ rfiϵ12;sb: ð86cÞ

4. Test-mass interferometer beatnote frequencies

The carrier-carrier beatnote frequency measurements in
the TMI have the same form as for the RFI, with the
exception of the additional local test-mass noise term _Nδ

12,

tmio12;c ¼ F _T1bc12; ð87aÞ

tmiϵ12;c ¼ F _T1

�
_p13 þ

ν0
c
ð _Nob

tmi12←13 þ _Nbl
12Þ

−
�
_p12 þ

ν0
c
ð _Nob

tmi12←12 þ 2 _Nδ
12Þ

�

þ _Nro
tmi12;c −

bc12 _q
ϵ
1

1þ _qo1

	
; ð87bÞ

tmi12;c ¼ tmio12;c þ tmiϵ12;c: ð87cÞ

As mentioned previously, we do not model sideband-
sideband beatnote measurements in the TMIs.

VI. LASER LOCKING AND FREQUENCY
PLANNING

As mentioned in Sec. III C, each laser source is either
frequency-locked to a resonant cavity or phase locked
to another laser source using a specific interferometric
beatnote. In this section, we describe how we simulate
these laser-locking control loops. We then list the various
locking configurations available for LISA in its baseline
configuration.

A. Frequency planning

The beatnote frequencies that can be measured by the
LISA phasemeters are limited to between 5 MHz and
25 MHz.8 As a consequence, all beatnote frequencies need
to be controlled to fall in this range, which is achieved by
introducing predetermined offset frequencies in the laser
locking control loops. A set of these frequency offsets for
all lasers over the whole mission duration is called a
frequency plan.

8The exact frequency range remains to be defined. In addition,
some margins are required for both the upper and lower bounds to
account for the sideband beatnotes, which are offset by 1 MHz
from the carrier beatnotes.
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The problem of finding such frequency plans has
recently been studied ([34]), and exact solutions have been
found. We will use these solutions as an input to the
simulation.

B. Locking condition

Laser locking is achieved by controlling the frequency of
a locked laser, such that a given beatnote frequency νPDðτÞ
remains equal to a preprogrammed reference value νplanðτÞ
provided in the frequency plan.
We do not simulate the actual control loop, but instead

directly compute the correct frequency offsets and fluctua-
tions of the locked laser for this locking condition to be
satisfied. In reality, the locking control loops will have
finite gain and bandwidth, such that the locking beatnotes
can still contain out-of-band glitches and noise residuals.
Here, we consider the frequency lock to be perfect. This
means that the locking beatnote offset is exactly equal to
the desired value.
Locking control loops run according to their local clocks,

such that the locking condition is fulfilled in the local clock
time frame τ̂1. In addition, the frequency-plan locking
frequencies are interpreted as functions of the same local
clock time frame. In terms of total phase, the result of this
control is that the measured beatnote phase is controlled to
be exactly equal to the frequency-plan phase,

Φτ̂1
PDðτÞ ¼ ΦplanðτÞ: ð88Þ

Note that the control loop operates on data delivered by the
phasemeter at a high frequency of 80 MHz ([35]). As such,
we simulate the locking before applying any filtering or
downsampling.
The previous locking condition is expressed in the local

time frame, but we really want to solve for it in the TPS. We
can use Eqs. (3), (51), and (53) to relate the measured
beatnote phase to its equivalent in the TPS,

Φτ1
PDðτÞ ¼ Φτ̂1

PDðτ þ qo1ðτÞ þ qϵ1ðτÞ þ δτ̂1;0Þ: ð89Þ

Using this result, we can write the locking condition from
Eq. (88) as

Φτ1
PDðτÞ ¼ Φplanðτ þ qo1ðτÞ þ qϵ1ðτÞ þ δτ̂1;0Þ: ð90Þ

We expand the previous equation to first order in qϵ1ðτÞ,

Φτ1
PDðτÞ ¼ Φplanðτ þ qo1ðτÞ þ δτ̂1;0Þ

þ νplanðτ þ qo1ðτÞ þ δτ̂1;0Þqϵ1ðτÞ: ð91Þ

The second-order term is proportional to the product
qϵ1ðτÞ2 _νplanðτ þ qo1ðτÞ þ δτ̂1;0Þ of the square of the clock
fluctuations and the time derivative of the frequency-plan
locking frequency. To evaluate the order of magnitude of

this term, we compute the average clock time deviation [36]
after a time corresponding to its saturation frequency
(described in Appendix B); we find a value of the order
of 10−9 s. In addition, all currently available frequency
plans verify _νplanðτÞ < 3 Hz s−1. Therefore, we neglect
terms of the order of 3 × 10−18 cycles, far below the
μ-cycle level of gravitational-wave signals.
From Eq. (91), one directly obtains the usual decom-

position in phase drifts and fluctuations,

ϕτ1;o
PD ðτÞ ¼ Φplanðτ þ qo1ðτÞ þ δτ̂1;0Þ; ð92aÞ

ϕτ1;ϵ
PD ðτÞ ¼ νplanðτ þ qo1ðτÞ þ δτ̂1;0Þqϵ1ðτÞ: ð92bÞ

Indeed, the current baseline is to use piecewise linear
functions with daily inflexions as frequency-plan locking
frequencies. As a consequence, the latter are slowly
varying, i.e., only consist in large out-of-band frequency
offsets, such that νplanðτÞ ¼ νoplanðτÞ. This also applies to the
preprogrammed reference phase ΦplanðτÞ ¼ ϕo

planðτÞ.
We denote the (local) locked laser phase drifts and

fluctuations as ϕτ1;o
l ðτÞ and ϕτ1;ϵ

l ðτÞ, and the (distant or
adjacent) reference laser phase drifts and fluctuations as
ϕτ1;o
r ðτÞ and ϕτ1;ϵ

r ðτÞ. Using Eq. (37), we have

ϕτ1;o
PD ðτÞ ¼ ϕτ1;o

r ðτÞ − ϕτ1;o
l ðτÞ; ð93aÞ

ϕτ1;ϵ
PD ðτÞ ¼ ϕτ1;ϵ

r ðτÞ − ϕτ1;ϵ
l ðτÞ þ Nro

PDðτÞ: ð93bÞ

It is now straightforward to write the resulting locked-laser
phase drifts and fluctuations,

ϕτ1;o
l ðτÞ ¼ ϕτ1;o

r ðτÞ −Φplanðτ þ qo1ðτÞ þ δτ̂1;0Þ; ð94aÞ

ϕτ1;ϵ
l ðτÞ ¼ ϕτ1;ϵ

r ðτÞ −Φplanðτ þ qo1ðτÞ þ δτ̂1;0Þqϵ1ðτÞ
þ Nro

PDðτÞ: ð94bÞ

For frequency, we start by taking the derivative of Eq. (90)
and expand it once again in qϵ1,

ντ1PDðτÞ ¼ ð1þ _qo1ðτÞÞνplanðτ þ qo1ðτÞ þ δτ̂1;0Þ
þ νplanðτ þ qo1ðτÞ þ δτ̂1;0Þ _qϵ1ðτÞ
þ ð1þ _qo1ðτÞ þ _qϵ1ðτÞÞ
× _νplanðτ þ qo1ðτÞ þ δτ̂1;0Þqϵ1ðτÞ: ð95Þ

The last term of the previous equation has a similar form as
the small correction neglected in Eq. (30b). We study such a
term in Appendix C and find that it is several orders of
magnitude below the main noise term. Therefore, we will
neglect it in the rest of this derivation.
Using the same two-variable decomposition along with

the frequency equivalent of Eq. (93),
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ντ1;oPD ðτÞ ¼ ντ1;or ðτÞ − ντ1;ol ðτÞ; ð96aÞ

ντ1;ϵPD ðτÞ ¼ ντ1;ϵr ðτÞ − ντ1;ϵl ðτÞ þ _Nro
PDðτÞ; ð96bÞ

we finally obtain the resulting locked-laser frequency offset
and fluctuations,

ντ1;ol ðτÞ ¼ ντ1;or ðτÞ − ð1þ _qo1ðτÞÞ
× νplanðτ þ qo1ðτÞ þ δτ̂1;0Þ; ð97aÞ

ντ1;ϵl ðτÞ ¼ ντ1;ϵr ðτÞ − νplanðτ þ qo1ðτÞ þ δτ̂1;0Þ
× _qϵ1ðτÞ þ _Nro

PDðτÞ: ð97bÞ

Note that these equations describe the locked laser at the
photodiode. To properly simulate this effect, we need the
locked lasers frequency at the laser source, which we
denote here as ν̄lðτÞ. In Sec. III C, we add to the local beam
frequency fluctuations an optical path length noise term
_Nob
PDðτÞ during its propagation from the laser source to the

photodiode. As a consequence, we have

ν̄ϵl ðτÞ ¼ νϵrðτÞ − νplanðτ þ qo1ðτÞ þ δτ̂1;0Þ _qϵ1ðτÞ
þ _Nro

PDðτÞ −
ν0
c

_Nob
PDðτÞ ð98Þ

for the local locked-laser fluctuations.

C. Locking configurations

In total, 5 of the 6 lasers in the constellation are locked
(directly or indirectly) to one primary laser. Each of the
locked lasers is locked to either the adjacent laser, using the
RFI, so that Eqs. (97a) and (98) read

O12ðτÞ ¼ νorfi12←13ðτÞ − ð1þ _qo1ðτÞÞ
× νfplan;rfi12ðτ þ qo1ðτÞ þ δτ̂1;0Þ; ð99aÞ

_p12ðτÞ ¼ νϵrfi12←13ðτÞ − νfplan;rfi12ðτ þ qo1ðτÞ þ δτ̂1;0Þ _qϵ1ðτÞ
þ _Nro

rfi12ðτÞ −
ν0
c

_Nob
rfi12←12ðτÞ; ð99bÞ

or to the distant laser, using the ISI, such that we get

O12ðτÞ ¼ νoisi12←21ðτÞ − ð1þ _qo1ðτÞÞ
× νfplan;isi12ðτ þ qo1ðτÞ þ δτ̂1;0Þ; ð100aÞ

_p12ðτÞ ¼ νϵisi12←21ðτÞ − νfplan;isi12ðτ þ qo1ðτÞ þ δτ̂1;0Þ _qϵ1ðτÞ
þ _Nro

isi12ðτÞ −
ν0
c

_Nob
isi12←12ðτÞ: ð100bÞ

These expressions can be substituted into the equations of
Sec. V B to derive the telemetered beatnote measurements
with locked lasers.
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FIG. 7. Laser-locking configurations for laser 12 as primary laser.
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The LISA model presented here permits six distinct
locking topologies. For each of them, we have the freedom
to choose the primary laser, such that, in total, we have 36
possible locking configurations. We plot the six configu-
rations with laser 12 as the primary laser in Fig. 7. The
other 30 combinations can be deduced by applying
permutations of the indices.

VII. PSEUDORANGING

In addition to the GHz sideband modulation, each laser
beam will also carry an additional modulation with a
predetermined pseudorandom noise (PRN) code used for
absolute ranging and timing synchronization. The basic
measurement principle is to correlate the received PRN
code in each ISI with a local copy generated on the
receiving spacecraft. The result of this measurement is
the measured pseudorange (MPR), which contains infor-
mation on both the light travel time between the spacecraft
and the clock desynchronization.

A. Pseudoranging modulation

The PRN modulation is performed at a relatively high
frequency of around 2 MHz, far outside our simulation
bandwidth. We therefore do not model the actual phase
modulation. This modulation also causes a small addi-
tional noise in our measurement band, at a level below
1 pmHz−0.5 in units of displacement [37], which we do not
model. In addition, we only model the PRN measurement
in the ISI, and completely ignore the presence of the PRN
codes in the other interferometers.
Instead, we model this measurement by directly propa-

gating the time deviations of each spacecraft timer with
respect to their TPSs, alongside the laser beams. The MPR
is then computed as the difference between the received and
local timer.
Similarly to the main interferometric measurements and

as described in Sec. VA, pseudoranging simulation is
performed at fphys , while the MPRs are ultimately filtered
and downsampled to a lower rate fmeas

s .

B. Pseudoranging as a clock-time difference

We consider in the following paragraphs a beam received
by optical bench 12 at the receiver TPS τ, which was
emitted from optical bench 21 at emitter TPS τ − d12ðτÞ.
Here, the PPR d12ðτÞ contains the light time of flight, as
well as the conversion between the two proper times.
Conceptually, the MPRmeasures the pseudorange, given

as the difference between the time τ̂τ11 ðτÞ shown by the local
clock of the receiving spacecraft at the event of reception of
the beam, and the time τ̂τ22 ðτ − d12ðτÞÞ shown by the local
clock of the sending spacecraft at the event of emission of
the beam. In reality, the MPR only measures the pseudor-
ange up to the repetition period of the PRN code, which is
around 1 ms. The full pseudorange is then recovered by

combining the MPR measurements with ground-based
observations.
At the moment, we do not simulate this effect and

assume that the MPR directly gives the pseudorange
without ambiguity. In addition, we assume that the vacuum
between the satellites is sufficiently good that we can
neglect (or compensate for) any dispersion effects, such
that the PRN code suffers exactly the same delay as the
carrier and sidebands.
Thus, we can model the MPR as the difference

R12ðτÞ ¼ τ̂1ðτÞ − τ̂2ðτ − d12ðτÞÞ þ NR
12ðτÞ; ð101Þ

where NR
12ðτÞ is a ranging noise term modeling imperfec-

tions in the overall correlation scheme.

C. Pseudoranging in terms of timer deviations

As explained in Sec. IV D, we do not simulate the total
clock time τ̂1ðτÞ for each spacecraft, but only deviations
δτ̂1ðτÞ from the associated TPS,

τ̂1ðτÞ ¼ τ þ δτ̂1ðτÞ and τ̂2ðτÞ ¼ τ þ δτ̂2ðτÞ: ð102Þ

Inserting these definitions into Eq. (101) yields

R12ðτÞ ¼ δτ̂1ðτÞ − ½δτ̂2ðτ − d12ðτÞÞ − d12ðτÞ� þ NR
12ðτÞ:

ð103Þ

Let us define the clock time of the sending spacecraft
propagated to the photodiode of the distant interspacecraft
interferometer as

δτ̂isi12←2ðτÞ ≈ δτ̂3ðτ − d12ðτÞÞ − d12ðτÞ: ð104Þ

We can then express the MPR as the simple difference

R12ðτÞ ≈ δτ̂1ðτÞ − δτ̂isi12←2ðτÞ þ NR
12ðτÞ: ð105Þ

In our simulation, we make the additional assumption that
d12 ≈ do12 for this measurement. This is valid since the
terms contained in dϵ12 (in our simulation model, only H12)
create timing jitters much less than a nanosecond.
Notice that in Eq. (105), we compute the MPR as a

function of the receiving TPSs, so that formally R12 ¼ Rτ1
12.

In reality, the MPR is measured according to the clock time
of the receiving spacecraft, Rτ̂1

12. Similarly to all other
measurements, we simulate this by first generating Rτ1

12 and
then resampling the resulting time series to obtain Rτ̂1

12, as
described in Sec. IV E.

VIII. IMPLEMENTATION

The model presented in the previous sections has been
implemented independently in two LISA Consortium
simulators, namely LISA Instrument and LISANode.
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In this section, we briefly describe the structure of both
simulators and highlight the key differences between them.
Results obtained from these simulators are presented
in Sec. IX.

A. LISA Instrument

LISA Instrument [38] is a Python-based implementation of the
simulation model described in this paper. It is designed
to facilitate fast exploratory studies, run quick or partial

simulations (instrumental effects and noises can easily be
toggled on and off), and prototype new features.

LISA Instrument ships as a standalone Python package. As a
consequence, it is easy to install, use, and integrate in
traditional workflows, such as Jupyter Notebooks. LISA

Instrument does not require a custom installation and can
be used out-of-the-box on most computing clusters.

LISA Instrument relies strongly on traditional numerical
libraries, such as NumPy and SciPy [39,40], and therefore
benefits from fast optimized vectorized operations as it
handles large arrays of data. Its runtime performance is
studied and compared to that of LISANode in Fig. 9.

LISA Instrument runs stage-by-stage simulations, where
time series are generated for the entire simulation duration
at each stage. The main stages of a simulation are
represented in Fig. 8. First, time series are generated
for all noises enabled in the simulation, following the
prescription of Appendix B. LISA Instrument uses FIR and
cascaded RC filters [41] to generate the noise time series.
Then, local beam frequencies are computed (see
Sec. III C). Local beams from locked-laser sources are
obtained by substituting the results of locking condition
equations found in Sec. VI C. These local beams are then
propagated to obtain the adjacent and distant beam
frequency time series (see Secs. III D and III E). Optical
beatnotes and measured beatnote frequencies are obtained
from the equations derived in Secs. III F and IV. MPRs are
also computed according to the model described in
Sec. VII. At this point, both beatnote frequencies and

TELEMETERED BEATNOTES & MPRs

FILTER AND DOWNSAMPLE MEASUREMENTS

RESAMPLE MEASUREMENTS TO CLOCK TIME FRAMES

COMPUTE OPTICAL BEATNOTES,

MEASURED BEATNOTE FREQUENCIES AND MPRs

PROPAGATE LOCAL BEAMS TO ADJACENT

AND DISTANT MOSAs

GENERATE LOCAL BEAMS

GENERATE NOISE TIME SERIES

FIG. 8. LISA Instrument simulation workflow. At each stage,
entire time series are generated. In the end, the simulation
products comprise the telemetered beatnotes and the MPRs.

FIG. 9. Runtime and memory performance of LISA Instrument (in blue) and LISANode (in yellow, orange, and red for the various compiler
optimization levels), for three instrumental configurations of increasing complexity (from left to right) and simulations durations.
Dashed lines are used for extrapolated data.
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MPRs are expressed as functions of their respective TPSs;
they are resampled at the next stage to their associated
clock time frames, following the methodology given in
Sec. IV E. Finally, all measurements are filtered and
downsampled (cf. Sec. VA) to obtain the telemetered
beatnote frequencies and MPR measurements described in
Sec. V B.
A downside of this simple implementation is that

memory usage increases drastically with the simulation
length. Memory pressure can become limiting for long
simulations (typically more than a few months, see
Sec. VIII C) if many noises and instrumental effects are
enabled. The alternative implementation of the same
simulation model, described in the next section, is overall
less flexible but is optimized for long simulations.

B. LISANode

LISANode [42,43] is a simulation framework that allows
the user to build modular simulation graphs out of atomic
computational units, called nodes. This is realized using a
mix of Python and C++, where the Python code is responsible
for defining the graph structure and interconnecting the
different nodes. The nodes themselves are implemented in
C++, such that the final executable is a C++ command line
program.
Using C++ offers the advantage that compiler optimiza-

tions produce a fast executable, and allows us to reuse
legacy code from previous C++ LISA simulators, such as
LISACode [21]. Naturally, the cost is reduced readability,
usability, and slower development times. Another conse-
quence is that LISANode needs to be compiled on each
machine it runs. To work around this last difficulty, we offer
containerization solutions, in the form of Docker and
Singularity images that contain optimized compiled ver-
sions of LISANode along with the software environment
necessary to run them. These images can be downloaded
and used on local machines and on most computing
infrastructures, and do not hinder the runtime performance
of the simulations.
In LISA Instrument, data is generated for the whole

simulation length. On the contrary, LISANode creates data
one step at a time: a sample at time tn is computed for all
quantities before repeating the same instructions for the
next samples tnþ1. New samples are therefore simulated on
the fly, keeping only in memory the data that is required for
the current and future samples. This way, memory usage
remains roughly constant regardless of the simulation
length (see Sec. VIII C). This allows long simulations to
run on memory-constrained machines.

C. Runtime and memory performance

We evaluate the runtime and memory performance
of LISA Instrument and LISANode for three instrumental
configurations of increasing complexity. In the simple
configuration, all noises but laser noise are neglected.

Most instrument effects are disabled, as we use a static
constellation with constant arm lengths, do not lock the
lasers, assume perfect clocks, and set fmeas

s ¼ fphys ¼ 4 Hz
(no filtering or downsampling). In the intermediate con-
figuration, all noises and effects are activated except for
clock errors (no resampling of the measurement to clock
time frames). We use realistic orbits and frequency plan for
the locking configuration N1-12. We filter all measure-
ments and use the nominal sampling frequencies described
in Sec. VA. Lastly, the full configuration includes the
effects of imperfect clocks.
We run simulations of increasing durations, ranging from

1 h (1.4 × 104 telemetered samples at 4 Hz for each
channel) to 6 months (6.2 × 107 samples). Missing points
indicates that the simulation did not complete on our
test machine (MacBook Pro M1, 2021, 64 GB of RAM)
because of excessive memory pressure or runtime. We
extrapolate the results to 1 year (dashed lines) using a linear
(LISANode) or quadratic (LISA Instrument) fit to the existing
data points.
We used the latest version of LISA Instrument and

LISANode, and compiled three different LISANode execut-
ables to study the impact of optimizations; one with no
compiler optimization (compiler flag -O0), one with
some optimizations (-O1), and one with most optimiza-
tions (-O2) enabled. In each case, we measure the
runtime and peak memory usage. Results are reported
in Fig. 9. Note that we do not include compilation time
for LISANode in these figures, which strongly depends on
the chosen optimization level (around 5 s for -O0, 1 min
for -O1, and 10 min for -O2).
In terms of runtime, as expected, LISA Instrument is

significantly (up to several orders of magnitude) faster
for simple simulations. For intermediary configurations,
LISA Instrument remains faster than LISANode up to simulation
length of a month. Considering full instrumental configu-
rations, highly-optimized versions of LISANode are faster
than LISA Instrument irrespective of simulation duration. This
is especially true for simulations longer than a month,
where LISANode runs roughly twice as fast. In addition,
memory usage can become limiting for simulations of a day
or longer on typical machines with a few GB of memory
when using LISA Instrument. LISANode caps memory peak
usage to low values of about 100 MB irrespective of the
simulation length.

D. Simulation parameters and simulation products

For reference, we give in Table I the list of options
accepted by LISA Instrument to configure the simulations.
They parametrize the instrumental configuration (type of
orbits, choice of a laser locking configuration, design of
the onboard filters, etc.), the various noise models (noise
amplitudes and spectral shapes), and the length of the
simulation. Note that similar options can be used with
LISANode, with some slight variations in their names.
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TABLE I. Simulation parameters available to configure LISA Instrument, alongside with their units and reference sections.

Parameter Description Unit Reference

size Number of samples to simulate � � � � � �
dt Measurement sampling period fmeas

s s Section VA
t0 Initial simulation time s � � �
physics_upsampling Ratio fphys =fmeas

s of physics and measurement sampling frequencies � � � Section VA
clockinv_tolerance Convergence criterion for clock noise inversion s Section IV E
clockinv_maxiter Maximum number of iterations for clock noise inversion � � � Section IV E

aafilter Antialiasing filter design specifications � � � Section VA
orbits Path to orbit file, or PPRs doijðτÞ s Section III E
gws Path to gravitational-wave file, or link responses HijðτÞ � � � Section III E
lock Laser locking configuration (e.g., N1-12) � � � Section VI
fplan Path to frequency-plan file, or locking beatnote frequencies νPD;rðτÞ Hz Section VI
central_freq Laser central frequency ν0 Hz Section III B

laser_asds Laser noise amplitude spectral density (ASD) Hz Hz−0.5 Appendix B
modulation_asds Modulation noise ASD sHz−0.5 Appendix B
modulation_freqs Modulation frequencies νmij Hz Section III C
clock_asds Clock noise ASD Hz−0.5 Appendix B
clock_offsets Clock offsets δτ̂i;0 from TPS τi s Section IV D
clock_freqoffsets Clock frequency offsets yi;0 s−1 Appendix B
clock_freqlindrifts Clock frequency linear drifts yi;1 s−2 Appendix B
clock_freqquaddrifts Clock frequency quadratic drifts yi;2 s−3 Appendix B
backlink_asds Backlink noise ASD mHz−0.5 Appendix B
backlink_fknees Backlink noise knee frequency Hz Appendix B
testmass_asds Test-mass noise ASD m s−2 Hz−0.5 Appendix B
testmass_fknees Test-mass noise knee frequency Hz Appendix B
oms_asds Readout noise ASD mHz−0.5 Appendix B
oms_fknees Readout noise knee frequency Hz Appendix B
ranging_biases Ranging systematic bias NR;o

i s Appendix B
ranging_asds Ranging noise ASD sHz−0.5 Appendix B

TABLE II. Simulation products, alongside their units, and reference equations. All quantities are output at the
measurement sampling rate fmeas

s .

Dataset Description Unit Reference

isi_carrier_offsets ISI carrier beatnote frequency offsets Hz Equation (83a)
isi_carrier_fluctuations ISI carrier beatnote frequency fluctuations Hz Equation (83b)
isi_carriers ISI carrier beatnote total frequency Hz Equation (83c)

isi_usb_offsets ISI upper-sideband beatnote frequency offsets Hz Equation (84a)
isi_usb_fluctuations ISI upper-sideband beatnote frequency fluctuations Hz Equation (84b)
isi_usbs ISI upper-sideband beatnote total frequency Hz Equation (84c)

rfi_carrier_offsets RFI carrier beatnote frequency offsets Hz Equation (85a)
rfi_carrier_fluctuations RFI carrier beatnote frequency fluctuations Hz Equation (85b)
rfi_carriers RFI carrier beatnote total frequency Hz Equation (85c)

rfi_usb_offsets RFI upper-sideband beatnote frequency offsets Hz Equation (86a)
rfi_usb_fluctuations RFI upper-sideband beatnote frequency fluctuations Hz Equation (86b)
rfi_usbs RFI upper-sideband beatnote total frequency Hz Equation (86c)

tmi_carrier_offsets TMI carrier beatnote frequency offsets Hz Equation (85a)
tmi_carrier_fluctuations TMI carrier beatnote frequency fluctuations Hz Equation (87b)
tmi_carriers TMI carrier beatnote total frequency Hz Equation (87c)

mprs MPRs s Equation (105)
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We also list in Table II the quantities output by both
simulators, alongside their units, and reference equations.

IX. RESULTS AND DISCUSSION

An example code snippet for simple simulation and on-
ground processing is given in Appendix E for the current
versions of LISA Instrument and PyTDI. In the following sections,
we describe the results of more complete simulations.

A. Telemetry measurements

We present here the results of numerical simulations
performed with LISA Instrument. The simulations include
all noises described in the previous sections, in addition to
a gravitational-wave signal from the loudest verification
binary listed in [44]. Its orbital period is about 569.4 s and its
4-year signal-to-noise ratio (SNR) is estimated at 113. We
simulated three days (about 106 s) of measurements at the
final rate of fmeas

s ¼ 4 Hz. We have scaled the amplitude of
the gravitational-wave signal such that its 3-day SNR
matches the expected 4-year SNR. The light travel times
between the spacecraft are computed from orbits files
provided by ESA [24]. They are treated as time varying
but remain roughly constant over the simulation duration,
with values for each linkbetween8.17 s and 8.32 s. Lasers are
locked in the N1-12 configuration (cf. Sec. VI) with a
frequency plan computed accordingly ([45]).
Fig. 10 shows the time evolution of the six ISI beatnotes

in terms of total frequency. In the chosen locking configu-
ration, ISI 31 and 21 beatnotes (in green and brown,
respectively) are locking beatnotes, and therefore are
piecewise linear functions entirely determined by the
frequency plan (cf. Sec. VI). They do not contain any
noise since we assume a perfect laser phase-lock loop at the
frequencies we study. Conversely, the remaining ISI
beatnotes (in blue, orange, red, and purple) are nonlocking.
Therefore, they have large MHz trends driven by the
frequency plan and the relative motion of the spacecraft,
in addition to a number of noises, dominated by the
∼30 HzHz−0.5 laser noise.
As expected, the frequency plan ensures that the beat-

notes remain in the valid range of the phasemeter, i.e.,
between 5 MHz and 25 MHz in absolute value.
The amplitude spectral densities of all carrier beatnote

frequency fluctuations are presented in Fig. 11. We used a
Python implementation the log-scale power spectral density
(LPSD) method [46] developed by C. Vorndamme with
Kaiser windows. We overlay the 10 pm noise reference
curve (in black), which is a typical target noise level for
metrology noise in a single LISA link [16]. Its power
spectral density (PSD) in units of frequency reads

�
2πf

1064 nm
10 pmffiffiffiffiffiffiffi

HZ
p

�
2

½1þ ð2 mHZ fÞ4�: ð106Þ

We expect test-mass acceleration noise to remain above this
reference curve at low frequencies.
The nonlocking ISI beatnotes (blue lines) are dominated

by laser noise (at about 30 HzHz−0.5), only modulated by
the one or two-way transfer function. Further processing is
required to reduce this laser noise to below the noise
requirements, which will reveal the presence on the injected
gravitational-wave signal, cf. Sec. IX B.
Nonlocking RFI beatnotes (orange lines) contain mostly

readout noises, and therefore remain below the 10 pm noise
reference curve (refer to Appendix B for the noise models
used in the simulation). Nonlocking TMI beatnotes (purple
lines) contain, in addition to the same readout noises, test-
mass acceleration noises, which become dominant below
∼5 mHz. At these frequencies, the test-mass acceleration
noise is clearly above the noise reference curve, as
expected. At higher frequencies, we see that the different
TMIs have different noise levels. On optical benches where
the RFI is used for locking most common noises in the
beams cancel, and the TMI is dominated by its own readout
noise only. On the adjacent optical benches, on the other
hand, we see an increased noise level due to the fiber
backlink noise added to the locked laser during propagation
between the benches.
ISI and RFI locking beatnotes are represented as plain

red lines. Since we assume perfect laser phase-lock loops,
these beatnotes should be vanishing, and we measure here
the numerical noise floor of our simulations at about
10−12 HzHz−0.5, well below the expected gravitational-
wave signals at about ν0 × 10−21 ≈ 10−7 Hz. Such a low-
numerical noise floor can be achieved despite the large

FIG. 10. Time series of the ISI carrier beatnote frequencies.
Locking ISI carrier beatnote frequencies (green 31 and brown 21)
are piecewise linear functions driven by the frequency plan, free
of any small fluctuations (c.f. left focus on 31). Nonlocking ISI
carrier beatnotes (blue 12, orange 23, red 13, and purple 32) have
large trends driven by the frequency plan and Doppler effect, and
small in-band fluctuations (cf. right focus on 32).
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dynamic range of the quantities in play thanks to the two-
variable decomposition described in Sec. III B 3 (the
precision of beatnote frequency fluctuations are only
limited by the magnitude of the laser noise).
We compare these results to what can be obtained with a

single-variable model. The same nonlocking beatnote
fluctuations have been computed by linearly detrending
the total beatnote frequencies (to remove large out-of-band
trends), and are plotted as dashed red lines. We see a
numerical noise floor between 10−8 and 10−9 HzHz−0.5,
leaving little margin with respect to the expected magnitude
of the gravitational signals and secondary noises that we
wish to simulate and study.
Next, Fig. 12 shows time series of the six MPRs, as

described in Sec. VII. In addition to the expected light travel
times of about 8 s, we can observe that they also include the
differential initial timer offsets (of a few seconds) and clock
drifts (a few tens of milliseconds per day).
Finally, we show in Fig. 13 the PSDs of the different

clock-noise-related measurements we simulate, all con-
verted to units of s Hz−0.5. The MPR (blue) is dominated
by a white noise down to the lowest frequencies. Around
0.1 mHz to 0.3 mHz, the noise level coincides with that of
the clock noise measured by the ISI sideband measurements
(orange). Here, we plot a signal combination rejecting

common mode noise between carrier and sideband, follow-
ing Eq. (B1) of Ref. [32], such that the plotted curve is
dominated by the actual clock noise at most of the frequency
band. Similarly, using Eq. (B9) of Ref. [32], we can combine
the RFI sideband beatnotes to give a measurement of the
larger of the two modulation noise terms, labeled ΔM1

(green). We see that the modulation noise is orders of
magnitude smaller than the clock noise in most of the band.

FIG. 11. Amplitude spectral densities of all carrier beatnote frequency fluctuations. Nonlocking ISI beatnotes (blue lines) are
dominated by laser noise, while nonlocking RFI and TMI beatnotes (orange and purple lines) contain mostly readout and test-mass
acceleration noises. The 10 pm reference curve is represented as a bold black line. Locking beatnotes (plain red lines) should be
vanishing, but represent here the numerical noise floor at about 10−12 HzHz−0.5. Nonlocking beatnote fluctuations computed from the
total beatnote frequencies (dashed red lines) have a 1000x larger numerical noise floor and contain other numerical artifacts.

FIG. 12. Time series of the MPRs. We can observe large
deterministic errors with respect to the expected light travel time
of ≈8 s due to initial timer offsets and clock drifts.
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B. Processed measurements

We have seen that the raw telemetered beatnotes can be
grouped in three categories. Locking beatnotes do not
contain any gravitational-wave signal or noise (assuming
perfect laser locking) and are dominated by numerical
noises in our simulations. Nonlocking RFI beatnotes are
also signal free and are dominated by secondary (readout
and test-mass) noises. Only nonlocking ISI beatnotes carry
useful gravitational-wave information, but contain laser
noise at many orders of magnitude above the expected
signals, alongside other noise sources.
In order to detect and analyze the gravitational-wave

signals, we must therefore reduce these sources of noise to
reasonable levels. This is achieved by a processing tech-
nique called TDI, in which multiple interferometric read-
outs are time shifted and combined to cancel the main noise
sources.
To demonstrate that this kind of processing is possible

using our simulated data, we apply the algorithm described
in [32], using PyTDI [47], to reduce the limiting noise

sources included in our simulation (laser and clock noise)
to below the required level. Fig. 14 shows the spectra of the
second-generation TDI combinations X2, Y2, and Z2, in
which the laser and clock noises have been suppressed. The
gravitational-wave signal is clearly visible at the expected
frequency of 3.5 mHz, with an SNR of about 100.
Following the conclusions of [32], the biggest contrib-

utors to the residual noise are the ISI readout noise at high
frequencies and the test-mass acceleration noise at low
frequencies; other nonsuppressed noise sources have a
smaller but non-negligible contribution.

X. CONCLUSION

In this paper, we proposed a model of the LISA
measurement chain, which includes the propagation of
optical signals (modulated laser beams, each containing a
carrier and an upper sideband) across the constellation and
on the optical benches; the phase readout of the different
interferometers; as well as the on-board processing of
the beatnote signals. We also included a high-level model
for the MPR auxiliary measurements, which are used to
estimate the interspacecraft distances, necessary for the on-
ground processing (such as TDI). This model accounts for
laser-locking control loops, and properly treats different
time frames and clock errors.
We presented two implementations of the model, along

with a comparison of their runtime and memory perfor-
mance that highlights their respective advantages and
drawbacks. LISA Instrument is a Python implementation that
is easy to use, and very efficient for short simulations (a few
months or less), while we recommend LISANode for longer
and more complex simulations.
Some results obtained with LISA Instrument are presented

to demonstrate the correctness of the implementation. In
particular, we check that the beatnote measurements exhibit
the expected behavior, in terms of total frequency or
frequency fluctuations. For the latter, we show that our
model keeps numerical noise to acceptable levels for the
study of instrumental noises and gravitational-wave sig-
nals. We also check that laser and clock noise reduction by
TDI performs as expected by computing the second-
generation Michelson combinations. We confirm that the
residual noises in these channels matches their expected
levels, and that a typical gravitational signal hidden in the
raw telemetry data becomes clearly apparent at the
expected frequency and magnitude.
The injection of gravitational-wave signals is possible

through the multiple interfaces of LISA Instrument and
LISANode with other simulation tools. These tools include
in particular LISA Orbits [24] for realistic spacecraft orbits,
LISA Glitch [48] for injection of instrumental artifacts, LISA
GW Response [49] for injection of gravitational signals, and
PyTDI [47] for further on-ground processing.
At the time this paper is written, some important instru-

mental effects are still under development. While some of

FIG. 13. PSDs of clock-noise related measurements. We plot
the MPR (blue line) alongside measurements derived from the ISI
sidebands (orange line) and the RFI sidebands (green line). See
main text for details.

FIG. 14. Amplitude spectral densities of second-generation
TDI combinations X2, Y2, and Z2. Note that laser noise, over-
whelming in the telemetered beatnote frequencies, is suppressed
by many orders of magnitude, such that the injected verification
binary (SNR of 113) is now clearly visible around 3.5 mHz.
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them are already implemented in the simulation, we do not
include them in this description of the model but refer to
future dedicated publications. In particular, we do not
include any dynamical effects or dynamical control loops
to actuate on the spacecraft and test masses [50]. We also do
not include tilt-to-length effects, which occur as an appar-
ent path length change due to any misalignment of optical
elements and that will be partially mitigated on ground
using DWS measurements [51]. We do not simulate any of
the ground-based observations that will be used to deter-
mine the spacecraft positions and velocities, as well as the
offsets of the onboard clocks with respect to a global
timescale. These are required inputs to the further process-
ing and data analysis steps, and therefore will be included
in a future version of the simulation.
Finally, we currently produce phasemeter measurements

expressed as total frequencies in Hz. There are ongoing
discussions to choose the best representation for telemetry
data; in order to capture any effects related to this choice,
we plan to update the simulators to use the official data
format once it is agreed upon. In particular, if phase data
must be produced, the model should be updated to include
an initial phase for each optical beam and clock signal,
which do not affect the current frequency data.
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APPENDIX A: SYMBOL GLOSSARY

This paper defines a large number of quantities and uses
or introduces many symbols to represent them. To facilitate

the reading, we have listed the main conventions in
Table III and the main quantities in Table IV.

APPENDIX B: NOISE MODELS

We describe here the different noise sources that we
include in our simulations. For each noise, we give a short
description and its mathematical expression. That includes
spectral shapes in the form of their PSD for stochastic
terms, as well as any deterministic effects.
Noise models are derived from allocations or current best

estimates (CBEs) given in the performance model ([52]),
where applicable.9

We give here a continuous description of these noise
models; however, they are actually implemented as discrete
noise sources at fphys ¼ 16 Hz.

1. Laser noise

Laser noise describes the optical phase fluctuations in the
electromagnetic field of a free-running laser stabilized to a
cavity (fluctuations in the field amplitude are not included
here). It is given in the performance model by the allocation
for the laser frequency stability in units of frequency,

S _NpðfÞ ¼ ð30 HzHz−0.5Þ2
�
1þ

�
2 × 10−3 Hz

f

�
4
�
: ðB1Þ

2. Modulation noise

Modulation noise describes any mismatch in the phase of
the modulation sidebands (transmitted to the distance
optical bench) and the pilot tone (used as a local timing
reference) [27].
Both the 2.4 GHz and the 2.401 GHz sideband signals

used for modulation are generated from the local USO. The
pilot tone is derived from the electrical 2.4 GHz signal
using a series of low-noise frequency dividers. The optical
modulation is performed using an electro-optical modulator
(EOM) followed by a fiber amplifier.
The fiber amplifier is the dominating part for the 2.4 GHz

signal [27]. We fit a rough model to the blue curve in
Fig. (5.13) of Ref. [27] to obtain a timing jitter power
spectral density of

SMðfÞ ¼ ð10−14 s Hz−0.5Þ2
�
1þ

�
1.5 × 10−2 Hz

f

�
2
�
:

ðB2Þ
Note that the blue curve used for the fit corresponds to a
1 W fiber amplifier, which allows for lower noise levels
than the more recent measurements cited in [32] for a 2 W

9Some noise sources do not match the CBE given in latest
performance model, and we plan to update them as soon as
possible to reflect the currently expected LISA performance.
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amplifier. This noise is therefore underestimated in the
current version of the simulation.
For the 2.401 GHz signal, we expect a higher noise

level due to the electrical conversion chain, which can
no longer be realized by simple frequency dividers.
Following [32], we model this by increasing the modu-
lation noise in the right-hand side optical benches by a
factor 10.

3. Test-mass acceleration noise

Test-mass acceleration noise describes the optical path
length variations due to the test-mass motion with respect to
its nominal position inside its housing.
It is given in the performance model by the allocation

value for the single test-mass acceleration noise in accel-
eration units. We include an extra factor 2 in order to
account for the beam reflection onto the test mass, and
neglect the high-frequency component because it is smaller
than the optical metrology system (OMS) displacement
noise (see below). Moreover, we whiten the noise at below
10−4 Hz to prevent numerical overflow. We get

SNδðfÞ ¼ ð2 × 2.4 × 10−15 ms−2Hz−0.5Þ2

×

�
1þ

�
0.4 × 10−3 Hz

f

�
2
�
: ðB3Þ

Note that this is an this is an out-of-loop value, ignoring
the coupling of test mass to spacecraft motion introduced
by DFACS.

4. Backlink noise

Beams are transmitted between adjacent optical benches
using optical fibres. During this transmission, the beams

can pick up an additional phase noise term. We model only
the nonreciprocal noise terms, i.e., the difference between
the phase shift of a beam propagating from optical bench ij
to ik vs that of the beam propagating from ik to ij.
Backlink noise is given in the performance model by the

allocation for the reference backlink in displacement,

SNblðfÞ ¼ ð3 × 10−12mHz−0.5Þ2

×

�
1þ

�
2 × 10−3 Hz

f

�
4
�
: ðB4Þ

We use the same value for the TMIs and RFIs.

5. Readout noise

We summarize as readout noise the equivalent positional
readout error due to technical noise sources, such as shot noise.
The OMS displacement noise is given in the performance

model by the allocation value for the overall displacement
long-arm, test-mass, and reference noise entries; in terms of
displacement,10

SNroðfÞ ¼ A2

�
1þ

�
2 × 10−3 Hz

f

�
4
�
; ðB5Þ

where A ¼ 6.35 × 10−12 mHz−0.5 for the ISIs, 1.42 ×
10−12 mHz−0.5 for the TMIs, and 3.32 × 10−12 mHz−0.5

for the RFIs.
The performance model does not give values for the

sideband beatnotes. We approximate them using ϵ ¼ 0.15

TABLE III. Summary of the conventional notations used in this paper.

Symbol Description

⬚tðτÞ Quantity expressed in the barycentric coordinate time (TCB) (global time frame)
⬚τiðτÞ Quantity expressed in the spacecraft proper time (TPS) i (related to t by relativistic corrections)
⬚τ̂iðτÞ Quantity expressed in the clock time on board spacecraft i (related to τi by instrumental imperfections)

_⬚ or d
dτ

Time derivative of quantity (in the specified time frame)

⬚i Quantity related to spacecraft i
⬚ij Quantity related to MOSA ij
⬚A←B Quantity measured on A propagated from B
⬚PD Quantity related to a generic photodetector (no indices)

⬚c Quantity related to the main carrier
⬚m or ⬚m Quantity related to the phase-modulation signal
⬚sb or ⬚sbþ Quantity related to the upper sideband
⬚sb− Quantity related to the lower sideband

⬚o Large out-of-band component of a quantity (offsets or drifts)
⬚ϵ Small in-band component of a quantity (fluctuations)

10The overall displacement noise in the performance model
summarizes multiple noise sources, some of which are already
accounted for independently in this model. The values for the
OMS displacement noise are therefore overestimates.
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instead of 0.85 in the shot noise formula to account for the
lower power level. This yields A ¼ 1.25 × 10−11 mHz−0.5

for the ISIs, and 7.90 × 10−12 mHz−0.5 for the RFIs.

6. Optical bench path-length noise

Optical bench path-length noise summarizes different
optical path length noises due to, for example, jitters of
optical components in the path of the different beams.

Optical bench path length noise in terms of displacement
is given by the performance model as

SNobðfÞ ¼ A2; ðB6Þ

where A ¼ 4.24 × 10−12mHz−0.5 for local beams in TMIs
and 2 × 10−12 mHz−0.5 for local beams in RFIs.

TABLE IV. Symbols for quantities used in this model alongside the units used in the simulation.

Symbol Unit Description

c ms−1 Speed of light in a vacuum
ν0 Hz Optical frequency of the lasers (281.6 THz)

Φij Cycles Total phase of local beam at laser source ij
νij Hz Total frequency of local beam at laser source ij
Oij Hz Carrier frequency offset of local beam at laser source ij
pij Cycles Carrier phase fluctuations of local beam at laser source ij

Φij;m Cycles Total phase of modulating signal on MOSA ij
νij;m Cycles Total frequency of modulating signal on MOSA ij
νmij Hz Nominal frequency of the modulating signal on MOSA ij

Φij←ji Cycles Total phase of beam ij propagated to MOSA ji
νij←ji Hz Total frequency of beam ij propagated to MOSA ji
Φifoij←kl Cycles Total phase of the beam kl propagated to photodetector ifo (isi, rfi, or tmi)
νifoij←kl Hz Total frequency of the beam kl propagated to photodetector ifo (isi, rfi, or tmi)

Φifoij Cycles Optical beatnote total phase of ifo (isi, rfi, or tmi)
νifoij Hz Optical beatnote frequency of ifo (isi, rfi, or tmi)

τ̂τii s Instrumental clock time on board spacecraft i as a function of the TPS
δτ̂i s Deviations of instrumental clock time on board spacecraft i from TPS i
ττ̂ii s TPS of spacecraft i as a function of instrumental clock time on board spacecraft i

F � � � Filter operator, modeling the filtering and decimation stages from 16 Hz to 4 Hz
Ti � � � Phase timestamping operator, transforming a phase quantity from TPS i to instrumental clock time i
_Ti � � � Frequency timestamping operator, transforming a frequency quantity from TPS i to instrumental clock time i
Dij � � � Delay operator, time-shifting a phase quantity by dij
_Dij � � � Doppler-delay operator, time-shifting a frequency quantity by dij (including Doppler corrections)

aij Hz Shorthand notation for the optical beatnote frequency offsets in the ISI ij
bij Hz Shorthand notation for the optical beatnote frequency offsets in the RFI and TMI ij

ifoij Hz Frequency readout of the ifo (isi, rfi, or tmi)

qi s Noise of instrumental clock on board spacecraft i with respect to TPS
Mij s Modulation noise on MOSA ij
Nob

ifoij←kl s Noise of beam kl propagated to ifo (isi, rfi, or tmi) due to optical path length variations on the optical bench

Nro
ifoij

s Readout noise in ifo (isi, rfi, or tmi)

Nbl
ifoij

s Backlink noise in ifo (rfi or tmi)

Nδ
ij s Test-mass displacement noise

NR
ij s Ranging noise

dij s Proper pseudo-range (PPR) as the difference of TPSs i (at reception) and j (at emission)
Rij s Measured pseudo-range (MPR) ij as the difference of clock times i (at reception) and j (at emission)
Hij s Integrated fluctuations of the PPR ij due to gravitational waves
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7. Ranging noise

Pseudoranging is performed by correlating local and
distant PRN signals, cf. Sec. VII. Ranging noise describes
the imperfection of the overall ranging measurement
scheme in a single link due to technical noise sources.
Note that this does not include any noise appearing in the
pseudorange itself, such as clock noise or changes in the
optical path length between the spacecraft.
Pseudoranging is given by an ad hocmodel, combining a

systematic bias NR;o
i and a zero-mean stochastic Gaussian

white noise NR;ϵ
i ðτiÞ,

NR
i ðτiÞ ¼ NR;o

i þ NR;ϵ
i ðτiÞ; ðB7Þ

with default values of SNR;ϵ ¼ 0.9 mHz−0.5 and NR;o
i ¼ 0s.

8. Clock noise

USOs on each spacecraft act as central time references
for all onboard systems. As described in Sec. IV, we
actually use the pilot tone as the timing reference for all
phasemeter measurements. Clock noise here models any
deviations of these pilot tones from the corresponding
spacecraft proper time (TPS).
Clock noise is given by the model described in [32],

expressed in terms of fractional frequency deviations as the
sum of a random jitter, and constant deterministic fre-
quency offset, linear drift, and quadratic drift,

_qiðτÞ ¼ _Nq
i ðτÞ þ y0;i þ y1;iτ þ y2;iτ2; ðB8Þ

_Nq
i ðτÞ is a random jitter, generated as a flicker noise with a

PSD between 10−5 Hz and fphys =2 ¼ 8 Hz given by

S _Nq
i
ðfÞ ¼ ð6.32 × 10−14Þ2f−1; ðB9Þ

The deterministic coefficients are

y0 ≈ 5 × 10−7 s s−1; ðB10Þ

y1 ≈ 1.6 × 10−14 s s−2; ðB11Þ

y2 ≈ 9 × 10−23 s s−3: ðB12Þ

These values should be seen as orders of magnitude, and
will be different for all three USOs.

APPENDIX C: MAGNITUDE OF _ν

To estimate the order of magnitude of the term _νoAH12ðτÞ
we neglected compared to the term νoA _H12ðτÞ we included,
we can observe the rate of change in the example frequency
plan presented in Fig. 15. This is plotted in Fig. 15. As we
can see, we have _νoA < 3 Hz s−1 for the whole 4-year
duration. On the other hand, νoA is of the order of

10 MHz. We consider both νoA and _νoA as constant scaling
factors for this estimate.
Note that H12ðτÞ and _H12ðτÞ are noise terms that we can

evaluate in the frequency domain. We have

F ½ _H12�ðfÞ ¼ 2πf × F ½H12�ðfÞ: ðC1Þ
The usual LISA measurement band extends from 10−4 Hz
to 1 Hz, such that even at the lower limit of 10−4 Hz, we
have

νoAF ½ _H12�ðfÞ ≈ 104 Hz s−1 × F ½H12�ðfÞ
≫ _νoAF ½H12�ðfÞ ≈ 104 Hz s−1 × F ½H12�ðtÞ:

ðC2Þ
Note that the term νoA _H12ðτÞ is already a very small

correction to the dominant term ν0 _H12ðτÞ, such that we can
safely neglect these additional terms.

APPENDIX D: DEFAULT IMPLEMENTATION
OF THE ANTIALIASING FILTER

By default, the antialiasing filter is designed from a
Kaiser windowing function, with a transition band that
extends from 1.1 Hz to 2.9 Hz, and minimum attenuation
above 2.9 Hz of 240 dB. Note that the filter transition band
extends above the Nyquist frequency, such that there will
be a significant amount of aliasing during downsampling,
as depicted in Fig. 16. However, since aliasing happens by
reflection across the Nyquist frequency, any noise in the
band ½fmeas

s =2; fmeas
s − 1 Hz� will be aliased into the band

½1 Hz; fmeas
s =2�, such that it stays outside our measurement

band of ½10−4 Hz; 1 Hz�.
Analytically, we model this digital filter with the

continuous, linear filter operator F, which is applied to
the beatnote frequency measurements. In the frequency
domain, this is equivalent to multiplying our signals by
the filter transfer function F ½F�, pictured in Fig. 16 and
given by

FIG. 15. Magnitude of beatnote frequency derivatives for all
nine beatnotes in the example frequency plan. Data provided
by G. Heinzel.
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F ½F�ðωÞ ¼
XN
k¼0

cke−iωk=f
phy
s ; ðD1Þ

where ck are the filter coefficients.

APPENDIX E: EXAMPLE SIMULATION
CODE SNIPPET

We give here an example simulation and processing
code snippet for a simple instrumental setup and minimal
processing. The simulation duration is fixed to 10 days.
We inject the gravitational-wave signal of one of the
strongest verification binaries expected in the LISA [44],
as described in Sec. IX A. Note that the signal amplitude is
rescaled such that the cumulated SNR over the simulation
duration matches the full expected 4-year SNR. The
relative frequency shifts induced by the gravitational-wave
strain on the six LISA links are computed using LISA GW

Response 2.1.2 [49].

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as
plt
import h5py
import scipy

from lisagwresponse import VerificationBinary
from lisainstrument
import Instrument
from pytdi import Data
from pytdi.michelson import X2, Y2, Z2

# Use a
standard set of Keplerian orbits
# These are provided by LISA Orbits

(Table continued)

(Continued)

orbit_file =
'keplerian-orbits.h5'
with h5py.File(orbit_file) as f:

orbits_t0 = f.attrs['t0']

#
Simulation runs for 3 days at 4 Hz,
# and starts 10 s after the orbit file
dt = 0.25 # s
fs = 1
/ dt # Hz
duration = 60 * 60 * 24 * 3 # s
size = duration * fs # samples
t0 = orbits_t0 + 10 #
s

# Compute link responses to signal
source = VerificationBinary(

period=569.4,

distance=2089,
masses=(0.8, 0.117),
glong=57.7281,
glat=6.4006,
iota=60 *

(np.pi / 180),
orbits=orbit_file,
size=size,
dt=dt,
t0=t0,

)

# Plot and write
the link responses to
disk
source.plot(source.t[:8000])
source.write('verification-binary.h5')

# Define the
instrumental setup, simulate
# and write the measurements to disk
instru = Instrument(

orbits=orbit_file,
gws='verification-binary.h5',
laser_shape='white',
size=size,

dt=dt,
t0=t0,

)
instru.disable_all_noises(but='laser')
instru.write('measurements.h5')

#
Compute TDI Michelson channels
data = Data.from_instrument('measurements.h5')

(Table continued)

FIG. 16. Antialiasing filter transfer function magnitude. The
transition band (gray) is chosen to avoid aliasing into the
measurement band (blue). Unlike what is often presented,
the frequency axis uses a linear scale here.
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(Continued)

X2 =
X2.build(**data.args)(data.measurements)
Y2 = Y2.build(**data.args)(data.measurements)
Z2 =
Z2.build(**data.args)(data.measurements)

# Plot the TDI Michelson channels
psd = lambda
tseries: scipy.signal.welch(

tseries,
fs=fs,
nperseg=2**16,
window=('kaiser',

30),
detrend=None

)
freq, X2_psd = psd(X2)
freq, Y2_psd = psd(Y2)
freq, Z2_psd =

(Table continued)

(Continued)

psd(Z2)
plt.loglog(freq, np.sqrt(X2_psd),
label='X2')

plt.loglog(freq, np.sqrt(Y2_psd),
label='Y2')
plt.loglog(freq, np.sqrt(Z2_psd), label='Z2')

plt.xlabel('Frequency
[Hz]')
plt.ylabel('ASD [Hz/, Hz$^{-1/2}$]')
plt.legend()

The instrument and the measurements are computed
using LISA Instrument 1.1.1 [38]. The spacecraft follow a set
of Keplerian orbits with an average constellation arm length
of 2.5 × 109 m. The locking configuration N1-12 is used.
Only a white laser frequency noise and the injected signal
are present in the data, as all other effects are disabled. We
compute the second-generation Michelson TDI channels
X2, Y2, and Z2 using PyTDI 1.2.1 [47], and plot them.
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