
Through the lens of Sgr A∗: identifying strongly lensed
Continuous Gravitational Waves beyond the Einstein radius

Stefano Savastano,1, ∗ Filippo Vernizzi,2, † and Miguel Zumalacárregui1, ‡

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
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Once detected, lensed gravitational waves will afford new means to probe the matter distribution
in the universe, complementary to electromagnetic signals. Sources of continuous gravitational
waves (CWs) are long-lived and stable, making their lensing signatures synergic to short mergers of
compact binaries. CWs emitted by isolated neutron stars and lensed by Sgr A∗, the super-massive
black hole at the center of our galaxy, might be observable by the next generation of gravitational
wave detectors. However, it is unknown under which circumstances these sources can be identified as
lensed. Here we show that future detectors can distinguish lensed CWs and measure all parameters
with precision ∼ 1 − 10% for sources within 2 − 4 Einstein radii of Sgr A∗, depending on the
source’s distance. Such a detection, which relies on the relative motion of the observer-lens-source
system, can be observed for transverse velocities above 3 km/s. Therefore, the chances of observing
strongly lensed neutron stars increase by one order of magnitude with respect to previous estimates.
Observing strongly lensed CWs will enable novel probes of the galactic center and fundamental
physics.

Introduction. Gravitational lensing is the deflection
and magnification of light propagating through an in-
homogeneous gravitational field, possibly leading to dis-
tortion and splitting of the original source into multiple
images [1]. It has proven to be a powerful tool in astro-
physics and cosmology, for example in the search for dark
objects, exploration of the universe’s large-scale structure
and measurement of cosmological parameters [2, 3].

With the recent rise of gravitational wave (GW) as-
tronomy, the lensing of gravitational waves emitted by
coalescing binary black holes (BHs) and neutron stars
(NSs) has become the subject of intense research. The
coherence, low frequency and frequency evolution of these
sources enables the observation of diffraction [4–8] and
phase [9–11] effects that are challenging to observe with
electromagnetic (EM) waves. While no detection of
lensed GWs has yet been made [12–15], the increasing
rate of GW observations offers a promising future [16, 17].

In addition to transient signals produced by explo-
sive binary coalescences, detectors can also observe long-
lived signals with a much slower frequency evolution:
the so-called continuous GWs (CWs). Sources of this
type of quasi-monochromatic signals fall into two main
categories: 1) stellar-mass binaries well before coales-
cence, which will be detectable by LISA [18–20], and ex-
otic binaries, such as sub-solar primordial BHs, which
can be searched with ground-based detectors [21, 22];
2) rapidly rotating non-axisymmetric neutron stars with
a quadrupolar deformation, which will also be observ-
able by ground-based detectors. These signals have
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been searched for in the LIGO-Virgo-Kagra (LVK) data
[23, 24]; see Refs. [25–28] for reviews.

The lensing of CWs leads to interesting and clear sig-
natures. In particular, due to the coherent nature of
GWs, a lens can act on them as a diffractive barrier, in-
ducing interference fringes on the detected signal, if the
observer-lens-source system is in relative transverse mo-
tion [29, 30]. This is in contrast to EM waves, where
the contributions of the different points of the finite-size
source add up incoherently, cancelling out the pattern
(although some EM sources can avoid this limitation [31–
34]). Despite these intriguing possibilities of distinguish-
ing lensed and unlensed CWs, the ability of observations
to infer the lens parameters remains an open question.

While no clear detection of CWs has been registered
yet, the sheer number of NSs in the Milky Way (MW)
galaxy, estimated in ∼ 109 from population synthesis
studies [35], suggests that detection of lensed signals is
plausible for future observations. (See [36] for an esti-
mate on the total number of NSs probed with current and
future detectors.) A recent study [37] estimated that 3G
interferometers will be able to observe O(1−10) strongly
lensed signals of rapidly spinning NSs within the Einstein
cone of SgrA∗, the supermassive black hole at the cen-
ter of the MW, the precise number depending on their
spatial distribution in the MW.

Motivated by such a prospect, in this letter we study
the phenomenology of strongly-lensed CWs, the infer-
ence of lens parameters and the potential for detection
by next-generation GW observatories. For concreteness,
we will focus on monochromatic, isolated rotating NS
moving at constant velocity and lensed by Sgr A∗.

Strong lensing imprints on CWs. Let us briefly re-
call what the effect of a lens on the GW is; see e.g. [4, 38]
for a derivation in the fixed-lens case and App. A for
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the moving-lens case. We work in the geometric optics
limit and denote the observed and true angular position
of the source by θl and θs, respectively, and the observer-
lens, observer-source and lens-source angular-diameter
distances by rl, rs and rls, respectively; see Fig. 1.

Given a Fourier mode with frequency f of a lensed
and unlensed gravitational wave, respectively h̃l(f) and

h̃0(f), the amplification factor, F (f) ≡ h̃l(f)/h̃0(f), is
given by a sum over images as

F (f,θs) =
∑
j

|µj(θs)|1/2 exp [i2πftj(θs)− iπnj ] , (1)

where µj(θs) = det(∂θs/∂θl,j)
−1 is the magnification

and tj(θs) = rlrs
2rls
|θl,j−θs|2−ψ̂(θl,j) is the time of arrival

of the j-th image (with ψ̂ the lensing potential) from the
lens to the source, and nj = 0, 1/2, 1 for a minimum, a
saddle and a maximum point of tj , respectively.

The relative transverse motion of the observer-lens-
source system also affects the frequency of the lensed
gravitational wave. Denoting the transverse velocity of
the observer, of the lens and of the source, measured in
their respective planes, as vo, vl and vs respectively, the
combined effective transverse velocity in the plane of the
lens results in [39]

v = vl −
rl
rs
vs −

rls
rs
vo , (2)

which we will call the effective lens velocity for short, al-
though it should be understood that it can also be due to
the movement of the source or of the observer. This mo-
tion makes the angular position of the source time depen-
dent: θ̇s = v/rl. Consequently, both the magnification
µj(θs) and the arrival time tj(θs) depend on time. The
time dependence of the arrival time induces a frequency
shift (we set c = 1 throughout),

∆fj
f

= −ṫj = v ·αj , (3)

where α ≡ rs
rls

(θl − θs) is the deflection angle and the

second equality in (3) follows from the definition of the
arrival time above and the chain rule for the time deriva-
tive. See App. A for more details.

For a strongly lensed system, different images arrive at
different times at the detector, where they can mutually
interfere and, if the time delay between images is smaller
than the in-band time, produce a modulated signal [37].
The intensity of the lensed signal in the frequency domain
can be obtained by squaring Eq. (1),

|F |2 =
∑
j

|µj |+ 2
∑
i<j

√
|µi||µj | cos (2πfvαijt−∆φij) ,

(4)
where v = v v̂, αij ≡ v̂ · (αi − αj) is the difference in
deflection angle between the i-th and j-th image, and
∆φij = 2πf∆tij − πnij is the constant phase shift be-
tween the two images, given by the difference of the time
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FIG. 1: Strong lensing of a quasi-monochromatic source. Top:
Gravitational lensing by Sgr A∗ forms two images of a rotat-
ing pulsar. Here, η = θsrs is the physical impact parameter
in the source plane, related to y by |η| = yθErs. Middle:
each image is magnified, delayed and slightly red/blue-shifted.
Bottom: at the detector, the interference between both im-
ages produces an amplitude modulation (here exaggerated for
illustrative purposes).

delays, ∆tij ≡ ti− tj , and nij = (ni−nj). The first sum
consists of single images contribution, while the second
arises from their interference. We will define the dimen-
sionless impact parameter as y = |θs|/θE , where

θE ≡
√

4GMlrls
rlrs

(5)

is the Einstein angle. The effect of the relative mo-
tion enters, in practice, through the time dependence

y(t) =

√
y2

0 +
(
v(t−t0)
rlθE

)2

, where y0 is the impact param-

eter at t = t0.
In the following, we consider that the unlensed wave

h0 is perfectly monochromatic, i.e.,

h0(t, rs) =
A
rs
e−iφ(t) , φ(t) = 2πf0t+ φ0 , (6)

whereA depends on the source’s orientation and φ0 is the
phase value at t = 0. From Eq. (1), the lensed waveform
in time domain reads

hl(t, rs,θs) =
A
rs

∑
j

|µj(t)|1/2 e−i2πf0(t−tj(t))−iπnj ,

(7)
If the effective lens velocity is negligible, the superpo-
sition of the images is again a monochromatic signal.
In this case, it is impossible to establish if the signal is
lensed. However, the lens motion can break this degener-
acy thanks to the frequency shift of each image, Eq. (3).
Figure 1 shows that the superposition of the two images
(middle panel) gives rise to a monochromatic signal for
a static lens (grey curve, bottom panel) or a periodic
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modulated signal when the lens is moving (green curve,
bottom panel).

Given a lensing signal with lens mass Ml, effective lens
velocity v and impact parameter y0, potential informa-
tion on these parameters is contained in three features:
1) the modulation period,

Tij =
1

f0vαij
= 2.4 d

(
1kHz

f0

)(
10−3

v

)(
1′′

αij

)
, (8)

2) the modulation amplitude
√
µj/µi, which depends

purely on y(t) and 3) the modulation phase, given by
∆tij ∝ Ml. To extract information, it is required to ob-
serve the modulation over the survey time, Tij . Tobs,

and measure
√
µj/µi with sufficient significance.

An additional lensing modulation can arise if the
unlensed CW is not perfectly monochromatic, i.e.

φ(t)/2π = f0(t− tr) + ḟ0

2 (t− tr)2 + . . ., with tr some ref-
erence time. This modulation, due to a phase difference
between images, appears on a timescale (ḟ0∆tij)

−1 =

317yr
(

100s
∆tij

)(
1pHz/s

ḟ0

)
. For ms pulsars (ḟ . 1pHz/s)

[40] this is much longer than Tobs and we will ignore
it in our analysis. Note that in CWs, detections are
sensitive to ḟ0, as it affects the phase on a timescale

(ḟ0/2)−1/2 = 16.4 d
(

1pHz/s

ḟ0

)1/2

. Nevertheless, this ef-

fect is common to all images and can be included in the
data resampling discussed after Eq. 6 [41].

Other situations that mimic strongly lensed sources
can be ruled out. A source in a binary may exhibit an
amplitude modulation via precession [42, 43]. However,
this can be distinguished from lensing through a peri-
odic phase difference, which is absent for lensed sources
moving at constant velocity. The possibility of multiple
sources with similar frequency and overlapping sky lo-
calization is negligible: to be compatible with lensing,
their angular separation must be . 10′′ (cf. Fig. 2 be-
low) and their frequencies might differ by no more than
∆f/f . 10−7(αij/10′′)(v/3× 10−3), see Eq. (3).

Neutron stars lensed by Sgr A∗. The framework
discussed above can be potentially applied to several as-
trophysical scenarios. As proof of principle, we focus this
letter on studying CWs emitted by isolated spinning neu-
tron stars, lensed by Sgr A∗. Hence, we will restrict our
analysis to a point lens, which produces two images sep-
arated by a time delay ∼ 2GMl = 39.4 s (Ml/MSgrA∗);
see App.A. Figure 2 shows the angular separation of the
source and image positions in this case. As the impact
parameter typically varies by a small fraction (less than
a few %) of Sgr A∗’s Einstein radius over the observation
period, we can consider the magnification of the images
to be approximately constant. However, for lenses with
smaller impact parameters or lower masses, the time vari-
ation of the impact parameter can cause the modulation
amplitude to vary over time, which can further assist in
identifying lensed events.

Isolated spinning NSs are expected to produce CWs
in the 102 − 103 Hz frequency band through a variety of
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FIG. 2: Source position as a function of the image position
(and on the separation measured in Schwarzschild radii RS),
for positive (solid lines) and negative (dashed lines) parity
images, for Sgr A∗ modelled as a point-like lens, for different
source distances. Faint lines indicate that no strong evidence
of lensing can be established. Shaded areas correspond to the
regions that can be probed by different methods.

different mechanisms [26, 27, 44], and could be observed
by future ground-based detector campaigns. NSs are ex-
pected to have sizeable velocities [45] due to either NS
natal kicks (∼ 400 km/s) [46], or the Solar System’s mo-
tion in the galaxy (∼ 200 km/s) [47–49], necessary to
observe the lensing modulation Eq. (8). We will assume
that NSs signal can be modelled by a monochromatic
waveform, Eq. (6), i.e. the frequency evolution has been
included through demodulating the signal by transform-
ing the time coordinate t→ t−t0+ḟ0/(2f0)(t−t0)2+· · · .
As explained above, all images of typical NS evolve at the
same rate on observable timescales; hence, the demodu-
lation process is common to all.

The waveform (6) also includes a resampling to account
for the detector’s motion t = t′+n̂·~x(t′)+∆T , where t′ is
the observation time, n̂ is the source’s direction, ~x is the
detector’s position relative to the Solar System barycen-
ter and ∆T is the relativistic time delay (see Ref. [50],
Ch. 7). The antenna pattern (given by n̂) has been fac-
tored out of A. As discussed in Ref. [50] (see Eq. 7.151),
resampling requires accuracy on the source’s position at
the level of

δθ .

 22′
(
Tcoh

1d

)2 (kHz
f0

)
(1 d . Tcoh . 102 d)

0.065′′
(

1yr
Tcoh

)(
kHz
f0

)
(Tcoh & 102 d)

,

(9)
where Tcoh is the coherence time. The limit above corre-
sponds to all-sky NS searches, where a relatively low Tcoh

allows computational efficiency [41]. Since the separation
between images is |α12| . 10′′(Ml/MSgrA∗), see Fig. 2,
data resampling is common to all images for Tcoh . 1
week. Once a source is found, follow-up analyses with
larger Tcoh can improve the sky localization, with an
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accuracy shown in the second line. This sensitivity is
enough to resolve the individual images and even their
motion in some cases. Nonetheless, we will not consider
this information in our analysis.

The dominant mode of a CW emitted from a NS with
non-axisymmetric deformations misaligned with the ro-
tation axis ẑ has an amplitude

A = 4π2GIzzf
2
0 ε , (10)

where Izz is the moment of inertia of a perpendicular bi-
axial rotor spinning with axis ẑ and the ellipticity param-
eter, ε = (Ixx−Iyy)/Izz, describes the degree of deviation
from spherical symmetry around the rotation axis of the
star. Here we assume the fiducial value Izz = 1038 kg m2

[23].
The lack of detection of CWs in the first three ob-

servational campaigns of the ground-based LVK detector
network has produced frequency-dependent upper limits
on their amplitude [23, 24, 51]. Upper limits on A can be
translated into bounds on ε at a fixed distance. For in-
stance, according to the most up-to-date bounds [23, 51],
searches would be sensitive to CWs emitted from NSs
at 550 Hz with ε > 5 · 10−7 within 1 kpc distance and
ε > 2 · 10−6 within 10 kpc distance at 1550 Hz. We will
adopt a compatible fiducial value ε = 10−7 in our analy-
sis. This value is also consistent with theoretical expec-
tations [52, 53], while population-based studies suggest a
lower bound, ε & 10−9 [40]. Next-generation GW detec-
tors will be capable of observing NSs up to distances of
[50]

rhor = 35 kpc×
( ε

10−7

)( f0

800 Hz

)2(
Tobs

10 yr

)1/2

γ , (11)

where we have defined an efficiency factor,

γ ≡
(

3750
N
)1/4 ( 4

SNRthr

)(
4.8 10−25√
Sn(f0) Hz

)
. Here, SNRthr is

the signal-to-noise ratio (SNR) threshold of the search
and N = Tobs/Tcoh is the number of stacks in which the
data is divided.

A fraction of NSs in our galaxy, depending on the ac-
tual spatial distribution of the population, are expected
to lie close to the line of sight to Sgr A∗. The prob-
ability of this occurrence was addressed in Ref. [37],
by considering various spatial distribution models for
galactic NSs capturing uncertainties in formation pro-
prieties, such as different natal velocities and evolution
history in the galactic potential. Assuming an elliptic-
ity of ε = 10−7 for the population, the authors find that
the probability of detecting one or more lensed events
is 1 − 36% for LVK O5 and 2 − 55% for 3G detectors.
Their statistical study assumes that lensing is observed
if sources lie within the Einstein radius. However, as we
will show below, 3G detectors can test the lensing hy-
pothesis at angular separations several times larger than
the Einstein angle, increasing the prospects of detection.
We address the impact of this extension in App. B.

Lens parameter estimation. To study the prospect
of measuring the lens mass, the impact parameter and
the effective lens velocity we run a numerical Monte Carlo
(MC) simulation to compute the marginalized posteriors
of these parameters. We assume a 3G detector network
consisting of a single Einstein Telescope and an in-band
signal duration Tobs = 10 yr. As a fiducial setup, we
consider a point-like lens with mass Ml = 4.154 · 106M�
(i.e. the measured mass of Sgr A∗ [54]) and effective lens
velocity v = 10−3, at a distance rl = 8.5 kpc. The source
is a spinning NS with ellipticity ε = 10−7, emitting CWs
at a frequency f0 = 800 Hz and relative distance rls = rl.
We will also discuss how the results change when straying
from these fiducial values. The parameter inference and
details about the sampling are discussed in Apps. C and
D.

Figure 3 shows 1-d, 68% C.L. limits on the lensing pa-
rameters from the 1-d marginalized posteriors, obtained
from the MC simulation as a function of the initial im-
pact parameter y0 (fiducial setup). Since the mass of Sgr
A∗ is known with sub-percent accuracy [54] and is ex-
pected to be more constrained in the future, we run two
analyses: with Ml as a free parameter and fixed to the
known value. In both cases, the lens parameters can be
extracted from the signal beyond y0 = 1. For example,
for y0 = 3 all parameters are constrained with a relative
error smaller than 50% at 1σ C.L. At large enough y0,
the sampled contours become consistent with µ2 = 0 (no
second image detected) and lens parameters cannot be
constrained (see Fig. 9 in App. D). Note that, for strictly
monochromatic sources, Ml and v can be constrained
only up to a periodic factor, as they only enter the GW
signal phase, see Eq. (7).

Figure 4 shows the 1- and 2-d 95% C.L. marginalized
lens parameter posteriors from the MC (the complete
set of posteriors is shown in App. D). At large impact
parameters, the posteriors stray from the Gaussian limit.
The lack of gaussianity becomes apparent for the y0 = 3
contour.

To assess our capacity to distinguish the lensed from
the null—unlensed—hypothesis, we carry out statistical
hypothesis testing. Figure 5 shows the Bayes ratio be-
tween the moving lens model and the unlensed model,
BLU , as a function of the initial impact parameter, for
different distance ratios rls/rl. For impact parameter
y0 < 3, the lensing hypothesis can be assessed with at
least strong evidence (logBLU > 10, cf. I in App. C),
extending to larger impact parameters depending on rls.
Fixing the lens mass improves the results only for small
y0, as for parameter inference (see above). For lower ef-
fective lens velocities, v = 10−5, the Bayes ratio curve
closely overlaps with the fiducial case, with the value at
y0 = 3 being only slightly smaller but still above the
strong-evidence threshold. Note that the evidence for
the unlensed and static lens hypotheses are identical, as
they are both degenerate for a monochromatic signal.

We explored different lensing configurations varying
the fiducial parameters. In the limit of large SNR, the co-
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FIG. 3: 68% C.L. relative bounds on inferred lens parameters from MC simulations plotted against the initial dimensionless
impact parameter, for the fiducial setup described in the text. Two cases are considered: uniform prior on the lens mass (solid
line); fixed lens mass (dashed line). For uniform prior, the inferred bounds are unchanged when considering a smaller relative
velocity, v = 10−5 (overlapping dotted line).
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FIG. 4: 1-d and 2-d marginalized 2-σ C.L. posteriors of the
lens parameters, for different initial impact parameters, for
the fiducial setup discussed in the text.

variance matrix scales as the inverse of the SNR. Thus,
we can read from Eq. (C6) how the expected accuracy
scales with the signal amplitude and observation time.
For fixed SNR, changing the frequency of the source in-
fluences our results only marginally. This is true as long
as the modulation period in Eq. (8) is smaller or compara-
ble to the observation time. For the same reason, varying
the effective lens velocity within the range 10−2 − 10−5

has a very small impact on our results. The parameter
that has the major impact is the source-lens distance ra-
tio, rls/rs, with smaller values leading to more accurate
parameter estimation.

Discussion and prospects. We have analyzed the
phenomenology of strongly-lensed, quasi-monochromatic
GW signals. A relative transverse velocity causes an am-
plitude modulation of the waveform, see Figs. 1 and 6,

0.5 1 2 3 4
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100
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103

lo
g
B L

U

rls/rl
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0.5

1.0

2.0

1.0, fixed Ml

1.0, v = 10−5

FIG. 5: Bayes’ ratio of lensed vs unlensed hypothesis plot-
ted against the initial impact parameter for multiple distance
ratios, rls/rl, for the fiducial setup. For logBLU > 10 (dot-
ted black line), the lensing hypothesis has strong evidence.
The dashed and dotted green lines that overlap with the solid
green line show the fixed Ml and v = 10−5 case, respectively.

that can be used to constrain the lens parameters. Using
Bayesian methods and specializing in the geometric op-
tics regime, we have established the capacity of GW de-
tectors to recover lens and source parameters depending
on the lens configuration. We have focused on monochro-
matic isolated neutron stars lensed by Sgr A∗, the mas-
sive black hole at the MW’s centre, as observed by the
Einstein Telescope. Parameter estimation is expected to
improve using data from multiple 3G detectors in a global
network [21], thanks to the increased SNR and sky cov-
erage.

The parameters of the lens, (Ml, y0, v), and the source,
(A/rs, f0, φ0), can be accurately measured even for large
impact parameter y0, despite degenerate posteriors; see
Figs. 3 and 4. Precise parameter inference and strong
evidence for the lensed signal (log Bayes’ ratio ≥ 10)
can be robustly established for y0 < ymax ≈ 5 − 3 for
rls/rl = 0.1−1.5; Fig. 5. In contrast, advanced LIGO re-
quires a closer alignment (ymax ' 1.5 for rls/rl = 1). The
results depend mildly on the source’s frequency, mainly
through the SNR via the detector’s noise curve. Fixing
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Sgr A∗’s mass to its known value increases the precision
on the other lens parameters, especially on v at low y0,
as shown in Figs. 3 and 5. While parameter estimation
requires a non-zero v, the error is rather insensitive to its
exact value as long as v & 10−5 ≈ 3 km/s, which is high
enough to observe the modulation period, see Eq. (8).
Thus, small velocities are not an impediment to observ-
ing lensed NS. Moreover, the sensitivity to very small
velocities suggests that CWs could measure lens acceler-
ations accurately.

An immediate consequence of these results is an op-
timistic revision of the detection probabilities. Refer-
ence [37] considered the number of sources within the
Einstein angle of Sgr A∗, ymax ≤ 1. Because lensing
probabilities scale as ∝ y2

max, being able to identify lens
sources at larger impact parameters improves the detec-
tion prospects substantially: assuming detectability be-
low the strong-evidence threshold, as motivated by Fig. 5,
increases the expected number of sources by one order of
magnitude. A simple model for the NS distribution [36]
gives an average of 3.36 (0.1 kpc/∆z)(N0/108) detections,
where N0 is the number of observable NSs and ∆z is their
spread perpendicular to the galactic plane (see App. B
for details). While the ultimate prospects depend on un-
known astrophysics, a targeted search of NSs lensed by
Sgr A∗ by 3G detectors is warranted.

Such a detection would provide a unique probe of the
galactic center. Detection of lensed EM radiation from
objects closely aligned with Sgr A∗ is challenging due to
abundant stars, gas and dust in the central region of the
galaxy [55]. In contrast, lensed CWs are negligibly ab-
sorbed and may provide a pristine view of the region near
our supermassive black hole. CW detection can achieve
precise angular localization, facilitating source localiza-
tion by EM observations. As the secondary image forms
close to the lens, x2 ∼ 1/y0, sources at sizeable angular
separation would prove particularly useful to probe the
vicinity of the central black hole. Since lensing is sensitive
to the enclosed mass up to the image location, CWs can
probe the vicinity of Sgr A∗ in the range 104 − 105RS
complementary to BH imaging (∼ 1 − 10RS [56]) and
stellar orbits (∼ 103 − 105RS) [57], see Fig. 2.

Comparing Ml to the mass of Sgr A∗, measured by
other means, constrains the matter distribution in the
galactic center, and could serve to find or rule out dark
matter spikes [58] or cores formed by ultra-light scalars
[59]. Subdominant effects, such as microlensing, could
serve to further constrain compact objects and substruc-
tures in the vicinity of Sgr A∗. CWs lensed by Sgr A∗

would also provide very precise tests of GW propagation
in extreme environments [60, 61].

This study is the first step towards understanding pa-
rameter reconstruction in lensed CWs. Our analysis has
relied exclusively on the modulation due to interference
between multiple images. However, the precise sky local-
ization achievable by follow-up analyses (Eq. 9) can pro-
vide additional information (i.e. through image positions
and perhaps even their motion), substantially boosting

the precision found in our analysis. Including time de-
pendence of the magnifications, next-order variation of
the time delay and wave-optics corrections will allow us
to address light lenses and to study microlensing around
Sgr A∗. Further extending our framework beyond the
point-like lens may enable CWs to probe lenses other
than our supermassive black hole. This will enable novel
probes of galactic substructure and fundamental physics,
even if NS observable by 3G detectors are not abundant
enough for CWs lensed by Sgr A∗ to be observed.
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Appendix A: Gravitational lensing with a moving
lens

To compute the amplification factor due to the pres-
ence of a lens, we follow the standard derivations [4, 38]
for a lens at rest. Indeed, one can always perform a
Lorentz boost to the lens frame, where the line element
of the metric is static and reads

ds2 = −(1 + 2U) dt2 + (1− 2U) d~r 2 , (A1)

where U(~r) is the gravitational potential generated
by the lens. With this metric, the wave equation
∂µ(
√
−ggµν∂νh) = 0 becomes, at linear order in U ,(

∇2 + ω2
)
h̃(ω,~r) = 4ω2U(~r)h̃(ω,~r) . (A2)

We want to compute the amplification factor F ≡
h̃/h̃0. It is useful first to define the quantities intervening
in the final result. Using spherical coordinates centred at
the observer, ~r = (r, θ, ϕ), and working for small an-
gles, θ � 1, we first define the two-dimensional vector
θ = θ(cosϕ, sinϕ) and denote by θl and θs the observed
and true angular position of the source, respectively.

For a thin lens, F can be computed from the above
wave equation, Eq. (A2), and it is given in the form of a
diffraction integral [38],

F (ω,θs) =
ω

2πi

rlrs
rls

∫
d2θ exp[iωt(θ,θs)] , (A3)

where

t(θ,θs) =
rlrs
2rls
|θ − θs|2 − ψ̂(θ) , (A4)

given the lensing potential ψ̂(θ) ≡
∫
dr U(r,θ). It is also

convenient to introduce the so-called Fermat potential,
T (θ,θs) = t(θ,θs)/(4GMl), the dimensionless frequency,
w ≡ 4GMl ω, and the dimensionless impact parameter,
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y = |θs|/θE . Figure 6 shows |F | as a function of w and
y. The geometric optics limit applies for wT (θ,θs)� 1.
In this case, the diffraction integral is dominated by the
stationary points of the Fermat potential,

∇θT = 0 , (A5)

which is the lens equation [62], and reduces to a discrete
sum over multiple images, as in Eq. (1).

For instance, a point-like lens always splits the source
in two images, characterized by the following magnifica-
tions and time delay, respectively [62],

µ2

µ1
=

2− y(
√
y2 + 4− y)

2 + y(
√
y2 + 4 + y)

,

∆t12 = 2GMl

[
y
√
y2 + 4 + 2 log

(√
y2 + 4 + y√
y2 + 4− y

)]
,

where the separation between the two images
and the difference in deflection angle are, re-

spectively, ∆x12 ≡ |θl,1 − θl,2|/θE =
√
y2 + 4 and

∆α12 = 5.8′′∆x12

(
rs 8.5 kpc

2rlsrl
Ml

MSgrA∗

)1/2

.

In the lens frame, a moving observer or a moving source
induce a time dependence in the source position θs, as
discussed in the text. If the frequency of the wave is
much smaller than the typical rate of change of the Fer-
mat potential, Ṫ /T , which is never the case for the above
study, the previous derivation needs to be corrected by
non-linear terms: the right-hand side of Eq. (A2) is

modified into 4ω2
(
1− 2

ω~v · ∇
) ∫

dω′ Ũ(ω′−ω,~r) h̃(ω′, ~r),
which couples different frequencies.

Another effect appears when we want to relate the time
delay in the lens frame to the one in the source frame by
a Lorentz boost. This affects the time delay only if the
velocity of the lens is along the undeflected trajectory.
Since the boost affects the undeflected and deflected tra-
jectories in the same way, it has no effect on the geomet-
rical time delay. The Shapiro time delay instead receives

a Doppler correction [63, 64], ∆tShapiro = (1 − ~vl · n̂)ψ̂,

where ψ̂ is the lensing potential for a lens at rest. We do
not consider this effect, which is common to all images
and hence not measurable.

Appendix B: Lensing probability

We will now estimate the probability of strong lensing
and compare it with previous results. We will follow the
source distribution proposed in Ref. [36] (also considered
in Ref. [37])

dPs(r, z)

dV
=

1

2π

1

σ2
r

e
− r2

2σ2
r

1

2∆z
e−
|z|
∆z . (B1)

Here dV = drrdφdz is the volume element, σr = 5kpc
is the scatter of sources in the galactic plane and ∆z is
perpendicular to it. We will assume that the Earth and

100 101 102

w = 8πGMl f
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p
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p
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=
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/
θ E
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Amplification |F (w, y)| = |h̃l/h̃0|
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FIG. 6: Amplification factor as a function of the dimensionless
frequency w = 8πGMl f and impact parameter y = |θs|/θE .
The full-wave solution is shown for a point-like lens. Dashed
gray contours correspond to the transition between wave
and geometric optics regimes (less than 10% relative dif-
ference). Our fiducial system lies in geometric optics with
w = 8πGMSgrA∗f0 ' 103 − 104. Diffraction and wave effects
can be observed for chirping binaries (varying w and keeping
y constant) or moving lens systems (varying y and keeping w
constant).

any detectable lensed source deviate negligible from the
galactic plane, relative to ∆z ∼ 0.1−1kpc, and set z ≈ 0.

The fraction of strongly lensed sources is

fl ≡
N̄l
N0
≈
∫ rhor

0

drlsrls(rl + rls) (θEymax)
2 dPs
dV

, (B2)

were N̄l is the average number of lensed sources and N0

is the number of observable sources [37]. The integral
is performed up to a detection horizon rhor (cf. Eq. 11)
and ymax is the highest value of the impact parameter
for which very strong evidence for lensing can be estab-
lished, see Fig. 5. For rls/rl ≥ 0.5, ymax obeys a linear
relation, which we have extrapolated to the whole domain
to compute the integral above. This underestimates ymax

close to the lens (stars vs line in Fig. 7) and is thus a
conservative assumption.

Figure 7 shows the fraction of lensed NSs with strong
evidence, fl[ymax], as a function of rhor, where we also
show the fraction of sources within the Einstein ra-
dius, fl[y = 1], obtained from setting ymax → 1 in
Eq. (B2). The Einstein radius, source distribution and
strong-evidence parameter entering the calculation are
also shown. For rhor & 1.5 rl, the expected number of
observed sources is

N̄L = 3.36

(
0.1kpc

∆z

)(
N0

108

)
. (B3)

This is a factor ∼ 9.04 larger than the estimate ob-
tained setting ymax = 1 in Eq. (B2), as in the analysis
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0.0 0.5 1.0 1.5 2.0 2.5

rhor/rl , rl s/rl

0

2

4

6

8

ymax

fl [ymax] · 108

fl [y = 1] · 108

θE · 105 [rad]

dPs/dV

FIG. 7: Expected fraction of NSs lensed by Sgr A∗ using
the strong-evidence cutoff (thick solid red) and the Einstein
radius cutoff (thick solid gray), both for ∆z = 0.1kpc. Thin
lines represent other quantities appearing in Eq. (B2), stars
denote the values of ymax obtained from MC sampling, the
dotted line is the interpolation used.

of Ref. [37]. The number of detected sources is given by
Poisson statistics, with

Pl(k) =
N̄k
l

k!
e−N̄l , (B4)

where k is the number of detections. Hence, the proba-
bility of detecting at least a single lensed event is Pl(k ≥
1) = 1−e−Nl . The analysis in Ref. [37] uses N0 = 109 as
a fiducial number of observable sources. In that case, our
study would suggest that more than 34 strong-evidence
lensed events could be observed, with ∼ 2 · 10−15 chance
of observing none.

Appendix C: Parameter inference

The signal observed at the detector, d(t), is a super-
position between background noise and the true gravita-
tional waves signal,

d(t) = h(t;θ) + n(t). (C1)

The probability of observing some data d with an incom-
ing gravitational wave signal h(θ) is equivalent to the
probability of observing a particular realisation of the
noise n. The vector θ includes the parameters that de-
termine the propagated waveform. For a stationary and
Gaussian distributed noise, a realisation n0 has a proba-
bility

p(n0) ∝ exp

[
−1

2

∫
df
|ño(f)|2

Sn(f)

]
, (C2)

where the one-sided power spectral density of noise,
Sn(f), is the variance associated with the noise distri-
bution.

The probability of observing d given θ, i.e. the likeli-
hood of the parameters θ, is

log p(d | θ) ∝ −1

2
(d− h(θ), d− h(θ)) , (C3)

where the inner product for two signals f and g, in the
Fourier space, is defined as

(f, g) = 4 Re

[∫ ∞
0

df
h̃?(f) g̃(f)

Sn(f)

]
. (C4)

For quasi-monochromatic sources, the inner product in
Eq. (C4) can be equivalently defined in the time-domain,
following Ref. [65, 66], as

(h, g) =
2

Sn(f0)

∫ Tobs

0

h(t)g(t) , (C5)

with Tobs the observational time. Hence, the SNR, which
measures the loudness of the signal, reads

ρ ≡ (h|h) '

√
A2

r2
s

Tobs

Sn(f0)
. (C6)

The posterior of θ is obtained from the likelihood using
Bayes’ rule, i.e.,

p(θ | d) =
p(d | θ)p(θ)

p(d|Mi)
, (C7)

where p(θ) is the parameter prior and p(d|Mi), namely
the evidence, is the marginal likelihood for a given model
Mi:

p(d|Mi) =

∫
dθp(d|θ)p(θ) . (C8)

In the Bayesian context, the marginalized posteriors are
the probability distribution functions of the parameters.

Given two models Mi and Mj , the ratio of their ev-
idences, called the Bayes factor, is used as an index to
test different interpretations of the same data:

Bij =
p(d|Mi)

p(d|Mj)
. (C9)

Following the empirical Jeffrey’s prescription [67], in
Tab. I we report the range of value of Bij and the corre-
sponding degree of evidence of the model Mi over Mj .

Appendix D: Sampling methods

Combining the lensed waveform in Eq. (7) with
Eq. (C5) we get the analytical likelihood function for
CWs events lensed by SgrA∗. We use the dynamic nested
sampling package Dynesty [68] to infer parameter posteri-
ors and the evidence of fitting models through numerical
MC simulations.
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logB10 B10 Evidence against H0

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

>10 >150 Very Strong

TABLE I: Evidence against the null hypothesis compared to
ranges of Bayes factor.

Our analysis is restricted to the source and lens pa-
rameters that are potentially correlated. In particular,
the source is assumed to be purely monochromatic and
modelled by (A/rs, f0, φ0). The lens is modelled initially
by :

u =

√
µ2

µ1
, k = ∆φ21, z =

∆f21

f
, (D1)

where ∆φ21 is the constant phase difference between the
two images and ∆f21 is the relative frequency shift in-
duced by lens motion. The numerical samples are then
converted to the point-lens parameters {Ml, y0, v}.

In Fig. 8, we present the complete set of 1-d and 2-d
marginalized 2-σ posteriors for the fiducial setup, already
partially presented in Fig. 4. Figure 9 shows the poste-
riors of the corresponding original sampling parameters
{u, k, z}. For impact parameter y & 4, the lack of resolu-
tion of the small amplitude modulation, i.e. the r contour
being compatible with r = 0, prevents the reconstruction
of the lensing parameters.
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P. T. de Zeeuw, J. Dexter, et al., Astronomy &amp; As-
trophysics 625, L10 (2019), URL https://doi.org/10.

1051%2F0004-6361%2F201935656.
[55] V. Bozza and L. Mancini, Astrophys. J. 753, 56 (2012),

1204.2103.
[56] K. Akiyama et al. (Event Horizon Telescope), Astrophys.

J. Lett. 930, L12 (2022).
[57] R. Abuter et al. (GRAVITY), Astron. Astrophys. 657,

L12 (2022), 2112.07478.
[58] P. Gondolo and J. Silk, Phys. Rev. Lett. 83, 1719 (1999),

astro-ph/9906391.
[59] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys.

Rev. D 95, 043541 (2017), 1610.08297.
[60] J. M. Ezquiaga and M. Zumalacárregui, Phys. Rev. D

102, 124048 (2020), 2009.12187.
[61] S. Goyal, A. Vijaykumar, J. Ezquiaga, and M. Zu-

malacárregui (????), 2212.xxxxx.
[62] P. Schneider, J. Ehlers, and E. E. Falco, Gravitational

Lenses (1992).
[63] T. Pyne and M. Birkinshaw, Astrophys. J. 415, 459

(1993), astro-ph/9303020.
[64] S. Frittelli, Mon. Not. Roy. Astron. Soc. 340, 457 (2003),

astro-ph/0212207.
[65] R. Takahashi and N. Seto, Astrophys. J. 575, 1030

(2002), arXiv:astro-ph/0204487.
[66] N. Seto, Mon. Not. Roy. Astron. Soc. 333, 469 (2002),

arXiv:astro-ph/0202364.
[67] R. E. Kass and A. E. Raftery, J. Am. Statist. Assoc. 90,

773 (1995).
[68] J. S. Speagle, Monthly Notices of the Royal Astronomical

Society 493, 3132 (2020), URL https://doi.org/10.

1093%2Fmnras%2Fstaa278.

https://doi.org/10.1093/mnras/stw909
https://doi.org/10.1093/mnras/stw909
https://doi.org/10.1093%2Fmnras%2Fstaa3635
https://doi.org/10.1051%2F0004-6361%2F201935656
https://doi.org/10.1051%2F0004-6361%2F201935656
https://doi.org/10.1093%2Fmnras%2Fstaa278
https://doi.org/10.1093%2Fmnras%2Fstaa278

	 Acknowledgments
	A Gravitational lensing with a moving lens
	B Lensing probability
	C Parameter inference
	D Sampling methods
	 References

